WO2004009829A1 - メチオニンの製造法 - Google Patents

メチオニンの製造法 Download PDF

Info

Publication number
WO2004009829A1
WO2004009829A1 PCT/JP2003/009268 JP0309268W WO2004009829A1 WO 2004009829 A1 WO2004009829 A1 WO 2004009829A1 JP 0309268 W JP0309268 W JP 0309268W WO 2004009829 A1 WO2004009829 A1 WO 2004009829A1
Authority
WO
WIPO (PCT)
Prior art keywords
methionine
biocatalyst
ammonia
aqueous
solution
Prior art date
Application number
PCT/JP2003/009268
Other languages
English (en)
French (fr)
Inventor
Yoichi Kobayashi
Ippei Ono
Koichi Hayakawa
Yoshinori Mizui
Takahiro Ishikawa
Original Assignee
Nippon Soda Co.,Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co.,Ltd filed Critical Nippon Soda Co.,Ltd
Priority to JP2004522777A priority Critical patent/JPWO2004009829A1/ja
Priority to US10/523,146 priority patent/US20050176115A1/en
Priority to AU2003281546A priority patent/AU2003281546A1/en
Priority to EP03741530A priority patent/EP1541691A1/en
Publication of WO2004009829A1 publication Critical patent/WO2004009829A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine

