WO2005037405A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2005037405A1
WO2005037405A1 PCT/JP2004/015505 JP2004015505W WO2005037405A1 WO 2005037405 A1 WO2005037405 A1 WO 2005037405A1 JP 2004015505 W JP2004015505 W JP 2004015505W WO 2005037405 A1 WO2005037405 A1 WO 2005037405A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume
holes
hole
cross
small
Prior art date
Application number
PCT/JP2004/015505
Other languages
English (en)
French (fr)
Inventor
Kazushige Ohno
Atsushi Kudo
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34467781&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005037405(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2003359235A external-priority patent/JP4471621B2/ja
Priority claimed from JP2003362512A external-priority patent/JP4471622B2/ja
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to EP04792671A priority Critical patent/EP1676620B2/en
Priority to ES04792671T priority patent/ES2302042T5/es
Priority to PL04792671T priority patent/PL1676620T5/pl
Priority to DE602004011971T priority patent/DE602004011971T3/de
Publication of WO2005037405A1 publication Critical patent/WO2005037405A1/ja
Priority to US11/341,507 priority patent/US7785695B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2494Octagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/34Honeycomb supports characterised by their structural details with flow channels of polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/48Honeycomb supports characterised by their structural details characterised by the number of flow passages, e.g. cell density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, and a honeycomb structure used as a catalyst carrier.
  • a through hole having a relatively large volume hereinafter also referred to as a large volume through hole
  • a through hole having a relatively small volume hereinafter also referred to as a small volume through hole
  • the large volume through hole is sealed with a sealing material at one end
  • the small volume through hole is sealed with a sealing material at the other end.
  • a technique has been disclosed in which the opening side of the large-volume through hole is the inflow side of the filter and the opening side of the small-volume through hole is the outflow side of the filter (for example, Patent Documents). 1 See 13).
  • the number of through holes (hereinafter referred to as inflow side through holes) That are open on the inflow side of the filter is the number of through holes (hereinafter referred to as outflow side through holes) that are open on the outflow side of the filter.
  • No.-cam structures (filters) and the like having a larger number than the above-mentioned number are also known (see, for example, FIG. 3 of Patent Document 6).
  • the through holes are divided into a large volume through hole group (total surface area and cross-sectional area are relatively large) and a small volume through hole group (total surface area and cross-sectional area are relatively large).
  • the opening side of the large volume through hole group is the inflow side of the filter
  • the opening side of the small volume through hole group is the filter.
  • the total amount of the surface area of the inflow side through-hole and the total amount of the surface area of the outflow-side through-hole are equal to each other. Can be made thinner. As a result, it is possible to reduce the size of the filter, suppress an increase in pressure loss during particulate collection, increase the particulate collection limit, and the like.
  • Patent Document 1 Japanese Patent Laid-Open No. 56-124418
  • Patent Document 2 JP-A 56-124417
  • Patent Document 3 Japanese Patent Application Laid-Open No. 62-96717
  • Patent Document 4 Japanese Utility Model Publication No. 58-92409
  • Patent Document 5 US Patent No. 4416676
  • Patent Document 6 Japanese Patent Laid-Open No. 58-196820
  • Patent Document 7 US Patent No. 4420316
  • Patent Document 8 JP-A-58-150015
  • Patent Document 9 JP-A-5-68828
  • Patent Document 10 French Patent Invention No. 2789327 Specification
  • Patent Document 11 International Publication No. 02Z100514A1 Pamphlet
  • Patent Document 12 International Publication No. 02Z10562A1 Pamphlet
  • Patent Document 13 Pamphlet of International Publication No. 03Z20407A1
  • the inventors of the present invention have found that when the catalyst is supported on the honeycomb structure provided with the large volume through hole group and the small volume through hole group, the through holes constituting the large volume through hole group are formed. It is better to have more catalyst supported on the partition walls separating the through holes constituting the large volume through hole group than the partition walls separating the through holes and the through holes constituting the small volume through hole group.
  • the present inventors have found that it is possible to improve the purification performance of exhaust gas and the like without increasing the pressure loss.
  • Patent Document 5 discloses a hard cam structure in which the partition wall separating the inflow side through holes and the partition wall separating the inflow side through hole and the outflow side through hole are provided with a difference in thickness of 20% or more. Is disclosed. However, as shown in the 4th column, 24th line, 1st line, 28th line, this hard cam structure is maximized in the partition wall that separates the inflow side through hole and outflow side through hole. Exhaust gas is allowed to pass through, and it is difficult to cause a catalytic reaction to purify the exhaust gas in the partition wall that separates the inflow side through-holes from the exhaust gas that does not pass through the exhaust gas effectively.
  • the honeycomb structure according to the first aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween.
  • the large number of through holes include a large volume through hole group sealed at one end of the honeycomb structure so that a total area in a cross section perpendicular to the longitudinal direction is relatively large; A group of small volume through-holes sealed at the other end of the honeycomb structure so that the total area in the cross section is relatively small,
  • the opening ratio which is the ratio of the area of the large-volume through-hole group to the total area of the end face on the inlet side of the honeycomb structure, is ⁇ (%), and the through-holes constituting the adjacent large-volume through-hole groups are The difference in thickness in the cross section between the partition wall and the partition wall separating the through hole constituting the adjacent large volume through hole group and the through hole constituting the small volume through hole group (hereinafter referred to as the partition wall thickness)
  • the characteristic is that the following formulas (1) and (2) are satisfied: j8 (mm).
  • the total area of the end surface on the inlet side means the total area of the portions composed of the through holes and the partition walls, and the portion occupied by the sealing material layer is not included in the total area of the end surfaces. I will do it.
  • the combination of the large-volume through-hole group and the small-volume through-hole group includes (1) individual through-holes constituting the large-volume through-hole group and individual constituting the small-volume through-hole group.
  • individual through-holes constituting the large-volume through-hole group When the cross-sectional area perpendicular to the longitudinal direction is the same and the number of through-holes constituting the large-volume through-hole group is large, (2) individual through-holes constituting the large-volume through-hole group (3) Individual through-holes constituting a large-volume through-hole group when the cross-sectional areas are different and the numbers of through-holes are different between the through-holes and the individual through-holes constituting the small-volume through-hole group In some cases, the through-holes constituting the large-volume through-hole group have the same cross-sectional area and the same number of through-holes.
  • the through-hole constituting the large-volume through-hole group and the through-hole constituting the Z or small-volume through-hole group have the same shape, the same cross-sectional area perpendicular to the longitudinal direction, etc.
  • Each is composed of two or more types of through-holes with different shapes, cross-sectional areas perpendicular to the longitudinal direction, etc.!
  • the Hercam structure of the present invention has a repeated shape as a basic unit, and the area ratio of the cross-sections is different in the basic unit.
  • the shape of the cross section perpendicular to the longitudinal direction of the through hole is the same in all parts except the vicinity of the outer periphery, and the cross sectional shape is the same.
  • a her cam structure having a configuration in which either one of the end portions of the through hole is sealed and the sealing portion and the opening portion of each end face are arranged in a checkered pattern as a whole. It is assumed that it is not included in the her cam structure of the present invention.
