WO2003093657A1 - Filtre a alveoles servant a clarifier un gaz d'echappement - Google Patents

Filtre a alveoles servant a clarifier un gaz d'echappement Download PDF

Info

Publication number
WO2003093657A1
WO2003093657A1 PCT/JP2003/004479 JP0304479W WO03093657A1 WO 2003093657 A1 WO2003093657 A1 WO 2003093657A1 JP 0304479 W JP0304479 W JP 0304479W WO 03093657 A1 WO03093657 A1 WO 03093657A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb filter
filler
exhaust gas
length
hole
Prior art date
Application number
PCT/JP2003/004479
Other languages
English (en)
French (fr)
Inventor
Kazushige Ohno
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to US10/510,344 priority Critical patent/US7648547B2/en
Priority to JP2004501784A priority patent/JPWO2003093657A1/ja
Priority to EP03747536.5A priority patent/EP1493904B1/en
Publication of WO2003093657A1 publication Critical patent/WO2003093657A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0233Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles periodically cleaning filter by blowing a gas through the filter in a direction opposite to exhaust flow, e.g. exposing filter to engine air intake
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/0211Arrangements for mounting filtering elements in housing, e.g. with means for compensating thermal expansion or vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/18Construction facilitating manufacture, assembly, or disassembly
    • F01N13/1888Construction facilitating manufacture, assembly, or disassembly the housing of the assembly consisting of two or more parts, e.g. two half-shells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/02Combinations of different methods of purification filtering and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2450/00Methods or apparatus for fitting, inserting or repairing different elements
    • F01N2450/28Methods or apparatus for fitting, inserting or repairing different elements by using adhesive material, e.g. cement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/065Surface coverings for exhaust purification, e.g. catalytic reaction for reducing soot ignition temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present invention relates to an exhaust gas purifying honeycomb filter used as a filter for removing particles and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine.
  • a ceramic filter usually, a large number of through holes are provided in one direction, and a partition wall separating the through holes functions as a filter.
  • the through-hole formed in the ceramic filter is sealed with a filler at either the inlet or outlet end of the exhaust gas so as to form a so-called checkerboard pattern, and flows into one through-hole.
  • the exhaust gas always passes through the partition wall separating the through hole and then flows out of the other through holes.
  • the particulates are trapped in the partition wall portion, and the exhaust gas is exhausted. Is purified.
  • honeycomb filter it is necessary to periodically perform a regeneration process of burning and removing particulates causing clogging by using a heating means such as a heater.
  • the region where the exhaust gas can be purified (hereinafter, also referred to as a filterable region) is an inner wall portion of a through hole opened on the exhaust gas inflow side,
  • a filterable region In order to secure the filterable area of this honeycomb filter as wide as possible and to keep the back pressure of particulate collection low, it is useful to make the length of the through hole of the filler as short as possible. there were.
  • the porosity of the honeycomb filter is low, the back pressure of the particulate collection becomes high immediately. Therefore, it is necessary to frequently perform the regeneration process using the heating means such as the heater as described above. Conventionally, high porosity of the honeycomb filter has been achieved.
  • an oxidation catalyst is carried in pores of the honeycomb filter, so that the honeycomb filter flows into the honeycomb filter.
  • the hydrocarbon contained in the exhaust gas is reacted with the above-mentioned oxidation catalyst, and the honeycomb filter is regenerated using heat generated at that time.
  • the honeycomb filter that performs the regeneration process in this manner since the oxidation catalyst is supported in the pores of the honeycomb filter, clogging of the pores due to particulates is likely to occur, and a large amount of heat is generated. For this reason, it was necessary to increase the porosity because of the need to support as many oxidation catalysts as possible.
  • the length of the filler filled in the end of the through-hole in the longitudinal direction of the through-hole of the filler becomes as short as possible in order to ensure the filterable area of the honeycomb filter as large as possible.
  • the contact area between the filler and the partition is small, and the adhesive strength of the filler to the partition is low. See Japanese Patent Application Publication No. 38223).
  • the present invention has been made in order to solve these problems, and it is an object of the present invention to provide a honeycomb filter for exhaust gas cleaning which is excellent in durability without cracking or falling off of a filler during use. It is intended for.
  • the honeycomb filter for purifying exhaust gas of the present invention is characterized in that one end of a columnar body made of porous ceramic, in which a large number of through holes are arranged in the longitudinal direction across the wall, is one of the through holes.
  • a predetermined through-hole is filled with a filler; on the other hand, at the other end of the columnar body, a through-hole not filled with the filler at the one end is filled with the filler;
  • a honeycomb filter for purifying exhaust gas wherein part or all of the part is configured to function as a filter for collecting particles;
  • the bending strength F ⁇ (MP a) of the honeycomb filter for purifying exhaust gas and the filling has a relationship of FXL30.
  • FIG. 1A is a perspective view schematically showing an example of the exhaust gas purifying honeycomb filter of the present invention
  • FIG. 1B is a perspective view of the honeycomb filter shown in FIG. 1A
  • FIG. 3 is a sectional view taken along line A.
  • FIG. 2 is a perspective view schematically showing another example of the honeycomb filter for purifying exhaust gas of the present invention.
  • FIG. 3 (a) is a perspective view schematically showing a porous ceramic member used for the exhaust gas purifying honeycomb filter of the present invention shown in FIG. 2, and FIG. FIG. 1 is a vertical sectional view taken along line B.
  • FIG. 4 (a) is a cross-sectional view schematically showing an example of a sealing device used when manufacturing the exhaust gas purifying honeycomb filter of the present invention
  • FIG. 4 (b) is a sectional view of FIG. 3 is a partially enlarged sectional view of the sealing device shown in FIG.
  • FIG. 5 is a side view schematically showing a manner of manufacturing the exhaust gas purifying honeycomb filter of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus equipped with the exhaust gas purifying honeycomb filter of the present invention.
  • FIG. 7 (a) is a perspective view schematically showing an example of a casing used in the exhaust gas purification device shown in FIG. 6, and
  • FIG. 7 (b) is a schematic view showing another example of another casing.
  • FIG. 8A is a graph showing the relationship between the bending strength of the honeycomb filter according to the example and the length of the filler
  • FIG. 8B is a graph illustrating the bending of the honeycomb filters according to the comparative example and the test example.
  • 5 is a graph showing a relationship between strength and filler length.
  • a predetermined through-hole among the above-mentioned through-holes is filled with one end of a columnar body made of a porous ceramic in which a large number of through-holes are arranged in a longitudinal direction across a wall.
  • a through-hole that is not filled with the filler at the one end is filled with the filler, and a part or all of the wall portion is particles.
  • An exhaust gas purifying honeycomb finholeter configured to function as a trapping filter
  • the bending strength F ⁇ (MPa) of the exhaust gas purifying honeycomb filter and the length L (mm) of the filler in the longitudinal direction of the through hole have a relationship of FaXL30. It is a honeycomb filter for purifying exhaust gas.
  • the exhaust gas purifying honeycomb filter of the present invention is simply referred to as “the honeycomb filter of the present invention”, and “the longitudinal length of the through hole of the filler”. This is simply referred to as the “length of the filler”.
  • FIG. 1A is a perspective view schematically showing an example of the honeycomb filter of the present invention
  • FIG. 1B is a cross-sectional view taken along line AA of FIG.
  • the honeycomb filter 10 of the present invention is made of a porous ceramic sintered body in which a large number of through holes 11 are juxtaposed in the longitudinal direction across a wall 13.
  • the entire wall portion 13 is configured to function as a particle collection filter. That is, as shown in FIG. 1 (b), the through hole 11 formed in the honeycomb filter 10 is sealed with the filler 12 on either the inlet side or the outlet side of the exhaust gas. The exhaust gas flowing into the through hole 11 always passes through the wall 13 separating the through hole 11 and then flows out from the other through holes 11.
  • the particulate contained in the exhaust gas flowing into the honeycomb filter 10 of the present invention is captured by the wall 13 when passing through the wall 13 so that the exhaust gas is purified. It has become.
  • the honeycomb filter 10 having such a configuration is installed and used in an exhaust gas purifying apparatus provided in an exhaust passage of an internal combustion engine.
  • the exhaust gas purification device will be described later.
  • the product of the bending strength F ⁇ (MPa) of the honeycomb filter 10 and the length L (mm) of the filler 12, FXL, is 30 or more.
  • the bending strength Fa of the honeycomb filter 10 of the present invention refers to the bending strength of the porous ceramic material constituting the honeycomb finoletor 10 of the present invention, and the bending strength Fa is usually a through-hole.
  • the size of the surface perpendicular to the longitudinal direction of 11 is approximately 34 (mm) X 34 (mm), and a prismatic shape as shown in Fig.
  • the lower limit of the F a XL is set to 30. Therefore, when the porosity of the honeycomb filter 10 is increased to reduce its bending strength, When a becomes smaller, the length L of the filler 12 is made longer than that of a honeycomb filter having a large bending strength.
  • the contact area between the filler 12 filled at the end of the through hole 11 and the wall 13 is increased, and the bonding strength between them is further improved. Therefore, the exhaust gas flowing into the through hole 11 does not cause cracks in the portion of the wall portion 13 where the filler 12 is filled, and the filler 12 does not fall off. If the above F a XL is less than 30, the bending strength F of the honeycomb filter 10 is small. Force too small ⁇ or length L of filler 1 2 is too short.
  • the F aXL is 200 or less.
  • the strength ⁇ of the bending strength F ⁇ of the honeycomb filter 10 becomes too large, or the length L of the filler 12 becomes too long.
  • the porosity of the honeycomb filter 10 may be low, so that the back pressure of the particulate concentration is high. May quickly become high, and the regeneration process of the honeycomb filter 10 needs to be performed frequently. Also, if the length of the filler is too long, the area where the exhaust gas can be filtered in the honeycomb filter 10 of the present invention becomes small, and the back pressure of the particulate collection may increase immediately, which is frequent. First, it is necessary to perform the regeneration processing of the honeycomb filter 10.
  • the size of the bending strength F of the honeycomb filter 10 is not particularly limited, and is determined by the ceramic material used, the porosity of the target honeycomb filter 10, and the like. , 1 to 6 OMPa. If the above-mentioned F ⁇ is less than IMP a, the length L of the filler must be very long in order to satisfy the above-mentioned F a XL30, and the filterable area of the honeycomb filter becomes large. It becomes smaller and the back pressure of particulate concentration may increase quickly, so it is necessary to frequently perform the regeneration processing of the honeycomb filter. In addition, it may be easily ruptured by the impact of exhaust gas pressure or the like. Strong honeycomb filters can be difficult to manufacture themselves.
  • the length L of the filler 12 is not particularly limited, and is preferably, for example, 0.5 to 40 mm.
  • the contact area between the filler 12 filled in the through hole 11 of the honeycomb filter 10 and the wall 13 is small, and the adhesive strength thereof is low. Accordingly, cracks may occur in the wall portion 13 of the portion filled with the filler 12 due to the impact of the pressure of the inflowing exhaust gas or the like, or the filler 12 may fall off.
  • the above L exceeds 4 O mm, the filterable area of the exhaust gas of the honeycomb filter 10 becomes small, and the back pressure of the particulate concentration may increase quickly, and the honeycomb filter 10 It is necessary to frequently perform the reproduction process. Further, in such a honeycomb filter, the back pressure rapidly increases during use, and the honeycomb filter may be ruptured or a trap may occur in an internal combustion engine such as an engine.
  • the honeycomb filter 10 of the present invention is made of a porous ceramic.
  • the ceramic is not particularly limited, and examples thereof include oxide ceramics such as cordierite, alumina, silica, and mullite; carbide ceramics such as silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide; and nitrided aluminum. Examples thereof include nitride ceramics such as silicon nitride, boron nitride, and titanium nitride.
  • oxide ceramics such as cordierite are used. This is because it can be manufactured at low cost, has a relatively low coefficient of thermal expansion, and does not oxidize during use.
  • a silicon-containing ceramic in which metal silicon is blended with the above-described ceramic, or a ceramic bonded with silicon or a silicate compound can also be used.
  • the porosity of the honeycomb filter 10 of the present invention has a great relationship with the strength of the honeycomb filter 10 described above, and varies according to the strength. Therefore, the porosity is set to be within the above-described strength range. However, it is usually desirable to be about 30 to 80%. New If the porosity is less than 30%, the honeycomb filter 10 may immediately become clogged, while if the porosity exceeds 80%, the strength of the honeycomb filter 10 decreases. May burst easily.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, and observation by a scanning electron microscope (SEM). Further, it is desirable that the average pore diameter of the honeycomb filter 10 is about 5 to 100 ⁇ . If the average pore size is less than 5 / m, particulates can easily become clogged. On the other hand, if the average pore diameter exceeds 100 ⁇ m, the particulates may pass through the pores, failing to trap the particulates and failing to function as a filter.
  • the honeycomb filter 10 is provided with a large number of through holes 11 for allowing exhaust gas to flow therethrough in a longitudinal direction with a wall 13 therebetween. Either the entrance side or the exit side of the through hole 11 is sealed with a filler 12.
  • the material constituting the filler 12 is not particularly limited, and examples thereof include the above-described materials mainly composed of ceramics.
  • a material similar to the ceramic material constituting the honeycomb filter 10 is desirable. This is because the same coefficient of thermal expansion can be used, so that the occurrence of cracks due to a temperature change during use or regeneration processing can be prevented.
  • the size of the honeycomb filter 10 is not particularly limited, and is appropriately determined in consideration of the size of the exhaust passage of the internal combustion engine to be used.
  • the shape is not particularly limited as long as it has a columnar shape.
  • an arbitrary shape such as a columnar shape, an elliptical columnar shape, and a prismatic shape can be used.
  • a prismatic shape can be used.
  • FIG. Things are often used.
  • the columnar body is formed by binding a plurality of prismatic porous ceramic members in which a plurality of through-holes are juxtaposed in the longitudinal direction with a partition wall interposed therebetween through a sealing material layer. It is desirable to be configured. Since the columnar body is divided into a plurality of porous ceramic members, it acts on the porous ceramic members during use. Therefore, the honeycomb filter of the present invention can have extremely excellent heat resistance. Also, the size can be freely adjusted by increasing or decreasing the number of the porous ceramic members.
  • FIG. 2 is a perspective view schematically showing another example of the honeycomb filter of the present invention
  • FIG. 3 (a) is a schematic view showing an example of a porous ceramic member constituting the honeycomb filter shown in FIG. (B) is a sectional view taken along line BB of FIG.
  • a plurality of porous ceramic members 30 are bound together via a sealing material layer 24 to form a ceramic block 25.
  • a seal material layer 26 is also formed around 25.
  • the porous ceramic member 30 has a large number of through holes 31 arranged in the longitudinal direction, and a partition wall 33 that separates the through holes 31 functions as a filter. It has become.
  • the through hole 31 formed in the porous ceramic member 30 has the filler 32 at either the inlet or outlet end of the exhaust gas.
  • the exhaust gas that has been sealed and has flowed into one through-hole 31 always passes through a partition 33 that separates the through-hole 31 and then flows out of the other through-hole 31.
  • the sealing material layer 26 formed around the ceramic block 25 prevents the exhaust gas from leaking from the outer peripheral portion of the ceramic block 25 when the honeycomb filter 20 is installed in the exhaust passage of the internal combustion engine. It is provided for the purpose of doing. Arrows in Fig. 3 (b) indicate the flow of exhaust gas.
  • the honeycomb filter 20 having such a configuration is installed in an exhaust gas purifying device provided in an exhaust passage of an internal combustion engine, and a patitilate in exhaust gas exhausted from the internal combustion engine is supplied to the honeycomb filter 20. When passing through 0, the gas is captured by the partition wall 33 and the exhaust gas is purified.
  • Such a honeycomb filter 20 is extremely excellent in heat resistance and is easy to regenerate, so that it is used for various large vehicles and vehicles equipped with a diesel engine.
  • the bending strength of the honeycomb filter 20 of the present invention having such a structure is F o ⁇ and the length of the filler 32 is L ′
  • the bending strength F of the honeycomb filter 20 is The filling material 32 has a relationship of length L ′ and force F ⁇ ′ XI ⁇ 30.
  • the bending strength F of the honeycomb filter 20 of the present invention is the bending strength of the porous ceramic material constituting the honeycomb filter 20 of the present invention, and the bending strength F ⁇ ′ is usually a prismatic shape.
  • the material of the porous ceramic member 30 is not particularly limited, and may be the same as the above-described ceramic material. Among these, the heat resistance is large, the mechanical properties are excellent, and Silicon carbide having a large thermal conductivity is desirable.
  • the porosity and the average porosity of the porous ceramic member 30 include the same porosity and average porosity as those of the honeycomb filter 10 of the present invention described with reference to FIG.
  • the particle size of the ceramic used for producing such a porous ceramic member 30 is not particularly limited, but preferably has a small shrinkage in the subsequent firing step, for example, about 0.3 to 50 ⁇ m. It is desirable to use a combination of 100 parts by weight of a powder having an average particle diameter of 5 to 65 parts by weight of a powder having an average particle diameter of about 0.1 to 1.0 ⁇ m. This is because the porous ceramic member 30 can be manufactured by mixing the ceramic powder having the above particle diameter with the above composition.
  • a plurality of such porous ceramic members 30 are bound together via a chinole material layer 24 to form a ceramic block 25, and the ceramic block 25 is formed around the ceramic block 25.
  • a sealing material layer 26 is formed. That is, in the honeycomb filter 20 of the present invention, the sealing material layer is formed between the porous ceramic members 30 and on the outer periphery of the ceramic block 25, and formed between the porous ceramic members 30.
  • the sealing material layer (sealing material layer 24) functions as an adhesive layer that binds the plurality of porous ceramic members 30 together, while the sealing material layer (sealing material layer) formed on the outer periphery of the ceramic block 25.
  • the layer 26) functions as a sealing material for preventing the exhaust gas from leaking from the outer periphery of the ceramic block 25 when the honeycomb filter 20 of the present invention is installed in the exhaust passage of the internal combustion engine. You You.
  • the material constituting the sealing material layer is not particularly limited, and examples thereof include those made of an inorganic binder, an organic binder, inorganic fibers, and inorganic particles. it can.
  • the seal material layer is formed between the porous ceramic members 30 and on the outer periphery of the ceramic block 25.
  • the material layer 24 and the sealing material layer 26) may be made of the same material or different materials. Further, when the sealing material layers are made of the same material, the mixing ratio of the materials may be the same or different.
  • examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the above inorganic binders, silica sol is desirable.
  • organic binder examples include polyvinyl alcohol, methyl cellulose, ethyl cellulose, and carboxymethyl cellulose. These may be used alone or in combination of two or more. Among the above organic binders, carboxymethyl cellulose is desirable.
  • the inorganic fibers include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the above inorganic fibers, silica-alumina fibers are desirable.
  • the inorganic particles include carbides, nitrides, and the like. Specific examples include inorganic powders made of silicon carbide, silicon nitride, boron nitride, and the like, and whiskers. These may be used alone or in combination of two or more. Among the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the shape of the ceramic block 25 is cylindrical.
  • the shape of the ceramic block is not limited to a cylindrical shape. Of any shape such as elliptical or prismatic Things can be mentioned.
  • the thickness of the sealing material layer 26 formed on the outer periphery of the ceramic block 25 is not particularly limited, and is preferably, for example, about 0.3 to 1.0 mm. If it is less than 0.3 mm, the exhaust gas may leak from the outer periphery of the ceramic block 25.On the other hand, if it is more than 1.0 mm, the leakage of the exhaust gas can be sufficiently prevented. However, the economy is inferior.
  • the honeycomb filter of the present invention is provided with a catalyst.
  • the honeycomb filter of the present invention functions as a filter for trapping particulates in exhaust gas and purifies the CO, HC, NOX, etc. contained in the gas.
  • the catalyst is not particularly limited as long as it can purify CO, HC, NOx, and the like in exhaust gas, and examples thereof include noble metals such as platinum, palladium, and rhodium.
  • noble metals such as platinum, palladium, and rhodium.
  • alkali metals Group 1 of the periodic table
  • alkaline earth metals Group 2 of the periodic table
  • rare earth elements Group 3 of the periodic table
  • transition metal elements may be added.
  • the catalyst When the catalyst is applied to the honeycomb filter of the present invention, it is preferable to apply the catalyst after forming a catalyst supporting film on the surface thereof in advance. Thereby, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. In addition, since the catalyst supporting membrane can prevent sintering of the catalyst metal, the heat resistance of the catalyst is also improved. In addition, it makes it possible to reduce pressure loss.
  • Examples of the catalyst-carrying film include a film composed of alumina, zirconia, titania, silica, or the like.
  • the catalyst supporting film is not particularly limited, for example, in the case of forming a catalyst supporting film made of alumina is, ⁇ - A 1 2 0 3 powder slurry one shaped solution dispersed in a solvent And a sol-gel method.
  • the bending strength F of the honeycomb filter of the present invention is used. It is desirable to measure after the catalyst is applied.
  • the relationship of F a XL ⁇ 30 in the honeycomb filter of the present invention is a condition for preventing the honeycomb filter from being damaged when installed and used in an exhaust gas purification device. This is because it is desirable to perform measurement in a state where it is installed in an exhaust gas purification device.
  • honeycomb filter of the present invention carrying the above-mentioned catalyst functions as a gas purifying device similar to a conventionally known DPF with a catalyst (diesel particulate filter). Therefore, a detailed description of the case where the honeycomb filter of the present invention also functions as a catalyst carrier is omitted here.
  • the bending strength F hi of the honeycomb filter and the longitudinal length L of the through hole of the filler have a relationship of F a XL ⁇ 30. That is, in the honeycomb filter of the present invention, even when the flexural strength F alpha of the honeycomb filter by increasing the porosity is lowered, sea urchin by which the F a XL becomes 3 0 or more, penetration of the filler Since the length L in the longitudinal direction of the hole is increased, the contact area between the wall portion of the portion filled with the filler and the filler is increased, and the adhesive strength of these is excellent.
  • honeycomb filter of the present invention is excellent in durability because cracks do not occur on the wall portion of the portion filled with the filler due to impact such as pressure of exhaust gas, and the filler does not fall off. It will be.
  • an example of a method for manufacturing the above-described honeycomb filter of the present invention will be described.
  • the structure of the honeycomb filter of the present invention is entirely composed of one sintered body as shown in FIG. 1, first, the above-mentioned raw material paste containing ceramic as a main component is used. Extrusion molding is performed to produce a ceramic molded body having substantially the same shape as the honeycomb filter 10 shown in FIG.
  • the raw material paste for example, a paste obtained by adding a binder and a dispersion medium to the above-mentioned powder made of ceramic can be used.
  • the binder is not particularly limited, and examples thereof include methylcellulose and liposome.
  • examples include xymethinoresenorelose, hydroxyxetinoresole / relose, polyethylene glycolone, phenolic resin, and epoxy resin.
  • the amount of the binder is preferably about 1 to 10 parts by weight based on 100 parts by weight of the ceramic powder.
  • the dispersion medium is not particularly limited, and examples thereof include an organic solvent such as benzene; an alcohol such as methanol, and water.
  • the dispersion medium is mixed in an appropriate amount so that the viscosity of the raw material paste falls within a certain range.
  • the ceramic powder, the binder and the dispersion medium are mixed by an attritor or the like, kneaded sufficiently with a kneader or the like, and then extruded to produce the ceramic molded body.
  • a molding aid may be added to the raw material paste as needed.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid stone, and polyalcohol.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere having an oxide-based ceramic as a component, a spherical acrylic particle, and graphite may be added to the raw material paste as needed.
  • the balloon is not particularly limited, and examples thereof include alumina balloon, glass microvanolane, shirasu vanolane, fly ash vanolane (FA vanolane), and mullite balloon. Of these, fly ash balloons are preferred.
  • the materials used in the raw material paste, the mixing ratio, and the like so that the bending strength F ⁇ of the honeycomb filter manufactured through a post-process is 1 to 6 OMPa.
  • the honeycomb filter of the present invention such a honeycomb filter is not easily broken by exhaust gas flowing into the through-hole, and the back pressure of the particulate concentration is short. This is because they do not rise to high levels.
  • the bending strength F o; of the honeycomb filter is a value mainly determined by the ceramic material used and the porosity thereof. This can be controlled by adjusting the materials used in the above-mentioned pastes for the original family, the mixing ratio, etc. '
  • the porosity of the honeycomb filter can be controlled to some extent by the firing conditions of the ceramic molded body and the like.
  • the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body.
  • the holes are filled with a filler paste as a filler, and a sealing process is performed to plug the through holes.
  • FIG. 4 (a) is a cross-sectional view schematically showing an example of a sealing device used for performing the above-mentioned sealing process
  • FIG. 4 (b) is a partially enlarged cross-sectional view showing a part thereof.
  • the sealing device 100 used in the above-described sealing process has a mask 111 having an opening 111a formed in a predetermined pattern on a side surface, and the inside thereof is filled.
  • Two sets of closed-type filling material discharge tanks 110 filled with the material paste 120 are arranged so that the side surfaces on which the masks 111 are formed face each other.
  • the end face 40a of the dried ceramic body 40 and the side surface of the filler discharge tank 110 were formed.
  • the dried ceramic body 40 is fixed between the filling material discharge tanks 110 so that the mask 111 is in contact with the mask 111.
  • the opening 11 1 a of the mask 11 1 and the through-hole 42 of the dried ceramic body 40 have a positional relationship of directly facing each other.
  • a constant pressure is applied to the filler discharge tank 110 using, for example, a pump such as a monopump, so that the filler paste 120 is discharged from the opening 111a of the mask 111.
  • a pump such as a monopump
  • the filler paste 120 is inserted into the predetermined through hole 42 of the dried ceramic body 40.
  • One hundred twenty can be filled.
  • the sealing device used in the sealing process is not limited to the sealing device 100 as described above, and includes, for example, an open-type filler discharge tank in which a stirring piece is disposed.
  • the filler is discharged by moving the stirring piece in the vertical direction.
  • a method may be used in which the filling material paste filled in the tank is fluidized and the filling material paste is filled.
  • the distance from the end surface of the dried ceramic body of the filler paste is determined by the relationship between the bending strength Fa of the honeycomb filter manufactured through a post-process and the length L of the filler, F a XL ⁇ 30. Adjust it to be something.
  • the filler paste within a range of 0.5 to 40 mm from the end face of the dried ceramic body.
  • the above-mentioned filler paste is not particularly limited.
  • the same paste as the above-mentioned raw material paste can be used, but a lubricant, a solvent, a dispersant and a binder are added to the ceramic powder used in the above-mentioned raw material paste. It is desirable that it is done. This is because it is possible to prevent the ceramic particles in the filler paste from settling during the sealing process.
  • the ceramic powder be a coarse powder having a large average particle diameter and a small amount of fine powder having a small average particle diameter added thereto. This is because the fine powder bonds the ceramic particles together.
  • the lower limit of the average particle diameter of the coarse powder is preferably 5 ⁇ , more preferably 10 ⁇ .
  • the upper limit of the average particle size of the coarse powder is preferably 100 m, more preferably 50 ⁇ m.
  • the average particle diameter of the fine powder is desirably submicron.
  • the lubricant is not particularly limited, and examples thereof include those composed of polyoxyethylene alkyl ether, polyoxypropylene alkyl ether, and the like.
  • such a lubricant be added in an amount of 0.5 to 8 parts by weight based on 100 parts by weight of the ceramic powder. If the amount is less than 0.5 part by weight, the sedimentation speed of the ceramic particles in the filler paste increases, and the particles may be immediately separated. In addition, since the flow resistance of the filler paste is increased, it may be difficult to allow the filler paste to sufficiently enter the through holes of the dried ceramic body. On the other hand, when the amount exceeds 8 parts by weight, shrinkage during firing of the dried ceramic body becomes large and cracks are generated. It will be cool.
  • the above polyoxyethylene alkyl ether or polyoxypropylene alkyl ether is produced by addition polymerization of ethylene oxide or propylene oxide to alcohol, and an alkyl group is added to oxygen at one end of polyoxyethylene (polyoxypropylene).
  • the alkyl group is not particularly limited, and includes, for example, those having 3 to 22 carbon atoms. This alkyl group may be straight-chain or have a side chain.
  • polyoxyethylene alkyl ether and the polyoxypropylene alkyl ether may be those in which an alkyl group is bonded to a block copolymer composed of polyoxyethylene and polyoxypropylene.
  • the solvent is not particularly restricted but includes, for example, diethylene glycol mono-2-ethynolehexyl ether.
  • such a solvent be added in an amount of 5 to 20 parts by weight per 100 parts by weight of the ceramic powder. Outside of this range, it is difficult to fill the through-holes of the dried ceramic body with the filler paste.
  • the dispersant is not particularly limited, and examples thereof include a surfactant made of a phosphate ester salt.
  • examples of the phosphate ester salt include polyoxyethylene alkyl ether phosphate, polyoxyethylene alkyl phenyl ether phosphate, and alkyl phosphate.
  • Such a dispersant is preferably added in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the ceramic powder. If the amount is less than 0.1 part by weight, the ceramic particles may not be uniformly dispersed in the filler paste.On the other hand, if the amount exceeds 5 parts by weight, the density of the filler paste decreases, As the amount of shrinkage during firing increases, cracks and the like are more likely to occur.
  • the binder is not particularly limited, and examples thereof include (meth) acrylate compounds such as n-butyl (meth) acrylate, n-pentyl (meth) acrylate, and n-hexyl (meth) acrylate. Can be mentioned.
  • Such a binder is used in an amount of 1 to 10 parts by weight based on 100 parts by weight of the ceramic powder. It is desirable to be added partially. If the amount is less than 1 part by weight, the bonding strength between the ceramic particles and other additives may not be sufficiently secured. On the other hand, if it exceeds 10 parts by weight, the amount of the binder becomes too large, so that the amount of shrinkage in the firing step becomes large, and cracks and the like are liable to occur.
  • the dried ceramic body filled with the filler paste is degreased and fired under predetermined conditions to produce a honeycomb filter made of porous ceramic and entirely composed of one sintered body. .
  • the conditions for degreasing and firing the dried ceramic body may be the same as those conventionally used for manufacturing a honeycomb filter made of porous ceramic.
  • the structure of the honeycomb filter of the present invention is a structure in which a plurality of porous ceramic members are bound via a sealing material layer as shown in FIG.
  • Extrusion molding is performed using a raw material paste as a main component to produce a formed body having a shape like the porous ceramic member 30 shown in FIG.
  • the raw material paste may be the same as the raw material paste described in the honeycomb filter made of the above-mentioned one sintered body, but the mixing ratio is made of the above-mentioned one sintered body.
  • the filter may be the same as that of the honeycomb filter, or may have a different mixing ratio.
  • the formed body is dried using a microwave drier or the like to obtain a dried body, and a predetermined paste is filled in a predetermined through-hole of the dried body with a filler paste serving as a filler. Apply a sealing process to plug.
  • the dried body having undergone the above-mentioned sealing treatment is degreased and fired under predetermined conditions to produce a porous ceramic member in which a plurality of through-holes are juxtaposed in the longitudinal direction across partition walls.
  • the conditions for degreasing and firing of the green compact are the same as those of a conventional honeycomb filter formed by binding a plurality of porous ceramic members via a sealing material layer.
  • the conditions and the like used in the application can be applied.
  • the porous ceramic members 30 are stacked on a base 80 having a V-shaped cross section so that the porous ceramic members 30 can be stacked in an inclined state.
  • Apply the sealing material paste which becomes the sealing material layer 24, to a uniform thickness on the two side faces 30a and 30b facing upwards, and seal the material.
  • a paste layer 81 is formed, and a process of laminating another porous ceramic member 30 of the order j is repeated on this paste material / paste material paste layer 81 to obtain a prismatic porous material having a predetermined size.
  • a laminate of high quality ceramic members 30 is produced.
  • the porous ceramic member 30 corresponding to the four corners of the laminate of the prismatic porous ceramic members 30 had a triangular prism shape formed by cutting the square pillar-shaped porous ceramic member 30 into two pieces.