Definitions

  • the present invention relates to a method for producing methionine crystals used as pharmaceuticals and feed additives.
  • Methionine is required to be provided in solid (crystalline) form, especially in the feed additive market.
  • An object of the present invention is to convert a substance capable of producing methionine by hydrolysis, such as 2-amino-4-methylthiobutyronitrile and 2-amino-4-methylthiobutanoic acid amide, into a raw material and convert it into methionine using a biocatalyst.
  • the biocatalyst can be used repeatedly, increasing the amount of methionine dissolved and accumulated in the reaction solution, and a practical method for producing methionine that can easily isolate methionine as a solid from the reaction solution. It is to provide.
  • the present inventors have proposed a two-trilase-producing bacterium, Arthrobacter p. NSP 104 (FE RM BP-58029), which can stably maintain a high autilase activity, and an arthrobacter.
  • 'SP A rthrobactersp.
  • NSSC 204 FE RM BP-766 2
  • the solubility of methionine in water was low (25 ° C in 3. 3 8 g / 1 0 0 g ⁇ H 2 0, 5 0 in ° C 6.
  • the inventors of the present invention have conducted intensive studies to simultaneously solve the above-described problems of the present invention.
  • ammonia must be present in the reaction solution.
  • Preparing 5 types of solutions with a molar ratio of ammonia to methionine of 0, 1, 1.5, 2, 2.5, and examining the solubility of methionine at 5 to 50 ° C An experiment was performed. From the results shown in Fig. 1, it was found that the excess amount of ammonia in the reaction solution as a molar ratio to methionine increased the solubility of methionine.
  • Separation and recovery of the solid free form of methionine is carried out by removing ammonia from an aqueous ammonia solution containing methionine (aqueous ammonia solution containing methionine) discharged from the hydrolysis reaction tank after separation from the biocatalyst, and depositing methionine. It can be easily performed by collecting crystals.
  • the mother liquor from which the methionine crystals were separated and recovered contained a small amount of the remaining raw materials, 2-amino-4-methylthiobutyronitrile and 2-amino-4-methylthiobutanoic acid amide, methionine, and ammonia. Recycle It is possible to complete a waste-free process.
  • the present invention has been completed based on the above findings. Disclosure of the invention
  • [1] (1) a first step of hydrolyzing a raw material capable of producing methionine by hydrolysis with a biocatalyst having hydrolysis activity in an aqueous ammonia solution to convert it into an aqueous methionine-containing ammonia solution; (2) ) A second step of separating the aqueous methionine-containing solution obtained in the first step from the biocatalyst; (3) removing ammonia from the aqueous methionine-containing aqueous solution separated in the second step; A method for producing methionine, comprising a third step of precipitating and separating methionine crystals;
  • ammonia aqueous solution an aqueous solution containing 1.5 to 10 times the equivalent of ammonia in the aqueous methionine ammonium solution obtained in the first step is used, [1] to [3]. How to make methionine,
  • Fig. 1 shows the results of examining the solubility of methionine at 5 to 50 ° C in five types of solutions in which the molar ratio of ammonia to methionine was 0, 1, 1.5, 2, 2.5.
  • FIG. 1 shows the results of examining the solubility of methionine at 5 to 50 ° C in five types of solutions in which the molar ratio of ammonia to methionine was 0, 1, 1.5, 2, 2.5.
  • FIG. 2 is a diagram showing an outline of a non-waste process in the method for producing methionine of the present invention.
  • the method for producing methionine of the present invention includes: (1) a biocatalyst having hydrolysis activity in an aqueous ammonia solution, preferably 2-amino-4 as a raw material, which is capable of producing methionine by hydrolysis.
  • a second step of separating from the catalyst (3) a method including a third step of removing ammonia from the aqueous methionine-containing aqueous solution separated in the second step to precipitate and separate methionine crystals.
  • a biocatalyst-free process such as recycling, as shown in FIG.
  • the biocatalyst used in the first step of hydrolyzing 2-amino-4-methylthiobutyronitrile in an aqueous ammonia solution with a biocatalyst having nitrile hydrolysis activity to convert it into an aqueous methionine-containing ammonia solution includes:
  • the biocatalyst is not particularly limited as long as it is a biocatalyst such as a microorganism having an activity of hydrolyzing nitrile in an aqueous solution such as an ammonia aqueous solution.
  • examples of such a biocatalyst include Arthrobacter sp., Varioborax Microorganisms belonging to the genus (Variovorax) and the like can be mentioned.
  • earth mouth park Yuichi 'SP NSSC104 earth mouth park Yuichi 'SP NSSC104, A-Slobacta' SP NSSC204, and Variopolax 'Paradoxus ( Variovorax paradoxus) IAM123374 can be suitably exemplified.
  • Earthlobacta 1 NSSC 104 was registered with the National Institute of Advanced Industrial Science and Technology (AIST) at the Patent Organism Depositary (Tsukuba East, Ichiro, 1-chome, 1-Central 6) under the accession number FE RM BP—5 9 Deposited on February 6, 2008, and its bacteriological properties are described in WO97 / 32030. Have been. Also, Earthlobacta NSSC 204 was also assigned to the National Institute of Advanced Industrial Science and Technology (AIST) at the Patent Organism Depositary Center (1-1, Higashi 1-1, Tsukuba City, Ibaraki Pref., Central No. 6) under the accession number FE RM BP—7662.
  • AIST National Institute of Advanced Industrial Science and Technology
  • Norobolux Paradoxus IAM123374 can be easily obtained from the Institute for Molecular and Cellular Biology at the University of Tokyo, and its bacteriological properties have been reviewed for its microbiological properties by the Japanese National Journal of 'Systematic' Pacteriology. 1 (International Journal of Systematic Bacteriology), vol. 41, pp. 445-450 (1991).
  • the biocatalyst used in the first step of hydrolyzing 2-amino-4-methylthiobutanoic acid amide in an aqueous ammonia solution with a biocatalyst having amide hydrolysis activity to convert it to an aqueous methionine-containing ammonia solution is as follows.
  • the biocatalyst is not particularly limited as long as it is a biocatalyst such as a microorganism having an activity of hydrolyzing an amide in an aqueous solution such as an aqueous ammonia solution.
  • examples of such a biocatalyst include Rhodococcus rhodochrous.
  • IFO 155 64 can be suitably exemplified.
  • Rhodococcus rhodochrous IFO 15564 is readily available from the National Institute of Technology and Evaluation ⁇ National Center for Biological Resources (NBRC) and its microbiological properties are described in Tetra Hedron Letters ( Tetrahedron Letters), Vol. 32, pp. 1343-1346.
  • Culture of these microorganisms is carried out in a conventional medium containing enzyme inducers, carbon sources, nitrogen sources, inorganic ions and, if necessary, organic nutrients that the microorganism can utilize.
  • enzyme inducer nitrile compounds such as isoptyronitrile and 2-aminobenzonitrile, cyclic amide compounds such as ⁇ -force prolactam and the like are used, and 2-aminobenzononitrile is particularly preferable.
  • Charcoal As the raw material, carbohydrates such as glucose, alcohols such as ethanol, organic acids and the like are appropriately used. Amino acids, nitrates, ammonium salts and the like are used as nitrogen sources.
  • inorganic ions phosphate ion, potassium ion, magnesium ion, sulfate ion, iron ion and others are used as required.
  • organic nutrients vitamins, amino acids and the like, and corn steep liquor, yeast extract, polypeptone, meat extract, and the like containing them are appropriately used.
  • the cultivation may be carried out under aerobic conditions while controlling the pH to 6 to 9 and the temperature to 25 to 37 ° C in an appropriate range.
  • biocatalyst used in the present invention examples include cells cultured as described above, immobilized cells prepared from the cells, and treated cells such as crude enzymes or immobilized enzymes.
  • immobilizing cells or enzymes commonly used immobilization techniques such as a carrier binding method and an inclusive method can be applied.
  • enzyme purification techniques such as ammonium sulfate precipitation and chromatography can be applied after the cells are disrupted by ultrasonic waves, a high-pressure homogenizer, or the like.
  • the biocatalyst such as bacterial cells used for the reaction can be repeatedly used for the hydrolysis reaction without substantially lowering the activity, and therefore, it is preferable to reuse the biocatalyst.
  • methionine is produced by hydrolyzing the above biocatalyst in an aqueous solvent containing ammonia with 2-amino-4-methylthiobutyronitrile, 2-amino-4-methylthiobutanoic acid amide, or the like. This is done by acting on possible starting materials.
  • the biocatalyst is usually used at a concentration of 0.1 to 10% by weight, preferably 1 to 6% by weight, in terms of dry weight.
  • the aqueous solvent containing ammonia may be an aqueous solvent which may contain an organic solvent containing ammonia water as a main component, and may contain an organic base such as amine, an organic acid or an inorganic base.
  • Ammonia is used in an aqueous solution having a concentration of 0.5 to 30% by weight, preferably 0.8 to 10% by weight, and an aqueous solution containing 1.5 to 10 times the equivalent of ammonia in the accumulated concentration of methionine. Can be used. Furthermore, in order to increase the amount of ammonia dissolved and increase the amount of methionine dissolved and accumulated in the reaction solution, the hydrolysis reaction can be performed under pressure.
  • the aqueous methionine-containing aqueous solution can be separated from the biocatalyst and discharged out of the reaction system.
  • the biocatalyst can be separated from the aqueous methionine ammonia solution and discharged to the outside of the reaction system.
  • These methods for separating the aqueous methionine ammonia solution and the biocatalyst after the completion of the hydrolysis reaction include: The method is not particularly limited as long as it is a known solid-liquid separation method, and can be performed by, for example, filtration, centrifugation, ultrafiltration, and the like.
  • the recovered biocatalyst is subjected to repeated hydrolysis reactions as described above. Can be used.
  • Separation of the aqueous solution of methionine-containing ammonia from the biocatalyst when the immobilized bacterial cells / immobilized enzyme is used does not require any special solid-liquid separation means.
  • a simple coarse filter may be provided to prevent the immobilized biocatalyst from flowing out of the reaction tank.
  • the ammonia is distilled off from the aqueous methionine-containing solution in the third step, in which ammonia is distilled off from the aqueous methionine-containing solution separated in the second step to precipitate and separate methionine crystals.
  • Vapor / vacuum degassing or distillation by heating is carried out, and methionine can be crystallized if a certain amount of excess ammonia is distilled off with respect to methionine.
  • the distilled ammonia except for equimolar amounts of methionine, is subjected to the hydrolysis reaction.
  • Can be reused Excluded ammonia that cannot be reused can be used to synthesize raw materials such as 2-amino-4-methylthiobutyronitrile, 2-amino-4-methylthiobutanoic acid amide.
  • the crystallized methionine can be recovered as a solid using a solid-liquid separator such as a filtration / centrifugal separator. It contains a small amount of raw materials such as nitrile and 2-amino-14-methylthiobutanoic acid amide, methionine and ammonia, and can be recycled for hydrolysis.
  • the methionine produced in the present invention can be obtained as D-type, L-type or racemic methionine depending on the optical selectivity of the biocatalyst to be used.
  • the generated and separated methionine crystals require further purification or particle size adjustment. It can be done according to.
  • the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
  • Example 1 Production of DL-methionine by NSSC204 strain
  • One platinum loop of Arthrobacter NSSC 204 strain was inoculated into this test tube, and cultured at 33 ° C overnight with shaking to prepare a preculture.
  • corn steep liquor (filter sterilized) 2.0%, sucrose (sterilized at 121 ° C for 20 minutes) 1.0%, 2-aminobenzonitrile (dissolved at 121 ° C for 20 minutes) (Bacteria) Place 10 ml of 117.2 medium (adjusted with 2N caustic soda) containing 0.03% into a 100 ml baffled Erlenmeyer flask and add 0.2 ml of the above precultured culture. , And cultured with shaking at 33 ° C for an additional 4 days.
  • Example 2 Continuous production of DL-methionine by NSSC 204 strain
  • the culture solution of the earthlobactor NSSC 204 strain obtained in Example 1 was centrifuged, washed with ion-exchanged water, and dried. Suspend in an aqueous solution (pH 9.5) containing 10% (W / W) DL-methionine and 2.28% (W / W) ammonia so that the cells have a concentration of 2% (W / W). It became cloudy.
  • Example 3 Continuous production of DL-methionine by immobilized NSSC 204 strain
  • the obtained immobilized bacterial cell beads (2 25 g) were packed in a column with an inner diameter of 30 mm, and 10% (W / W) DL-methionine, 2.28% (W / W) ammonia and 2.5
  • An aqueous solution (pH 9.5) containing mM 1,3-diaminopropane and 10 mM calcium chloride was allowed to flow at a flow rate of 0.21 per hour to equilibrate.
  • the beads were then transferred to a 500 ml three-necked flask kept at 30 ° C, and an equilibrated aqueous solution was added to bring the total volume to 300 g. Then, 2-amino-4-methylthiobutyronitrile was added hourly. 5.
  • reaction solution was passed through a suction filter at about 50 per hour to prevent inhalation of the immobilized beads. Collected at speed. At this time, 1.14% (W / W) ammonia and 2 OmM ethylenediamine of the same volume as the reaction filtrate collected using a pump linked to the liquid level sensor so that the liquid volume in the reaction vessel does not decrease. And an aqueous solution containing 1 OmM calcium chloride was continuously supplied.
  • the recovery rate of the reaction filtrate was controlled so as to maintain a concentration of 10% (WZW).
  • the concentration of 2-amino-4-methylthiobutyronitrile contained in the reaction filtrate gradually increased and reached 0.5% (W / W) 12 hours after the start of the reaction, after which the concentration was maintained for 20 days. Maintained, during which time the methionine production rate was 5.03 g / h.
  • Example 4 Recovery of solid DL—methionine
  • the obtained immobilized bacterial cell beads (2 25 g) were packed in a column with an inner diameter of 30 mm. 10% (W / W) DL-methionine, 2.28 (W / W) ammonia and 10 mM calcium chloride Aqueous solution containing 0.1 was flowed at a flow rate of 0.21 per hour and the mixture was equilibrated. The beads were then kept at 350 ° C in a 500 ml volume.
  • Example 5 250 g of the reaction filtrate obtained in Example 5 was sampled, charged into a 500 ml flask equipped with a stirrer, and ammonia was distilled off under reduced pressure using a vacuum pump. Methionine precipitated by distillation of ammonia was separated by filtration to obtain 11.3 g of methionine.
  • the mother liquor contained 13.7 g of methionine and 1.02 g of 2-amino-4-methylthiobutanoic acid amide, and no decomposition product was formed. Using this mother liquor, bacterial reaction monocrystallization was repeated, and the resulting methionine was quantitative at 99%, the purity was more than 99%, and no coloration was observed.
  • 2-amino-4-methylthiobutyronitrile, 2-amino-4-methylthiobutanoic acid amide, or the like is used as a raw material, and a biocatalyst having nitrile hydrolysis activity, amide hydrolysis activity, or the like is used.
  • methionine is produced in a dissolved state in ammonia water, and then ammonia is distilled off, whereby solid methionine required as a product form can be produced efficiently and easily.
  • energy costs and waste emissions are significantly lower than those of conventional chemical manufacturing methods.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、加水分解によりメチオニンを生成しうる物質を原料として、生体触媒を用いてメチオニンに変換する際、生体触媒の繰り返し使用が可能であって、反応液中のメチオニンの溶解蓄積量を増加させるとともに、反応液からメチオニンを固形品として得る実用的なメチオニンの製造法である。 詳しくは、2−アミノ−4−メチルチオブチロニトリル、2−アミノ−4−メチルチオブタン酸アミド等の加水分解によりメチオニンを生成しうる原料物質をアンモニア水溶液中で生体触媒によって加水分解して含メチオニンアンモニア水溶液に変換する第1の工程、前記第1の工程で得られる含メチオニンアンモニア水溶液を生体触媒と分離する第2の工程、前記第2の工程で分離された含メチオニンアンモニア水溶液よりアンモニアを留去しメチオニン結晶を析出・分離する第3の工程によりメチオニンを製造する方法である。