  • the catalyst be supported on the partition walls separating the through holes constituting the adjacent large volume through hole groups.
  • the shape of the cross-section perpendicular to the longitudinal direction of the through-hole constituting the large-volume through-hole group and the z- or small-volume through-hole group is polygonal. It is desirable that
  • the shape of the cross section perpendicular to the longitudinal direction of the through-holes constituting the large-volume through-hole group is an octagon and is above the through-holes constituting the small-volume through-hole group.
  • the shape of the cross section is preferably a quadrangle.
  • the ratio of the area in the cross section perpendicular to the longitudinal direction of the large volume through hole group to the area in the above cross section of the small volume through hole group is 1.5-2. It is desirable that there be.
  • the partition wall that separates the through holes constituting the adjacent large volume through hole groups in the cross section perpendicular to the longitudinal direction and the adjacent large volume through hole group are configured. It is desirable that at least one of the intersecting corners of the partition walls separating the through holes and the through holes constituting the small volume through hole group is an obtuse angle.
  • the vicinity of the corner of the cross section perpendicular to the longitudinal direction of the through-holes constituting the large-volume through-hole group and the Z- or small-volume through-hole group is curved. Desired to be composed by
  • the distance between the centers of gravity in the cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups and the through-holes constituting the adjacent small-volume through-hole groups It is desirable that the distance between the centers of gravity in the cross section is equal.
  • the honeycomb structure of the second aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween.
  • the large number of through holes include a large volume through hole group sealed at one end of the honeycomb structure so that a total area in a cross section perpendicular to the longitudinal direction is relatively large;
  • the honeycomb structure has a relatively small total area in the cross section. Consisting of a group of small-volume through holes sealed at the other end,
  • the concentration of the catalyst in the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups, and the through-holes constituting the adjacent large-volume through-hole groups and the through-holes constituting the small-volume through-hole group It is characterized by the ratio of the catalyst concentration in the partition walls being 1.1-3.0.
  • a third hard cam structure of the present invention is a her cam block in which a plurality of the first or second hard cam structures are combined via a seal material layer.
  • a sealing material layer is formed on the outer peripheral surface.
  • first or second hard cam structure of the present invention is used as a constituent member of the third hard cam structure of the present invention, only one may be used as a filter. Yes.
  • a her cam structure having a structure formed as a whole such as the her cam structure of the first or second aspect of the present invention, is also referred to as an integrated her cam structure.
  • an integral type hard cam structure and an aggregate type hard cam structure In some cases, it is called a Hercam structure.
  • the first, second, or third Hercam structure of the present invention is used in an exhaust gas purifying device for a vehicle.
  • the relationship between the opening ratio ⁇ on the inlet side and the difference in the partition wall thickness is satisfied so as to satisfy the relationship of the expressions (1) and (2). Since it is adjusted, the catalyst can be sufficiently supported on the partition walls separating the through-holes constituting the adjacent large-volume through-hole group while reducing the increase in pressure loss before the particulate collection. . Therefore, by supporting the catalyst on the partition wall, the first cam structure of the present invention is In addition, it is possible to improve the purification performance of the particulates and to suppress the rise in pressure loss during particulate collection.
  • the catalyst can be sufficiently supported on the partition walls separating the through holes constituting the adjacent large volume through hole groups.
  • the honeycomb structure when the catalyst is supported on the partition walls that separate the through-holes constituting the adjacent large-volume through-hole groups, the honeycomb structure in the state before particulate collection is used. While reducing the increase in pressure loss of the cam structure, it is possible to improve the purification performance of the particulates and to suppress the increase in pressure loss during particulate collection.
  • the shape of the cross section perpendicular to the longitudinal direction of the through hole constituting the large volume through hole group and the through hole constituting the cage or small volume through hole group is If it is polygonal, it is possible to achieve a honeycomb structure with excellent durability and long life even when the aperture ratio is increased by reducing the partition wall area in the cross section perpendicular to the longitudinal direction in order to reduce pressure loss. it can.
  • the shape of the cross section perpendicular to the longitudinal direction of the through holes constituting the large volume through hole group is an octagon, and the shape of the cross section of the through holes constituting the small volume through hole group is a quadrangle, It is possible to realize a long-lasting hard cam structure with excellent durability.
  • the ratio of the area in the cross section perpendicular to the longitudinal direction of the large volume through hole group to the area in the cross section of the small volume through hole group is 1.5-2. If the value is 7, the opening ratio on the inlet side can be made relatively large to suppress the rise in pressure loss during particulate collection, and the pressure loss before particulate collection becomes too high. It can be prevented.
  • the partition walls separating the through holes constituting adjacent large-volume through-hole groups in the cross section perpendicular to the longitudinal direction and the adjacent large-volume through-hole groups are configured.
  • the pressure loss can be reduced when at least one of the intersecting angles of the partition walls separating the through holes and the through holes constituting the small volume through hole group is an obtuse angle.
  • the through-hole constituting the large-volume through-hole group and the corner portion of the cross section perpendicular to the longitudinal direction of the through-hole constituting the saddle or small-volume through-hole group The neighborhood is a song If it is composed of wires, stress can be prevented from concentrating on the corners of the through holes, cracks can be prevented, and pressure loss can be reduced.
  • the distance between the centers of gravity in the cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups and the through-holes constituting the adjacent small-volume through-hole groups If the distance between the centers of gravity in the above cross section of the hole is equal, heat will be evenly diffused during regeneration and the temperature distribution will become uniform, and even if it is used repeatedly for a long time, cracks caused by thermal stress are unlikely to occur. Excellent durability.
  • the concentration of the catalyst in the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups, and the adjacent large-volume through-hole groups are adjusted to 1. 1-3.0. While reducing the increase in pressure loss, the purification performance of the particulates can be improved, and the increase in pressure loss when collecting particulates can be suppressed.
  • the third cam structure of the present invention a plurality of the first cam or the second cam structure of the present invention are combined through the seal material layer, so that the above seal material It is possible to improve the heat resistance by reducing the thermal stress with the layer, and to adjust the size freely by increasing or decreasing the number of the hard cam structures of the first or second invention. It becomes.
  • the her cam structure of the first, second or third aspect of the present invention is used in an exhaust gas purifying device for a vehicle, it is regenerated by suppressing an increase in pressure loss during particulate collection. It is possible to prolong the period of time up to, improve the purification performance of the particulates, improve the heat resistance, and adjust the size freely.
  • the honeycomb structure of the first aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and the numerous through holes are perpendicular to the longitudinal direction.
  • the large-capacity through-hole group sealed at one end of the honeycomb structure and the total area in the cross section are relatively small so that the total area in the cross section is relatively large
  • the opening ratio, which is the ratio occupied by the area of the hole group is ⁇ (%)
  • the partition wall that separates the through holes constituting the adjacent large volume through hole group and the adjacent large volume through hole group are configured.
  • the opening ratio ⁇ on the inlet side is the ratio of the area of the large-volume through-hole group to the total area of the end surface on the inlet side of the her cam structure as described above.
  • FIG. 1 (a) is a perspective view schematically showing an example of the integrated her-cam structure of the first aspect of the present invention, and (b) is a first view shown in (a).