  • a porous ceramic member made by bonding a porous ceramic member 30 c and a resin member 82 having the same shape as the triangular prism-shaped porous ceramic member 30 c with an easily peelable double-sided tape or the like is used.
  • the prismatic porous ceramic member 30 is removed. May have a polygonal column shape.
  • the amount of waste consisting of the porous ceramic member to be discarded after the outer peripheral portion of the laminated body of the prismatic porous ceramic members 30 is cut to produce the ceramic block 25 is reduced. Can be reduced.
  • a method for producing a laminated body of porous ceramic members 30 having a polygonal columnar cross section may be, for example, four corners according to the shape of the honeycomb filter to be produced.
  • the method of omitting the porous ceramic member described above, the method of joining triangular prism-shaped porous ceramic members together, and the like can be used.
  • a laminated body of the porous ceramic member 30 having a rectangular column shape may be manufactured.
  • the laminated body of the porous ceramic members 30 is heated to dry and solidify the sealing material paste layer 81 to form a sealing material layer 24. Thereafter, for example, using a diamond force cutter or the like, By cutting the outer periphery into the shape shown in Fig. 2, The lamic block 25 is manufactured.
  • sealing material layer 26 By forming the sealing material layer 26 on the outer periphery of the ceramic block 25 using the sealing material paste, a honeycomb filter formed by binding a plurality of porous ceramic members via the sealing material layer is obtained. Can be manufactured.
  • Each of the honeycomb filters manufactured in this manner has a columnar shape, and has a structure in which a large number of through holes are juxtaposed with a wall portion therebetween.
  • the honeycomb filter has a structure consisting of a single sintered body as shown in Fig. 1, the whole wall that separates many through holes serves as a filter for collecting particles.
  • the honeycomb filter has a structure in which a plurality of porous ceramic members are bound via a sealing material layer, as shown in FIG. 2, the wall separating many through holes is
  • the porous ceramic member is composed of a partition wall and a sealing material layer that binds the porous ceramic member. Part of the partition wall, that is, the partition wall portion that is not in contact with the sealing material layer of the porous ceramic member, is trapped by particles. Functions as a collection filter.
  • the honeycomb filter of the present invention is used by being installed in an exhaust gas purifying device provided in an exhaust passage of an internal combustion engine such as an engine.
  • an exhaust gas purifying device provided in an exhaust passage of an internal combustion engine such as an engine.
  • a method of the regenerating treatment for removing the collected and deposited fine particles for example, a method of performing back washing by an air flow, a method of heating exhaust gas and flowing it in, and the like are preferable. Used.
  • FIG. 6 is a cross-sectional view schematically showing one example of an exhaust gas purifying apparatus provided with the honeycomb filter of the present invention.
  • a method of heating and flowing exhaust gas is used as a method of a regenerating process for removing collected and deposited fine particles.
  • the exhaust gas purifying apparatus 600 mainly includes a honeycomb filter 60 of the present invention, a casing 630 that covers the outside of the honeycomb filter 60, a honeycomb filter 60, 30 and a heating means 610 provided on the exhaust gas inflow side of the honeycomb fill 60, and the casing 63
  • an engine An intake pipe 640 connected to the internal combustion engine is connected, and a discharge pipe 650 connected to the outside is connected to the other end of the casing 630.
  • the arrows in FIG. 6 indicate the flow of exhaust gas.
  • the honeycomb finletter 60 may be the honeycomb finoletor 10 shown in FIG. 1 or the honeycomb filter 20 shown in FIG.
  • the exhaust gas purifying apparatus 600 having such a configuration, the exhaust gas discharged from the internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and the honeycomb filter 600 is formed. After passing through the wall (partition) through the through hole, the particulates are collected and purified by this wall (partition), and then discharged to the outside through the discharge pipe 6550.
  • the honeycomb filter 60 When a large amount of particulates accumulate on the walls (partition walls) of the honeycomb filter 60 and the back pressure increases, the honeycomb filter 60 is regenerated.
  • the honeycomb filter 60 was heated by flowing the gas heated using the heating means 61 into the inside of the through-hole of the honeycomb filter 60, and deposited on the wall (partition wall). It burns and removes particulates.
  • the material constituting the holding sealing material 620 is not particularly limited, and examples thereof include inorganic fibers such as crystalline alumina fibers, alumina-silica fibers, and silica fibers, and fibers containing one or more of these inorganic fibers. be able to.
  • the retained scenery material 620 contains alumina and Z or silica. This is because the holding sealer 62 has excellent heat resistance and durability.
  • the holding sealing material 620 preferably contains 50% by weight or more of alumina. This is because, even at a high temperature of about 900 to 95 ° C., the elastic force increases, and the force for holding the honeycomb filter 60 increases.
  • the holding sealing material 620 has been subjected to a needle punching process. This is because the fibers constituting the holding sealing material 62 are entangled with each other, the elastic force is increased, and the force for holding the honeycomb filter 60 is improved.
  • the shape of the holding sealing material 62 is not particularly limited as long as it can cover the outer periphery of the honeycomb filter 60, and may be any shape.
  • a convex portion is formed on one side of the rectangular base member, and a concave portion is formed on a side opposite to the one side.
  • the convex portion and the concave portion may be different. It is desirable that the shape be such that it fits. This is because the holding seal material 62 covering the outer periphery of the honeycomb filter 60 is less likely to be displaced.
  • the material of the casing 630 is not particularly limited, and examples thereof include stainless steel.
  • the shape is not particularly limited, and may be a cylindrical shape such as a casing 71 shown in FIG. 7A, and a cylindrical shape such as a casing 72 shown in FIG. It may be a two-part shell shape divided into two parts in the direction.
  • the size of the casing 63 is appropriately adjusted so that the honeycomb filter 60 can be installed inside through the holding sealing material 62. Then, as shown in FIG. 6, an inlet pipe 640 for introducing exhaust gas is connected to one end face of the casing 630, and a discharge pipe 650 for discharging exhaust gas is connected to the other end face. It is connected.
  • the heating means 610 flows into the inside of the through-hole in order to burn and remove the particulates accumulated on the wall (partition) of the honeycomb filter 60.
  • the heating means is provided for heating the gas, and is not particularly limited as such a heating means, and examples thereof include an electric heater and a burner.
  • the gas that flows into the through hole may be, for example, exhaust gas or air.
  • a method in which the honeycomb filter 60 is heated by a heating means 61 provided on the exhaust gas inflow side of the honeycomb filter 60 is used.
  • a method may be used in which an oxidation catalyst is supported on a honeycomb filter, and hydrocarbons are caused to flow into the honeycomb filter supporting the oxidation catalyst, so that the honeycomb filter generates heat.
  • -A method in which an oxidation catalyst is disposed on the exhaust gas inflow side of the cam filter, and hydrocarbons are supplied to the oxygen catalyst to generate heat, thereby heating the honeycomb filter. Since the reaction between the oxidation catalyst and the hydrocarbon is an exothermic reaction, the honeycomb filter can be regenerated in parallel with the purification of the exhaust gas by utilizing a large amount of heat generated during the reaction.
  • a holding sealing material for covering the outer periphery of the honeycomb filter of the present invention is manufactured.
  • an inorganic mat-like material is formed using inorganic fibers such as crystalline alumina fibers, alumina-silica fibers, silica fibers, or fibers containing at least one of these inorganic fibers. ) Is formed.
  • the method for forming the inorganic mat-like material is not particularly limited.
  • the above-mentioned fibers and the like are dispersed in a solution containing an adhesive, and the inorganic mat-like material is formed using a paper machine or the like for making paper. And the like.
  • the fibers can be entangled with each other, and a holding sealing material having high elastic force and excellent holding force for the honeycomb filter can be produced.
  • the inorganic mat-like material is subjected to a cutting process.
  • a convex portion is provided on one side of the rectangular base member as described above, and a concave portion is provided on a side opposite to the one side.
  • a holding sealing material having such a shape is manufactured.
  • the outer periphery of the honeycomb filter of the present invention is coated with the holding sealing material, and the holding sealing material is fixed.
  • the means for fixing the holding sealing material is not particularly limited, and examples thereof include a means for sticking with an adhesive and a means for binding with a string. Also, it is possible to move on to the next step with just the honeycomb filter covered without fixing by special means.
  • the string may be a material that decomposes by heat. After the honeycomb filter is installed in the casing, even if the cord is decomposed by heat, the holding filter is not peeled off because the honeycomb filter is installed in the casing. is there. Next, the honeycomb filter having undergone the above steps is placed in a casing.
  • a honeycomb filter covered with a holding sealing material is one of the methods. After pushing in from an end face and installing it at a predetermined position, an end face for connecting to an inlet pipe, a pipe, a discharge pipe, and the like can be formed at both ends of the casing 71.
  • the casing 71 may be a bottomed cylindrical shape.
  • the honeycomb filter may be provided with a predetermined shape in a semi-cylindrical lower shell 72b.
  • the semi-cylindrical upper shell 7 is arranged so that the through hole 73 a formed in the upper fixing part 73 and the through hole 74 a formed in the lower fixing part 74 overlap each other. Place 2a on lower shell 7 2b.
  • the upper shell 72 a and the lower shell 72 b are fixed by passing the bolts 75 through the through holes 73 a and 74 a and fixing them with nuts or the like. Then, a method of forming an end face having an opening for connecting to an inlet pipe, a pipe, a discharge pipe, and the like at both ends of the casing 72 can be given. Also in this case, it is necessary to adjust the thickness of the holding seal material, the size of the honeycomb filter, the size of the casing 72, and the like so that the fixed honeycomb filter does not move.
  • a heating means for heating the gas flowing into the through-hole of the honeycomb filter when performing the regeneration processing of the honeycomb filter of the present invention is provided.
  • the heating means is not particularly limited, and examples thereof include an electric heater and a burner. I can get out.
  • the heating means is usually provided near the end face on the exhaust gas inflow side of the honeycomb filter installed in the casing.
  • the oxidation catalyst may be supported on the honeycomb filter of the present invention without providing the heating means as described above, and the oxidation catalyst may be provided on the exhaust gas inflow side of the honeycomb filter. It may be arranged.
  • an exhaust gas purification device provided with the honeycomb filter of the present invention can be manufactured by connecting the casing in which the honeycomb filter of the present invention and the heating means are provided inside to an exhaust passage of an internal combustion engine.
  • the end face of the casing on the side where the heating means is provided is connected to an introduction pipe connected to an internal combustion engine such as an engine, and the other end face is connected to a discharge pipe connected to the outside.
  • an organic binder methyl cellulose
  • the raw material paste was filled in an extruder, and a ceramic molded body having substantially the same shape as the porous ceramic member 30 shown in FIG. 3 was produced at an extrusion speed of 10 cmZ.
  • a microwave drier was used to obtain a dried ceramic body.
  • ⁇ -type silicon carbide powder having an average particle size of 10 m and 0.5 ⁇ m m ⁇ -type silicon carbide powder in an amount of 40% by weight were mixed with 4 parts by weight of a lubricant composed of polyoxyethylene monobutyl ether (manufactured by NOF Corporation, trade name: Uniluv), diethylene glycol Solvent consisting of mono 2-ethylhexynoleatel (Kyowa Hakko Co., Ltd., trade name: ⁇ -20) 1 1 part by weight, dispersant consisting of ester phosphate compound (Daiichi Kogyo Seiyaku Co., Ltd., trade name: Ply Surf) 2 parts by weight and 5 parts by weight of a binder obtained by dissolving ⁇ -butyl methacrylate with ⁇ -20 (trade name: Binder D, manufactured by Toei Kasei Co., Ltd.) A paste was prepared.
  • a lubricant composed of polyoxyethylene monobutyl ether (man
  • This filler paste is filled into the filler discharge tank 110 of the sealing device 100 shown in FIG. 4, and the dried ceramic body produced in the above process is moved to a predetermined position and fixed, and the filler discharge tank 110 is filled.
  • the mask 111 was brought into contact with the end face of the dried ceramic body.
  • the opening portion 111a of the mask 111 and the through-hole of the dried ceramic body have a positional relationship of directly facing each other.
  • the filler paste is discharged from the opening 111a of the mask 111, and the through hole of the ceramic dried body is discharged. Sealing treatment for entering the end was performed.
  • the filler paste was filled so that the length of the through hole of the filler formed after firing was 0.75 mm in the longitudinal direction.
  • the dried ceramic body subjected to the above sealing treatment is again dried using a microwave dryer, degreased at 400 ° C, and baked at 2200 ° C for 4 hours under a normal pressure argon atmosphere.
  • a microwave dryer degreased at 400 ° C
  • Fig. 2 it is made of a silicon carbide sintered body whose size is 33 mm X 33 mm X 30 Omm, the number of through holes is 31 Zcm 2 , and the thickness of the partition walls is 0.3 mm A porous ceramic member was manufactured.
  • a sealing material paste layer having a thickness of 1.0 mm was formed on the outer peripheral portion of the ceramic block using the sealing material paste. Then, the sealing material paste layer was dried at 120 ° C. to manufacture a honeycomb filter made of cylindrical silicon carbide as shown in FIG.
  • the honeycomb filter thus manufactured had an average pore diameter of 10 ⁇ m, a porosity of 40%, and a bending strength of 4 OMPa.
  • the longitudinal length of the through hole of the filler was 0.75 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 1, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 3 mm.
  • the product of the bending strength of the honeycomb filter according to Example 2 and the length of the filler was 120.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 1, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 5 mm.
  • the product of the bending strength of the honeycomb filter according to the third embodiment and the length of the filler was 200.
  • Example 1 A honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 1 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 0.5 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 1 and the length of the filler was 20.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 1, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 6 mm.
  • the product of the bending strength of the honeycomb filter according to Test Example 1 and the length of the filler was 240.
  • A-type silicon carbide powder having an average particle diameter of 10 ⁇ m, 80% by weight / 0 , and 20% by weight of] -type silicon carbide powder, having an average particle diameter of 0.5 / im] were obtained by wet mixing. 20 parts by weight of an organic binder (methyl cellulose), 30 parts by weight of water, and 20 parts by weight of a pore-forming agent (spherical acryl particles, average particle diameter 10 / im) are added to 100 parts by weight. The mixture was kneaded to prepare a raw material paste.
  • an organic binder methyl cellulose
  • a pore-forming agent spherical acryl particles, average particle diameter 10 / im
  • the above-mentioned raw material paste was filled into an extrusion molding machine, and a ceramic molded body was produced at an extrusion speed of 10 cm / min.
  • the ceramic molded body was dried using a microwave drier, as shown in FIG. A dried ceramic body having substantially the same shape as the porous ceramic member 30 shown was obtained.
  • a filler paste was prepared in the same manner as in Example 1, and the above-mentioned dried ceramic body was sealed. At this time, the filler paste was filled so that the longitudinal length of the through hole of the filler formed after firing was 4.3 mm.
  • Example 2 the dried ceramic body subjected to the sealing treatment was degreased and fired under the same conditions as in Example 1 to produce a porous ceramic member.
  • honeycomb filter made of cylindrical silicon carbide as shown in FIG. 2 was manufactured.
  • the honeycomb filter thus manufactured had an average pore diameter of 10 ⁇ , a porosity of 60%, and a bending strength of 7 MPa.
  • the length in the longitudinal direction of the through hole of the filler was 4.3 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.1.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 4, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 15 mm.
  • the product of the bending strength of the honeycomb filter of the fifth embodiment and the length of the filler was 105.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 4, except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 28.5 mm.
  • the product of the bending strength of the honeycomb filter according to the sixth embodiment and the length of the filler was 199.5.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 4, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 4 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Comparative Example 2 was 28.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 4, except that the filler paste was filled so that the length of the through hole of the filler in the longitudinal direction was 3 Omm.
  • the above-mentioned raw material paste was filled into an extrusion molding machine, and a ceramic molded body was produced at an extrusion speed of 10 cm / min.
  • the ceramic molded body was dried using a microwave drier, as shown in FIG. A dried ceramic body having substantially the same shape as the porous ceramic member 30 shown was obtained.
  • a filler paste was prepared in the same manner as in Example 1, and the dried ceramic body was sealed. At this time, the above-mentioned filler paste was filled so that the longitudinal length of the through hole of the filler formed after firing was 1.5 mm.
  • Example 2 the dried ceramic body subjected to the sealing treatment was degreased and fired under the same conditions as in Example 1 to produce a porous ceramic member.
  • the average pore diameter of the honeycomb filter manufactured as described above was 10 ⁇ , the porosity was 50%, and the bending strength was 2 OMPa.
  • the length of the through hole of the filler in the longitudinal direction was 1.5 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 7, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 6 mm.
  • the product of the bending strength of the honeycomb filter according to the eighth embodiment and the length of the filler was 120.
  • Example 9 A honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 7, except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 1 Omm.
  • the product of the bending strength of the honeycomb filter of the ninth embodiment and the length of the filler was 200.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 7, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 1 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 3 and the length of the filler was 20.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 7, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 12 mm.
  • the product of the bending strength of the honeycomb filter according to Test Example 3 and the length of the filler was 240.
  • 3 type silicon carbide powder having an average particle diameter of 0.5 / im, 40% by weight, were wet-mixed to obtain a mixture 1 5 parts by weight of an organic binder (methyl cellulose) and 10 parts by weight of water were added to 100 parts by weight, and kneaded to prepare a raw material paste.
  • an organic binder methyl cellulose
  • the above-mentioned raw material paste was filled into an extruder, and a ceramic molded body was produced at an extrusion speed of 10 cmZ, and the ceramic molded body was dried using a microwave drier, as shown in FIG. A dried ceramic body having substantially the same shape as the porous ceramic member 30 shown was obtained.
  • a filler paste was prepared in the same manner as in Example 1, and the dried ceramic body was sealed. At this time, the filler paste is filled with the filler formed after firing. The filler was filled so that the length of the through hole in the longitudinal direction was 0.5 mm.
  • Example 2 the dried ceramic body subjected to the sealing treatment was degreased and fired under the same conditions as in Example 1 to produce a porous ceramic member.
  • the honeycomb filter thus manufactured had an average pore diameter of 10 im, a porosity of 30%, and a bending strength of 6 OMPa.
  • the length of the through hole of the filler in the longitudinal direction was 0.5 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 10 except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 2 mm.
  • the product of the bending strength of the honeycomb filter according to Example 11 and the length of the filler was 120. '
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 10, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 3.3 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 12 was 198.
  • a honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 10, except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 0.3 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 4 and the length of the filler was 18.
  • Test Example 4 A honeycomb filter made of silicon carbide was manufactured in the same manner as in Example 10, except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 4 mm.
  • the product of the bending strength of the honeycomb filter according to Test Example 4 and the length of the filler was 240.
  • talc having an average particle size of 1 ⁇
  • 10 parts by weight of kaolin having an average particle size of 9 / im
  • 17 parts by weight of alumina having an average particle size of 9.5 ⁇ m
  • an average particle size of 5 ⁇ m 16 parts by weight of aluminum hydroxide m average particle diameter 10 // 15 parts by weight of m silica
  • 30 parts by weight of graphite with average particle diameter 10 m 17 parts by weight of molding aid (ethylene glycol) And 25 parts by weight of water, and kneaded to prepare a raw material paste.
  • molding aid ethylene glycol
  • the above-mentioned raw material paste was filled into an extruder, and a ceramic molded body having substantially the same shape as the honeycomb filter 10 shown in FIG. 1 was produced at an extrusion speed of 10 cmZ. It was dried using a microwave drier to obtain a dried ceramic body.
  • talc having an average particle diameter of 10 / m
  • 10 parts by weight of kaolin having an average particle diameter of 9 ⁇ m
  • 17 parts by weight of alumina having an average particle diameter of 9.5 ⁇ m
  • an average particle diameter of 5 ⁇ m 16 parts by weight of phenol resin 15 parts by weight of silica with an average particle size of 10 ⁇ m
  • Dispersant consisting of 1 part by weight of phosphate ester compound (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name: Ply Surf) 2 parts by weight and 5 parts by weight of a binder obtained by dis
  • the dry ceramic body was sealed in the same manner as in Example 1.
  • the above-mentioned filler paste is formed in a longitudinal direction of a through hole of the filler formed after firing.
  • the filling was performed so that the length in the direction was 7.5 mm.
  • a mask having an opening at a position just opposite to the through hole of the dried ceramic body was used. Then, the dried ceramic body subjected to the above sealing treatment is dried by using a microwave dryer, and then degreased at 400 ° C., under a normal pressure argon atmosphere at 1400 ° C. By firing in 3 hours, a honeycomb filter made of cylindrical cordierite having a diameter of 16.5 mm and a width of 30 Omm as shown in FIG. 1 was manufactured. The porosity of the honeycomb filter thus manufactured was 60%, and the flexural strength was 4 MPa. The length of the through hole of the filler in the longitudinal direction was 7.5 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 13 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 20 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 14 was 80.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 13 except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 50 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 15 was 200.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 13 except that the test was performed.
  • the product of the bending strength of the honeycomb filter of Comparative Example 5 and the length of the filler was 28.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 13 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 60 mm.
  • the product of the bending strength of the honeycomb filter according to Test Example 5 and the length of the filler was 240.
  • talc with an average particle size of 10 ⁇ m
  • 10 parts by weight of kaolin with an average particle size of 9 ⁇ 17 parts by weight of alumina with an average particle size of 9.5 ⁇ m
  • water with an average particle size of 5 ⁇ m 16 parts by weight of aluminum oxide
  • 15 parts by weight of silica having an average particle diameter of 10 / zm
  • 3 parts by weight of graphite having an average particle diameter of 10 ⁇ m
  • molding aid ethylene glycol
  • 10 parts by weight of water 8 parts by weight were added and kneaded to prepare a raw material paste.
  • FIG. 1 A dried ceramic body having substantially the same shape as the honeycomb filter 10 shown in FIG.
  • a filler paste was prepared in the same manner as in Example 13, and the dried ceramic body was sealed. At this time, the filled forest paste was filled so that the longitudinal length of the through hole of the filler formed after the firing was 3.75 mm.
  • Example 13 the dried ceramic body subjected to the sealing treatment was degreased and fired under the same conditions as in Example 13 to produce a honeycomb filter made of cordierite having a columnar shape as shown in FIG.
  • the porosity of the honeycomb filter manufactured as described above was 40%, and the bending strength was 8 MPa.
  • the length of the filler through hole in the longitudinal direction is 3.75 mm.
  • the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 16 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 12 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 17 was 96.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 16, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 25 mm.
  • the product of the bending strength of the honeycomb filter according to Example 18 and the length of the filler was 200.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 16 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 3 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 6 and the length of the filler was 24.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 16 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 28 mm.
  • the product of the bending strength of the honeycomb filter according to Test Example 6 and the length of the filler was 2 24.
  • Talc with an average particle size of 1 ⁇ 40 parts by weight, kaolin with an average particle size of 9 / m 10 parts by weight, alumina with an average particle size of 9.5 ⁇ 17 parts by weight, water with an average particle size of 5 Aim Aluminum oxide 9
  • the above-mentioned raw material paste was filled in an extruder, and a ceramic molded body having substantially the same shape as the honeycomb filter 10 shown in FIG. 1 was produced at an extrusion speed of 10 cm / min. Then, it was dried using a microwave drier to obtain a dried ceramic body.
  • Example 13 a filler paste was prepared, and the dried ceramic body was sealed. At this time, the filler paste was filled so that the longitudinal length of the through hole of the filler formed after firing was 6.3 mm.
  • the porosity of the honeycomb filter thus manufactured was 55%, and the bending strength was 4.7 MPa. Further, the length of the through hole of the filler in the longitudinal direction was 6.3 mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 19, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 23 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 20 was 108.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 19, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 42.6 mm. .
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 19, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 6 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 7 and the length of the filler was 28.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 19, except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 43 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Test Example 7 was 202.
  • talc having an average particle size of ⁇
  • 10 parts by weight of kaolin having an average particle size of 9 ⁇ m
  • 17 parts by weight of alumina having an average particle size of 9.5 ⁇
  • water having an average particle size of 5 ⁇ 16 parts by weight of aluminum oxide
  • 15 parts by weight of silica having an average particle diameter of 10 / zm
  • 40 parts by weight of darafite having an average particle diameter of 10 ⁇ m
  • 25 parts by weight of a molding aid ethylene glycol
  • the above-mentioned raw material paste was filled into an extruder, and a ceramic molded body having substantially the same shape as the honeycomb filter 10 shown in FIG. 1 was produced at an extrusion speed of 10 cmZ. It was dried using a microwave drier to obtain a dried ceramic body.
  • Example 13 a filler paste was prepared, and the above-mentioned dried ceramic body was sealed. At this time, the above-mentioned filler paste was filled so that the longitudinal length of the through-hole of the filler formed after firing was 1 Omm.
  • Example 13 the dried ceramic body subjected to the above-mentioned sealing treatment was de-mooned and fired to form a core made of cordierite having a columnar shape as shown in FIG. A filter was manufactured. 03 04479
  • the porosity of the honeycomb filter manufactured as described above was 70%, and the bending strength was 3.0OMPa. Further, the length of the through hole of the filler in the longitudinal direction was 1 O mm, and the product of the bending strength of the honeycomb filter and the length of the filler was 30.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 22 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 38 mm.
  • the product of the bending strength of the honeycomb filter according to Example 23 and the length of the filler was 114. .
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 22 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 66 mm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Example 24 was 198.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 22 except that the filler paste was filled so that the length of the filler through hole in the longitudinal direction was 9 mm.
  • the product of the bending strength of the honeycomb filter according to Comparative Example 8 and the length of the filler was 27.
  • a honeycomb filter made of cordierite was manufactured in the same manner as in Example 22 except that the filler paste was filled so that the length of the filler through-hole in the longitudinal direction was 7 Omm.
  • the product of the bending strength and the length of the filler of the honeycomb filter according to Test Example 8 was 210.
  • honeycomb filters according to the respective Examples, Comparative Examples, and Test Examples were installed in an exhaust gas purifying apparatus as shown in FIG. 6 in which the honeycomb filters were arranged in the exhaust passage of the engine.
  • the exhaust gas was purified by operating at 0 O min ⁇ ⁇ torque of 50 Nm for 10 hours.
  • each honeycomb filter was taken out, and the presence or absence of cracks and the like were visually checked.
  • a heat cycle test in which the above-mentioned durability test was repeated 300 times was carried out, and each honeycomb filter was taken out. confirmed.
  • Example 2 10.5 ⁇
  • Example 3 11.0 "!
  • Example 6 8.5
  • Example 7 8.5
  • Example 11 12.5 m,-Example 12 13.2 mm
  • Example 13 7.0 ⁇ , ⁇ , & Example 14 7.5
  • Example 15 7.8 to ⁇ , ⁇ >>, Example 16 8.0
  • Example 18 9.0 to to, >>, Example 19 7.7, ", Example 20 7.9 to", ⁇
  • Example 21 8.3, Example 22 7.0
  • Comparative Example 1 5.0 Yes-Comparative Example 2 7.0 Yes One Comparative Example 3 8.0 Yes One Comparative Example 4 10.0 Yes-Comparative Example 5 6.0 Yes-Comparative Example 6 7.0 Yes One Comparative Example 7 6.3 Yes-Comparative Example 8 5.3 Yes-Test Example 1 15.0 Yes Test example 2 12.0 to Yes Test example 3 14.0 Yes Test example 4 18.0 Yes
  • Test 5 10.0 to Yes Test 6 11.0 Yes Test 10.2, Yes Test 8 10.0 te, Yes
  • Table 2 the honeycomb filters according to Examples 1 to 24 had a low initial back pressure value of 7 to 13.2 kPa, and the exhaust gas flowing into the through-hole was low. No cracks due to pressure impact were observed, and the back pressure after the durability test was not so high. Furthermore, no cracks were observed after the heat cycle test.
  • the initial back pressure value was as low as 5 to 1 OkPa, but due to the pressure of the exhaust gas flowing into the through hole. Cracks due to the impact occurred mainly on the wall (partition wall) of the portion where the filler was filled on the exhaust gas outflow side where the impact was most likely to occur.
  • honeycomb filters according to Test Examples 1 to 8 have a high initial back pressure value of 10 to 18 kPa, and are caused by the impact due to the pressure of the exhaust gas flowing into the through hole. No cracks were observed, but the back pressure after the durability test was extremely high, and cracks occurred after the heat cycle test.
  • the honeycomb filters according to Examples 1 to 24 do not crack due to the impact due to the pressure of the exhaust gas discharged from the engine, are excellent in durability, and have the back pressure of the particulate concentration. Therefore, it was not necessary to frequently perform regeneration processing of the honeycomb filter, and the filter functioned sufficiently.
  • the honeycomb filters according to Comparative Examples 1 to 8 produced cracks on the walls (partition walls) of the portion filled with the filler due to the impact due to the pressure of the exhaust gas discharged from the engine, and The material fell off and the durability was poor. Further, even in the case of a honeycomb filter in which the filler material did not fall off, the exhaust gas leaked from the cracks that occurred, and could not function sufficiently as a filter.
  • Example 19 to 21 and Comparative Example 7 show that the honeycomb filter made of cordierite with a porosity of 55% has a bending strength of 4.7 MPa and cracks occur in the durability test. It was found that the length of the filler needed to be 6.3 mm or more in order to avoid this. Also, from the results of Examples 13 to 15 and Comparative Example 5, the honeycomb filter made of cordierite having a porosity of 60% has a bending strength of 4 MPa, and in order to prevent cracking in a durability test, It has been found that the length of the filler needs to be 7.5 mm or more.
  • the honeycomb filter made of cordierite having a porosity of 70% had a bending strength of 4 MPa and was filled to prevent cracking in the durability test. It was found that the length of the material needed to be 1 Omm or more.
  • the honeycomb filter described in the example of JP-A-2003-3823 is made of cordierite, the porosity of the partition walls is 55 to 70 ° / 0 , and the length of the filler is Is between 2 and 6 mm, it is estimated that the filler is short in all cases and cracks occur in the durability test.
  • FIG. 8A is a graph showing the relationship between the bending strength of the honeycomb filters according to Examples 1 to 24 and the length of the filler
  • FIG. 8B is a graph showing Comparative Examples 1 to 8
  • 7 is a graph showing the relationship between the bending strength of the 8-cam filters according to Test Examples 1 to 8 and the length of the filler.
  • the lower curve is a curve in which the product of the bending strength F of the honeycomb filter and the length of the filler is 30 and the upper curve is the honeycomb.
  • This is a curve in which the product of the bending strength F ⁇ of the filter and the length L of the filler is 200.
  • the value of the product of the bending strength F ⁇ of the honeycomb filters according to Examples 1 to 24 and the length L of the filler material is between the upper and lower curves.
  • the values of the product of the bending strength Fa of the honeycomb filters according to Comparative Examples 1 to 8 and the length L of the filler are all lower. Below the side curve Existing. Further, the value of the product of the honeycomb filter bending strength F ⁇ according to Test Examples 1 to 8 and the length L of the filler material is all above the upper curve.
  • the exhaust gas purifying honeycomb filter of the present invention is as described above, cracks and falling off of the filler do not occur during use, and the honeycomb filter has excellent durability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