Description

メチォニンの製造法
技術分野
本発明は、 医薬品や飼料添加剤として利用されているメチォニン結晶 の製造法に関する。 メチォニンは特に飼料添加物市場において固形 (結 晶) 品で提供されることが求め明られている。 田
背景技術
生体触媒の二トリル加水分解活性を用いた 2—アミノ酸の製造方法と しては、 2—アミノニトリルや 2—アミノアミ ドを原料とする方法 (特 公昭 5 8— 1 5 1 2 0号公報、 特表昭 6 3 - 5 0 0 0 04号公報、 特開 平 2— 3 1 6 94号公報、 特表平 3— 5 0 0 4 8 4号公報、 特公平 3 - 1 6 1 1 8号公報、 W〇 0 2/ 0 843 9、特開 2 0 0 2— 3 4 5 9 3、 U S - 64 1 7 3 9 5) 及びシアンヒドリンを原料とする方法 (特開平 9— 1 4 0 3 9 1 ) が知られている。 しかしながら、 いずれの方法にお いても、 メチォニンのような水溶解度の低い固形 2 _アミノ酸を生体触 媒と効率よく分離精製する実用的方法については開示されていない。
また、 ホルムアルデヒド、 青酸及びアンモニアの反応で得られるダリ シノニトリルからダリシンの微生物学的製造において、 反応液中に生成 するアンモニアを分離する方法が知られている (特開 2 0 0 1— 2 5 8 5 8 6、 特開 2 0 0 1— 2 9 9 3 7 7、 特開 2 0 0 1— 3 4 0 0 9 6、 特開 2 0 0 1 - 3 4 0 0 9 7 )が、この方法におけるアンモニア分離は、 反応による P Hの上昇を抑えるために、 二トリルの加水分解によって生 成するアンモニアを分離するものであり、 さらにまた、 グリシンは水溶 解度が高い ( 2 5 °Cで 2 5 g/ 1 0 0 g ' H2O) のでアンモニアを留 去することでグリシンを晶析させるものでもない。
本発明の課題は、 2—アミノー 4ーメチルチオプチロニトリル、 2— アミノー 4ーメチルチオブタン酸アミ ド等の加水分解によりメチォニン を生成しうる物質を原料として、 生体触媒を用いてメチォニンに変換す る際、 生体触媒の繰り返し使用が可能であって、 反応液中のメチォニン の溶解蓄積量を増加させるとともに、 反応液からメチォニンを固形品と して容易に単離しうる実用的なメチォニンの製造法を提供することにあ る。
本発明者らは、 高二トリラ一ゼ活性を安定的に持続しうる二トリラー ゼ産生菌アースロバクタ一 ' エスピー (A r t h r o b a c t e r s p. ) N S S C 1 04 (F E RM B P— 5 8 2 9 ) 及びアースロバ クタ一 ' エスピー (A r t h r o b a c t e r s p . ) N S S C 2 0 4 (F E RM B P— 7 6 6 2 ) を既に見い出している。 これら二トリ ラ一ゼ産生菌を生体触媒として用いて、 2 _アミノー 4—メチルチオブ チロニトリルを加水分解してメチォニンを得る製造技術を検討する過程 で、 メチォニンの水に対する溶解度が低い (2 5°Cで 3. 3 8 g / 1 0 0 g · H 20, 5 0 °Cで 6. 0 7 gZ l 0 0 g ' H2O) ため、 反応開 始直後から反応液中にメチォニン結晶が析出してしまい、 これが生体触 媒と凝集して、 メチォニン析出晶と生体触媒と反応液との 3成分を効率 よく分離することが困難となり、 生体触媒を高い回収率でリサイクルす ることが困難であるという問題に直面した。 一方、 反応中、 メチォニン を析出させないで、 反応液 (水) に溶解させた状態を保って、 生体触媒 を分離回収することは可能であるが、 この場合は、 メチォニンの水に対 する溶解度が低いため、 メチォニンの蓄積濃度を 5 %未満というきわめ て低い濃度に維持する必要があり、 反応液中のメチォニンの溶解蓄積量 を増加させることができず、 生産性の極めて低い製造技術となり、 実用 性に乏しいことがわかった。
上記の問題は、 アミダーゼ産生菌を生体触媒として用いて、 2—アミ ノー 4—メチルチオブタン酸アミ ドを加水分解してメチォニンを得る場 合においても、 同様に発生する。
そこで、 本発明者らは、 上記本発明の課題を同時に解決すべく鋭意検 討を重ねた結果、反応液中のメチォニンの溶解蓄積量を増加させるには、 反応液中にアンモニアを存在させればよいと考え、 メチォニンに対する アンモニアのモル比を 0、 1 、 1 . 5、 2、 2 . 5、 とした 5種類の溶 液を調製し、 5〜 5 0 °Cでメチォニンの溶解度を調べる予備実験を行つ た。 図 1に示される結果から、 反応液中にアンモニアをメチォニンに対 するモル比として過剰量存在させることによって、 メチォニンの溶解度 が増加することを見い出し、 メチォニンを溶解状態で反応液中に 5〜 3 0重量%蓄積させ、 菌体触媒を 1 0 0 %回収するシステムを考案した。 メチォニンを 2 0重量%程度水に溶解させるには N a〇Hや K O H等の 無機アルカリを添加することによつても可能であるが、 この場合は、 メ チォニンの固形遊離体としての製品を得るにあたって、 酸を用いて中和 する必要があり、 この際、 無機塩廃棄物が大量に発生し、 これを除去す る操作が別途必要になるという問題が生ずる。
また、 メチォニンの固形遊離体の分離回収は、 加水分解反応槽から生 体触媒と分離後排出されるメチォニンを含むアンモニア水溶液 (含メチ ォニンアンモニア水溶液) からアンモニアを留去し、 析出するメチォ二 ン結晶を採取することにより容易に行うことができる。 メチォニン結晶 を分離回収した母液は、 残存原料 2—ァミノ— 4ーメチルチオプチロニ トリルや 2—ァミノ— 4 —メチルチオブタン酸アミ ド、 メチォニン、 ァ ンモニァを少量含んでいるので、 加水分解反応槽にリサイクルすること が望ましく、 これによつて廃棄物の出ないプロセスを完結することがで きる。 本発明は以上の知見に基づき完成に至ったものである。 発明の開示
すなわち本発明は、
[ 1 ] ( 1 ) 加水分解によりメチォニンを生成しうる原料物質をアンモ ニァ水溶液中で加水分解活性を有する生体触媒によって加水分解して含 メチォニンアンモニア水溶液に変換する第 1の工程、 (2) 前記第 1の 工程で得られる含メチォニンアンモニア水溶液を生体触媒と分離する第 2の工程、 (3) 前記第 2の工程で分離された含メチォニンアンモニア 水溶液よりアンモニアを留去しメチォニン結晶を析出 ·分離する第 3の 工程を有することを特徴とするメチォニンの製造法や、
[ 2 ] 原料物質としての 2—ァミノ— 4—メチルチオプチロニトリルを アンモニア水溶液中で二トリル加水分解活性を有する生体触媒によって 加水分解する [ 1 ] 記載のメチォニンの製造法や、
[ 3 ] 原料物質としての 2—アミノー 4ーメチルチオブタン酸アミ ドを アンモニア水溶液中でアミ ド加水分解活性を有する生体触媒によって加 水分解する [ 1 ] 記載のメチォニンの製造法や、
[4] アンモニア水溶液として、 第 1の工程で得られる含メチォニンァ ンモニァ水溶液中のメチォニン量の 1. 5〜 1 0倍当量のアンモニアを 含む水溶液を用いる [ 1 ] 〜 [ 3 ] のいずれか記載のメチォニンの製造 法や、