  • FIG. 3 is a cross-sectional view taken along line AA of the integrated her cam structure of the present invention.
  • the integral type hard cam structure 20 has a substantially quadrangular prism shape, and a large number of through holes 21 are arranged in parallel with a partition wall 23 in the longitudinal direction.
  • the through-hole 21 includes a large-volume through-hole 21a that is sealed with a sealing material 22 at an end portion on the outlet side of the integrated heart structure 20 and an inlet side of the integrated heart cam structure 20.
  • the large-capacity through-hole 21a consists of two types of through-holes, a small-capacity through-hole 21b sealed with a sealing material 22 at the end.
  • the partition wall 23 that separates these through holes 21 functions as a filter. That is, the exhaust gas flowing into the large-volume through hole 21a always passes through the partition wall 23 and then flows out from the small-volume through hole 21b.
  • the combination of the large-volume through-hole group and the small-volume through-hole group in the integrated her cam structure 20 is divided into the individual through-holes 21a constituting the large-volume through-hole group and the small-volume through-hole group. This corresponds to the case where the individual through-holes 21b constituting the large through-hole 21a constituting the large-capacity through-hole group have large cross-sectional areas perpendicular to the longitudinal direction, and the number of both through-holes is the same.
  • the integral honeycomb structure according to the first aspect of the present invention has an opening ratio, which is a ratio of the area of the large volume through hole group, to the total area of the end surface on the inlet side, ⁇ (%), and the adjacent large volume Penetration
  • an opening ratio which is a ratio of the area of the large volume through hole group, to the total area of the end surface on the inlet side, ⁇ (%), and the adjacent large volume Penetration
  • the above-mentioned cross section of the partition wall separating the through holes constituting the hole group, and the partition wall separating the through hole constituting the adjacent large volume through hole group and the through hole constituting the small volume through hole group When the difference in thickness is j8 (mm), the relationship of the following formulas (1) and (2) is satisfied.
  • the partition wall 23a that normally separates the adjacent large volume through hole 21a and the small volume through hole 21b is reduced.
  • the partition wall 23b separating the adjacent large-volume through-holes 21a is made a certain thickness or more. Must be supported. Therefore, in the above equation (1), the partition wall thickness difference j8 increases as the opening ratio ⁇ on the inlet side increases.
  • the partition wall 23a separating the adjacent large-volume through-holes 21a and small-volume through-holes 21b is small, so that the catalyst cannot be supported sufficiently. If the particulates on the partition wall 23b cannot be burned and removed sufficiently, or the partition wall 23a separating the adjacent large volume through hole 21a and the small volume through hole 21b is too thick, it is difficult to flow in the exhaust gas. It may become. On the other hand, if it exceeds 0.0071 a +0.255, the thickness of the partition wall 23b separating adjacent large-volume through-holes 21a is large, so the air permeability of the partition wall 23b is reduced and the inflow of exhaust gas is reduced.
  • the desirable lower limit of the partition wall thickness difference j8 is 0.0 046 a +0.0057, and the desired upper limit is 0.0017 a +0.1553. That is, it is desirable that the integral type hard cam structure of the present invention further satisfies the relationship of the following formula (3).
  • the thickness of the partition wall 23b that separates the adjacent large-volume through-holes 21a is not particularly limited, but a desirable lower limit is 0.2 mm, and a desirable upper limit is 1.2 mm. 0. Less than 2mm.
  • the particulates deposited on the partition wall 23b may not be sufficiently burned and removed. 1. If it exceeds 2 mm, the air permeability of the partition wall 23b separating adjacent large-volume through-holes 21a is reduced, and the gas flow is concentrated on the partition wall 23a, so that the cross-sectional flow velocity passing through the partition wall 23a is increased. It is easy to get rid of the particulates and the collecting ability is lowered.
  • the thickness of the partition wall 23a separating the adjacent large-volume through-holes 21a and small-volume through-holes 21b is not particularly limited, but a desirable lower limit is 0.2 mm, and a desirable upper limit is 1.2 mm. If it is less than 0.2 mm, the strength of the integrated her cam structure 20 may not be sufficient. 1. If it exceeds 2 mm, the pressure loss of the integrated her cam structure 20 may become too high.
  • the lower limit of the opening ratio ⁇ on the inlet side of the integral type hard cam structure 20 is 35%, and the upper limit is 60%. If the opening ratio ⁇ on the inlet side is less than 35%, the pressure loss of the integrated her cam structure 20 may become too high. When the opening ratio ⁇ on the inlet side exceeds 60%, the integral type hard structure 20 is sufficiently strong, or the opening ratio on the outlet side is too small, and the integral type two cam structure 20 Pressure loss can be too high. Desirably, the lower limit of the opening ratio ⁇ on the inlet side is 40%, and the upper limit is 55%.
  • the integral type hard cam structure according to the first aspect of the present invention has an opening ratio ⁇ on the inlet side and a difference j8 in the partition wall thickness so as to satisfy the relationship of the above formulas (1) and (2). Since the relationship is adjusted, the catalyst can be sufficiently supported on the partition wall 23b that separates the adjacent large-volume through holes 21a while reducing the increase in pressure loss before the collection of ⁇ ticule. . Therefore, the integrated hermetic structure according to the first aspect of the present invention supports the partition wall 23b with a catalyst capable of purifying harmful gas components in exhaust gas such as CO, HC and NOx.
  • the exhaust gas passing through the partition wall 23b can be sufficiently purified by the catalytic reaction, and the reaction heat generated by the catalytic reaction can be used for removing the particulates by burning. Further, by supporting the catalyst for reducing the activation energy of particulate combustion on the partition wall 23b, the particulate adhering to the partition wall 23b can be burned and removed more easily. As a result, the integrated her-cam structure according to the first aspect of the present invention can improve the cleansing performance of the particulates, and suppress the increase in pressure loss during particulate collection. Can do. Further, by increasing the thickness of the partition wall 23b that separates the adjacent large-volume through holes 21a so as to satisfy the relationship of the above formula (1), it is possible to improve the strength of the her cam structure.
  • the partition wall 23b that separates the adjacent large-volume through-holes 21a is thickened so as to satisfy the relationship of the above formula (1). It is possible to prevent the heat capacity of the structure from being lowered, and it is possible to suppress the generation of cracks in the hard cam structure due to a thermal shock or the like generated during reproduction.
  • the integrated honeycomb structure according to the first aspect of the present invention can more effectively improve the purification performance of the particulates, and suppress the increase in pressure loss during particulate collection. be able to.
  • a catalyst be supported on a partition wall that separates through-holes that constitute adjacent large-volume through-hole groups.
  • the catalyst is not particularly limited, but can reduce the combustion energy of particulates, and can purify harmful gas components in exhaust gases such as CO, HC and NOx.
  • noble metals such as platinum, palladium, rhodium and the like can be mentioned. Of these, a so-called three-way catalyst composed of platinum, palladium, and rhodium is desirable.
  • alkali metals Group 1 of the Periodic Table of Elements
  • alkaline earth metals Group 2 of the Periodic Table of Elements
  • rare earth elements Group 3 of the Periodic Table of Elements
  • transition metal elements etc.