明細書
排気ガス浄化用ハニカムフィルタ 関連出願の記載
本出願は、 2 0 0 2年 4月 1 0日に出願された日本国特許出願 2 0 0 2 _ 1 0 8 5 3 8号を基礎出願として優先権主張する出願である。
技術分野 .
本発明は、 ディーゼルエンジン等の内燃機関から排出される排気ガス中のパテ ィキユレ一ト等を除去するフィルタとして用いられる排気ガス浄化用ハ-カムフ ィルタに関する。 背景技術
バス、 トラック等の車両や建設機械等の内燃機関から排出される排気ガス中に 含有されるパティキュレート (微粒子) が環境や人体に害を及ぼすことが最近問 題となっている。
この排気ガスを多孔質セラミックに通過させ、 排気ガス中のパティキュレート を捕集して、 排気ガスを浄化することができるセラミックフィルタが種々提案さ れている。
このようなセラミックフィルタは、 通常、 一方向に多数の貫通孔が並設され、 貫通孔同士を隔てる隔壁がフィルタとして機能するようになっている。
即ち、 セラミックフィルタに形成された貫通孔は、 排気ガスの入り口側又は出 口側の端部のいずれかが充填材により、 所謂、 市松模様となるように目封じされ、 一の貫通孔に流入した排気ガスは、 必ず貫通孔を隔てる隔壁を通過した後、 他の 貫通孔から流出するようになっており、 排気ガスがこの隔壁を通過する際、 パテ ィキュレートが隔壁部分で捕捉され、 排気ガスが浄化される。
このような排気ガスの浄化作用に伴い、 ハニカムフィルタの貫通孔を隔てる隔 壁部分には、 次第にパティキュレートが堆積し、 目詰まりを起こして通気を妨げ るようになる。
これに対して、 パティキュレートを捕集した後に、 排気ガスの流入方向とは逆 方向に気流を流してパティキュレートを除去する逆洗浄方式のハ二カムフィルタ が開発されているものの、 システムが煩雑となるために実用的でない (特開平 7 - 3 3 2 0 6 4号公報参照) 。
このため、 上記ハニカムフィルタでは、 定期的にヒータ等の加熱手段を用いて 目詰まりの原因となっているパティキュレートを燃焼除去して再生する再生処理 を行う必要がある。
ところで、 このような構造からなる従来のハニカムフィルタにおいて、 上記排 気ガスの浄化が可能な領域 (以下、 濾過可能領域ともいう) は、 排気ガス流入側 に開口した貫通孔の内壁部分であり、 このハニカムフィルタの濾過可能領域をで きるだけ広く確保し、 パティキュレート捕集中の背圧を低く保っためには、 上記 充填材の貫通孔の長手方向の長さをできる限り短くすることが有益であった。 また、 上記ハニカムフィルタの気孔率が低いものであると、 パティキュレート 捕集中の背圧がすぐに高くなるため、 上述したようなヒータ等の加熱手段を用い た再生処理を頻繁に行う必要があり、 従来からハニカムフィルタの高気孔率化が 図られていた。
さらに、 昨今、 上記ハニカムフィルタの再生処理を、 上述したようなヒータ等 の加熱手段を用いる方法に代えて、 ハニカムフィルタの気孔中に酸化触媒を担持 させることで、 上記ハニカムフィルタに流入してくる排気ガスに含まれる炭化水 素と、 上記酸化触媒とを反応させ、 その際に発生する熱を利用したハニカムフィ ルタの再生処理を行う考え方がある。 このようにして再生処理を行うハニカムフ ィルタでは、 ハ-カムフィルタの気孔中に酸化触媒を担持させているため、 パテ ィキュレートによる気孔の目詰まりが発生しやすいこと、 及び、 大量の熱を発生 させるためには、 できるだけ多くの酸化触媒を担持させる必要があること等の理 由から、 その気孔率を高くする必要があった。
このようにハ-カムフィルタの気孔率を高くすることは、 背圧が高くなりにく く、 パティキュレートの捕集に優れたものとなり、 また、 酸化触媒を大量に担持 させることができるようになる。
しかしながら、 上記ハニカムフィルタの気孔率を高くすることは、 ハニカムフ ィルタ自体の強度を低下させることとなる。 そのため、 上記ハニカムフィルタを 取り付けた排気ガス浄化装置をエンジン等の内燃機関の排気通路に設置し、 実際 に使用すると、 排気ガスの圧力等の衝撃により隔壁にクラックが発生しやすくな つていた。
また、 上述した通り、 貫通孔の端部に充填された充填材は、 ハニカムフィルタ の濾過可能領域をできるだけ広く確保する目的で、 上記充填材の貫通孔の長手方 向の長さはできるだけ短くなるように形成されていたが、 このようなハニカムフ ィルタでは、 上記充填材と隔壁との接触面積が小さく、 上記充填材の隔壁に対す る接着強度が低くなっていた (特開 2 0 0 3— 3 8 2 3号公報参照) 。
ところが、 排気ガス流出側の充填材が充填された部分の隔壁は、 排気ガスによ り最も圧力等の衝撃を受ける部分であったため、 上述したような高気孔率化に伴 つて曲げ強度が低下したハニカムフィルタでは、 排気ガスの圧力等の衝撃により 上記充填材が充填された部分の隔壁に容易にクラックが発生したり、 上記充填材 が抜け落ちたりし、 耐久性に劣るものとなりがちであった。 発明の要約
本発明は、 これらの問題を解決するためになされたもので、 使用中にクラック や充填材の抜け落ちが発生することがなく、 耐久性に優れる排気ガス浄ィヒ用ハニ カムフィルタを提供することを目的とするものである。
本発明の排気ガス浄化用ハニカムフィルタは、 多数の貫通孔が壁部を隔てて長 手方向に並設された、 多孔質セラミックからなる柱状体の一方の端部で、 上記貫 通孔のうち、 所定の貫通孔が充填材により充填され、 一方、 上記柱状体の他方の 端部で、 上記一方の端部で前記充填材により充填されていない貫通孔が充填材に より充填され、 上記壁部の一部又は全部が粒子捕集用フィルタとして機能するよ うに構成された排気ガス浄化用ハエカムフィルタであって、
上記排気ガス浄化用ハニカムフィルタの曲げ強度 F α (M P a ) と、 上記充填 材の上記貫通孔の長手方向の長さ L (mm) とが、 F X L 30の関係を有す ることを特徴とするものである。 図面の簡単な説明
図 1 (a) は、 本発明の排気ガス浄化用ハュカムフィルタの一例を模式的に示 した斜視図であり、 図 1 (b) は、 図 1 (a) に示したハニカムフィルタの A— A線断面図である。
図 2は、 本発明の排気ガス浄化用ハニカムフィルタの別の一例を模式的に示し た斜視図である。
図 3 (a) は、 図 2に示した本発明の排気ガス浄化用ハ-カムフィルタに用い る多孔質セラミック部材を模式的に示した斜視図であり、 図 3 (b) は、 その B 一 B線縦断面図である。
図 4 (a) は、 本発明の排気ガス浄化用ハニカムフィルタを製造する際に使用 する封口装置の一例を模式的に示した断面図であり、 図 4 (b) は、 図 4 (a) に示した封口装置の部分拡大断面図である。
図 5は、 本発明の排気ガス浄化用ハニカムフィルタを製造する様子を模式的に 示した側面図である。
図 6は、 本発明の排気ガス浄化用ハ-カムフィルタを取り付けた排気ガス浄化 装置の一例を模式的に示した断面図である。
図 7 (a) は、 図 6に示した排気ガス浄化装置に用いるケーシングの一例を模 式的に示した斜視図であり、 図 7 (b) は、 別のケーシングの一例を模式的に示 した斜視図である。.
図 8 (a) は、 実施例に係るハニカムフィルタの曲げ強度と、 充填材の長さと の関係を示したグラフであり、 図 8 (b) は、 比較例及び試験例に係るハニカム フィルタの曲げ強度と、 充填材の長さとの関係を示したグラフである。 符号の説明
1 0、 20 排気ガス浄化用ハニカムフィルタ 1 1 , 3 1 貫通孔
1 2、 3 2 充填材
1 3 壁部
2 4 シーノレ材層
2 5 セラミックプロック
2 6 シール材層
3 0 多孔質セラミック部材
3 3 隔壁 発明の詳細な開示
本発明は、 多数の貫通孔が壁部を隔てて長手方向に並設された、 多孔質セラミ ックからなる柱状体の一方の端部で、 上記貫通孔のうち、 所定の貫通孔が充填材 により充填され、 一方、 上記柱状体の他方の端部で、 上記一方の端部で前記充填 材により充填されていない貫通孔が充填材により充填され、 上記壁部の一部又は 全部が粒子捕集用フィルタとして機能するように構成された排気ガス浄化用ハニ カムフイノレタであって、
上記排気ガス浄化用ハニカムフィルタの曲げ強度 F α (M P a ) と、 上記充填 材の上記貫通孔の長手方向の長さ L (mm) とが、 F a X L 3 0の関係を有す ることを特徴とする排気ガス浄化用ハニカムフィルタである。
なお、 以下の説明において、 「本発明の排気ガス浄化用ハ-カムフィルタ」 の ことを、 単に 「本発明のハニカムフィルタ」 ともいい、 「充填材の上記貫通孔の 長手方向の長さ」 のことを、 単に 「充填材の長さ」 ともいうこととする。
図 1 ( a ) は、 本発明ハ-カムフィルタの一例を模式的に示した斜視図であり、 ( b ) は、 その A— A線断面図である。
図 1 ( a ) に示したように、 本発明のハニカムフィルタ 1 0は、 多数の貫通孔 1 1が壁部 1 3を隔てて長手方向に並設された一の多孔質セラミック焼結体から なる柱状体であり、 壁部 1 3の全部が粒子捕集用フィルタとして機能するように 構成されている。 即ち、 ハニカムフィルタ 1 0に形成された貫通孔 1 1は、 図 1 ( b ) に示した ように、 排気ガスの入り口側又は出口側のいずれかが充填材 1 2により目封じさ れ、 一の貫通孔 1 1に流入した排気ガスは、 必ず貫通孔 1 1を隔てる壁部 1 3を 通過した後、 他の貫通孔 1 1から流出されるようになっている。
そして、 本発明のハニカムフィルタ 1 0に流入された排気ガス中に含まれるパ ティキュレートは、 壁部 1 3を通過する際、 壁部 1 3で捕捉され、 排気ガスが浄 ィ匕されるようになっている。
このような構成のハニカムフィルタ 1 0が内燃機関の排気通路に配設される排 気ガス浄化装置に設置されて使用される。
なお、 上記排気ガス浄化装置については後述する。
本発明のハニカムフィルタ 1 0では、 ハニカムフィルタ 1 0の曲げ強度 F α ( M P a ) と、 充填材 1 2の長さ L (mm) との積、 F X Lが 3 0以上である。 本発明のハニカムフィルタ 1 0の曲げ強度 F aとは、 本発明のハニカムフィノレ タ 1 0を構成する多孔質セラミック材料の曲げ強度のことであり、 この曲げ強度 F aは、 通常、 貫通孔 1 1の長手方向に垂直な面の大きさが 3 4 (mm) X 3 4 (mm) 程度であり、 貫通孔 1 1の内壁に沿うように図 3 ( a ) に示すような角 柱状のサンプルを切り出し、 このサンプルを用いて J I S R 1 6 0 1に準じ た 3点曲げ試験を行い、 破壌荷重、 サンプルの大きさ、 ハエカムの断面 2次モー メント、 スパン間距離から算出する。
本発明のハニカムフィルタ 1 0では、 上記 F a X Lの下限を 3 0に設定してい るため、 ハニカムフィルタ 1 0の気孔率を高くすることによりその曲げ強度が低 下した場合、 即ち、 上記 F aが小さくなつた場合、 充填材 1 2の長さ Lを曲げ強 度が大きいハニカムフィルタに比べて長くする。
その結果、 貫通孔 1 1の端部に充填された充填材 1 2と壁部 1 3との接触面積 が大きくなり、 これらの接着強度がより優れたものとなる。 そのため、 貫通孔 1 1の内部に流入してきた排気ガスによって、 壁部 1 3の充填材 1 2が充填された 部分にクラックが発生したり、 充填材 1 2が抜け落ちたりすることはない。 上記 F a X Lが 3 0未満であると、 ハニカムフィルタ 1 0の曲げ強度 Fひが小 さくなりすぎる力 \ 又は、 充填材 1 2の長さ Lが短くなりすぎる。
上記 F が小さくなりすぎる場合、 本発明のハニカムフィルタに流入してくる 排気ガスによって、 すぐにクラックが発生してしまい排気ガス浄化用のフィルタ として使用することができない。 また、 上記 Lが短くなりすぎる場合、 貫通孔の 端部に充填された充填材の接着強度が低く、 本発明のハニカムフィルタに排気ガ スが流入してきた際の熱衝撃等によつて上記充填材が抜け落ちてしまう。
また、 本発明のハニカムフィルタ 1 0において、 上記 F a X Lは 2 0 0以下で あることが望ましい。 上記 F a X Lが 2 0 0を超えると、 ハニカムフィルタ 1 0 の曲げ強度 F αが大きくなりすぎる力 \ 又は、 充填材 1 2の長さ Lが長くなりす ぎることとなる。
上記 F aが大きくなりすぎる場合、 即ち曲げ強度が非常に大きなハニカムフィ ルタ 1 0が製造された場合、 このハニカムフィルタ 1 0の気孔率が低くなる場合 があるため、 パティキュレート捕集中の背圧がすぐに高くなることがあり、 頻繁 にハニカムフィルタ 1 0の再生処理を行う必要がある。 また、 充填材の長さ乙が 長くなりすぎると、 本発明のハニカムフィルタ 1 0における排気ガスの濾過可能 領域が小さくなり、 やはりパティキュレート捕集中の背圧がすぐに高くなること があり、 頻繁にハニカムフィルタ 1 0の再生処理を行う必要がある。
また、 このような F α X Lが 2 0 0を超えるようなハニカムフィルタでは、 使 用中に背圧が急激に上昇し、 ハニカムフィルタの破壌やエンジン等の内燃機関に トラブルが発生することがある。
本発明のハニカムフィルタ 1 0において、 ハニカムフィルタ 1 0の曲げ強度 F ひの大きさとしては特に限定されず、 使用するセラミック材料や目的とするハニ カムフィルタ 1 0の気孔率等により決定されるが、 1〜6 O M P aであることが 望ましい。 上記 F αが I M P a未満であると、 上記 F a X L 3 0の関係を満た すためには、 充填材の長さ Lを非常に長くする必要があり、 ハ-カムフィルタの 濾過可能領域が小さくなり、 パティキュレート捕集中の背圧がすぐに高くなるこ とがあり、 頻繁にハエカムフィルタの再生処理を行う必要がある。 また、 排気ガ スの圧力等の衝撃によって容易に破壌されることがあり、 さらに、 このような低 強度のハニカムフィルタは、 製造すること自体が困難となることがある。 一方、 上記 Fひが 6 O M P aを超えると、 ハニカムフィルタ 1 0の気孔率が低くなって しまい、 パティキュレート捕集中の背圧がすぐに高くなることがあり、 頻繁にハ 二カムフィルタの再生処理を行う必要がある。
また、 本発明のハニカムフィルタ 1 0において、 充填材 1 2の長さ Lとしては 特に限定されず、 例えば、 0 . 5〜4 0 mmであることが望ましい。
上記 Lが 0 . 5 mm未'満であると、 ハニカムフィルタ 1 0の貫通孔 1 1に充填 された充填材 1 2と、 壁部 1 3との接触面積が小さく、 これらの接着強度が低く なり、 流入してくる排気ガスの圧力等の衝擊により充填材 1 2が充填された部分 の壁部 1 3にクラックが生じたり、 充填材 1 2が抜け落ちたりすることがある。 一方、 上記 Lが 4 O mmを超えると、 ハニカムフィルタ 1 0の排気ガスの濾過可 能領域が少なくなってしまい、 パティキュレート捕集中の背圧がすぐに高くなる ことがあり、 ハニカムフィルタ 1 0の再生処理を頻繁に行う必要がある。 さらに、 このようなハ-カムフィルタは、 使用中に背圧が急激に上昇し、 ハニカムフィル タの破壌やエンジン等の内燃機関にトラプルが発生することがある。
本発明のハニカムフィルタ 1 0は多孔質セラミックからなるものである。 上記セラミックとしては特に限定されず、 例えば、 コージエライト、 アルミナ、 シリカ、 ムライ ト等の酸化物セラミック、 炭化ケィ素、 炭化ジルコニウム、 炭化 チタン、 炭化タンタル、 炭化タングステン等の炭化物セラミック、 及び、 窒化ァ ノレミニゥム、 窒化ケィ素、 窒化ホウ素、 窒化チタン等の窒化物セラミックを挙げ ることができるが、 通常、 コージエライト等の酸化物セラミックが使用される。 安価に製造することができるとともに、 比較的熱膨張係数が小さく、 使用中に酸 化されることがないからである。 なお、 上述したセラミックに金属珪素を配合し た珪素含有セラミック、 珪素や珪酸塩化合物で結合されたセラミックも用いるこ とができる。
また、 本発明のハ-カムフィルタ 1 0の気孔率は、 上記したハニカムフィルタ 1 0の強度と大きな関連性を有し、 その強度により変化するため、 上述した強度 の範囲内となるように設定されるが、 通常、 3 0〜8 0 %程度であることが望ま しい。 気孔率が 3 0 %未満であると、 ハニカムフィルタ 1 0がすぐに目詰まりを 起こすことがあり、 一方、 気孔率が 8 0 %を超えると、 ハ-カムフィルタ 1 0の 強度が低下して容易に破壌されることがある。
なお、 上記気孔率は、 例えば、 水銀圧入法、 アルキメデス法及び走査型電子顕 微鏡 (S E M) による観測等、 従来公知の方法により測定することができる。 また、 ハニカムフィルタ 1 0の平均気孔径は 5〜1 0 0 μ πι程度であることが 望ましい。 平均気孔径が 5 / m未満であると、 パティキュレートが容易に目詰ま りを起こすことがある。 一方、 平均気孔径が 1 0 0 μ mを超えると、 パティキュ レートが気孔を通り抜けてしまい、 該パティキュレートを捕集することができず、 フィルタとして機能することができないことがある。
また、 図 1 ( b ) に示した通り、 ハエカムフィルタ 1 0には、 排気ガスを流通 させるための多数の貫通孔 1 1が壁部 1 3を隔てて長手方向に並設されており、 この貫通孔 1 1の入り口側又は出口側のいずれかが充填材 1 2により目封じされ ている。
充填材 1 2を構成する材料としては特に限定されず、 例えば、 上述したセラミ ックを主成分とする材料を挙げることかできる。 特に、 ハニカムフィルタ 1 0を 構成するセラミック材料と同様の材料であることが望ましい。 熱膨張率を同じも のとすることができるため、 使用時や再生処理時における温度変化に起因するク ラックの発生を防止することができるからである。
ハニカムフィルタ 1 0の大きさとしては特に限定されず、 使用する内燃機関の 排気通路の大きさ等を考慮して適宜決定される。
また、 その形状としては、 柱状であれば特に限定されず、 例えば、 円柱状、 楕 円柱状、 角柱状等任意の形状を挙げることができるが、 通常、 図 1に示したよう に円柱状のものがよく用いられる。
また、 本発明のハエカムフィルタにおいて、 柱状体は、 複数の貫通孔が隔壁を 隔てて長手方向に並設された角柱形状の多孔質セラミック部材がシール材層を介 して複数個結束されて構成されていることが望ましい。 上記柱状体が複数の多孔 質セラミック部材に分割されているため、 使用中に多孔質セラミック部材に作用 する熱応力を低減させることができ、 本発明のハニカムフィルタを非常に耐熱性 に優れたものとすることができる。 また、 多孔質セラミック部材の個数を増減さ せることで自由にその大きさを調整することができる。
図 2は、 本発明のハニカムフィルタの別の一例を模式的に示した斜視図であり、 図 3 ( a ) は、 図 2に示したハニカムフィルタを構成する多孔質セラミック部材 の一例を模式的に示した斜視図であり、 (b ) は、 その B— B線断面図である。 図 2に示したように、 本発明のハニカムフィルタ 2 0は、 多孔質セラミック部 材 3 0がシール材層 2 4を介して複数個結束されてセラミックブロック 2 5を構 成し、 このセラミックプロック 2 5の周囲にもシール材層 2 6が形成されている。 また、 この多孔質セラミック部材 3 0は、 図 3に示したように、 長手方向に多数 の貫通孔 3 1が並設され、 貫通孔 3 1同士を隔てる隔壁 3 3がフィルタとして機 能するようになっている。
即ち、 多孔質セラミック部材 3 0に形成された貫通孔 3 1は、 図 3 ( b ) に示 したように、 排気ガスの入り口側又は出口側の端部のいずれかが充填材 3 2によ り目封じされ、 一の貫通孔 3 1に流入した排気ガスは、 必ず貫通孔 3 1を隔てる 隔壁 3 3を通過した後、 他の貫通孔 3 1から流出されるようになっている。 また、 セラミックブロック 2 5の周囲に形成されたシール材層 2 6は、 ハニカ ムフィルタ 2 0を内燃機関の排気通路に設置した際、 セラミックプロック 2 5の 外周部から排気ガスが漏れ出すことを防止する目的で設けられているものである。 なお、 図 3 ( b ) 中、 矢印は排気ガスの流れを示している。
このような構成のハ-カムフィルタ 2 0が内燃機関の排気通路に配設された排 気ガス浄化装置に設置され、 内燃機関より排出された排気ガス中のパティキユレ ートは、 このハニカムフィルタ 2 0を通過する際に隔壁 3 3により捕捉され、 排 気ガスが浄化される。
このようなハニカムフィルタ 2 0は、 極めて耐熱性に優れ、 再生処理等も容易 であるため、 種々の大型車両ゃディ一ゼルェンジン搭載車両等に使用されている。 このような構造の本発明のハニカムフィルタ 2 0の曲げ強度を F o^ とし、 充 填材 3 2の長さを L' とすると、 ハニカムフィルタ 2 0の曲げ強度 F ひ ' と、 充 填材 3 2の長さ L ' と力 F α ' X I ≥ 3 0の関係を有する。
なお、 本発明のハニカムフィルタ 2 0の曲げ強度 F とは、 本発明のハニカ ムフィルタ 2 0を構成する多孔質セラミック材料の曲げ強度のことであり、 この 曲げ強度 F α ' は、 通常、 角柱状の多孔質セラミック部材 3 0を用いて J I S R 1 6 0 1に準じた 3点曲げ試験を行い、 破壊荷重、 サンプルの大きさ、 ハニ カムの断面 2次モーメント、 スパン間距離から算出する。
多孔質セラミック部材 3 0の材料としては特に限定されず、 上述したセラミツ ク材料と同様の材料を挙げることができるが、 これらのなかでは、 耐熱性が大き く、 機械的特性に優れ、 かつ、 熱伝導率も大きい炭化ケィ素が望ましい。
また、 多孔質セラミック部材 3 0の気孔率及び平均気孔径は、 上記図 1を用い て説明した本発明のハニカムフィルタ 1 0と同様の気孔率及び平均気孔径を挙げ ることができる。
このような多孔質セラミック部材 3 0を製造する際に使用するセラミックの粒 径としては特に限定されないが、 後の焼成工程で収縮が少ないものが望ましく、 例えば、 0 . 3〜 5 0 μ m程度の平均粒径を有する粉末 1 0 0重量部と、 0 . 1 〜 1 . 0 μ m程度の平均粒径を有する粉末 5〜 6 5重量部とを組み合わせたもの が望ましい。 上記粒径のセラミック粉末を上記配合で混合することで、 多孔質セ ラミック部材 3 0を製造することができるからである。
本発明のハニカムフィルタ 2 0では、 このような多孔質セラミック部材 3 0が シーノレ材層 2 4を介して複数個結束されてセラミックブロック 2 5が構成されて おり、 このセラミックプロック 2 5の外周にもシール材層 2 6が形成されている。 即ち、 本発明のハニカムフィルタ 2 0において、 シール材層は、 多孔質セラミ ック部材 3 0間、 及び、 セラミックブロック 2 5の外周に形成されており、 多孔 質セラミック部材 3 0間に形成されたシール材層 (シール材層 2 4 ) は、 複数の 多孔質セラミック部材 3 0同士を結束する接着剤層として機能し、 一方、 セラミ ックブロック 2 5の外周に形成されたシール材層 (シール材層 2 6 ) は、 本発明 のハ-カムフィルタ 2 0を内燃機関の排気通路に設置した際、 セラミックブロッ ク 2 5の外周から排気ガスが漏れ出すことを防止するための封止材として機能す る。