[ 5 ] 第 1の工程で得られる含メチォニンアンモニア水溶液中のメチォ ニン濃度が 5〜 3 0重量%である [ 1 ] 〜 [ 4 ] のいずれか記載のメチ ォニンの製造法や、
[ 6] 生体触媒を再利用する [ 1 ] 〜 [ 5 ] のいずれか記載のメチォ二 ンの製造法や、
[ 7] 生体触媒として、 固定化菌体を用いる [ 1 ] 〜 [ 6 ] のいずれか 記載のメチォニンの製造法や、
[ 8 ] メチォニン結晶を分離回収した母液、 及び留去されたアンモニア を加水分解反応に再利用する [ 1 ] 〜 [ 7 ] のいずれか記載のメチォ二 ンの製造法や、
[ 9] 第 1の工程を加圧下で実施する [ 1 ] 〜 [ 8] のいずれか記載の メチォニンの製造法
に関する。 図面の簡単な説明
第 1図、 メチォニンに対するアンモニアのモル比を 0、 1、 1. 5、 2、 2. 5とした 5種類の溶液における 5〜 5 0 °Cでのメチォニンの溶 解度を調べた結果を示す図である。
第 2図は、 本発明のメチォニンの製造法における、 廃棄物のでないプ 口セスの概略を示す図である。 発明を実施するための最良の形態
本発明のメチォニンの製造法としては、 ( 1 ) 加水分解によりメチォ ニンを生成しうる原料物質をアンモニア水溶液中で加水分解活性を有す る生体触媒、 好ましくは、 原料物質としての 2—アミノー 4ーメチルチ ォブチロニ卜リルをアンモニア水溶液中で二卜リル加水分解活性を有す る生体触媒や原料物質としての 2—アミノー 4—メチルチオブタン酸ァ ミ ドをアンモニア水溶液中でアミ ド加水分解活性を有する生体触媒によ つて加水分解して含メチォニンアンモニア水溶液に変換する第 1の工程. ( 2 ) 前記第 1の工程で得られる含メチォニンアンモニア水溶液を生体 触媒と分離する第 2の工程、 ( 3) 前記第 2の工程で分離された含メチ ォニンアンモニア水溶液よりアンモニアを留去しメチォニン結晶を析 出 ·分離する第 3の工程を有する方法であれば特に制限されるものでは ないが、 例えば図 2に示されるように、 生体触媒を再利用するなど廃棄 物のでないプロセスとすることが好ましい。
上記 2 _アミノー 4ーメチルチオプチロニ卜リルや 2—アミノー 4一 メチルチオブタン酸アミ ド以外の加水分解によりメチォニンを生成しう る原料物質としては、 2 _アミノー 4—メチルチオブ夕ン酸低級アルキ ルエステル、 メチルチオェチルヒダントイン、 メチルチオェチルヒダン トイン酸、 メチルチオエヂルヒダン卜イン酸アミ ド等を挙げることがで さる。
2—アミノー 4ーメチルチオプチロニトリルをアンモニア水溶液中で 二トリル加水分解活性を有する生体触媒によって加水分解して含メチォ ニンアンモニア水溶液に変換する第 1の工程で使用される生体触媒とし ては、 アンモニア水溶液等の水溶液中で二トリルを加水分解する活性を 有する微生物等の生体触媒であれば特に制限されるものではなく、 かか る生体触媒としては、 例えばアースロバクタ一 (Arthrobacter) 属、 バ リオボラックス(Variovorax)属等に属する微生物を挙げることができ、 これらの中でも特に、 アース口パク夕一 ' エスピー N S S C 1 0 4、 ァ —スロバクタ一 ' エスピー N S S C 2 0 4、 及びバリォポラックス ' パ ラドキサス (Variovorax paradoxus) I AM 1 2 3 7 4を好適に例示す ることができる。
アースロバクタ一 N S S C 1 04は独立行政法人産業技術総合研究所 特許生物寄託センター(茨城県つくば巿東 1丁目 1番地 1中央第 6 ) に、 受託番号 F E RM B P— 5 8 2 9として 1 9 9 6年 2月 6日付で寄託 されており、 その菌学的性質については WO 9 7 / 3 2 0 3 0に記載さ れている。 また、 アースロバクタ一 N S S C 2 04は同じく独立行政法 人産業技術総合研究所特許生物寄託センタ一 (茨城県つくば市東 1丁目 1番地 1中央第 6 ) に、 受託番号 F E RM B P— 7 6 6 2として 2 0 0 0年 6月 2 2 日付で寄託されており、 その菌学的性質については WO 0 2 / 0 84 3 9に記載されている。 また、 ノ リオボラックス ·パラド キサス I AM 1 2 3 7 4は東京大学分子細胞生物研究所より容易に入手 でき、 その菌学的性質についてはィン夕一ナショナル · ジャーナル · ォ ブ'システマチック 'パクテリォロジ一(International Journal of Syste matic Bacteriology) 第 41巻、 445-450頁 (1991年) に記載されている。
2—アミノー 4ーメチルチオブタン酸アミ ドをアンモニア水溶液中で アミ ド加水分解活性を有する生体触媒によって加水分解して含メチォ二 ンアンモニア水溶液に変換する第 1の工程で使用される生体触媒として は、 アンモニア水溶液等の水溶液中でアミ ドを加水分解する活性を有す る微生物等の生体触媒であれば特に制限されるものではなく、 かかる生 体触媒としては、 例えばロドコッカス ' ロドクロス (Rhodococcus rhodochrous) I F O 1 5 5 6 4を好適に例示することができる。
ロドコッカス - ロドクロス (Rhodococcus rhodochrous) I F O 1 5 5 64は、独立行政法人製品評価技術基盤機構 ·生物遺伝資源センター(N B R C) より容易に入手でき、 その菌学的性質についてはテトラへドロ ン · レターズ (Tetrahedron Letters) 第 32巻、 1343- 1346頁に記載さ れている。
これらの微生物の培養は、酵素誘導物質、微生物が資化しうる炭素源、 窒素源、 無機イオン、 さらに必要ならば有機栄養源を含む通常の培地で 行われる。 酵素誘導物質としては、 イソプチロニトリル、 2—ァミノべ ンゾニトリル等の二トリル化合物、 ε—力プロラクタムなどの環状アミ ド化合物等が使用され、 特に 2—ァミノべンゾニトリルが好ましい。 炭 素源としてはグルコース等の炭水化物、 ェタノール等のアルコール類、 有機酸その他が適宜用いられる。 窒素源としては、 アミノ酸、 硝酸塩、 アンモニゥム塩その他が用いられる。 無機イオンとしては、 リン酸ィォ ン、 カリウムイオン、 マグネシウムイオン、 硫酸イオン、 鉄イオン、 そ の他が必要に応じて使用される。 有機栄養源としては、 ビタミン、 アミ ノ酸など及びこれらを含有するコーンスチープリカ一、 酵母エキス、 ポ リペプトン、 肉エキス、 その他が適宜用いられる。 培養は好気的条件下 に、 p H 6〜 9、 温度 2 5〜 3 7 °Cの適当な範囲に制御しつつ行えばよ い。
本発明に用いられる生体触媒としては、 上記のように培養した菌体又 はその菌体から調製した固定化菌体、 粗酵素もしくは固定化酵素などの 菌体処理物が挙げられる。菌体又は酵素を固定化する場合は担体結合法、 包括法等の通常行われる固定化技術を適用できる。 酵素または粗酵素を 調製する場合は、 菌体を超音波、 高圧ホモジナイザー等によって破碎し た後に、 硫安塩析、 クロマトグラフィー等の通常行われる酵素精製技術 が適用できる。 また反応に用いた菌体等の生体触媒は実質的な活性の低 下なしに繰り返し加水分解反応に使用することができることから、 再利 用することが好ましい。