  • the catalyst may be supported on the surface of pores inside the partition wall 23, or may be supported with a thickness on the partition wall 23. Further, the catalyst may be uniformly supported on the surface of the partition wall 23 and the surface of Z or pores, or may be supported unevenly at a certain place. In particular, it is desirable that both of these are supported on the surface of the partition wall 23 in the large-volume through hole 21a or on the surface of the pores in the vicinity of the surface. This is because the catalyst can easily come into contact with the particulates, so that the particulates can be burned efficiently.
  • the partition walls that separate the through-holes that constitute adjacent large-volume through-hole groups, the through-holes that constitute adjacent large-volume through-hole groups, and the small-volume through-hole groups The catalyst is supported on the partition walls separating the through-holes constituting the catalyst, the catalyst concentration A in the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups, and the adjacent large-volume through-holes.
  • the amount of the catalyst supported on the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups is too small, and the particulate purification performance is sufficiently improved.
  • the amount of catalyst supported by the partition walls separating the through holes constituting the adjacent large-volume through-hole groups and the through-holes constituting the small-volume through-hole groups may be too high. Pressure loss may become too high before collection. 3.
  • the catalyst is likely to be sintered in a high-temperature environment such as when used in an exhaust gas purification device, and the activity of the catalyst is likely to decrease. It is thought that the ratio of particulates that have been purified by combustion will decrease. Further, even if the catalyst is supported on the partition walls separating the through holes constituting the adjacent large volume through hole groups exceeding 3.0, the particulate purification performance is not greatly improved.
  • the catalyst when the catalyst is applied to the integral type hard cam structure 20, it is desirable to apply the catalyst after the surface is previously coated with a support material such as alumina. As a result, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. In addition, since the support metal can prevent sintering of the catalyst metal, the heat resistance of the catalyst is also improved. It makes it possible to reduce pressure loss.
  • the integrated her cam structure 20 functions as a filter that collects particulates in the exhaust gas and supports CO, HC, and NOx contained in the exhaust gas by supporting the catalyst. It can function as a catalytic converter for purifying and the like. In general, it is considered that particulate combustion purification is promoted by oxygen activated by the reaction of oxygen, NOx, etc. on the surface of a catalyst such as a noble metal. During the combustion purification of this particulate, SOF, CO, which are easily decomposed and purified even at relatively low temperatures Further, if HC or the like is subjected to an oxidation reaction, heat is generated and the temperature of the catalyst and the like becomes high, so that it is possible to further increase the reaction rate of the particulate combustion cleaner.
  • the catalyst is supported on the partition wall 23b that separates the adjacent large-volume through-holes 21a, so that the reaction heat generated when purifying SOF, CO, HC, and the like is used, and the catalyst on the partition wall 23b is used. Particulates can be burned and removed efficiently.
  • the integrated her cam structure of the first aspect of the present invention functions as a gas purifier similar to a conventionally known DPF (diesel particulates filter) with a catalyst by supporting the catalyst. To do. Accordingly, detailed description of the function as the catalyst carrier of the integral type hard cam structure of the first present invention is omitted here.
  • the integrated her cam structure according to the first aspect of the present invention when the opening ratio ⁇ on the inlet side of the her cam structure is increased, the partition walls separating the through holes constituting the adjacent large volume through hole group Therefore, the ratio of the partition walls separating the through-holes constituting the adjacent large-capacity through-hole groups in the partition walls constituting the her cam structure increases.
  • the integrated her-cam structure according to the first aspect of the present invention adjusts the thickness of the partition walls separating the through-holes constituting the large-volume through-hole group according to the aperture ratio, and allows the inflow of gas. And spillage can be controlled. Furthermore, by supporting the catalyst according to the inflow and outflow conditions of the gas, the integrated hermetic structure of the first aspect of the present invention makes the temperature distribution of the entire filter uniform, and It is possible to regenerate the entire filter uniformly.
  • the through holes are composed of two types of large-volume through-hole groups and small-volume through-hole groups, for example, as shown in FIG.
  • an octagonal large-volume through-hole 21a is provided as a through-hole constituting the large-volume through-hole group
  • a square small-volume through-hole 21b is provided as a through-hole constituting the small-volume through-hole group, Some of them have a one-to-one seal (checkered pattern).
  • the large-volume through hole 21a and the large-volume through-hole 21a There are two types: a partition wall 23b that separates the through hole 21a, and a partition wall 23a that separates the large volume through hole 21a and the small volume through hole 21b.
  • the exhaust gas mainly passes through the partition wall 23a having a relatively low resistance. While being directly exposed to the hot exhaust gas, the relatively high resistance barrier 23 b is not exposed to the hot exhaust gas so much. For this reason, when the integrated Hercom structure of the first invention carries a catalyst, the catalyst of the partition wall 23a reacts, but the catalyst of the partition wall 23b does not react so much (capture). Collection stage 1).
  • the particulates are accumulated in the partition wall 23a, and the resistance when passing through the partition wall 23a increases, so that the amount of exhaust gas flowing into the partition wall 23b increases.
  • the partition wall 23b is also sufficiently exposed to the high-temperature exhaust gas, and the catalyst in the partition wall 23b also reacts (collection stage 2).
  • the exhaust gas again flows mainly into the partition wall 23a.
  • the collection stage 1 collection stage 3
  • the exhaust gas flows into the partition wall 23b, and in the partition wall 23b, the force that collects the particulates is considered relative to the partition wall.
  • the exhaust gas which is difficult for the exhaust gas to pass through due to its structure, easily flows into the partition wall 23a.
  • the oxidation reaction of CO, HC, etc. is difficult to occur, and it is difficult to raise the temperature, so that the combustion reaction of ticulate is difficult to occur, the temperature distribution is generated in the hard cam structure, and cracks are generated. It is thought that it will be easy.
  • the first aspect of the present invention provides a filter even if exhaust gas whose temperature tends to fluctuate depending on operating conditions flows. It is characterized by the stability of the temperature rise and the catalytic reaction as a whole.
  • the integrated Hercam structure 20 mainly has a porous ceramic force.
  • the material include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, and carbonized carbon.
  • carbide ceramics such as silicon, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide, and oxide ceramics such as alumina, zircoure, cordierite, mullite, and silicic force.
  • the integral type hard cam structure 20 may be made of a composite of silicon and silicon carbide, aluminum titanate, and two or more kinds of materials.
  • the particle size of the ceramic used in the manufacture of the integrated her-cam structure 20 is not particularly limited, but it is desirable that the ceramic has a small shrinkage in the subsequent firing step, for example, 0.3-50.
  • the sealing material 22 and the partition wall 23 constituting the integrated her cam structure 20 are made of the same porous ceramic.
  • the adhesive strength between the two can be increased, and the thermal expansion coefficient of the partition wall 23 and the thermal expansion coefficient of the sealing material 22 can be adjusted by adjusting the porosity of the sealing material 22 in the same manner as the partition wall 23.
  • the gap between the sealing material 22 and the partition wall 23 due to thermal stress during manufacturing or use, or the partition wall of the part that contacts the sealing material 22 or the sealing material 22 23 can be prevented from cracking.