上記シール材層 (シール材層 2 4及びシール材層 2 6 ) を構成する材料として は特に限定されず、 例えば、 無機バインダー、 有機バインダー、 無機繊維及び無 機粒子からなるもの等を挙げることができる。
なお、 上述した通り、 本発明のハニカムフィルタ 2 0において、 シール材層は、 多孔質セラミック部材 3 0間、 及び、 セラミックプロック 2 5の外周に形成され ているが、 これらのシール材層 (シール材層 2 4及びシール材層 2 6 ) は、 同じ 材料からなるものであってもよく、 異なる材料からなるものであってもよい。 さ らに、 上記シール材層が同じ材料からなるものである場合、 その材料の配合比は 同じものであってもよく、 異なるものであってもよい。
上記無機バインダーとしては、 例えば、 シリカゾル、 アルミナゾル等を挙げる ことができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上 記無機バインダ一のなかでは、 シリカゾルが望ましい。
上記有機バインダーとしては、 例えば、 ポリビエルアルコール、 メチルセル口 ース、 ェチルセルロース、 カルポキシメチルセルロース等を挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 上記有機バインダ 一のなかでは、 カルポキシメチルセルロースが望ましい。
上記無機繊維としては、 例えば、 シリカ一アルミナ、 ムライ ト、 アルミナ、 シ リカ等のセラミックファイバ一等を挙げることができる。 これらは、 単独で用い てもよく、 2種以上を併用してもよい。 上記無機繊維のなかでは、 シリカ—アル ミナファイバーが望ましい。
上記無機粒子としては、 例えば、 炭化物、 窒化物等を挙げることができ、 具体 的には、 炭化珪素、 窒化珪素、 窒化硼素等からなる無機粉末又はウイスカ一等を 挙げることができる。 これらは、 単独で用いてもよく、 2種以上を併用してもよ い。 上記無機粒子のなかでは、 熱伝導性に優れる炭化珪素が望ましい。
図 2に示したハニカムフィルタ 2 0では、 セラミックプロック 2 5の形状は円 柱状であるが、 本発明のハニカムフィルタにおいては、 セラミックブロックの形 状は円柱状に限定されることはなく、 例えば、 楕円柱状や角柱状等任意の形状の ものを挙げることができる。
セラミックブ口ック 2 5の外周に形成されたシール材層 2 6の厚さとしては特 に限定されず、 例えば、 0 . 3〜1 . O mm程度であることが望ましい。 0 . 3 mm未満であると、 セラミックブロック 2 5の外周から排気ガスが漏れ出す場合 があり、 一方、 1 . 0 mmを超えると、 排気ガスの漏れ出しは充分に防止するこ とができるものの、 経済性に劣るものとなる。
また、 本発明のハニカムフィルタには、 触媒が付与されていることが望ましい 。 触媒が担持されていることで、 本発明のハニカムフィルタは、 排気ガス中のパ ティキュレートを捕集するフィルタとして機能するとともに、 気ガスに含有さ れる上記 C O、 H C及び N O X等を浄化するための触媒担持体として機能するこ とができる。
上記触媒としては、 排気ガス中の C O、 H C及び N O x等を浄化することがで きる触媒であれば特に限定されず、 例えば、 白金、 パラジウム、 ロジウム等の貴 金属等を挙げることができる。 また、 貴金属に加えて、 アルカリ金属 (元素周期 表 1族) 、 アルカリ土類金属 (元素周期表 2族) 、 希土類元素 (元素周期表 3族 ) 、 遷移金属元素が加わることもある。
また、 本発明のハニカムフィルタに上記触媒を付与する際には、 予めその表面 に触媒担持膜を形成した後に、 上記触媒を付与することが好ましい。 これにより 、 比表面積を大きくして、 触媒の分散度を高め、 触媒の反応部位を増やすことが できる。 また、 触媒担持膜によって触媒金属のシンタリングを防止することがで きるので、 触媒の耐熱性も向上する。 加えて、 圧力損失を下げることを可能にす る。
上記触媒担持膜としては、 例えば、 アルミナ、 ジルコニァ、 チタ二了、 シリカ 等から構成される膜を挙げることができる。
上記触媒担持膜を形成する方法としては特に限定されないが、 例えば、 アルミ ナからなる触媒担持膜を形成する場合には、 γ - A 1 2 0 3粉末を溶媒に分散さ せたスラリ一状溶液に浸漬する方法、 ゾルゲル法等を挙げることができる。 なお、 上記触媒を付与する場合には、 本発明のハニカムフィルタの曲げ強度 F ひは、 触媒付与後に測定することが望ましい。 本発明のハニカムフィルタにおけ る上記 F a X L≥ 3 0の関係は、 排気ガス浄化装置に設置されて使用された際に ハニカムフィルタが破損してしまうことを防止するための条件であるので、 排気 ガス浄化装置に設置される状態で測定することが望ましいからである。
上記触媒が担持された本発明のハニカムフィルタは、 従来公知の触媒付 D P F (ディーゼル ·パティキュレート■フィルタ) と同様のガス浄化装置として機能 するものである。 従って、 ここでは、 本発明のハニカムフィルタが触媒担持体と しても機能する場合の詳しい説明を省略する。
上述した通り、 本発明のハニカムフィルタは、 ハニカムフィルタの曲げ強度 F ひ と、 充填材の貫通孔の長手方向の長さ Lとが、 F a X L≥ 3 0の関係を有する。 即ち、 本発明のハニカムフィルタでは、 気孔率を高くすることでハニカムフィル タの曲げ強度 F αが低下した場合であっても、 上記 F a X Lが 3 0以上となるよ うに、 充填材の貫通孔の長手方向の長さ Lを長くするため、 充填材が充填された 部分の壁部と該充填材との接触面積が大きくなり、 これらの接着強度が優れたも のとなる。
従って、 本発明のハニカムフィルタを設置した排気ガス浄化装置をエンジン等 の内燃機関の排気通路に取り付け、 上記ハ-カムフィルタの貫通孔に排気ガスを 流入させても、 貫通孔に流入してくる排気ガスの圧力等の衝撃により上記充填材 が充填された部分の壁部にクラックが発生したり、 上記充填材が抜け落ちたりす ることがなく、 本発明のハニカムフィルタは、 耐久性に優れたものとなる。 次に、 上述した本発明のハニカムフィルタの製造方法の一例について説明する。 本発明のハニカムフィルタの構造が図 1に示したような、 その全体が一の焼結 体から構成されたものである場合、 まず、 上述したようなセラミックを主成分と する原料ペーストを用いて押出成形を行い、 図 1に示したハニカムフィルタ 1 0 と略同形状のセラミック成形体を作製する。
上記原料ペーストとしては、 例えば、 上述したようなセラミックからなる粉末 にバインダー及び分散媒液を加えたものを挙げることができる。
上記バインダーとしては特に限定されず、 例えば、 メチルセルロース、 力ルポ キシメチノレセノレロース、 ヒ ドロキシェチノレセ /レロース、 ポリエチレングリ コーノレ、 フエノール樹脂、 エポキシ樹脂等を挙げることができる。
上記バインダーの配合量は、 通常、 セラミック粉末 1 0 0重量部に対して、 1 〜 1 0重量部程度が望ましい。
上記分散媒液としては特に限定されず、 例えば、 ベンゼン等の有機溶媒;メタ ノール等のアルコール、 水等を挙げることができる。
上記分散媒液は、 原料ペース トの粘度が一定範囲内となるように、 適量配合さ れる。
これらセラミック粉末、 バインダー及び分散媒液は、 アトライター等で混合し、 ニーダ一等で充分に混練した後、 押出成形して上記セラミック成形体を作製する。 また、 上記原料ペース トには、 必要に応じて成形助剤を添加してもよい。 上記成形助剤としては特に限定されず、 例えば、 エチレングリコール、 デキス トリン、 脂肪酸石鹼、 ポリアルコール等を挙げることができる。
さらに、 上記原料ペース トには、 必要に応じて酸化物系セラミックを成分とす る微小中空球体であるバルーンや、 球状アクリル粒子、 グラフアイト等の造孔剤 を添加してもよい。
上記バルーンとしては特に限定されず、 例えば、 アルミナバルーン、 ガラスマ イクロバノレーン、 シラスバノレーン、 フライアッシュバノレーン (F Aバノレーン) 及 ぴムライトバルーン等を挙げることができる。 これらのなかでは、 フライアツシ ュバルーンが望ましい。
また、 上記原料ペース トに使用する材料や配合比等は、 後工程を経て製造する ハ-カムフィルタの曲げ強度 F αが 1〜6 O M P aとなるように調整しておくこ とが望ましい。 上述した本発明のハニカムフィルタにおいて説明した通り、 この ようなハニカムフィルタは、 貫通孔に流入してくる排気ガスによって容易に破壌 されることがなく、 また、 パティキュレート捕集中の背圧がすぐに高くなること がないからである。
なお、 上記ハニカムフィルタの曲げ強度 F o;は、 主に、 使用するセラミック材 料やその気孔率によつて決定される値であり、 このハニカムフィルタの気孔率の 制御は、 上記原科ペーストに使用する材科、 配合比等を調整することで可能とな るのである'。
ただし、 上記ハニカムフィルタの気孔率は、 上記セラミック成形体の焼成条件 等によってもある程度制御することは可能である。
そして、 上記セラミック成形体を、 マイクロ波乾燥機、 熱風乾燥機、 誘電乾燥 機、 減圧乾燥機、 真空乾燥機及び凍結乾燥機等を用いて乾燥させてセラミック乾 燥体とした後、 所定の貫通孔に充填材となる充填材ペーストを充填し、 上記貫通 孔を目封じする封口処理を施す。
図 4 ( a ) は、 上記封口処理を行う際に使用する封口装置の一例を模式的に示 した断面図であり、 (b ) は、 その一部を示す部分拡大断面図である。
図 4に示したように、 上記封口処理で用いる封口装置 1 0 0は、 所定のパター ンに開口部 1 1 1 aが形成されたマスク 1 1 1が側面に設置され、 その内部が充 填材ペースト 1 2 0で満たされた二組の密閉式の充填材吐出槽 1 1 0が、 マスク 1 1 1が形成された側面同士を向かい合うように配設されている。
このような封口装置 1 0 0を用いて上記セラミック乾燥体の封口処理を行うに は、 まず、 セラミック乾燥体 4 0の端面 4 0 aと、 充填材吐出槽 1 1 0の側面に 形成されたマスク 1 1 1とが当接するようにセラミック乾燥体 4 0を充填材吐出 槽 1 1 0の間に固定する。
このとき、 マスク 1 1 1の開口部 1 1 1 aとセラミック乾燥体 4 0の貫通孔 4 2とは、 ちょうど対向する位置関係となっている。
続いて、 充填材吐出槽 1 1 0に、 例えば、 モノポンプ等のポンプを用いて一定 の圧力を加えて、 充填材ペースト 1 2 0をマスク 1 1 1の開口部 1 1 1 aより吐 出させ、 セラミック乾燥体 4 0の貫通孔 4 2の端部に充填材ペースト 1 2 0を侵 入させることで、 セラミック乾燥体 4 0の所定の貫通孔 4 2に、 充填材となる充 填材ペースト 1 2 0を充填することができる。
なお、 上記封口処理で使用する封口装置は、 上述したような封口装置 1 0 0に 限定されることはなく、 例えば、 その内部に攪拌片が配設された開放式の充填材 吐出槽を備え、 上記攪拌片を上下方向に移動させることにより、 上記充填材吐出 槽に満たされた充填材ペーストを流動させ、 該充填材ペーストの充填を行う方式 であってもよい。
なお、 上記充填材ペーストのセラミック乾燥体の端面からの距離は、 後工程を 経て製造するハニカムフィルタの曲げ強度 F aと、 充填材の長さ Lとが F a X L ≥ 3 0の関係を有するものとなるように調整する。
具体的には、 セラミック乾燥体の端面から 0 . 5〜 4 0 mmの範囲で充填材ぺ ーストを充填することが望ましい。
上記充填材ペース トとしては特に限定されず、 例えば、 上記原料ペース トと同 様のものを用いることができるが、 上記原料ペーストで用いたセラミック粉末に 潤滑剤、 溶剤、 分散剤及びバインダーを添加したものであることが望ましい。 上記封口処理の途中で充填材ペースト中のセラミック粒子が沈降することを防 止することができるからである。
このような充填材ペーストにおいて、 上記セラミック粉末は、 その平均粒径が 大きな粗粉に、 その平均粒径が小さな微粉が少量添加されたものであることが望 ましい。 上記微粉がセラミック粒子同士を接着させるからである。 また、 上記粗 粉の平均粒径の下限は 5 μ πιであることが望ましく、 1 0 μ ηιであることがより 望ましい。 また、 上記粗粉の平均粒径の上限は 1 0 0 1 mであることが望ましく、 5 0 μ mであることがより望ましい。 一方、 上記微粉の平均粒径はサブミクロン であることが望ましい。
上記潤滑剤としては特に限定されず、 例えば、 ポリオキシエチレンアルキルェ 一テル、 ポリオキシプロピレンアルキルエーテル等からなるものを挙げることが できる。
このような潤滑剤は、 セラミック粉末 1 0 0重量部に対して 0 . 5〜8重量部 添加されることが望ましい。 0 . 5重量部未満であると、 充填材ペース ト中のセ ラミック粒子の沈降速度が大きくなり、 すぐに分離してしまうことがある。 また、 充填材ペーストの流路抵抗が高くなるためセラミック乾燥体の貫通孔内に充分に 充填材ペース トを進入させることが困難となることがある。 一方、 8重量部を超 えると、 セラミック乾燥体を焼成する際の収縮が大きくなりクラックが発生しゃ すくなる。
上記ポリオキシエチレンアルキルエーテル又はポリオキシプロピレンアルキル エーテルは、 アルコールに酸化エチレン又は酸化プロピレンを付加重合させて製 造されるものであり、 ポリオキシエチレン (ポリオキシプロピレン) の一端の酸 素にアルキル基が結合したものである。 上記アルキル基としては特に限定されず、 例えば、 炭素数が 3〜 2 2のものを挙げることができる。 このアルキル基は、 直 鎖状のものでも、 側鎖を有するものでもよい。
また、 上記ポリオキシエチレンアルキルエーテルと、 ポリオキシプロピレンァ ルキルエーテルとは、 ポリオキシエチレンとポリオキシプロピレンとからなるブ ロックコポリマーにアルキル基が結合したものであってもよい。
上記溶剤としては特に限定されず、 例えば、 ジエチレングリコールモノー 2— ェチノレへキシルエーテル等を挙げることができる。
このような溶剤は、 セラミック粉末 1 0 0重量部に対して 5〜 2 0重量部添カロ されることが望ましい。 この範囲を外れるとセラミック乾燥体の貫通孔に充填材 ペーストを充填することが困難となる。
上記分散剤としては特に限定されず、 例えば、 リン酸エステル塩からなる界面 活性剤を挙げることができる。 上記リン酸エステル塩としては、 例えば、 ポリオ キシエチレンアルキルエーテルリン酸塩、 ポリオキシエチレンアルキルフエニル エーテルリン酸塩、 アルキルリン酸塩等を挙げることができる。
このような分散剤は、 セラミック粉末 1 0 0重量部に対して 0 . 1 〜 5重量部 添加されることが望ましい。 0 . 1重量部未満であると、 セラミック粒子を充填 材ペース ト中に均一に分散させることができないことがあり、 一方、 5重量部を 超えると、 充填材ペース トの密度が低下するため、 焼成時の収縮量が大きくなつ てクラック等が発生しやすくなる。
上記バインダーとしては特に限定されず、 例えば、 (メタ) アクリル酸 n—ブ チル、 (メタ) アクリル酸 n—ペンチル、 (メタ) アクリル酸 n—へキシル等の (メタ) アクリル酸エステル系化合物等を挙げることができる。
このようなバインダーは、 セラミック粉末 1 0 0重量部に対して 1〜 1 0重量 部添加されることが望ましい。 1重量部未満であると、 セラミック粒子と他の添 加剤との結合力を充分に確保することができないことがある。 一方、 1 0重量部 を超えると、 バインダーの量が多くなりすぎるため、 焼成工程において収縮量が 大きくなってクラック等が発生しやすくなる。
そして、 上記充填材ペーストが充填されたセラミック乾燥体に、 所定の条件で 脱脂、 焼成を行うことにより、 多孔質セラミックからなり、 その全体が一の焼結 体から構成されたハニカムフィルタを製造する。
なお、 上記セラミック乾燥体の脱脂及び焼成の条件等は、 従来から多孔質セラ ミックからなるハニカムフィルタを製造する際に用いられている条件を適用する ことができる。
また、 本発明のハニカムフィルタの構造が、 図 2に示したような、 多孔質セラ ミック部材がシール材層を介して複数個結束されて構成されたものである場合、 まず、 上述したセラミックを主成分とする原料ペーストを用いて押出成形を行い、 図 3に示した多孔質セラミック部材 3 0のような形状の生成形体を作製する。 なお、 上記原料ペース トは、 上述した一の焼結体からなるハニカムフィルタに おいて説明した原料ペーストと同様のものを挙げることができるが、 その配合比 は、 上記一の焼結体からなるハニカムフィルタの場合と同様のものであってもよ く、 異なった配合比のものであってもよい。
次に、 上記生成形体を、 マイクロ波乾燥機等を用いて乾燥させて乾燥体とした 後、 該乾燥体の所定の貫通孔に充填材となる充填材ペース トを充填し、 上記貫通 孔を目封じする封口処理を施す。
なお、 上記封口処理は、 充填材ペース トを充填する対象が異なるほかは、 上述 したハニカムフィルタ 1 0の場合と同様の方法を挙げることができる。
次に、 上記封口処理を経た乾燥体に所定の条件で脱脂、 焼成を行うことにより、 複数の貫通孔が隔壁を隔てて長手方向に並設された多孔質セラミック部材を製造 する。
なお、 上記生成形体の脱脂及び焼成の条件等は、 従来から多孔質セラミック部 材がシール材層を介して複数個結束されて構成されたハ二カムフィルタを製造す る際に用いられている条件等を適用することができる。
次に、 図 5に示したように、 多孔質セラミック部材 3 0が斜めに傾斜した状態 で積み上げることができるように、 断面 V字形状に構成された台 8 0の上に、 多 孔質セラミック部材 3 0を傾斜した状態で載置した後、 上側を向いた 2つの側面 3 0 a、 3 0 bに、 シール材層 2 4となるシール材ペーストを均一な厚さで塗布 してシール材ペースト層 8 1を开成し、 このシ一/レ材ペースト層 8 1の上に、 j頃 次他の多孔質セラミック部材 3 0を積層する工程を繰り返し、 所定の大きさの角 柱状の多孔質セラミック部材 3 0の積層体を作製する。 この際、 角柱状の多孔質 セラミック部材 3 0の積層体の 4隅にあたる多孔質セラミック部材 3 0には、 四 角柱形状の多孔質セラミック部材 3 0を 2つに切断して作製した三角柱状の多孔 質セラミック部材 3 0 cと、 三角柱状の多孔質セラミック部材 3 0 cと同じ形状 の樹脂部材 8 2とを易剥離性の両面テープ等で貼り合わせてなるものを使用し、 多孔質セラミック部材 3 0の積層が完了した後に、 角柱状の多孔質セラミック部 材 3 0の積層体の 4隅を構成する樹脂部材 8 2を全て取り除くことによって、 角 柱状の多孔質セラミック部材 3 0の積層体を断面多角柱状にしてもよい。 これに より、 角柱状の多孔質セラミック部材 3 0の積層体の外周部を切削加工してセラ ミックブロック 2 5を作製した後に廃棄されることとなる多孔質セラミック部材 からなる廃棄物の量を減らすことができる。
上記図 5に示した方法以外であっても、 断面多角柱状の多孔質セラミック部材 3 0の積層体を作製する方法としては、 作製するハ-カムフィルタの形状に合わ せて、 例えば、 4隅の多孔質セラミック部材を省略する方法、 三角柱状の多孔質 セラミック部材を糸且み合わせる方法等を用いることができる。 また、 もちろん四 角柱状の多孔質セラミック部材 3 0の積層体を作製してもよい。
なお、 上記シ一/レ材ペーストを構成する材料としては、 上述した本発明のハニ カムフィルタにおいて説明した通りであるのでここではその説明を省略する。 次に、 この多孔質セラミック部材 3 0の積層体を加熱してシール材ペースト層 8 1を乾燥、 固化させてシール材層 2 4とし、 その後、 例えば、 ダイヤモンド力 ッタ一等を用いて、 その外周部を図 2に示したような形状に切削することで、 セ ラミックブロック 2 5を作製する。
そして、 セラミックプロック 2 5の外周に上記シール材ペーストを用いてシー ル材層 2 6を形成することで、 多孔質セラミック部材がシール材層を介して複数 個結束されて構成されたハニカムフィルタを製造することができる。
このようにして製造したハニカムフィルタはいずれも柱状であり、 その構造は、 多数の貫通孔が壁部を隔てて並設されている。
ただし、 ハニカムフィルタが、 図 1に示したような、 その全体が一の焼結体か らなる構造である場合、 多数の貫通孔を隔てる壁部は、 その全体が粒子捕集用フ ィルタとして機能するのに対し、 ハニカムフィルタが、 図 2に示したような、 多 孔質セラミック部材がシール材層を介して複数個結束された構造である場合、 多 数の貫通孔を隔てる壁部は、 多孔質セラミック部材を構成する隔壁と、 当該多孔 質セラミック部材を結束するシール材層とからなるため、 その一部、 即ち、 多孔 質セラミック部材のシール材層と接していない隔壁部分が粒子捕集用フィルタと して機能する。
本発明のハニカムフィルタは、 エンジン等の内燃機関の排気通路に配設される 排気ガス浄化装置に設置されて使用される。 なお、 本発明のハニカムフィルタで は、 捕集して堆積した微粒子を除去する再生処理の方法として、 例えば、 気流に より逆洗浄を行う方法、 排気ガスを加熱して流入させる方法等が好適に用いられ る。
図 6は、 本発明のハニカムフィルタが設置された排気ガス浄化装置の一例を模 式的に示した断面図である。 なお、 図 6に示す本発明のハニカムフィルタでは、 捕集して堆積した微粒子を除去する再生処理の方法として、 排気ガスを加熱して 流入させる方法が用いられている。
図 6に示したように、 排気ガス浄化装置 6 0 0は、 主に、 本発明のハニカムフ ィルタ 6 0、 ハュカムフィルタ 6 0の外方を覆うケーシング 6 3 0、 ハエカムフ ィルタ 6 0とケーシング 6 3 0との間に配置された保持シール材 6 2 0、 及ぴ、 ハニカムフィル 6 0の排気ガス流入側に設けられた加熱手段 6 1 0から構成さ れており、 ケーシング 6 3 0の排気ガスが導入される側の端部には、 エンジン等 の内燃機関に連結された導入管 6 4 0が接続されており、 ケーシング 6 3 0の他 端部には、 外部に連結された排出管 6 5 0が接続されている。 なお、 図 6中、 矢 印は排気ガスの流れを示している。
また、 図 6において、 ハニカムフイノレタ.6 0は、 図 1に示したハニカムフィノレ タ 1 0であってもよく、 図 2に示したハニカムフィルタ 2 0であってもよい。 このような構成からなる排気ガス浄化装置 6 0 0では、 エンジン等の内燃機関 から排出された排気ガスは、 導入管 6 4 0を通ってケーシング 6 3 0内に導入さ れ、 ハニカムフィルタ 6 0の貫通孔から壁部 (隔壁) を通過してこの壁部 (隔壁 ) でパティキュレートが捕集されて浄化された後、 排出管 6 5 0を通って外部へ 排出されることとなる。
そして、 ハニカムフィルタ 6 0の壁部 (隔壁) に大量のパティキュレートが堆 積し、 背圧が高くなると、 ハニカムフィルタ 6 0の再生処理が行われる。
上記再生処理では、 加熱手段 6 1 0を用いて加熱されたガスをハニカムフィル タ 6 0の貫通孔の内部へ流入させることで、 ハニカムフィルタ 6 0を加熱し、 壁 部 (隔壁) に堆積したパティキュレートを燃焼除去させるのである。