かかる生体触媒による加水分解反応は、 アンモニアを含む水性溶媒中 で上記の生体触媒を 2 —アミノー 4—メチルチオプチロニトリル、 2— アミノー 4—メチルチオブ夕ン酸アミ ド等の加水分解によりメチォニン を生成しうる原料物質に作用させることによって行われる。 生体触媒は 乾燥重量に換算して、通常 0 . 1〜 1 0重量%、好ましくは 1〜 6重量% の濃度で使用される。 また、 2 —アミノー 4ーメチルチオプチロニトリ ル、 2—ァミノ— 4ーメチルチオブタン酸アミ ド等の原料物質は、 0 . 0 1〜 5 0重量%の濃度で反応に使用され、 必要ならば反応の間、 逐次 添加あるいは連続添加することができる。 また、 アンモニアを含む水性 溶媒としては、 アンモニア水を主成分とする有機溶媒を含んでもよい水 性溶媒で、 ァミン等の有機塩基、 有機酸あるいは無機塩基を含んでも良 レ 。 アンモニアは 0 . 5〜 3 0重量%、 好ましくは 0 . 8〜 1 0重量% の濃度の水溶液で使用し、 また、 メチォニンの蓄積濃度の 1 . 5〜 1 0 倍当量のアンモニアを含む水溶液を用いることができる。 さらに、 アン モニァの溶解量を高め、 反応液中のメチォニンの溶解蓄積量を増加させ るために、 加水分解反応を加圧下で実施することもできる。
上記第 1の工程で得られる含メチォニンアンモニア水溶液を生体触媒 と分離する第 2の工程においては、 含メチォニンアンモニア水溶液を生 体触媒と分離して反応系外に排出することもできるし、 生体触媒を含メ チォニンアンモニア水溶液と分離して反応系外に排出することもできる, このような加水分解反応終了後の含メチォニンアンモニア水溶液と生体 触媒との分離方法としては、 公知の固液分離方法であれば特に制限され ず、 例えば濾過、 遠心分離、 限外濾過濃縮法などによって行うことがで き、 回収された生体触媒は、 前記のように、 繰り返し加水分解反応に使 用することができる。 また、 固定化菌体ゃ固定化酵素を使用した場合の 含メチォニンアンモニア水溶液と生体触媒との分離は、 特別な固液分離 手段は必要なく、 反応槽の排出口にストレ一ナ一等の簡単な粗目のフィ ルターを設けて固定化生体触媒の反応槽からの流出を防止すればよい。 上記第 2の工程で分離された含メチォニンアンモニア水溶液よりアン モニァを留去しメチォニン結晶を析出 ·分離する第 3の工程における含 メチォニンアンモニア水溶液からのアンモニア留去は、 加圧脱気 ·減圧 脱気あるいは加熱留去によって行われ、 メチォニンに対して過剰量のァ ンモニァを一定量留去すればメチォニンが晶析させることができる。 留 去されたアンモニアはメチォニンと等モル分を除いて、 加水分解反応に 再利用することができる。 再利用できない除外されたアンモニアは、 2 一アミノー 4ーメチルチオプチロニトリル、 2—アミノー 4—メチルチ ォブ夕ン酸アミ ド等の原料物質を合成するのに使用することができる。 このように、 晶析したメチォニンは濾過 ·遠心分離器等の固液分離機を 用いて固形品として回収することができ、 メチォニン結晶回収分離後の 母液は、 残存 2—アミノー 4—メチルチオプチロニトリル、 2—ァミノ 一 4—メチルチオブタン酸アミ ド等の原料物質、 メチォニン、 アンモニ ァ等を少量含んでいるので、 加水分解反応にリサイクルすることができ る。
本発明で製造されるメチォニンは、 用いる生体触媒の光学選択性によ つて D型、 L型あるいはラセミ体のメチォニンとして得ることができ、 生成分離されたメチォニン結晶は、 更に精製あるいは粒度調整を必要に 応じて行うことができる。 以下、 実施例により詳細に説明するが、 本発明はこれらの実施例によ り限定されるものではない。
実施例 1 (N S S C 2 0 4株による D L—メチォニンの製造)
(N S S C 2 0 4株の培養)
酵母エキス 0. 5 %、 グルコース 0. 5 %、 リン酸水素二力リウム 0. 1 %、 リン酸二水素カリウム 0. 1 %、 食塩 0. 1 %、 硫酸マグネシゥ ム 7水塩 0. 0 2 %、 硫酸第一鉄 0. 0 0 1 %及び 2—ァミノべンゾニ トリル 0. 0 3 %を含む培地 2 m 1 を試験管にとり 1 2 1 °Cで 2 0分間 滅菌した。 この試験管にアースロバクタ一 N S S C 2 04株を一白金耳 植菌し、 3 3 °Cで一晩振盪培養し前培養物を調製した。 次いで、 コーン スチープリカー (濾過滅菌) 2. 0 %、 スクロース ( 1 2 1 °Cで 2 0分 間滅菌) 1. 0 %、 2—ァミノべンゾニトリル ( 1 2 1 °Cで 2 0分間滅 菌) 0. 0 3 %を含む 117. 2 ( 2 N苛性ソーダで調整) の培地 2 0 m 1 を 1 0 0 m 1容量のバッフル付き三角フラスコに入れ、 上記の前培 養物 0. 2m l を植え継ぎ、 さらに 4日間 3 3 °Cで振盪培養した。
(DL—メチォニンの生成)
得られたァ一スロバクタ一 N S S C 2 04株の培養液を遠心分離し、 イオン交換水で洗浄した後、 乾燥菌体濃度で 0. 1 % (W/W) となる ように 1 3 3 mMの 2 _アミノー 4 -メチルチオプチロニトリルと 2 5 mM 1, 3—ジァミノプロパンを含む水溶液 (pH 1 1. 2) に懸濁 し、 3 5 で緩やかに振盪しながら加水分解反応を行った。 添加 4時間 後に遠心分離して菌体を除去し、 残った反応液に含まれるメチォニンの 濃度を高速液体クロマ卜グラフィ一 (カラム : T S K g e 1 OD S— 8 0 T M、 キャリア : エタノール/水 Zトリフルォロ酢酸 = 5/ 9 5 / 0. 04) を用いて定量した結果、 1 2 5 mMの D L—メチォニンの蓄 積を確認した。 実施例 2 (NS S C 2 0 4株による D L—メチォニンの連続生産) 実施例 1で得られたアースロバクタ一 N S S C 2 0 4株の培養液を遠 心分離し、 イオン交換水で洗浄した後、 乾燥菌体として 2 % (W/W) 濃度となるように 1 0 % (W/W) D L—メチォニンと 2. 2 8 % (W /W) アンモニアを含む水溶液 (p H 9. 5) に懸濁した。 その菌体懸 濁液 3 0 0 gを 3 0 °Cに保温された 5 0 0 m l容量の 3口フラスコに入 れ、 2 _アミノー 4—メチルチオプチロニトリルを毎時 5. 5 gの速度 で攪拌しながら連続的に添加した。 一方、 精密濾過膜 (旭化成製 m i c r o z a P MP - 0 0 3 ) を用いて連続的に菌体を濾過し、 反応濾液 を毎時約 5 4 gの速度で回収した。 その際、 反応容器内の液量が減少し ないように、 液面センサ一に連動したポンプを用いて回収した反応濾液 と同容量の 1. 1 4 % (W/W) アンモニア水を連続的に補給した。 回 収反応濾液の D L—メチォニン濃度を、高速液体クロマトグラフィ一(力 ラム : T S K g e l OD S— 8 0 TM、 キャリア : エタノール/水/ トリフルォロ酢酸 = 5ノ 9 5 / 0. 0 4 ) を用いて 1時間毎に測定し、 1 0 % (W/W) 濃度を維持するように反応濾液の回収速度をコント口 —ルした。 反応濾液に含まれる 2—アミノー 4ーメチルチオプチロニト リルの濃度は徐々に増加して反応開始後 8時間で 0. 4 % (W/W) に 達した後、 その濃度は 8 日間維持され、 その間のメチォニン生産速度は 毎時 5. 3 6 gであった。 実施例 3 (固定化 N S S C 2 04株による D L—メチォニンの連続生 産)