  • the porosity of the integral type hard cam structure 20 is not particularly limited, but a desirable lower limit is 20% and a desirable upper limit is 80%. If it is less than 20%, the integrated hermetic structure 20 may be clogged immediately. On the other hand, if it exceeds 80%, the strength of the integrated honeycomb structure 20 is reduced and easily broken. May be.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the desirable lower limit of the average pore diameter of the integral type hard cam structure 20 is 1 ⁇ m, and the desirable upper limit is 100 m. : If it is less than L m, the particulates easily clog. There are times. On the other hand, if it exceeds 100 m, the particulates pass through the pores, and the particulates cannot be collected and may not function as a filter.
  • the integrated her-cam structure 20 shown in FIG. 1 has a substantially quadrangular prism shape, but the shape of the integrated her-cam structure of the present invention is not particularly limited as long as it is a columnar body.
  • a columnar body whose cross-sectional shape perpendicular to the longitudinal direction is polygonal, circular, elliptical, fan-shaped, etc. can be mentioned.
  • the through-holes are provided in the first aspect of the present invention so that the sum of the areas in the cross section perpendicular to the longitudinal direction is relatively large.
  • the large-capacity through-hole group sealed at one end of the body-shaped hard structure and the integrated her-cam structure of the first aspect of the present invention so that the area in the cross section becomes relatively small Two kinds of forces with the small-volume through hole group sealed at the other end of the body.
  • the integrated her cam structure according to the first aspect of the present invention can function as an exhaust gas purifying filter even if ash accumulates, compared with the case where the volume of the inflow side through hole and the volume of the outflow side through hole are the same.
  • the pressure loss due to ash with a small reduction rate of the filtration area of the active part is also reduced. Therefore, the period until the reverse cleaning or the like is required becomes longer, and the life of the exhaust gas purifying filter can be extended. As a result, maintenance costs required for backwashing and replacement can be greatly reduced.
  • adjacent large-volume through-holes (inflow-side through-holes) ) Particulates accumulate uniformly in the bulkhead 23b that separates the adjacent large-volume through-holes (inflow-side through-holes) 21a that separate only the bulkheads 23a that separate the 21a and small-volume through-holes (outflow-side through-holes) 21b . This is because immediately after the start of particulate collection, gas flows from the large volume through hole (inflow side through hole) 21a toward the small volume through hole (outflow side through hole) 21b.
  • the through hole and the Z or small volume through hole group constituting the large volume through hole group are constituted.
  • the cross-sectional shape perpendicular to the longitudinal direction of the through hole is preferably a polygon.
  • the cross-sectional shape of only the through-holes constituting the large-volume through-hole group may be a polygon such as a quadrangle, pentagon, trapezoid, or octagon.
  • the cross-sectional shape of only the through-holes constituting the small-volume through-hole group may be a polygon, or both may be a polygon.
  • the shape of the cross-section perpendicular to the longitudinal direction of the large-volume through-hole group constituting the large-volume through-hole group is an octagon
  • the shape of the cross-section of the small-volume through-hole constituting the small-volume through-hole group is a quadrangle. It is desirable.
  • the ratio of the area in the cross section perpendicular to the longitudinal direction of the large volume through hole group to the area in the cross section of the small volume through hole group (large volume through hole) Group cross sectional area Z Small volume through-hole group cross sectional area; hereinafter, the ratio of aperture ratios is also desired.
  • the lower limit is 1.5
  • the desirable upper limit is 2.7. If the aperture ratio is less than 1.5, the effect of providing a large volume through hole group and a small volume through hole group may not be obtained. On the other hand, when the aperture ratio exceeds 2.7, the volume of the small-volume through-hole group is too small, and the pressure loss before particulate collection may become too large.
  • the cross-section perpendicular to the longitudinal direction of the through-hole constituting the large-volume through-hole group and the through-hole constituting Z or the small-volume through-hole group is provided.
  • the vicinity of the corner is preferably composed of a curve.
  • the distance between the centers of gravity in the cross section perpendicular to the longitudinal direction of the through holes constituting the adjacent large volume through hole groups and the adjacent small volume through hole groups is equal.
  • the heat is evenly diffused during regeneration, resulting in a uniform temperature distribution and high durability that is resistant to cracking due to thermal stress even when used repeatedly for a long time. It becomes a cam structure.
  • the distance between the centers of gravity of the cross section perpendicular to the longitudinal direction of the through holes constituting adjacent large-volume through-hole groups means the longitudinal direction of the through-holes constituting one large-volume through-hole group.
  • the distance between the centers of gravity of the cross-sections of the through-holes means that the center of gravity of the cross-section perpendicular to the longitudinal direction of one through-hole group constituting one small-volume through-hole group and another small-volume through-hole group It means the minimum distance from the center of gravity in the cross section of the through hole.
  • the large-volume through-holes 21a and the small-volume through-holes 21b are alternately arranged in the vertical direction and the horizontal direction with the partition wall 23 interposed therebetween.
  • the center of gravity of the cross section perpendicular to the longitudinal direction of the large volume through hole 21a and the center of gravity of the cross section perpendicular to the longitudinal direction of the small volume through hole 21b are in a straight line.
  • the above-mentioned “distance between centroids in the cross section perpendicular to the longitudinal direction of the through-holes constituting the adjacent large-volume through-hole groups” and “distance between centroids in the cross-section of the through-holes constituting the adjacent small-volume through-hole groups” The term “the distance between the centers of gravity of the large-volume through-hole 21a and the small-volume through-hole 21b that are obliquely adjacent to each other in a cross section perpendicular to the longitudinal direction of the integrated her-cam structure 10”.
  • the number of through-holes constituting the large-volume through-hole group and the through-holes constituting the small-volume through-hole group is not particularly limited. It is desirable to have the same number. With such a configuration, the partition wall that is not easily involved in exhaust gas filtration can be minimized, and the friction when passing through the inflow side through hole and the friction when passing through the Z or outflow side through hole are reduced. It is possible to suppress the resulting pressure loss from rising more than necessary.
  • the number of through-holes is larger than that of the hard cam structure 100 in which the number of through-holes 101 and the small-volume through-holes 102 are substantially 1: 2. In the case where the number is substantially the same, the pressure loss due to friction when passing through the outflow side through-hole is low, so the pressure loss of the entire her cam structure is low.
  • FIG. 3 (a) One (d) and Fig. 4 (a) One (f) are cross-sections schematically showing a cross section perpendicular to the longitudinal direction in the integrated hearth structure of the first invention.
  • FIG. 3 (e) is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction in a conventional integrated honeycomb structure.
  • the integrated her-cam structure 110 shown in FIG. 3 (a) has an aperture ratio of approximately 1.55, and the integrated her-cam structure 120 shown in FIG. 2.54, Fig. 3 (c) shows an integrated har- mer structure 130, which is approximately 4.45, and Fig. 3 (d) shows an integrated harcom structure 140. 6. 00.
  • the above aperture ratios are all about 4.45
  • Figs. 4 (b), (d), and (f) are all about 6.00. It is.