保持シール材 6 2 0を構成する材料としては特に限定されず、 例えば、 結晶質 アルミナ繊維、 アルミナ一シリカ繊維、 シリカ繊維等の無機繊維や、 これらの無 機繊維を一種以上含む繊維等を挙げることができる。
また、 保持シーノレ材 6 2 0には、 アルミナ及び Z又はシリカが含有されている ことが望ましい。 保持シール材 6 2 0の耐熱性及び耐久性が優れたものとなるか らである。 特に、 保持シール材 6 2 0は、 5 0重量%以上のアルミナが含有され ていることが望ましい。 9 0 0 ~ 9 5 0 °C程度の高温下であっても、 弾性力が高 くなり、 ハニカムフィルタ 6 0を保持する力が高まるからである。
また、 保持シール材 6 2 0には、 ニードルパンチ処理が施されていることが望 ましい。 保持シール材 6 2 0を構成する繊維同士が絡み合い、 弾性力が高くなり、 ハニカムフィルタ 6 0を保持する力が向上するからである。
保持シール材 6 2 0の形状としては、 ハニカムフィルタ 6 0の外周に被覆する ことができる形状であれば特に限定されず、 任意の形状を挙げることができるが、 矩形状の基材部の一の辺に凸部が形成され、 該一の辺に対向する辺に凹部が形成 され、 ハニカムフィルタ 6 0の外周に被覆した際、 上記凸部と凹部とがちようど 嵌合されるような形状であることが望ましい。 ハニカムフィルタ 6 0の外周に被 覆した保持シール材 6 2 0にズレが発生しにくくなるからである。
ケーシング 6 3 0の材質としては特に限定されず、 例えば、 ステンレス等を挙 げることができる。
また、 その形状は特に限定されず、 図 7 ( a ) に示したケーシング 7 1のよう な筒状であってもよく、 (b ) に示したケ一シング 7 2のような筒をその軸方向 に 2分割した 2分割シェル状であってもよい。
また、 ケーシング 6 3 0の大きさは、 ハニカムフィルタ 6 0を、 保持シール材 6 2 0を介して内部に設置することができるように適宜調整される。 そして、 図 6に示したように、 ケーシング 6 3 0の一端面には、 排気ガスを導入させる導入 管 6 4 0が接続され、 他端面には、 排気ガスを排出させる排出管 6 5 0が接続さ れるようになっている。
加熱手段 6 1 0は、 上述した通り、 ハニカムフィルタ 6 0の再生処理において、 ハニカムフィルタ 6 0の壁部 (隔壁) に堆積したパティキュレートを燃焼除去さ せるために、 貫通孔の内部に流入させるガスを加熱するために設けられており、 このような加熱手段 6 1 0としては特に限定されず、 例えば、 電気ヒータやバー ナ一等を挙げることができる。
なお、 上記貫通孔の内部に流入させるガスとしては、 例えば、 排気ガスや空気 等を挙げることができる。
また、 このような排気ガス浄化装置では、 図 6に示したように、 ハ-カムフィ ルタ 6 0の排気ガス流入側に設けた加熱手段 6 1 0によりハニカムフィルタ 6 0 を加熱するような方式であってもよく、 例えば、 ハニカムフィルタに酸化触媒を 担持させ、 この酸化触媒を担持させたハニカムフィルタに炭化水素を流入させる ことで、 上記ハニカムフィルタを発熱させる方式であってもよく、 また、 ハ-カ ムフィルタの排気ガス流入側に酸化触媒を配置し、 該酸ィヒ触媒に炭化水素を供給 することで発熱させ、 上記ハニカムフィルタを加熱する方式であってもよい。 酸化触媒と炭化水素との反応は、 発熱反応であるので、 この反応時に発生する 多量の熱を利用することにより、 排気ガスの浄化と並行して、 ハニカムフィルタ の再生を行うことができる。
このような本発明のハニカムフィルタを設置した排気ガス浄化装置を製造する には、 まず、 本発明のハニカムフィルタの外周に被覆する保持シール材を作製す る。
上記保持シール材を作製するには、 まず、 結晶質アルミナ繊維、 アルミナ—シ リカ繊維、 シリカ繊維等の無機繊維や、 これらの無機繊維を一種以上含む繊維等 を用いて無機質マット状物 (ウエッブ) を形成する。
また、 上記無機質マット状物を形成する方法としては特に限定されず、 例えば、 上述した繊維等を、 接着剤を含んだ溶液中に分散させ、 紙を作る抄紙機等を利用 して無機質マツト状物を形成する方法等を挙げることができる。
また、 上記無機質マット状物にエードルパンチ処理を施すことが望ましい。 二 一ドルパンチ処理を施すことにより、 繊維同士を絡み合わせることができ、 弾性 力が高く、 ハニカムフィルタを保持する力に優れる保持シール材を作製すること ができるからである。
その後、 上記無機質マット状物に切断加工を施して、 例えば、 上述したような 矩形状の基材部の一の辺に凸部が設けられ、 該一の辺に対向する辺に凹部が設け られたような形状の保持シール材を作製する。
次に、 本発明のハニカムフィルタの外周に上記保持シール材を被覆し、 該保持 シール材を固定する。
上記保持シール材を固定する手段としては特に限定されず、 例えば、 接着剤で 貼着したり、 紐状体で縛る手段等を挙げることができる。 また、 特別な手段で固 定をせず、 ハニカムフィルタに被覆しただけの状態で、 次の工程に移行しても差 し支えない。 なお、 上記紐状体は、 熱で分解する材料であってもよい。 ケーシン グ内にハニカムフィルタを設置した後であれば、 紐状体が熱により分解してもハ 二カムフィルタはケーシング内に設置されているので、 保持シール材が剥がれて しまうことはないからである。 次に、 上記工程を経たハニカムフィルタをケーシング内に設置する。
なお、 上記ケーシングの材料、 形状及び構成等については、 上述した通りであ るのでここでは、 その説明を省略する。
ハニカムフィルタを、 ケーシング内に設置する方法としては、 上記ケーシンク、' が筒状のケーシング 7 1である場合 (図 7 ( a ) ) 、 例えば、 保持シール材が被 覆されたハニカムフィルタをその一端面から押し込み、 所定の位置に設置した後、 導入管、 配管及び排出管等と接続するための端面を、 ケーシング 7 1の両端部に 形成する方法を挙げることができる。 なお、 ケーシング 7 1は有底の筒状であつ てもよい。
この際、 固定したハニカムフィルタが容易に移動しないように、 かなりの力を 加えた状態で、 ようやく押し込むことができる程度に、 保持シール材の厚さ、 ハ 二カムフィルタの大きさ、 ケーシング 7 1の大きさ等を調整する必要がある。 また、 図 7 ( b ) に示したように、 上記ケーシングの形状が 2分割シェル状の ケーシング 7 2である場合には、 例えば、 ハニカムフィルタを半筒状の下部シェ ル 7 2 b内の所定箇所に設置した後、 上部固定部 7 3に形成した貫通孔 7 3 aと、 下部固定部 7 4に形成した貫通孔 7 4 aとがちようど重なるように、 半筒状の上 部シェル 7 2 aを下部シェル 7 2 bの上に載置する。 そして、 ボルト 7 5を貫通 孔 7 3 a、 7 4 aに揷通しナツト等で固定することで、 上部シェル 7 2 aと下部 シェル 7 2 bとを固定する。 そして、 導入管、 配管及び排出管等と接続するため の開口を有する端面を、 ケーシング 7 2の両端部に形成する方法を挙げることが できる。 この場合にも、 固定したハニカムフィルタが移動しないように、 保持シ 一ル材の厚さ、 ハニカムフィルタの大きさ、 ケーシング 7 2の大きさ等を調整す る必要がある。
この 2分割シェル状のケーシング 7 2は、 内部に設置したハニカムフィルタの 取替えが、 筒状のケーシング 7 1よりも容易である。
次に、 本発明のハニカムフィルタの再生処理を行う際に、 ハ-カムフィルタの 貫通孔内に流入させるガスを加熱するための加熱手段を設ける。
上記加熱手段としては特に限定されず、 例えば、 電気ヒータやバーナー等を挙 げることがでる。
また、 上記加熱手段は、 通常、 ケーシング内に設置したハニカムフィルタの排 気ガス流入側の端面近傍に設ける。
なお、 上記排気ガス浄化装置において説明した通り、 上述したような加熱手段 を設けずに、 本発明のハュカムフィルタに酸化触媒を担持させてもよく、 ハニカ ムフィルタの排気ガス流入側に酸化触媒を配置してもよい。
次に、 本発明のハニカムフィルタと加熱手段とを内部に設置したケーシングを 内燃機関の排気通路に接続することで本発明のハニカムフィルタを設置した排気 ガス浄化装置を製造することができる。
具体的には、 上記ケーシングの加熱手段が設けられた側の端面をエンジン等の 内燃機関に連結された導入管に接続し、 他端面を外部へ連結された排出管に接続 する。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
(実施例 1 )
( 1 ) 平均粒径 1 0 μ mの α型炭化珪素粉末 7 0重量。 /0と、 平均粒径 0 . 5 μ mの 型炭化珪素粉末 3 0重量%とを湿式混合し、 得られた混合物 1 0 0重量部 に対して、 有機バインダー (メチルセルロース) を 1 0重量部、 水を 1 8重量部、 造孔剤 (球状アクリル粒子、 平均粒径 1 0 / m) を 3重量部加えて混練して原料 ペーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c mZ分にて図 3に示した多孔質セラミック部材 3 0と略同形状のセラミック成形体を作製し、 上記セラミック成形体を、 マイクロ波乾燥機を用いて乾燥させてセラミック乾燥 体とした。
次に、 平均粒径 1 0 mの α型炭化珪素粉末 6 0重量%と、 平均粒径 0 . 5 μ mの β型炭化珪素粉末 40重量%とを混合し、 得られた組成物 100重量部に、 ポリオキシエチレンモノブチルエーテルからなる潤滑剤 (日本油脂社製、 商品名 : ュニルーブ) 4重量部、 ジエチレングリコールモノー 2—ェチルへキシノレエー テルからなる溶剤 (協和発酵社製、 商品名 : ΟΧ—20) 1 1重量部、 リン酸ェ ステル系化合物からなる分散剤 (第一工業製薬社製、 商品名 :プライサーフ) 2 重量部、 及び、 メタクリル酸 η—ブチルを ΟΧ— 20で溶解したバインダー (東 栄化成社製、 商品名:バインダー D) 5重量部を配合して均一に混合することに より充填材ペーストを調製した。
この充填材ペーストを図 4に示した封口装置 100の充填材吐出槽 1 10に充 填し、 上記工程で作製したセラミック乾燥体を所定の位置に移動、 固定し、 充填 材吐出槽 1 10を移動させることにより、 マスク 1 1 1をセラミック乾燥体の端 面に当接させた。 このとき、 マスク 1 1 1の開口部 1 1 1 aとセラミック乾燥体 の貫通孔とは、 ちょうど対向する位置関係となっている。
続いて、 モノポンプを用いて充填材吐出槽 110に所定の圧力を印加すること により、 充填材ペーストをマスク 1 1 1の開口部 1 1 1 aより吐出させ、 セラミ ック乾燥体の貫通孔の端部に進入させる封口処理を行った。
このとき、 上記充填材ペーストは、 焼成後に形成される充填材の貫通孔の長手 方向の長さが 0. 75 mmとなるように充填した。
そして、 上記封口処理を行ったセラミック乾燥体を、 再びマイクロ波乾燥機を 用いて乾燥させた後、 400°Cで脱脂し、 常圧のアルゴン雰囲気下 2200°C、 4時間で焼成を行うことにより、 図 2に示したような、 その大きさが 33 mm X 33mmX 30 Ommで、 貫通孔の数が 3 1個 Zcm2、 隔壁の厚さが 0. 3 m mの炭化珪素焼結体からなる多孔質セラミック部材を製造した。
(2) 繊維長 0. 2mmのアルミナファイバー 19· 6重量0 /0、 平均粒径 0. 6 μ mの炭化珪素粒子 67. 8重量%、 シリ力ゾル 10. 1重量%及びカルボキ シメチルセルロース 2. 5重量 °/。を含む耐熱性の接着剤ペーストを用いて上記多 孔質セラミック部材を、 図 5を用いて説明した方法により多数結束させ、 続いて、 ダイヤモンドカッターを用いて切断することにより、 図 2に示したような直径が 1 6 5 mmで円柱形状のセラミックプロックを作製した。
次に、 無機繊維としてアルミナシリケートからなるセラミックファイバー (シ ョット含有率: 3 %、 繊維長: 0 . 1〜: L 0 0 mm) 2 3 . 3重量。/。、 無機粒子 として平均粒径 0 . 3 μ mの炭化珪素粉末 3 0 . 2重量%、 無機バインダ一とし てシリカゾノレ (ゾル中の S i 〇2の含有率: 3 0重量%) 7重量%、 有機バイン ダ一としてカルボキシメチルセルロース.0 . 5重量%及び水 3 9重量%を混合、 混練してシール材ペーストを調製した。
次に、 上記シール材ペース トを用いて、 上記セラミックブロックの外周部に厚 さ 1 . 0 mmのシール材ペース ト層を形成した。 そして、 このシール材ペース ト 層を 1 2 0 °Cで乾燥して、 図 2に示したような円柱形状の炭化珪素からなるハニ カムフィルタを製造した。
このようにして製造したハニカムフィルタの平均気孔径は 1 0 u mであり、 気 孔率は 4 0 %であり、 曲げ強度は 4 O M P aであった。 また、 充填材の貫通孔の 長手方向の長さは 0 . 7 5 mmであり、 上記ハニカムフィルタの曲げ強度と、 充 填材の長さとの積は 3 0であった。
(実施例 2 )
充填材の貫通孔の長手方向の長さが 3 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1と同様に炭化珪素からなるハエカムフィルタを製造し た。
本実施例 2に係るハ-カムフィルタの曲げ強度と充填材の長さとの積は 1 2 0 であった。
(実施例 3 )
充填材の貫通孔の長手方向の長さが 5 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1と同様に炭化珪素からなるハニカムフィルタを製造し た。
本実施例 3に係るハ-カムフィルタの曲げ強度と充填材の長さとの積は 2 0 0 であった。
(比較例 1 ) 充填材の貫通孔の長手方向の長さが 0 . 5 mmとなるように充填材ペーストの 充填を行ったほかは、 実施例 1と同様に炭化珪素からなるハニカムフィルタを製 造した。
本比較例 1に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0で あった。
(試験例 1 )
充填材の貫通孔の長手方向の長さが 6 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1と同様に炭化珪素からなるハニカムフィルタを製造し た。
本試験例 1に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 4 0 であった。
(実施例 4 )
平均粒径 1 0 μ mの a型炭化珪素粉末 8 0重量 °/0と、 平均粒径 0 . 5 /i mの ]3 型炭化珪素粉末 2 0重量%とを湿式混合し、 得られた混合物 1 0 0重量部に対し て、 有機バインダー (メチルセルロース) を 2 0重量部、 水を 3 0重量部、 造孔 剤 (球状ァクリル粒子、 平均粒径 1 0 /i m) を 2 0重量部加えて混練して原料ぺ ーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c m/分にてセ ラミック成形体を作製し、 上記セラミック成形体を、 マイクロ波乾燥機を用いて 乾燥させて図 3に示した多孔質セラミック部材 3 0と略同形状のセラミック乾燥 体とした。
次に、 実施例 1と同様にして充填材ペーストを調製し、 上記セラミック乾燥体 の封口処理を行つた。 このとき、 上記充填材ペーストは、 焼成後に形成された充 填材の貫通孔の長手方向の長さが 4 . 3 mmとなるように充填した。
そして、 上記封口処理を行ったセラミック乾燥体を、 実施例 1と同条件で脱脂、 焼成処理を行って多孔質セラミック部材を製造した。
そして、 実施例 1の ( 2 ) と同様にして、 図 2に示したような円柱形状の炭化 珪素からなるハニカムフィルタを製造した。 このようにして製造したハニカムフィルタの平均気孔径は 1 0 μ πιであり、 気 孔率は 6 0 %であり、 曲げ強度は 7 M P aであった。 また、 充填材の貫通孔の長 手方向の長さは 4 . 3 mmであり、 上記ハニカムフィルタの曲げ強度と、 充填材 の長さとの積-は 3 0 . 1であった。
(実施例 5 )
充填材の貫通孔の長手方向の長さが 1 5 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 4と同様に炭化珪素からなるハニカムフィルタを製造 した。
本実施例 5に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 0 5 であった。
(実施例 6 )
充填材の貫通孔の長手方向の長さが 2 8 . 5 mmとなるように充填材ペースト の充填を行つたほかは、 実施例 4と同様に炭化珪素からなるハニカムフィルタを 製造した。
本実施例 6に係るハエカムフィルタの曲げ強度と充填材の長さとの積は 1 9 9 . 5であった。
(比較例 2 )
充填材の貫通孔の長手方向の長さが 4 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 4と同様に炭化珪素からなるハニカムフィルタを製造し た。
本比較例 2に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 8で めった。
(試験例 2 )
充填材の貫通孔の長手方向の長さが 3 O mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 4と同様に炭化珪素からなるハ-カムフィ タを製造 した。
本試験例 2に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 1 0 であった。 (実施例 7 )
平均粒径 1 0 μ mのひ型炭化珪素粉末 7 0重量%と、 平均粒径 0 . 5 mの 型炭化珪素粉末 3 0重量%とを湿式混合し、 得られた混合物 1 0 0重量部に対し て、 有機バインダー (メチルセルロース) を 1 5重量部、 水を 2 2重量部、 造孔 剤 (球状ァクリル粒子、 平均粒径 1 0 μ m) を 5重量部加えて混練して原料ぺー ストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c m/分にてセ ラミック成形体を作製し、 上記セラミック成形体を、 マイクロ波乾燥機を用いて 乾燥させて図 3に示した多孔質セラミック部材 3 0と略同形状のセラミック乾燥 体とした。
次に、 実施例 1と同様にして充填材ペーストを調製し、 上記セラミック乾燥体 の封口処理を行った。 このとき、 上記充填材ペース トは、 焼成後に形成された充 填材の貫通孔の長手方向の長さが 1 . 5 mmとなるように充填した。
そして、 上記封口処理を行ったセラミック乾燥体を、 実施例 1と同条件で脱脂、 焼成処理を行って多孔質セラミック部材を製造した。
そして、 実施例 1の (2 ) と同様にして、 図 2に示したような円柱形状の炭化 珪素からなるハエカムフィルタを製造した。
このようにして製造したハニカムフィルタめ平均気孔径は 1 0 μ πιであり、 気 孔率は 5 0 %であり、 曲げ強度は 2 O M P aであった。 また、 充填材の貫通孔の 長手方向の長さは 1 . 5 mmであり、 上記ハ-カムフィルタの曲げ強度と、 充填 材の長さとの積は 3 0であった。
(実施例 8 )
充填材の貫通孔の長手方向の長さが 6 mmとなるように充填材ペーストの充填 を行つたほかは、 実施例 7と同様に炭化珪素からなるハニカムフィルタを製造し た。
本実施例 8に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 2 0 であった。
(実施例 9 ) 充¾材の貫通孔の長手方向の長さが 1 O mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 7と同様に炭化珪素からなるハニカムフィルタを製造 した。
本実施例 9に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0 0 であった。
(比較例 3 )
充填材の貫通孔の長手方向の長さが 1 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 7と同様に炭化珪素からなるハニカムフィルタを製造し た。
本比較例 3に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0で あった。
(試験例 3 )
充填材の貫通孔の長手方向の長さが 1 2 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 7と同様に炭化珪素からなるハニカムフィルタを製造 した。
本試験例 3に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 4 0 であった。
(実施例 1 0 )
平均粒径 1 0 i mの α型炭化珪素粉末 6 0重量 °/0と、 平均粒径 0 . 5 /i mの |3 型炭化珪素粉末 4 0重量%とを湿式混合し、 得られた混合物 1 0 0重量部に対し て、 有機バインダー (メチルセルロース) を 5重量部、 水を 1 0重量部加えて混 練して原料ペーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c mZ分にてセ ラミック成形体を作製し、 上記セラミック成形体を、 マイクロ波乾燥機を用いて 乾燥させて図 3に示した多孔質セラミック部材 3 0と略同形状のセラミック乾燥 体とした。
次に、 実施例 1と同様にして充填材ペーストを調製し、 上記セラミック乾燥体 の封口処理を行った。 このとき、 上記充填材ペーストは、 焼成後に形成された充 填材の貫通孔の長手方向の長さが 0 . 5 mmとなるように充填した。
そして、 上記封口処理を行ったセラミック乾燥体を、 実施例 1と同条件で脱脂、 焼成処理を行って多孔質セラミック部材を製造した。
そして、 実施例 1の (2 ) と同様にして、 図 2に示したような円柱形状の炭化 珪素からなるハニカムフィルタを製造した。
このようにして製造したハニカムフィルタの平均気孔径は 1 0 i mであり、 気 孔率は 3 0 %であり、 曲げ強度は 6 O M P aであった。 また、 充填材の貫通孔の 長手方向の長さは 0 . 5 mmであり、 上記ハニカムフィルタの曲げ強度と、 充填 材の長さとの積は 3 0であった。
(実施例 1 1 )
充填材の貫通孔の長手方向の長さが 2 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1 0と同様に炭化珪素からなるハエカムフィルタを製造 した。
本実施例 1 1に係るハ-カムフィルタの曲げ強度と充填材の長さとの積は 1 2 0であった。 '
(実施例 1 2 )
充填材の貫通孔の長手方向の長さが 3 . 3 mmとなるように充填材ペーストの 充填を行ったほかは、 実施例 1 0と同様に炭化珪素からなるハニカムフィルタを 製造した。
本実施例 1 2に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 9 8であった。
(比較例 4 )
充填材の貫通孔の長手方向の長さが 0 . 3 mmとなるように充填材ペーストの 充填を行ったほかは、 実施例 1 0と同様に炭化珪素からなるハニカムフィルタを 製造した。