(N S S C 2 04株の固定化)
実施例 1で得られたアースロバクタ一 N S S C 2 04株の培養液を遠 心分離し、 イオン交換水で洗浄した後、 乾燥菌体として 1 0 % (W/W) 濃度となるように 1 % (W/W) アルギン酸ナトリウム水溶液に懸濁し た。 次いでその懸濁液を 0. 1 M塩化カルシウム水溶液に滴下して固定 化菌体ビーズを作製した。 得られた固定化菌体ビーズ 2 2 5 gを内径 3 0 mmのカラムに充填し、 1 0 % (W/W) D L—メチォニンと 2. 2 8 % (W/W) アンモニアと 2. 5 mM 1 , 3—ジァミノプロパンと 1 0 mM塩化カルシウムを含む水溶液 ( p H 9. 5 ) を毎時 0. 2 1 の流 速で 1 1流して平衡化した。 次いでビーズを 3 0 °Cに保温された 5 0 0 m l容量の 3口フラスコに移し、 平衡化水溶液を加えて全量を 3 0 0 g とした後、 2—アミノー 4ーメチルチオプチロニトリルを毎時 5. 1 6 gの速度で攪拌しながら連続的に添加した。 一方、 反応液は固定化ビー ズを吸い込まないようにサクションフィルターを通して毎時約 5 0 の 速度で回収した。 その際反応容器内の液量が減少しないように、 液面セ ンサ一に連動したポンプを用いて回収した反応濾液と同容量の 1. 1 4 % (W/W) アンモニアと 2 O mMエチレンジァミンと 1 OmM塩化 カルシウムを含む水溶液を連続的に補給した。 回収反応濾液の D L—メ チォニン濃度を、 高速液体クロマトグラフィー (カラム : T S K g e l 〇D S— 8 0 TM、 キャリア : ェ夕ノ一ル Z水/トリフルォロ酢酸 = 5 Z95Z0. 04) を用いて 1時間毎に測定し、 1 0 % (WZW) 濃度 を維持するように反応濾液の回収速度をコントロールした。 反応濾液に 含まれる 2—アミノー 4—メチルチオプチロニトリルの濃度は徐々に増 加して反応開始後 1 2時間で 0. 5 % (W/W) に達した後、 その濃度 は 2 0 日間維持され、 その間のメチォニン生産速度は毎時 5. 0 3 gで めった。 実施例 4 (固形 D L—メチォニンの回収)
菌体を分離した反応液 2 5 0 g (メチォニン 2 5 g, 2—アミノー 4 ーメチルチオプチロニトリル 1. 2 5 g , アンモニア 2. 3 %を含有) を攪拌機を付した 5 0 OmLフラスコに仕込み, 真空ポンプを使用し, 加熱することなく減圧下にアンモニアを留去した。 アンモニアの留去に より析出したメチォニンを濾別し, メチォニン 1 1. 3 gを得た。 母液 にはメチォニン 1 3. 7 gと 1. 2 5 gの 2—アミノー 4—メチルチオ プチロニトリルが含まれており, 分解物は生成していなかった。 この母 液を用いて菌体反応一晶析を繰返し実施したが, 得られるメチォニンの 収率は 9 9 %と定量的であり, 純度も 9 9 %以上で着色も認められなか つた。 実施例 5 (固定化 I F01 5 5 6 4株による D L—メチォニンの連続生 産)
( I F O 1 5 5 64株の培養と固定化)
トリプトン 1. 0 %、 酵母エキス 0. 5 %、 食塩 1. 0 %を含む培地 2 m 1 を試験管にとり 1 2 1 °Cで 2 0分間滅菌した。 この試験管に口ド コッカス . ロドクロス I F O 1 5 5 64株を一白金耳植菌し、 3 0 °Cで 一晩振盪培養し、 前培養物を調製した。 次いで、 コーンスチープリカー (濾過滅菌) 2. 0 %、スク口一ス( 1 2 1 °Cで 2 0分間滅菌) 1. 0 %、 ε—力プロラクタム( 1 2 1 °Cで 2 0分間滅菌) 0. 5 %を含む p H 7.
2 ( 2 N苛性ソーダで調整) の培地 2 0 m 1 を 1 0 0 m 1容量のバッフ ル付き三角フラスコに入れ、 上記の前培養物 0. 2m l を植え継ぎ、 さ らに 3 日間 3 0 °Cで振盪培養した。 得られたロドコッカス · 口ドクロス
1 F O 1 5 5 64株の培養液を遠心分離し、イオン交換水で洗浄した後、 乾燥菌体として 1 0 % (W/W) 濃度となるように 1 % (W/W) アル ギン酸ナトリウム水溶液に懸濁した。 次いでその懸濁液を 0. 1 M塩化 カルシウム水溶液に滴下して固定化菌体ビーズを作製した。
(D L—メチォニンの連続生産)
得られた固定化菌体ビーズ 2 2 5 gを内径 3 0mmのカラムに充填し. 1 0 % (W/W) DL—メチォニンと 2. 2 8 (W/W) アンモニア と 1 0 mM塩化カルシウムを含む水溶液を毎時 0. 2 1の流速で 1 1流 して平衡化した。 次いでビーズを 3 5 °Cに保温された 5 0 0 m 1容量の
3口フラスコに移し、 平衡化水溶液を加えて全量を 3 0 0 gとした後、
2 _アミノー 4—メチルチオブタン酸アミ ドを毎時 1 1. 54 gの速度 で攪拌しながら連続的に添加した。 一方、 反応液は固定化ビーズを吸い 込まないようにサクシヨンフィルターを通して毎時約 1 0 5 gの速度で 回収した。 その際、 反応容器内の液量が減少しないように、 液面センサ —に連動したポンプを用いて回収した反応濾液と同容量の 1. 1 4 %(W
4 ZW) アンモニアと 1 0 mM塩化カルシウムを含む水溶液で連続的に補 給した。 回収反応濾液の DL—メチォニン濃度を高速液体クロマトグラ フィ一 (カラム : TSKg e 1 〇D S— 80 TM、 キャリア : ァセト 二トリル /水/トリフルォロ酢酸 = 5 0 / 950 / 1 ) を用いて 1時間 毎に測定し、 1 0 % (WZW) 濃度を維持するように反応濾液の回収速 度をコントロールして、 14日間の連続反応を行った。 その間のメチォ ニン生産速度は平均で毎時 1 0. 57 gであった。 実施例 6 (固形 D L—メチォニンの回収)
実施例 5で得られる反応濾液を 2 50 gサンプリングし、 攪拌機付の 5 00 m 1フラスコに仕込み、 真空ポンプを使用し、 減圧下にアンモニ ァを留去した。 アンモニアの留去により析出したメチォニンを濾別し、 メチォニン 1 1. 3 gを得た。 母液にはメチォニン 1 3. 7 gと 1. 0 2 gの 2—ァミノ— 4—メチルチオブ夕ン酸アミ ドが含まれており、 分 解物は生成していなかった。 この母液を用いて菌体反応一晶析を繰り返 して実施したが、 得られるメチォニンは 99 %と定量的であり、 純度も 9 9 %以上で着色も認められなかった。 産業上の利用可能性
本発明によれば、 2—アミノー 4ーメチルチオプチロニトリル、 2— ァミノ _4—メチルチオブタン酸アミ ド等を原料とし、 二トリル加水分 解活性、 アミ ド加水分解活性等を有する生体触媒を用いて、 アンモニア 水中にメチォニンを溶解状態で生成させ、 その後アンモニアを留去して 製品形態として要求される固形メチォニンを高効率かつ簡便に製造でき る。 しかも、 従来の化学的製造法に比べて格段にエネルギーコスト ·廃 棄物排出量が低い。