  • FIGS. 3 (a) to 3 (d) the above cross-sectional shapes of the large-volume through-holes 11 la, 121a, 131a, and 141a are octagonal, and the small-volume through-holes ll lb, 121b, 131b, and 141b
  • the cross-sectional shape is a quadrangle (square), and each of them is arranged alternately.By changing the cross-sectional area of the small-volume through hole and slightly changing the cross-sectional shape of the large-volume through hole, the opening The ratio can be easily changed arbitrarily.
  • the aperture ratio of the integrated her-cam structure shown in FIG. 4 can be varied arbitrarily. Further, as shown in FIGS. 3 (a) to 3 (d), it is desirable that the outer corners of the integrated her-cam structure of the present invention be chamfered.
  • the cross-sectional shapes of the inflow side through hole 152a and the outflow side through hole 152b are both quadrangular, and they are alternately arranged. .
  • the above-mentioned cross-sectional shape of the large-volume through-holes 161a, 260a is a pentagon, and three corners are The cross-sectional shapes of the small-volume through-holes 161b and 261b are quadrangular, and are configured so as to occupy the opposite portions of the large rectangular bevel.
  • an integral type hard structure 170, 270 is a modified version of the above cross-sectional shape shown in FIGS. 3 (a)-(d).
  • the small-volume through-holes 171b and 271b have a shape in which the partition wall is widened with a curvature on the small-volume through-hole side.
  • This curvature may be arbitrary, for example, the curve constituting the partition may correspond to 1Z4 yen.
  • the aperture ratio is 3.66. Therefore, in the integrated two-wheel structure 170, 270 shown in FIG. 4 (c) -1 (d), the small volume through-holes 171b, 271b are more than the ones in which the curve constituting the partition corresponds to 1Z4 circle. The cross-sectional area is getting smaller.
  • the large-volume through holes 181a, 281a and The small-volume through holes 281b and 28 lb are formed in a quadrangular (rectangular) shape, and are configured to be almost square when two large-volume through holes and two small-volume through holes are combined.
  • the honeycomb structure of the second aspect of the present invention is a columnar honeycomb structure in which a large number of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween, and the numerous through holes are perpendicular to the longitudinal direction.
  • the large-capacity through-hole group sealed at one end of the honeycomb structure and the total area in the cross section are relatively small so that the total area in the cross section is relatively large
  • the partition wall is formed by a small volume through hole group sealed at the other end of the her cam structure, and separates the partition walls separating the through holes constituting the adjacent large volume through hole group.
  • Catalysts are respectively supported on the partition walls separating the through-holes constituting the matching large-volume through-hole groups and the through-holes constituting the small-volume through-hole groups, and constitute the adjacent large-volume through-hole groups.
  • Concentration of catalyst in partition walls separating through holes The ratio of the catalyst concentration in the partition walls separating the through holes constituting the adjacent large volume through hole groups and the through holes constituting the small volume through hole groups is 1.1 to 3.0. To do.
  • platinum is used as the catalyst, and the platinum concentration in the partition walls separating the through holes constituting the adjacent large-volume through-hole groups, and the through-holes constituting the adjacent large-volume through-hole groups are small. It is desirable that the ratio of the platinum concentration in the partition walls separating the through-holes constituting the volume through-hole group is 1.1 to 3.0.
  • the concentration of the catalyst in the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups, and the adjacent large-volume through-hole groups are
  • the ratio of the concentration of the catalyst in the partition wall that separates the through-holes that make up the through-holes that make up the small-volume through-hole group is adjusted to 1. 1-3.0. of While reducing the increase in pressure loss, it is possible to improve the purification performance of the particulates, and to suppress the increase in pressure loss when collecting particulates.
  • the partition wall catalyst concentration ratio is less than 1.1, the amount of the catalyst supported on the partition walls that separate the through-holes constituting the adjacent large-volume through-hole group is too small, and the particulate purification is not performed.
  • the honeycomb structure of the second aspect of the present invention has an increased reaction point of the catalytic reaction by improving the concentration of the catalyst in the partition walls separating the through holes constituting the adjacent large volume through hole group.
  • the her cam structure of the first aspect of the present invention increases the reaction point of the catalytic reaction by relatively thickening the partition walls separating the through-holes constituting the adjacent large-volume through-hole groups. That made it possible. Therefore, the second hard cam structure of the present invention is a partition that separates through-holes constituting adjacent large-volume through-hole groups in a structure including a constituent material and a cross-sectional shape perpendicular to the longitudinal direction. The same effect as that of the honeycomb structure of the first aspect of the present invention supporting the catalyst is obtained.
  • the single or second integrated heart cam structure of the present invention may be used as a single integrated filter, only one unit may be used. It is desirable to be used as a body filter.
  • the thermal stress is reduced by the sealing material layer to improve the heat resistance of the filter, and the number of the integral type hard cam structures of the first or second invention is reduced. This is because it is possible to adjust the size freely by increasing or decreasing it.
  • the integral filter and the aggregate filter have the same function.
  • an oxide ceramic such as cordierite is usually used as the material. This is because the filter can be manufactured at a low cost and has a relatively low coefficient of thermal expansion, so that the filter is less likely to be damaged by thermal stress during manufacture and use.
  • the integrated filter comprising the integrated her-cam structure of the first or second invention
  • the aggregated honeycomb structure of the invention described below is used.
  • a sealing material layer made of a material material that does not allow gas to pass through the outer peripheral surface more easily than the integrated her cam structure of the first or second aspect of the present invention.
  • the aggregate-type hard cam structure of the third aspect of the present invention is a hard cam formed by combining a plurality of the integral type hard cam structures of the first or second aspect of the present invention via a sealing material layer.
  • the outer peripheral surface of the block is formed with a sealing material layer made of V, a material cover, which makes it difficult for gas to pass through the integrated hard cam structure of the first or second invention. Functions as an aggregate filter.
  • FIG. 7 is a perspective view schematically showing an example of the aggregate type hard cam structure of the present invention.
  • a large number of through holes are sealed at one end of the honeycomb structure so that the sum of the areas in the cross section perpendicular to the longitudinal direction is relatively large.
  • the aggregate type hard cam structure 10 is used as a filter for exhaust gas purification, and the integrated type hard cam structure 20 is interposed through the seal material layer 14.
  • a her cam block 15 is formed by being bundled together, and a sealing material layer 13 for preventing leakage of exhaust gas is formed around the her cam block 15.
  • the sealing material layer 13 also has a material strength that makes it difficult for gas to pass through compared with the integrated her-cam structure 20.
  • silicon carbide having excellent thermal conductivity, heat resistance, mechanical characteristics, chemical resistance, etc. is used as the material constituting the integrated type hard cam structure 20. Desirable.
  • the sealing material layer 14 is formed between the integrated ceramic structures 20 and functions as an adhesive that binds the plurality of integrated ceramic structures 20 together.
  • the sealing material layer 13 is formed on the outer peripheral surface of the her cam block 15, and when the aggregated her cam structure 10 is installed in the exhaust passage of the internal combustion engine, the herm block 15 The outer peripheral surface force of the nozzle functions as a sealing material to prevent the exhaust gas passing through the through hole from leaking.