本比較例 4に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 8で あつに。
(試験例 4 ) 充填材の貫通孔の長手方向の長さが 4 mmとなるように充填材ペーストの充填 ^ を行ったほかは、 実施例 1 0と同様に炭化珪素からなるハニカムフィルタを製造 した。
本試験例 4に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 4 0 であった。
(実施例 1 3 )
( 1 ) 平均粒径 1 Ο μ πιのタルク 4 0重量部、 平均粒径 9 /i mのカオリン 1 0 重量部、 平均粒径 9 . 5 μ mのアルミナ 1 7重量部、 平均粒径 5 μ mの水酸化ァ ルミニゥム 1 6重量部、 平均粒径 1 0 // mのシリカ 1 5重量部、 平均粒径 1 0 mのグラフアイト 3 0重量部、 成形助剤 (エチレングリコール) 1 7重量部、 水 2 5重量部加えて混練して原料ペーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c mZ分にて図 1に示したハニカムフィルタ 1 0と略同形状のセラミック成形体を作製し、 上記 セラミック成形体を、 マイクロ波乾燥機を用いて乾燥させてセラミック乾燥体と した。
次に、 平均粒径 1 0 / mのタルク 4 0重量部、 平均粒径 9 μ mのカオリン 1 0 重量部、 平均粒径 9 . 5 u mのアルミナ 1 7重量部、 平均粒径 5 μ mの水酸化ァ ノレミニゥム 1 6重量部、 平均粒径 1 0 μ mのシリカ 1 5重量部、 ポリォキシェチ レンモノプチルエーテルからなる潤滑剤 (日本油脂社製、 商品名:ュニループ) 4重量部、 ジエチレングリコールモノー 2—ェチルへキシルエーテルからなる溶 剤 (協和発酵社製、 商品名: O X— 2 0 ) 1 1重量部、 リン酸エステル系化合物 からなる分散剤 (第一工業製薬社製、 商品名:プライサーフ) 2重量部、 及び、 メタクリル酸 n -プチルを O X— 2 0で溶解したバインダー (東栄化成社製、 商 品名:バインダー D) 5重量部を配合して均一に混合することにより充填材ぺー ス トを調製した。
この充填材ペーストを用いて実施例 1と同様の方法により、 上記セラミック乾 燥体の封口処理を行った。
このとき、 上記充填材ペーストは、 焼成後に形成される充填材の貫通孔の長手 方向の長さが 7 . 5 mmとなるように充填した。
ただし、 本実施例 1 3に係るセラミック乾燥体の端面形状と、 実施例 1に係る セラミック乾燥体の端面形状とは、 全く異なる形状であるため、 上記封口処理で は、 実施例 1に係るセラミック乾燥体の封口処理に用いたマスクとは異なるマス クを用いた。
即ち、 本実施例 1 3に係るセラミック乾燥体の封口処理では、 該セラミック乾 燥体の貫通孔と、 ちょ うど対向する位置に開口部を有するマスクを用いた。 そして、 上記封口処理を行ったセラミック乾燥体を、 ; Sびマイクロ波乾燥機を 用いて乾燥させた後、 4 0 0 °Cで脱脂し、 常圧のアルゴン雰囲気下 1 4 0 0 °C、 3時間で焼成を行うことにより、 図 1に示したような、 直径 1 6 5 mm、 幅 3 0 O mmで円柱形状のコージェライ トからなるハニカムフィルタを製造した。 このようにして製造したハニカムフィルタの気孔率は 6 0 %であり、 曲げ強度 は 4 M P aであった。 また、 充填材の貫通孔の長手方向の長さは 7 . 5 mmであ り、 上記ハニカムフィルタの曲げ強度と、 充填材の長さとの積は 3 0であった。
(実施例 1 4 )
充填材の貫通孔の長手方向の長さが 2 0 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 3と同様にコージェライトからなるハニカムフィル タを製造した。
本実施例 1 4に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 8 0 であった。
(実施例 1 5 )
充填材の貫通孔の長手方向の長さが 5 0 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 3と同様にコージェライ トからなるハエカムフィル タを製造した。
本実施例 1 5に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0 0であった。
(比較例 5 )
充填材の貫通孔の長手方向の長さが 7 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1 3と同様にコージェライトからなるハニカムフィルタ を製造した。
本比較例 5に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 8で あった。
(試験例 5 )
充填材の貫通孔の長手方向の長さが 6 0 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 3と同様にコージェライトからなるハニカムフィル タを製造した。
本試験例 5に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 4 0 であった。
(実施例 1 6 )
平均粒径 1 0 μ mのタルク 4 0重量部、 平均粒径 9 μ ιηのカオリン 1 0重量部、 平均粒径 9 . 5 μ mのアルミナ 1 7重量部、 平均粒径 5 μ mの水酸化アルミニゥ ム 1 6重量部、 平均粒径 1 0 /z mのシリカ 1 5重量部、 平均粒径 1 0 ^ mのグラ フアイト 3重量部、 成形助剤 (エチレングリコール) 1 0重量部、 水 1 8重量部 加えて混練して原料ペーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c mZ分にてセ ラミック成形体を作製し、 上記セラミック成形体を、 マイク口波乾燥機を用いて 乾燥させて図 1に示したハニカムフィルタ 1 0と略同形状のセラミック乾燥体と した。
次に、 実施例 1 3と同様にして充填材ペース トを調製し、 上記セラミック乾燥 体の封口処理を行った。 このとき、 上記充填林ペース トは、 焼成後に形成された 充填材の貫通孔の長手方向の長さが 3 . 7 5 mmとなるように充填した。
そして、 上記封口処理を行ったセラミック乾燥体を、 実施例 1 3と同条件で脱 脂、 焼成処理を行って図 1に示したような円柱形状のコージエライトからなるハ 二カムフィルタを製造した。
このようにして製造したハニカムフィルタの気孔率は 4 0 %であり、 曲げ強度 は 8 M P aであった。 また、 充填材の貫通孔の長手方向の長さは 3 . 7 5 mmで あり、 上記ハニカムフィルタの曲げ強度と、 充填材の長さとの積は 3 0であった。 (実施例 1 7 )
充填材の貫通孔の長手方向の長さが 1 2 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 6と同様にコージェライ トからなるハニカムフィル タを製造した。
本実施例 1 7に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 9 6 であった。
(実施例 1 8 )
充填材の貫通孔の長手方向の長さが 2 5 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 6と同様にコージエライ トからなるハニカムフィル タを製造した。
本実施例 1 8に係るハ-カムフィルタの曲げ強度と充填材の長さとの積は 2 0 0であった。
(比較例 6 )
充填材の貫通孔の長手方向の長さが 3 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1 6と同様にコージェライトからなるハニカムフィルタ を製造した。
本比較例 6に係るハ-カムフィルタの曲げ強度と充填材の長さとの積は 2 4で めった。
(試験例 6 )
充填材の貫通孔の長手方向の長さが 2 8 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 6と同様にコージェライ トからなるハニカムフィル タを製造した。
本試験例 6に係るハエカムフィルタの曲げ強度と充填材の長さとの積は 2 2 4 であった。
(実施例 1 9 )
平均粒径 1 Ο μ πιのタルク 4 0重量部、 平均粒径 9 / mのカオリン 1 0重量部、 平均粒径 9 . 5 μ πιのアルミナ 1 7重量部、 平均粒径 5 Ai mの水酸化アルミニゥ 9
3 8
ム 1 6重量部、 平均粒径 のシリカ 1 5重量部、 平均粒径 1 0 / mのグラ ファイ ト 2 5重量部、 成形助剤 (エチレンダリコール) 1 5重量部、 及び、 水 2 0重量部を混練して原料ペーストを調製した。
次に、 上記原料ペース トを押出成形機に充填し、 押出速度 1 0 c m/分にて図 1に示したハニカムフィルタ 1 0と略同形状のセラミック成形体を作製し、 上記 セラミック成形体を、 マイクロ波乾燥機を用いて乾燥させてセラミック乾燥体と した。
次に、 実施例 1 3と同様にして、 充填材ペース トを調製し、 上記セラミック乾 燥体の封口処理を行つた。 このとき、 上記充填材ペーストは、 焼成後に形成され る充填材の貫通孔の長手方向の長さが 6 . 3 mmとなるように充填した。
そして、 実施例 1 3と同条件で、 上記封口処理を行ったセラミック乾燥体の脱 月旨、 焼成処理を行うことにより、 図 1に示したような、 円柱形状のコージェライ トからなるハニカムフィルタを製造した。
このようにして製造したハニカムフィルタの気孔率は 5 5 %であり、 曲げ強度 は 4 . 7 M P aであった。 また、 '充填材の貫通孔の長手方向の長さは 6 . 3 mm であり、 上記ハニカムフィルタの曲げ強度と充填材の長さとの積は 3 0であった。
(実施例 2 0 )
充填材の貫通孔の長手方向の長さが 2 3 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 9と同様にコージェライトからなるハニカムフィル タを製造した。
本実施例 2 0に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 0 8であった。
(実施例 2 1 )
充填材の貫通孔の長手方向の長さが 4 2 . 6 mmとなるように充填材ペースト の充填を行ったほかは、 実施例 1 9と同様にコージェライトからなるハ-カムフ ィルタを製造した。
本実施例 2 1に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0 0であった。 (比較例 7 )
充填材の貫通孔の長手方向の長さが 6 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 1 9と同様にコージェライトからなるハ-カムフィルタ を製造した。
本比較例 7に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 8で めった。
(試験例 7 )
充填材の貫通孔の長手方向の長さが 4 3 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 1 9と同様にコージェライトからなるハニカムフィル タを製造した。
本試験例 7に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 0 2 であった。
(実施例 2 2 )
平均粒径 Ι Ο μ πιのタルク 4 0重量部、 平均粒径 9 μ mのカオリン 1 0重量部、 平均粒径 9 . 5 μ πιのアルミナ 1 7重量部、 平均粒径 5 μ πιの水酸化アルミニゥ ム 1 6重量部、 平均粒径 1 0 /z mのシリカ 1 5重量部、 平均粒径 1 0 μ mのダラ フアイト 4 0重量部、 成形助剤 (エチレングリコール) 2 5重量部、 及ぴ、 水 3 0重量部を混練して原料ペーストを調製した。
次に、 上記原料ペーストを押出成形機に充填し、 押出速度 1 0 c mZ分にて図 1に示したハニカムフィルタ 1 0と略同形状のセラミック成形体を作製し、 上記 セラミック成形体を、 マイクロ波乾燥機を用いて乾燥させてセラミック乾燥体と した。
次に、 実施例 1 3と同様にして、 充填材ペーストを調整し、 上記セラミック乾 燥体の封口処理を行った。 このとき、 上記充填材ペース トは、 焼成後に形成され る充填材の貫通孔の長手方向の長さが 1 O mmとなるように充填した。
そして、 実施例 1 3と同条件で、 上記封口処理を行ったセラミック乾燥体の脱 月旨、 焼成処理を行うことにより、 図 1に示したような、 円柱形状のコージェライ トからなるハ-カムフィルタを製造した。 03 04479
40
このようにして製造したハニカムフィルタの気孔率は 7 0 %であり、 曲げ強度 は 3 . O M P aであった。 また、 充填材の貫通孔の長手方向の長さは 1 O mmで あり、 上記ハニカムフィルタの曲げ強度と充填材の長さとの積は 3 0であった。
(実施例 2 3 )
充填材の貫通孔の長手方向の長さが 3 8 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 2 2と同様にコージェライ トからなるハ-カムフィル タを製造した。
本実施例 2 3に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 1 4であった。 .
(実施例 2 4 )
充填材の貫通孔の長手方向の長さが 6 6 mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 2 2と同様にコージェライトからなるハニカムフィル タを製造した。
本実施例 2 4に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 1 9 8であった。
(比較例 8 )
充填材の貫通孔の長手方向の長さが 9 mmとなるように充填材ペーストの充填 を行ったほかは、 実施例 2 2と同様にコージェライ トからなるハニカムフィルタ を製造した。
本比較例 8に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 7で あった
(試験例 8 )
充填材の貫通孔の長手方向の長さが 7 O mmとなるように充填材ペーストの充 填を行ったほかは、 実施例 2 2と同様にコージェライ トからなるハニカムフィル タを製造した。
本試験例 8に係るハニカムフィルタの曲げ強度と充填材の長さとの積は 2 1 0 であった„ このようにして製造した実施例 1〜 2 4、 比較例 1〜 8、 及び、 試験例 1〜 8 に係るハニカムフィルタを主に構成するセラミック材料、 曲げ強度 (M P a ) 、 気孔率 (%) 及ぴ充填材の長さ (mm) を下記表 1にまとめる。
表 1
Figure imgf000044_0001
注 1 )積:ハニカムフィルタの曲げ強度 X充填材の長さ 実施例 1〜 2 4、 比較例 1〜 8、 及び、 試験例 1〜 8に係るハニカムフィルタ の性状評価試験として、 各実施例、 比較例、 及び、 試験例に係るハニカムフィル タの初期背圧を流速が 1 3 mZ sのエアーを吹き込むことで測定した。
次に、 各実施例、 比較例、 及び、 試験例に係るハニカムフィルタをエンジンの 排気通路に配設した図 6に示したような排気ガス浄化装置に設置し、 上記ェンジ ンを回転数 3 0 0 O m i n ~ \ トルク 5 0 N mで 1 0時間運転して排気ガスの 浄化を行った。 そして、 上記耐久性試験を行った後、 各ハニカムフィルタを取り 出し、 目視によりクラックの有無等を確認した。 さらに、 上記耐久試験後に、 ク ラックが発生していなかったハエカムフィルタについて、 上記耐久試験を 3 0 0 回繰り返すヒートサイクル試験を行い、 各ハ-カムフィルタを取り出し、 目視に よりクラックの有無を確認した。
結果を下記表 2に示す。
2
初期背圧 クラックの有無
(kPa) 耐久式験後 ヒ-トサイクル試験後 実施例 1 10.0
実施例 2 10.5 ίκ 実施例 3 11.0 "»、
実施例 4 8.0 to
実施例 5 8.3 ,》、
実施例 6 8.5 ,、 実施例 7 8.5
実施例 8 8.8 、 実施例 9 9.0
実施例 10 12.0 、、
実施例 11 12.5 m、- 実施例 12 13.2 m m 実施例 13 7.0 ί,κ、、 & 実施例 14 7.5
実施例 15 7.8 to ί,κ》、 実施例 16 8.0
実施例 17 8.2
実施例 18 9.0 to to,》、 実施例 19 7.7 ," 、 実施例 20 7.9 to "、\
実施例 21 8.3 、 実施例 22 7.0
実施例 23 7.3
実施例 24 7.5
比較例 1 5.0 有 ― 比較例 2 7.0 有 一 比較例 3 8.0 有 一 比較例 4 10.0 有 ― 比較例 5 6.0 有 ― 比較例 6 7.0 有 一 比較例 7 6.3 有 ― 比較例 8 5.3 有 ― 試験例 1 15.0 有 試験例 2 12.0 to 有 試験例 3 14.0 有 試験例 4 18.0 有
5 験例 5 10.0 to 有 試験例 6 11.0 有 試験例フ 10.2 、 有 試験例 8 10.0 te、 有 表 2に示した通り、 実施例 1〜2 4に係るハニカムフィルタは、 初期背圧の値 が 7〜1 3 . 2 k P aと低く、 また、 貫通孔の内部に流入してきた排気ガスの圧 力による衝撃に起因するクラックも観察されず、 上記耐久試験後の背圧もさほど 高くなつていなかった。 さらに、 ヒートサイクノレ試験後においても、 クラックは 観察されなかった。
一方、 比較例 1〜8に係るハ-カムフィルタには、 初期背圧の値が 5 ~ 1 O k P aと低いものであつたが、 貫通孔の内部に流入してきた排気ガスの圧力による 衝擊に起因するクラックが、 最も衝擊を受ける排気ガス流出側の充填材が充填さ れた部分の壁部 (隔壁) を中心に発生していた。
また、 気孔率が最も低く、 充填材の長さが最も短い比較例 4に係るハ-カムフ ィルタでは、 上記充填材が排気ガスの圧力により抜け落ちてしまっていた。
また、 試験例 1〜8に係るハニカムフィルタは、 初期背圧の値が 1 0 ~ 1 8 k P aと高く、 また、 貫通孔の内部に流入してきた排気ガスの圧力による衝撃に起 因するクラックは観察されなかったが、 上記耐久性試験後の背圧が非常に高くな つており、 ヒートサイクル試験後ではクラックが発生していた。
即ち、 実施例 1〜2 4に係るハニカムフィルタは、 エンジンから排出される排 気ガスの圧力による衝撃によってはクラックが発生することがなく、 耐久性に優 れるとともに、 パティキュレート捕集中の背圧がすぐに高くなることもないため、 ハニカムフィルタの再生処理を頻繁に行う必要がなく、 フィルタとして充分に機 能するものであった。
一方、 比較例 1〜8に係るハ-カムフィルタは、 エンジンから排出される排気 ガスの圧力による衝撃により、 充填材が充填された部分の壁部 (隔壁) にクラッ クが発生したり、 充填材の抜け落ちが発生したりし、 耐久性に劣るものであった。 また、 充填材の抜け落ちが発生していないハ-カムフィルタであっても、 発生し たクラックから排気ガスが漏出してしまい、 フィルタとして充分に機能すること ができないものであった。
また、 試験例 1〜8に係るハニカムフィルタは、 エンジンから排出される排気 ガスの圧力による衝撃によりすぐにクラックが発生することはないが、 実施例 1 〜1 8に係るハニカムフィルタに比べて、 濾過可能領域が小さくなつていたため、 初期背圧が高く、 パティキユレ一ト捕集中の背圧がすぐに高くなり、 長期間使用 しているとクラックが発生するものであった。
なお、 実施例 1 9〜2 1及び比較例 7の結果から、 気孔率 5 5 %のコージエラ イトからなるハエカムフィルタは、 曲げ強度が 4. 7MP aであり、 耐久試験に おいてクラックを生じないためには、 充填材の長さを 6. 3 mm以上にする必要 があることが分かった。 また、 実施例 1 3〜1 5及び比較例 5の結果から、 気孔 率 6 0%のコージェライトからなるハニカムフィルタは、 曲げ強度が 4MP aで あり、 耐久試験においてクラックを生じないためには、 充填材の長さを 7. 5m m以上にする必要があることが分かった。 また、 実施例 2 2〜24及び比較例 8 の結果から、 気孔率 7 0%のコージエライトからなるハニカムフィルタは、 曲げ 強度が 4 MP aであり、 耐久試験においてクラックを生じないためには、 充填材 の長さを 1 Omm以上にする必要があることが分かった。
従って、 特開 2 0 0 3— 3 8 2 3号公報の実施例に記載されているハニカムフ ィルタは、 コージエライトからなり、 隔壁の気孔率が 5 5〜 7 0 °/0、 充填材の長 さが 2〜6mmであることから、 いずれも充填材の長さが短く、 耐久試験におい てクラックを生じてしまうと推定される。
また、 図 8 ( a) は、 実施例 1〜2 4に係るハニカムフィルタの曲げ強度と充 填材の長さとの関係を示したグラフであり、 (b) は、 比較例 1〜8、 及び、 試 験例 1〜8に係る八-カムフィルタの曲げ強度と充填材の長さとの関係を示した グラフである。 なお、 図 8 (a ) 、 (b) において、 下側の曲線が、 ハニカムフ ィルタの曲げ強度 F と、 充填材の長さ との積が 3 0となる曲線であり、 上側 の曲線が、 ハニカムフィルタの曲げ強度 F αと、 充填材の長さ Lとの積が 2 0 0 となる曲線である。
図 8 (a ) に示したように、 実施例 1〜24に係るハニカムフィルタの曲げ強 度 F αと、 充填材の長さ Lとの積の値は、 いずれも上下の曲線の間に存在してお り、 一方、 図 8 (b) に示したように、 比較例 1〜8に係るハニカムフィルタの 曲げ強度 F aと、 充填材の長さ Lとの積の値は、 いずれも下側の曲線よりも下に 存在している。 また、 試験例 1 ~ 8に係るハニカムフィルタ曲げ強度 F αと、 充 填材の長さ Lとの積の値は、 いずれも上側の曲線よりも上に存在している。 上記実施例及び比較例についての性状評価試験の結果と、 図 8に示したグラフ とにより、 ハ-カムフィルタの曲げ強度 F αと、 充填材の長さ Lとの積の値を、 図 8に示した下側の曲線よりも上に存在するようにすることで (即ち、 F a X L を 3 0以上とすることで) 、 エンジンから排出される排気ガスの圧力による衝撃 により、 充填材が充填された部分の壁部 (隔壁) にクラックが発生したり、 充填 材の抜け落ちが発生したりすることがなく、 耐久性に優れるハニカムフィルタと することができる。
さらに、 上記試験例についての性状評価試験の結果と、 図 8に示したグラフと により、 ハニカムフィルタの曲げ強度 F と、 充填材の長さ Lとの積の値を、 図 8に示した上側の曲線よりも下に存在するようにすることで (即ち、 F a X Lを 2 0 0以下とすることで) 、 初期背圧が低く、 パティキュレート捕集.中の背圧が すぐに高くならず、 長期間使用可能なハニカムフィルタとすることができる。 産業上の利用可能性
本発明の排気ガス浄化用ハニカムフィルタは、 上述の通りであるので、 使用中 にクラックゃ充填材の抜け落ちが発生することがなく、 耐久性に優れたものとな る。