Claims

請 求 の 範 囲
1 . ( 1 ) 加水分解によりメチォニンを生成しうる原料物質をアンモニ ァ水溶液中で加水分解活性を有する生体触媒によって加水分解して含メ チォニンアンモニア水溶液に変換する第 1の工程、 ( 2 ) 前記第 1のェ 程で得られる含メチォニンアンモニア水溶液を生体触媒と分離する第 2 の工程、 ( 3 ) 前記第 2の工程で分離された含メチォニンアンモニア水 溶液よりアンモニアを留去しメチォニン結晶を析出 ·分離する第 3のェ 程を有することを特徴とするメチォニンの製造法。
2 . 原料物質としての 2 —アミノー 4ーメチルチオプチロニトリルをァ ンモニァ水溶液中で二トリル加水分解活性を有する生体触媒によって加 水分解することを特徴とする請求項 1記載のメチォニンの製造法。
3 . 原料物質としての 2 —アミノー 4 一メチルチオブ夕ン酸アミ ドをァ ンモニァ水溶液中でアミ ド加水分解活性を有する生体触媒によって加水 分解することを特徴とする請求項 1記載のメチォニンの製造法。
4 . アンモニア水溶液として、 第 1の工程で得られる含メチォニンアン モニァ水溶液中のメチォニン量の 1 . 5〜 1 0倍当量のアンモニアを含 む水溶液を用いることを特徴とする請求項 1から 3のいずれか記載のメ チォニンの製造法。
5 . 第 1の工程で得られる含メチォニンアンモニア水溶液中のメチォ二 ン濃度が 5〜 3 0重量%であることを特徴とする請求項 1から 4のいず れか記載のメチォニンの製造法。
6 . 生体触媒を再利用することを特徴とする請求項 1〜 5のいずれか記 載のメチォニンの製造法。
7 . 生体触媒として、 固定化菌体を用いることを特徴とする請求項 1〜 6のいずれか記載のメチォニンの製造法。
8 . メチォニン結晶を分離回収した母液、 及び留去されたアンモニアを 加水分解反応に再利用することを特徴とする請求項 1〜 7のいずれか記 載のメチォニンの製造法。
9 . 第 1の工程を加圧下で実施することを特徴とする請求項 1〜 8のい ずれか記載のメチォニンの製造法。
7
PCT/JP2003/009268 2002-07-23 2003-07-22 メチオニンの製造法 WO2004009829A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004522777A JPWO2004009829A1 (ja) 2002-07-23 2003-07-22 メチオニンの製造法
US10/523,146 US20050176115A1 (en) 2002-07-23 2003-07-22 Process for the production of methionine
AU2003281546A AU2003281546A1 (en) 2002-07-23 2003-07-22 Process for the production of methionine
EP03741530A EP1541691A1 (en) 2002-07-23 2003-07-22 Process for the production of methionine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002214508 2002-07-23
JP2002-214508 2002-07-23