  • the sealing material layer 13 and the sealing material layer 14 may have the same material force or may be made of different materials. Furthermore, when the sealing material layer 13 and the sealing material layer 14 are made of the same material, the mixing ratio of the materials may be the same or different.
  • the sealing material layer 14 may have a dense physical strength, or may have a porous physical strength so that the exhaust gas can flow into the inside. It is desirable that the sealing material layer 13 has a dense body strength.
  • the sealing material layer 13 is formed for the purpose of preventing the exhaust gas from leaking out of the outer peripheral surface of the her cam block 15 when the aggregate type hard cam structure 10 is installed in the exhaust passage of the internal combustion engine. Because.
  • the material constituting the sealing material layers 13 and 14 is not particularly limited, and examples thereof include an inorganic binder, an organic binder, inorganic fibers, and Z or inorganic particles.
  • Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica zonole is desirable.
  • Examples of the organic binder include polybutyl alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the above organic binders, carboxylmethylcellulose is desired.
  • Examples of the inorganic fiber include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the inorganic fibers, silica alumina fibers are desirable.
  • Examples of the inorganic particles include carbides, nitrides, and the like. Specific examples include inorganic powders or whiskers such as silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Of the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the integral type hard cam structure of the first or second aspect of the present invention is used as it is as an exhaust gas purifying filter
  • the aggregate type hard cam structure of the present invention is used.
  • the same sealing material layer as the body may be provided on the outer peripheral surface of the first or second integrated her cam structure of the present invention.
  • the aggregate type hard cam structure 10 shown in FIG. 7 has a cylindrical force.
  • the shape of the aggregate type honeycomb structure of the present invention is not particularly limited as long as it is a columnar body.
  • a columnar body whose cross-sectional shape perpendicular to the longitudinal direction is polygonal or elliptical can be mentioned.
  • the aggregate type hard cam structure of the present invention includes a plurality of integral type hard cam structures of the first or second present invention, and then the cross-sectional shape is polygonal, circular or elliptical, etc.
  • the outer peripheral portion may be processed so that the cross-sectional shape of the integrated heart cam structure of the first or second invention of the present invention is processed in advance, and then they are bound by an adhesive.
  • the cross-sectional shape may be a polygonal shape, a circular shape, an oval shape, or the like.
  • the cross-sectional shape may be a polygonal shape, a circular shape, an elliptical shape, or the like by forming and manufacturing the shape so as to form a shape and binding them with an adhesive. Integrating the first or second invention in the form of a column which is a sector shape obtained by dividing a circle into four The honeycomb structure was four tie can be manufactured aggregate type honeycomb structure columnar present invention.
  • the raw material paste mainly composed of ceramic as described above is used for pressing.
  • a ceramic molded body having substantially the same shape as the integrated honeycomb structure of the present invention is manufactured.
  • the raw material paste is not particularly limited, but it is desirable that the integrated hermetic structure according to the first or second invention of the present invention has a porosity of 20 to 80%.
  • Examples thereof include a powder having a ceramic force and a binder and a dispersion medium liquid added thereto.
  • the binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
  • the blending amount of the binder is desirably about 1 to 10 parts by weight per 100 parts by weight of the ceramic powder.
  • the dispersion medium liquid is not particularly limited, and examples thereof include organic solvents such as benzene, alcohols such as methanol, and water.
  • the dispersion medium liquid is blended in an appropriate amount so that the viscosity of the raw material paste is within a certain range.
  • a molding aid may be added to the raw material paste as necessary.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid sarcophagus, and polyalcohol.
  • the raw material paste may be added with a pore-forming agent such as a balloon, which is a fine hollow sphere composed of an oxide ceramic, or spherical acrylic particles or graphite, if necessary. Good.
  • a pore-forming agent such as a balloon, which is a fine hollow sphere composed of an oxide ceramic, or spherical acrylic particles or graphite, if necessary. Good.
  • the balloon is not particularly limited, and examples thereof include alumina balloons and glass microbars. Examples include runes, shirasu balloons, fly ash balloons (FA balloons) and mullite balloons. Among these, a fly ash balloon is desirable.
  • the ceramic molded body is dried using a microwave dryer, hot air dryer, dielectric dryer, vacuum dryer, vacuum dryer, freeze dryer, or the like to obtain a ceramic dried body.
  • a predetermined amount of a sealing material paste as a sealing material is filled in the end portion on the outlet side of the large volume through hole and the end portion on the inlet side of the small volume through hole, and the through hole is sealed.
  • the sealing material paste is not particularly limited, but it is desirable that the sealing material produced through a subsequent process has a porosity of 20 to 80%.
  • the same material paste as that described above is used. Force that can be used It is more desirable to add a lubricant, a solvent, a dispersant, a binder and the like to the ceramic powder used in the raw material paste. This is because it is possible to prevent the ceramic particles and the like in the sealing material paste from settling during the sealing process.
  • the ceramic dried body filled with the sealing material paste is degreased and fired under predetermined conditions.
  • the conditions for degreasing and firing the ceramic dried body the conditions conventionally used for producing a filter made of a porous ceramic can be applied.
  • an alumina film having a high specific surface area is formed on the surface of the ceramic fired body obtained by firing, and a catalyst such as platinum is applied to the surface of the alumina film, whereby the catalyst is supported on the surface. It is possible to manufacture the first or second integrated hard cam structure of the present invention, which is made of a porous ceramic and has a single sintered body force as a whole.
  • the through holes and the small caps constituting the large volume through hole group are formed.
  • Masking was performed on the partition walls separating the through-holes constituting the volume through-hole group, and a method of applying the catalyst again in that state, or a slurry containing the catalyst or the raw material of the catalyst was once applied to the entire honeycomb structure. Thereafter, there is a method of removing only the slurry adhering to the partition walls separating the through holes constituting the large volume through hole group and the through holes constituting the small volume through hole group by blowing high pressure gas.
  • Examples thereof include a heating method, a method in which a ceramic fired body is impregnated with a solution containing alumina powder, and a heating method.
  • Examples of the method for imparting a promoter or the like to the alumina film include rare earths such as Ce (NO).
  • Examples include a method in which a ceramic fired body is impregnated with a solution of a metal compound containing a group 3 element and heated.
  • a method for imparting a catalyst to the alumina membrane for example, a method in which a ceramic fired body is impregnated with a dinitrodiammine platinum nitrate solution ([Pt (NH) (NO)] HNO) or the like is heated.
  • a dinitrodiammine platinum nitrate solution [Pt (NH) (NO)] HNO
  • the structure of the hard cam structure of the present invention As shown in Fig. 7, an aggregate type hard cam comprising a plurality of integral type hard cam structures 20 bound via a seal material layer 14
  • apply the sealing material paste to be the sealing material layer 14 with a uniform thickness on the side surface of the integrated hard cam structure 20, and then sequentially add another integrated hard cam structure.
  • the process of laminating the body 20 is repeated to produce a laminated body of the prismatic integrated honeycomb structure 20 having a predetermined size.
  • the laminated body of the integrated her-cam structure 20 is heated to dry and solidify the sealing material paste layer to form the sealing material layer 14, and thereafter, the outer peripheral portion thereof is used by using a diamond cutter or the like. Is cut into a shape as shown in FIG. Then, the sealing material layer 13 is formed on the outer periphery of the her cam block 15 to form the sealing material layer 13, so that a plurality of integrated her cam structures 20 are bound together via the sealing material layer 14.