Claims

請求の範囲
1 . 多数の貫通孔が壁部を隔てて長手方向に並設された、 多孔質セラミックから なる柱状体の一方の端部で、 前記貫通孔のうち、 所定の貫通孔が充填材により充 填され、 一方、 前記柱状体の他方の端部で、 前記一方の端部で前記充填材により 充填されていない貫通孔が充填材により充填され、 前記壁部の一部又は全部が粒 子捕集用フィルタとして機能するように構成された排気ガス浄化用ハニカムフィ ノレタであって、
前記排気ガス浄ィヒ用ハニカムフィルタの曲げ強度 Fひ (M P a ) と、 前記充填 材の前記貫通孔の長手方向の長さ L (mm) とが、 F a X L 3 0の関係を有す ることを特徴とする排気ガス浄化用ハエカムフィルタ。
2 . 排気ガス浄化用ハニカムフィルタの曲げ強度 F c¾ (M P a ) と、 充填材の貫 通孔の長手方向の長さ L (mm) とが、 F a 2 0 0の関係を有する請求の 範囲第 1項記載の排気ガス浄化用ハこ
3 . 触媒が付与されている請求の範囲第 1又は 2項に記載の排気ガス浄化用ハニ
4 . 気流により逆洗浄を行うことにより、 捕集して堆積した微粒子が除去される 請求の範囲第 1〜 3項のいずれかに記載の排気ガス浄化用ハニカムフィルタ。
5 . 排気ガスを加熱して流入させることにより、 捕集して堆積した ί敫粒子が除去 される請求の範囲第 1〜 3項のいずれかに記載の排気ガス浄化用ハ二: タ。
PCT/JP2003/004479 2002-04-10 2003-04-09 Filtre a alveoles servant a clarifier un gaz d'echappement WO2003093657A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/510,344 US7648547B2 (en) 2002-04-10 2003-04-09 Honeycomb filter for clarifying exhaust gas
JP2004501784A JPWO2003093657A1 (ja) 2002-04-10 2003-04-09 排気ガス浄化用ハニカムフィルタ
EP03747536.5A EP1493904B1 (en) 2002-04-10 2003-04-09 Honeycomb filter for clarifying exhaust gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002108538 2002-04-10
JP2002-108538 2002-04-10

Publications (1)

Publication Number Publication Date
WO2003093657A1 true WO2003093657A1 (fr) 2003-11-13

Family

ID=29392294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004479 WO2003093657A1 (fr) 2002-04-10 2003-04-09 Filtre a alveoles servant a clarifier un gaz d'echappement

Country Status (5)

Country Link
US (1) US7648547B2 (ja)
EP (2) EP1493904B1 (ja)
JP (1) JPWO2003093657A1 (ja)
CN (1) CN100371562C (ja)
WO (1) WO2003093657A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577515A1 (de) * 2004-03-18 2005-09-21 Arvin Technologies, Inc. Vorrichtung zum Reinigen von Fahrzeugabgasen
US7387657B2 (en) 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7504359B2 (en) 2003-02-28 2009-03-17 Ibiden Co., Ltd. Ceramic honeycomb structure
US7732366B2 (en) * 2006-02-23 2010-06-08 Ibiden Co., Ltd. Honeycomb structure and exhaust gas purifying device
US7892309B2 (en) * 2004-12-22 2011-02-22 Hitachi Metals, Ltd. Production method of honeycomb filter and honeycomb filter
US8114184B2 (en) * 2005-08-17 2012-02-14 Yunnan Filter Environment Protection S.&T. Co., Ltd. Honeycomb ceramic particulate filtration substrate, a particulate filter and a filtration system as well as production methods thereof
JP2018039683A (ja) * 2016-09-05 2018-03-15 東京窯業株式会社 水素製造方法及び水素製造装置