Publications (1)

Publication Number Publication Date
WO2004009829A1 true WO2004009829A1 (ja) 2004-01-29

Family

ID=30767886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009268 WO2004009829A1 (ja) 2002-07-23 2003-07-22 メチオニンの製造法

Country Status (6)

Country Link
US (1) US20050176115A1 (ja)
EP (1) EP1541691A1 (ja)
JP (1) JPWO2004009829A1 (ja)
CN (1) CN1671855A (ja)
AU (1) AU2003281546A1 (ja)
WO (1) WO2004009829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534144A (ja) * 2013-09-17 2016-11-04 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH メチオニンを取得するための方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI361834B (en) * 2005-04-12 2012-04-11 Kyowa Hakko Bio Co Ltd A method for producing amino acids
CN102911975A (zh) * 2012-09-12 2013-02-06 浙江工业大学 重组腈水解酶制备2-氨基-4-甲硫基丁酸的方法
CN106315756A (zh) * 2016-10-18 2017-01-11 南昌航空大学 一种光催化‑芬顿氧化协同深度处理有机废水装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980001571A1 (fr) * 1979-01-24 1980-08-07 Anvar Procede de preparation d'acides (alpha)-amines optiquement actifs par hydrolyse biologique de nitriles et produits obtenus
JPH03280895A (ja) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd D―α―フェニルグリシンの製造法
US5587303A (en) * 1988-03-08 1996-12-24 Nippon Mining Company, Ltd. Production process of L-amino acids with bacteria
JPH099973A (ja) * 1995-06-27 1997-01-14 Chisso Corp ロードコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子
JPH09140391A (ja) * 1995-03-03 1997-06-03 Nitto Chem Ind Co Ltd 微生物によるアミノ酸の製造法
WO2000027809A1 (fr) * 1998-11-06 2000-05-18 Aventis Animal Nutrition S.A. Procede de preparation de la methionine
WO2001048234A1 (fr) * 1999-12-27 2001-07-05 Asahi Kasei Kabushiki Kaisha Procede de production de glycine
WO2002008439A1 (fr) * 2000-07-21 2002-01-31 Nippon Soda Co., Ltd. Procede d'elaboration d'acides 2-amino
WO2003027303A1 (fr) * 2001-09-19 2003-04-03 Nippon Soda Co., Ltd. Procede de production d'acide 2-amino

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2245585B1 (ja) * 1973-09-19 1976-05-14 Anvar

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1980001571A1 (fr) * 1979-01-24 1980-08-07 Anvar Procede de preparation d'acides (alpha)-amines optiquement actifs par hydrolyse biologique de nitriles et produits obtenus
US5587303A (en) * 1988-03-08 1996-12-24 Nippon Mining Company, Ltd. Production process of L-amino acids with bacteria
JPH03280895A (ja) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd D―α―フェニルグリシンの製造法
JPH09140391A (ja) * 1995-03-03 1997-06-03 Nitto Chem Ind Co Ltd 微生物によるアミノ酸の製造法
JPH099973A (ja) * 1995-06-27 1997-01-14 Chisso Corp ロードコッカス属細菌由来のニトリルヒドラターゼ遺伝子およびアミダーゼ遺伝子
WO2000027809A1 (fr) * 1998-11-06 2000-05-18 Aventis Animal Nutrition S.A. Procede de preparation de la methionine
WO2001048234A1 (fr) * 1999-12-27 2001-07-05 Asahi Kasei Kabushiki Kaisha Procede de production de glycine
WO2002008439A1 (fr) * 2000-07-21 2002-01-31 Nippon Soda Co., Ltd. Procede d'elaboration d'acides 2-amino
WO2003027303A1 (fr) * 2001-09-19 2003-04-03 Nippon Soda Co., Ltd. Procede de production d'acide 2-amino

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016534144A (ja) * 2013-09-17 2016-11-04 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH メチオニンを取得するための方法

Also Published As

Publication number Publication date
EP1541691A1 (en) 2005-06-15
US20050176115A1 (en) 2005-08-11
CN1671855A (zh) 2005-09-21
AU2003281546A1 (en) 2004-02-09
JPWO2004009829A1 (ja) 2005-11-17

Similar Documents

Publication Publication Date Title
CN109735559B (zh) 一种γ-氨基丁酸的生物制备方法
CN100345974C (zh) S-(+)-2,2-二甲基环丙甲酰胺的微生物制备方法
JP2020500555A (ja) メチロピラ及びその選択的分割による(S)−α−エチル−2−オキソ−1−ピロリジン酢酸塩の調製における使用
AU2008249370B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
WO2004009829A1 (ja) メチオニンの製造法
JP3154646B2 (ja) グリコール酸の微生物学的製造法
CN109266707B (zh) 一种制备聚唾液酸的方法
JPH1175885A (ja) 2−ヒドロキシ−4−メチルチオブタン酸カルシウム塩の製造方法
JP3941184B2 (ja) 光学活性1−アシロキシ−3−クロロ−2−プロパノール、及び光学活性3−クロロ−1,2−プロパンジオールの製造法
JP4235985B2 (ja) 微生物を用いたα―ヒドロキシ酸の製造方法及び新規微生物
JP4006183B2 (ja) S,s−2−ヒドロキシプロピレンジアミン−n,n’−ジコハク酸の製造法
JPH09154589A (ja) エリスリトールの製造方法
US20050176116A1 (en) Process for producing a-hydroxy acid ammonium salt
JPH04218385A (ja) R(−)−マンデル酸の製造法
JP2002034584A (ja) α−ヒドロキシ酸アンモニウム塩の製造法
JP4497659B2 (ja) グリシンを微生物学的に製造する方法
JP2670130B2 (ja) ロドコッカス属細菌の培養方法及び該微生物を用いた2―ケト酪酸の製造方法
JPH0728750B2 (ja) 微生物によるピラジン酸の水酸化物の製造方法
JP4647059B2 (ja) グリシンの着色を防止した微生物学的な製造方法
JPS5816692A (ja) 酵素によるl−トリプトフアンの製造方法
JP4596593B2 (ja) グリシンの着色を防止した微生物学的製造方法
TW521088B (en) A production method of Α-hydroxy acid by using a microorganism
JPS6120274B2 (ja)
JP2003325194A (ja) 微生物によるシアノカルボン酸の製法
JP3718572B2 (ja) マロン酸誘導体の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004522777

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003741530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038174111

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10523146

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003741530

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003741530

Country of ref document: EP