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20023989U1 (de) * 1999-09-29 2008-09-18 IBIDEN CO., LTD., Ogaki-shi Keramische Filteranordnung
DE60319756T3 (de) 2002-02-05 2014-04-17 Ibiden Co., Ltd. Wabenkörperfilter zur Abgasreinigung, Kleber, Beschichtungsmaterial und Verfahren zur Herstellung eines solchen Wabenfilterkörpers
US20050169819A1 (en) * 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
EP1493904B1 (en) 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
WO2004024293A1 (ja) * 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
US20050050870A1 (en) * 2003-03-03 2005-03-10 Cheng Shi-Wai S. Method and apparatus for filtering exhaust particulates
PL1752630T3 (pl) * 2003-06-05 2008-07-31 Ibiden Co Ltd Korpus o strukturze plastra miodu
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
WO2005037405A1 (ja) * 2003-10-20 2005-04-28 Ibiden Co., Ltd. ハニカム構造体
JP4439236B2 (ja) * 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
JPWO2005044422A1 (ja) 2003-11-07 2007-11-29 イビデン株式会社 ハニカム構造体
WO2005047209A1 (ja) * 2003-11-12 2005-05-26 Ngk Insulators, Ltd. ハニカム構造体
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) * 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
EP1623750B1 (en) * 2004-04-05 2017-12-13 Ibiden Co., Ltd. Honeycomb structure and exhaust emission control device
WO2005108328A1 (ja) * 2004-05-06 2005-11-17 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
KR100668547B1 (ko) * 2004-05-18 2007-01-16 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 정화 장치
KR100844250B1 (ko) 2004-08-04 2008-07-07 이비덴 가부시키가이샤 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조 방법
JPWO2006013652A1 (ja) * 2004-08-04 2008-05-01 イビデン株式会社 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
JPWO2006016430A1 (ja) 2004-08-10 2008-05-01 イビデン株式会社 焼成炉及び該焼成炉を用いたセラミック部材の製造方法
JP5142529B2 (ja) 2004-09-30 2013-02-13 イビデン株式会社 ハニカム構造体
EP1795261A4 (en) * 2004-09-30 2009-07-08 Ibiden Co Ltd ALVEOLAR STRUCTURE
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP5142532B2 (ja) * 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
JP4870657B2 (ja) * 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
JP4880581B2 (ja) * 2005-02-04 2012-02-22 イビデン株式会社 セラミックハニカム構造体
JP2006223983A (ja) * 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
JPWO2006112052A1 (ja) * 2005-03-30 2008-11-27 イビデン株式会社 炭化珪素含有粒子、炭化珪素質焼結体を製造する方法、炭化珪素質焼結体、及びフィルター
WO2006117899A1 (ja) * 2005-04-28 2006-11-09 Ibiden Co., Ltd. ハニカム構造体
EP1752390B1 (en) * 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
EP1832565A4 (en) * 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
GB2429417B (en) * 2005-08-25 2010-08-11 Perkins Engines Co Ltd Autoselective regenerating particulate filter
WO2007023653A1 (ja) * 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
CN101146589B (zh) * 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
CN101242937B (zh) * 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
CN100529341C (zh) * 2005-10-12 2009-08-19 揖斐电株式会社 蜂窝单元及蜂窝结构体
JP5127450B2 (ja) * 2005-11-18 2013-01-23 イビデン株式会社 ハニカム構造体
WO2007074508A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074528A1 (ja) * 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
JPWO2007086183A1 (ja) * 2006-01-27 2009-06-18 イビデン株式会社 ハニカム構造体及びその製造方法
WO2007086143A1 (ja) * 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
JP5042505B2 (ja) 2006-02-07 2012-10-03 日本碍子株式会社 目封止ハニカム構造体
WO2007094075A1 (ja) * 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
WO2007097000A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
EP1826517B1 (en) * 2006-02-28 2008-08-13 Ibiden Co., Ltd. Drying jig, drying method of honeycomb molded body, and manufacturing method of honeycomb structured body
WO2007102216A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) * 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) * 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
JP4863904B2 (ja) * 2006-03-31 2012-01-25 イビデン株式会社 ハニカム構造体およびその製造方法
WO2007116529A1 (ja) * 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) * 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) * 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122716A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007122715A1 (ja) * 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) * 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) * 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) * 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) * 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) * 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
PL1875997T3 (pl) * 2006-07-07 2009-08-31 Ibiden Co Ltd Urządzenie do obróbki powierzchni czołowej, sposób obróbki powierzchni czołowej formowanego korpusu o strukturze plastra miodu oraz sposób wytwarzania struktury o kształcie plastra miodu
WO2008032391A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
ATE470649T1 (de) * 2006-09-14 2010-06-15 Ibiden Co Ltd Verfahren zur herstellung eines wabenkörpers und zusammensetzung für sinterwabenkörper
WO2008032390A1 (fr) * 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
WO2008047404A1 (fr) * 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
EP1914536A1 (en) * 2006-10-17 2008-04-23 Ibiden Co., Ltd. Particulate matter sensor for exhaust gas purifying apparatus
CN101522281B (zh) * 2006-11-30 2012-06-27 日立金属株式会社 陶瓷蜂窝过滤器及其制造方法
WO2008090625A1 (ja) * 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008105081A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカムフィルタ
WO2008105082A1 (ja) * 2007-02-28 2008-09-04 Ibiden Co., Ltd. ハニカム構造体
JP5241235B2 (ja) * 2007-02-28 2013-07-17 イビデン株式会社 ハニカム構造体の製造方法
WO2008126331A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126332A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
EP2079571B1 (en) * 2007-03-30 2015-12-23 Corning Incorporated Method and applicator for selective electromagnetic drying of ceramic-forming mixture
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2008126334A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008126320A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008126321A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 排ガス浄化システム
WO2008126330A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008126333A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008136078A1 (ja) * 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ
WO2008139581A1 (ja) * 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008139608A1 (ja) * 2007-05-14 2008-11-20 Ibiden Co., Ltd. ハニカム構造体及び該ハニカム構造体の製造方法
WO2008149435A1 (ja) * 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) * 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) * 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
WO2009101683A1 (ja) 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2009101682A1 (ja) * 2008-02-13 2009-08-20 Ibiden Co., Ltd. ハニカム構造体、排ガス浄化装置、及び、ハニカム構造体の製造方法
JP5328174B2 (ja) * 2008-02-20 2013-10-30 日本碍子株式会社 目封止ハニカム構造体
JPWO2009107230A1 (ja) * 2008-02-29 2011-06-30 イビデン株式会社 ハニカム構造体用シール材、ハニカム構造体、及び、ハニカム構造体の製造方法
WO2009118814A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカムフィルタ
WO2009118813A1 (ja) * 2008-03-24 2009-10-01 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2009118862A1 (ja) * 2008-03-27 2009-10-01 イビデン株式会社 ハニカム構造体の製造方法
JP2009257422A (ja) * 2008-04-15 2009-11-05 Ibiden Co Ltd 保持シール材、及び、排ガス浄化装置
CN102762273B (zh) 2010-02-22 2016-06-15 日立金属株式会社 陶瓷蜂窝结构体及其制造方法
CN104703766A (zh) * 2012-10-15 2015-06-10 住友化学株式会社 蜂窝结构体的制造方法
JP6492495B2 (ja) * 2014-01-27 2019-04-03 株式会社デンソー 排ガス浄化フィルタ及びその製造方法
US20160032874A1 (en) * 2014-07-29 2016-02-04 Hyundai Motor Company Diesel particulate filter (dpf)
WO2018111811A1 (en) * 2016-12-12 2018-06-21 Cormetech, Inc. Scr catalyst modules and associated catalytic reactors
EP3924322A1 (en) * 2019-02-14 2021-12-22 Corning Incorporated Methods of plugging a honeycomb body and mask layers thereof
CN110142060B (zh) * 2019-06-13 2022-06-28 国家能源投资集团有限责任公司 碳化硅/氮化硅载体及其制备方法、费托合成催化剂及其制备方法和应用
CN113790981A (zh) * 2021-08-18 2021-12-14 苏州西热节能环保技术有限公司 一种表征scr脱硝催化剂机械强度的装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232639A (ja) * 1995-02-28 1996-09-10 Ngk Insulators Ltd 集塵装置
EP0990777A1 (en) * 1998-09-30 2000-04-05 Ibiden Co, Ltd. Regeneration system for an exhaust gas cleaning device
EP1142619A1 (en) * 1999-09-29 2001-10-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
JPS5954683A (ja) 1982-09-20 1984-03-29 日本碍子株式会社 セラミツクハニカム構造体の開口端面封止方法
JPS63185425A (ja) 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
US5171341A (en) * 1991-04-05 1992-12-15 Minnesota Mining And Manufacturing Company Concentric-tube diesel particulate filter
US5259190A (en) * 1991-08-01 1993-11-09 Corning Incorporated Heated cellular structures
JPH06304423A (ja) * 1993-02-25 1994-11-01 Sumitomo Chem Co Ltd 排ガスフィルタ
JPH07332064A (ja) 1994-06-10 1995-12-19 Ngk Insulators Ltd 排ガスフィルタおよび排ガス処理装置
WO1997025203A1 (fr) 1994-07-14 1997-07-17 Ibiden Co., Ltd. Structure ceramique
JP3012167B2 (ja) 1995-04-12 2000-02-21 日本碍子株式会社 排ガス浄化フィルタおよびそれを用いた排ガス浄化装置
EP0745416B1 (en) * 1995-06-02 2003-09-17 Corning Incorporated Device for removal of contaminants from fluid streams
JPH09112248A (ja) * 1995-10-16 1997-04-28 Hino Motors Ltd ディーゼルパティキュレートフィルタの逆洗再生装置
US5930994A (en) 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP3067740B2 (ja) * 1997-08-20 2000-07-24 住友電気工業株式会社 セラミックス製フィルターモジュール
US6261982B1 (en) * 1998-11-12 2001-07-17 Asahi Glass Company Ltd. Cordierite ceramic filter
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
JP2001096111A (ja) * 1999-09-29 2001-04-10 Ibiden Co Ltd 多孔質炭化珪素焼結体、ハニカムフィルタ、セラミックフィルタ集合体
JP2001096113A (ja) 1999-09-30 2001-04-10 Ibiden Co Ltd ハニカムフィルタ、排気ガス浄化装置
JP3965007B2 (ja) 1999-09-29 2007-08-22 イビデン株式会社 多孔質炭化珪素焼結体、ハニカムフィルタ、セラミックフィルタ集合体
WO2001047833A1 (fr) * 1999-12-24 2001-07-05 Asahi Glass Company, Limited Filtre au nitrure de silicium et procede de fabrication correspondant
JP2001329830A (ja) 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
WO2001091882A1 (en) 2000-06-01 2001-12-06 Corning Incorporated Cordierite body
JP2001340718A (ja) 2000-06-02 2001-12-11 Ngk Insulators Ltd ハニカムフィルタ用基材及びその製造方法
JP2002108538A (ja) 2000-10-03 2002-04-12 Yaskawa Electric Corp シートキーボード
KR100507048B1 (ko) 2001-03-22 2005-08-05 이비덴 가부시키가이샤 배기가스 정화장치
JP3982285B2 (ja) 2001-04-19 2007-09-26 株式会社デンソー 排ガス浄化フィルタ
JPWO2002096827A1 (ja) 2001-05-31 2004-09-09 イビデン株式会社 多孔質セラミック焼結体及びその製造方法、ディーゼルパティキュレートフィルタ
JP4246425B2 (ja) * 2001-10-15 2009-04-02 日本碍子株式会社 ハニカムフィルター
DE60319756T3 (de) 2002-02-05 2014-04-17 Ibiden Co., Ltd. Wabenkörperfilter zur Abgasreinigung, Kleber, Beschichtungsmaterial und Verfahren zur Herstellung eines solchen Wabenfilterkörpers
US20050169819A1 (en) 2002-03-22 2005-08-04 Ibiden Co., Ltd Honeycomb filter for purifying exhaust gas
EP1493904B1 (en) 2002-04-10 2016-09-07 Ibiden Co., Ltd. Honeycomb filter for clarifying exhaust gas
JP4437085B2 (ja) 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
US20060051556A1 (en) 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
JPWO2005064128A1 (ja) 2003-12-25 2007-07-19 イビデン株式会社 排気ガス浄化装置および排気ガス浄化装置の再生方法
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1726795A4 (en) 2004-02-23 2008-03-05 Ibiden Co Ltd WAVE STRUCTURE BODY AND EMISSION CONTROL
EP1623750B1 (en) 2004-04-05 2017-12-13 Ibiden Co., Ltd. Honeycomb structure and exhaust emission control device
WO2005108328A1 (ja) 2004-05-06 2005-11-17 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
KR100668547B1 (ko) 2004-05-18 2007-01-16 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 정화 장치
DE602005009099D1 (de) 2004-07-01 2008-10-02 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
KR100844250B1 (ko) 2004-08-04 2008-07-07 이비덴 가부시키가이샤 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조 방법
JPWO2006013652A1 (ja) 2004-08-04 2008-05-01 イビデン株式会社 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
WO2006013931A1 (ja) 2004-08-04 2006-02-09 Ibiden Co., Ltd. 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
JPWO2006013932A1 (ja) 2004-08-06 2008-05-01 イビデン株式会社 焼成炉及びその焼成炉を用いた多孔質セラミック焼成体の製造方法
EP1677063A4 (en) 2004-08-25 2007-05-30 Ibiden Co Ltd KILN and Method for Making a Porous Ceramic Cooked Product Using KILN
WO2006041174A1 (ja) 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
CN100450577C (zh) 2004-12-28 2009-01-14 揖斐电株式会社 过滤器和过滤器集合体
CN100435956C (zh) 2005-02-01 2008-11-26 揖斐电株式会社 蜂窝结构体
JP4870657B2 (ja) 2005-02-04 2012-02-08 イビデン株式会社 セラミックハニカム構造体およびその製造方法
JP4880581B2 (ja) 2005-02-04 2012-02-22 イビデン株式会社 セラミックハニカム構造体
JP2006223983A (ja) 2005-02-17 2006-08-31 Ibiden Co Ltd ハニカム構造体
JP4812316B2 (ja) 2005-03-16 2011-11-09 イビデン株式会社 ハニカム構造体
KR100810476B1 (ko) 2005-03-28 2008-03-07 이비덴 가부시키가이샤 허니컴 구조체
JP4870559B2 (ja) 2005-03-28 2012-02-08 イビデン株式会社 ハニカム構造体
JPWO2006112052A1 (ja) 2005-03-30 2008-11-27 イビデン株式会社 炭化珪素含有粒子、炭化珪素質焼結体を製造する方法、炭化珪素質焼結体、及びフィルター
KR100822246B1 (ko) 2005-04-07 2008-04-16 이비덴 가부시키가이샤 허니컴 구조체
JP2006289237A (ja) 2005-04-08 2006-10-26 Ibiden Co Ltd ハニカム構造体
EP1752390B1 (en) 2005-06-06 2011-09-28 Ibiden Co., Ltd. Use of packaging material and method of transporting honeycomb structure
EP1832565A4 (en) 2005-08-03 2007-10-17 Ibiden Co Ltd TEMPLATE FOR COOKING SILICON CARBIDE AND PROCESS FOR PRODUCING POROUS SILICON CARBIDE BODY
WO2007023653A1 (ja) 2005-08-26 2007-03-01 Ibiden Co., Ltd. ハニカム構造体及びその製造方法
CN101146589B (zh) 2005-09-28 2010-11-24 揖斐电株式会社 蜂窝式过滤器
CN101242937B (zh) 2005-10-05 2011-05-18 揖斐电株式会社 挤压成形用模具和多孔质陶瓷部件的制造方法
CN100529341C (zh) 2005-10-12 2009-08-19 揖斐电株式会社 蜂窝单元及蜂窝结构体
JP5127450B2 (ja) 2005-11-18 2013-01-23 イビデン株式会社 ハニカム構造体
JPWO2007058006A1 (ja) 2005-11-18 2009-04-30 イビデン株式会社 ハニカム構造体
US20070187651A1 (en) 2005-12-26 2007-08-16 Kazuya Naruse Method for mixing powder, agitation apparatus, and method for manufacturing honeycomb structured body
WO2007074508A1 (ja) 2005-12-26 2007-07-05 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007074523A1 (ja) 2005-12-27 2007-07-05 Ibiden Co., Ltd. 搬送装置及びハニカム構造体の製造方法
WO2007074528A1 (ja) 2005-12-27 2007-07-05 Ibiden Co., Ltd. 脱脂用治具、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
JPWO2007086183A1 (ja) 2006-01-27 2009-06-18 イビデン株式会社 ハニカム構造体及びその製造方法
WO2007086143A1 (ja) 2006-01-30 2007-08-02 Ibiden Co., Ltd. ハニカム構造体の検査方法、及び、ハニカム構造体の製造方法
WO2007094075A1 (ja) 2006-02-17 2007-08-23 Ibiden Co., Ltd. 乾燥用治具組立装置、乾燥用治具分解装置、乾燥用治具循環装置、セラミック成形体の乾燥方法、及び、ハニカム構造体の製造方法
WO2007097056A1 (ja) 2006-02-23 2007-08-30 Ibiden Co., Ltd. ハニカム構造体および排ガス浄化装置
WO2007097000A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. ハニカム成形体用封口装置、封止材ペーストの充填方法、及び、ハニカム構造体の製造方法
WO2007096986A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
WO2007097004A1 (ja) 2006-02-24 2007-08-30 Ibiden Co., Ltd. 湿式混合機、湿式混合方法及びハニカム構造体の製造方法
ATE551167T1 (de) 2006-02-28 2012-04-15 Ibiden Co Ltd Verfahren zur herstellung von einem wabenstrukturkörper
EP1826517B1 (en) 2006-02-28 2008-08-13 Ibiden Co., Ltd. Drying jig, drying method of honeycomb molded body, and manufacturing method of honeycomb structured body
WO2007102216A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 脱脂炉投入装置、及び、ハニカム構造体の製造方法
WO2007102217A1 (ja) 2006-03-08 2007-09-13 Ibiden Co., Ltd. 焼成体用冷却機、焼成炉、セラミック焼成体の冷却方法、及び、ハニカム構造体の製造方法
WO2007108076A1 (ja) 2006-03-17 2007-09-27 Ibiden Co., Ltd. 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法
WO2007116529A1 (ja) 2006-04-11 2007-10-18 Ibiden Co., Ltd. 成形体切断装置、セラミック成形体の切断方法、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
WO2007122707A1 (ja) 2006-04-19 2007-11-01 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2007122716A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. 搬送装置、及び、ハニカム構造体の製造方法
WO2007122715A1 (ja) 2006-04-20 2007-11-01 Ibiden Co., Ltd. ハニカム焼成体の検査方法、及び、ハニカム構造体の製造方法
WO2007129391A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 焼成用治具組立装置、焼成用治具分解装置、循環装置、セラミック成形体の焼成方法、及び、ハニカム構造体の製造方法
WO2007129390A1 (ja) 2006-05-01 2007-11-15 Ibiden Co., Ltd. 脱脂用治具組立装置、脱脂用治具分解装置、脱脂用治具循環装置、セラミック成形体の脱脂方法、及び、ハニカム構造体の製造方法
WO2007129399A1 (ja) 2006-05-08 2007-11-15 Ibiden Co., Ltd. ハニカム構造体の製造方法、ハニカム成形体受取機及びハニカム成形体取出機
WO2007132530A1 (ja) 2006-05-17 2007-11-22 Ibiden Co., Ltd. ハニカム成形体用端面処理装置、ハニカム成形体の封止方法、及び、ハニカム構造体の製造方法
WO2007138701A1 (ja) 2006-05-31 2007-12-06 Ibiden Co., Ltd. 把持装置、及び、ハニカム構造体の製造方法
EP1880818A1 (en) 2006-06-05 2008-01-23 Ibiden Co., Ltd. Method for cutting honeycomb structure
PL1875997T3 (pl) 2006-07-07 2009-08-31 Ibiden Co Ltd Urządzenie do obróbki powierzchni czołowej, sposób obróbki powierzchni czołowej formowanego korpusu o strukturze plastra miodu oraz sposób wytwarzania struktury o kształcie plastra miodu
WO2008032390A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille
ATE470649T1 (de) 2006-09-14 2010-06-15 Ibiden Co Ltd Verfahren zur herstellung eines wabenkörpers und zusammensetzung für sinterwabenkörper
WO2008032391A1 (fr) 2006-09-14 2008-03-20 Ibiden Co., Ltd. Procédé de production d'une structure en nid d'abeille et composition de matière première pour nid d'abeille calciné
WO2008047404A1 (fr) 2006-10-16 2008-04-24 Ibiden Co., Ltd. Support de montage pour structure alvéolaire et dispositif d'inspection pour structure alvéolaire
WO2008090625A1 (ja) 2007-01-26 2008-07-31 Ibiden Co., Ltd. 外周層形成装置及びハニカム構造体の製造方法
WO2008099450A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099454A1 (ja) 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008114335A1 (ja) 2007-02-21 2008-09-25 Ibiden Co., Ltd. 加熱炉及びハニカム構造体の製造方法
WO2008120386A1 (ja) 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体
JP5164575B2 (ja) 2007-03-29 2013-03-21 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
EP1982966B1 (en) 2007-03-29 2011-11-09 Ibiden Co., Ltd. Honeycomb structure and method of producing honeycomb structure
WO2008129691A1 (ja) 2007-03-30 2008-10-30 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126319A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 多孔質炭化ケイ素焼結体の製造方法
WO2008126320A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体の製造方法
WO2008139581A1 (ja) 2007-05-09 2008-11-20 Ibiden Co., Ltd. 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法
WO2008149435A1 (ja) 2007-06-06 2008-12-11 Ibiden Co., Ltd. 焼成用治具及びハニカム構造体の製造方法
WO2008155856A1 (ja) 2007-06-21 2008-12-24 Ibiden Co., Ltd. ハニカム構造体、及び、ハニカム構造体の製造方法
JP5180835B2 (ja) 2007-10-31 2013-04-10 イビデン株式会社 ハニカム構造体用梱包体、及び、ハニカム構造体の輸送方法
WO2009066388A1 (ja) 2007-11-21 2009-05-28 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232639A (ja) * 1995-02-28 1996-09-10 Ngk Insulators Ltd 集塵装置
EP0990777A1 (en) * 1998-09-30 2000-04-05 Ibiden Co, Ltd. Regeneration system for an exhaust gas cleaning device
EP1142619A1 (en) * 1999-09-29 2001-10-10 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1493904A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393376B2 (en) 2002-03-15 2008-07-01 Ibiden Co., Ltd. Ceramic filter for exhaust gas emission control
US7387657B2 (en) 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
US7504359B2 (en) 2003-02-28 2009-03-17 Ibiden Co., Ltd. Ceramic honeycomb structure
EP1577515A1 (de) * 2004-03-18 2005-09-21 Arvin Technologies, Inc. Vorrichtung zum Reinigen von Fahrzeugabgasen
US7465331B2 (en) 2004-03-18 2008-12-16 Emcon Technologies Llc Device for cleaning vehicular exhaust gas
US7892309B2 (en) * 2004-12-22 2011-02-22 Hitachi Metals, Ltd. Production method of honeycomb filter and honeycomb filter
US8114184B2 (en) * 2005-08-17 2012-02-14 Yunnan Filter Environment Protection S.&T. Co., Ltd. Honeycomb ceramic particulate filtration substrate, a particulate filter and a filtration system as well as production methods thereof
US7732366B2 (en) * 2006-02-23 2010-06-08 Ibiden Co., Ltd. Honeycomb structure and exhaust gas purifying device
JP2018039683A (ja) * 2016-09-05 2018-03-15 東京窯業株式会社 水素製造方法及び水素製造装置

Also Published As

Publication number Publication date
EP2020486A2 (en) 2009-02-04
US7648547B2 (en) 2010-01-19
CN100371562C (zh) 2008-02-27
EP1493904A4 (en) 2005-03-23
EP1493904A1 (en) 2005-01-05
CN1643240A (zh) 2005-07-20
US20050175514A1 (en) 2005-08-11
JPWO2003093657A1 (ja) 2005-09-08
EP1493904B1 (en) 2016-09-07
EP2020486A3 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
WO2003093657A1 (fr) Filtre a alveoles servant a clarifier un gaz d'echappement
JP4386830B2 (ja) 排気ガス浄化用ハニカムフィルタ
JP4509029B2 (ja) ハニカム構造体
JP4437085B2 (ja) ハニカム構造体
JP4592695B2 (ja) ハニカム構造体及び排気ガス浄化装置
JP4827530B2 (ja) ハニカム構造体
JP4437084B2 (ja) ハニカム構造体
US8003190B2 (en) Honeycomb structure
JP4295279B2 (ja) ハニカム構造体
WO2006106785A1 (ja) ハニカム構造体
JP5270879B2 (ja) ハニカム構造体
JP2011179501A (ja) ハニカム構造体
WO2007043245A1 (ja) ハニカムユニット及びハニカム構造体
WO2007058006A1 (ja) ハニカム構造体
JPWO2003067042A1 (ja) 排気ガス浄化用ハニカムフィルタ
JP2006289237A (ja) ハニカム構造体
JP2009183835A (ja) ハニカムフィルタ及びその製造方法
WO2009095982A1 (ja) ハニカム構造体
JP2004167482A (ja) 排気ガス浄化用ハニカムフィルタおよびその製造方法
JP2005324092A (ja) フィルタ、内燃機関の排気ガス浄化装置および排気ガス浄化方法
JP7325473B2 (ja) 多孔質ハニカム構造体及びその製造方法
JP2013139022A (ja) ハニカム構造体及び排ガス浄化装置
JP2009022947A (ja) ハニカム構造体、及び、ハニカム構造体の製造方法
WO2005044425A1 (ja) 排気ガス浄化用ハニカムフィルタおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004501784

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038072629

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2003747536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003747536

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003747536

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10510344

Country of ref document: US