  • the assembled aggregate filter 10 of the present invention can be manufactured.
  • honeycomb structure of the present invention is not particularly limited, but it is desirable to use it for an exhaust gas purifying device of a vehicle.
  • FIG. 8 is a cross-sectional view schematically showing an example of an exhaust gas purification device for a vehicle in which the her cam structure of the present invention is installed.
  • the exhaust gas purifying device 600 is mainly composed of a her cam structure 60 and a her cam.
  • the casing 630 that covers the outside of the structure 60, the holding sealing material 620 disposed between the her cam structure 60 and the casing 630, and the exhaust gas inflow side of the her cam structure 60
  • An inlet pipe 640 connected to an internal combustion engine such as an engine is connected to the end of the casing 630 on the side where exhaust gas is introduced, and is connected to the other end of the casing 630.
  • the arrows indicate the flow of exhaust gas.
  • the her cam structure 60 may be the integrated her cam structure 20 shown in FIG. 1 or the aggregated her cam structure 10 shown in FIG. Good.
  • the exhaust gas discharged from the internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and from the large-volume through hole 21a. After flowing into the hard cam structure 60, passing through the partition wall 23, the particulates are collected and purified by the partition wall 23, and then discharged from the small volume through hole 21b to the outside of the hard cam structure 60. Then, it will be discharged to the outside through the discharge pipe 650.
  • the regeneration process of the her cam structure 60 is performed.
  • the gas heated by the heating means 610 is caused to flow into the through-hole of the no-cam structure 60, whereby the her cam structure 60 is heated and the particulates deposited on the partition walls.
  • the patty chelate may be removed by combustion using a post-injection method.
  • the inside of the casing 630 may be provided with a filter provided with an acid catalyst in the introduction pipe 640 in front of the casing 630, and the acid catalyst is provided on the exhaust gas inflow side from the heating means 610. You may install the provided filter.
  • a filter provided with an acid catalyst in the introduction pipe 640 in front of the casing 630, and the acid catalyst is provided on the exhaust gas inflow side from the heating means 610. You may install the provided filter.
  • the generated shaped body was dried using a microwave dryer or the like to form a ceramic dried body, and then a predetermined through hole was filled with a sealing material paste having the same composition as the generated shaped body.
  • the porosity is 42%
  • the average pore size 9 m the size is 34.3 mm X 34.3 mm X 150 mm
  • the number of through holes 21 is 28 Zcm 2 (large capacity through holes 21a: 14 Zcm 2 , small volume through holes 21b: 14 Zcm In 2 )
  • a sintered ceramic body having a silicon carbide sintered body strength was produced.
  • the catalyst After immersing the ceramic fired body in which the alumina layer is formed in the solution, the catalyst is supported on the surface of the ceramic fired body by heating at 150 ° C. for 2 hours and in a nitrogen atmosphere at 650 ° C. for 2 hours. A rare earth oxide-containing alumina layer was formed.
  • the embodiment was changed except that the cross-sectional shape perpendicular to the longitudinal direction of the integrated her cam structure 20 and the thickness of the partition wall 23b separating adjacent large-volume through holes 21a were changed.
  • an integrated her cam structure 20 was manufactured.
  • the cross-sectional shape perpendicular to the longitudinal direction of the unitary honeycomb structure 20 and the thickness of the partition wall 23b separating the adjacent large volume through-holes 21a are different from each other when the mixed composition is extruded. Adjustment was made by changing the shape.
  • the generated shaped body was dried using a microwave dryer or the like to form a ceramic dried body, and then a predetermined through-hole was filled with a sealing material paste having the same composition as the generated shaped body.
  • the porosity is 42%
  • the average pore size 9 m the size is 34.3 mm X 34.3 mm X 150 mm
  • the number of through holes 21 is 28 Zcm 2 (large capacity through holes 21a: 14 Zcm 2 , small volume through holes 21b: 14 Zcm In 2 )
  • a sintered ceramic body having a silicon carbide sintered body strength was produced.
  • the catalyst After immersing the ceramic fired body in which the alumina layer is formed in the solution, the catalyst is supported on the surface of the ceramic fired body by heating at 150 ° C. for 2 hours and in a nitrogen atmosphere at 650 ° C. for 2 hours. A rare earth oxide-containing alumina layer was formed.
  • the ceramic fired body on which the rare earth oxide-containing alumina layer was formed was immersed in a dinitrodiammine platinum nitric acid aqueous solution, and then heated at 110 ° C for 2 hours and in a nitrogen atmosphere at 500 ° C for 1 hour.
  • 2 g ZL of platinum catalyst was supported on the entire surface of the ceramic fired body.
  • phenol resin was poured into the surface of the partition wall 23a separating the adjacent large-volume through-holes 21a and small-volume through-holes 21b, and cured by heating to perform a masking process. Then, after immersing the ceramic fired body subjected to the above masking treatment in the dinitrodiammine platinum nitric acid aqueous solution again, it was heated at 110 ° C for 2 hours and at 500 ° C for 1 hour in a nitrogen atmosphere, and the adjacent large volume A platinum catalyst was further supported on the partition wall 23b separating the through holes 21a. Next, the mixture was heated at 500 ° C. for 5 hours to burn and remove the phenol resin, and the production of the integrated hammer structure 20 was completed.
  • the catalyst loading can also be adjusted by immersing in the above-mentioned various catalyst application solutions and then reducing the amount of liquid on the partition walls by air blow or the like.
  • the platinum catalyst is supported by 2gZL on the partition wall 23a separating the adjacent large volume through hole 21a and the small volume through hole 21b.
  • 2.6 gZL was supported on the partition wall 23b separating the through holes 21a.
  • the catalyst loading on the partition walls 23a and 23b was calculated based on the amount of catalyst (weight) for each of the partition walls 23a and 23b and the ratio of each partition wall to the hard cam structure.
  • the cross-sectional shape perpendicular to the longitudinal direction of the integral type hard cam structure 20 was adjusted by changing the shape of the die when the mixed composition was extruded.
  • the amount of platinum catalyst supported on the partition wall 23b separating adjacent large-volume through holes 21a of the integrated type hard cam structure 20 is equal to the amount of dinitrodiammine white nitric acid in which the fired ceramic fired body is immersed. Adjustment was made by changing the concentration of the aqueous solution.
  • the integrated hard cam structures according to the examples and comparative examples are arranged in the exhaust passage of the engine to form an exhaust gas purifier, and the engine is operated to operate the integrated type.
  • C. 7gZL of particulate was collected on the Nicham structure.
  • the integrated heart cam structure in which the particulates were collected was installed in the reaction tester, and nitrogen gas was introduced into the integrated heart cam structure at a flow rate of 130 LZmin while -The cam structure was held at 200 ° C.
  • Example 38-81 and Comparative Example 9-11 16 was pre-treated as an air atmosphere at 850 ° C for 20:00 hours before being placed in the exhaust passage of the engine. Heated for a while.
  • the simulated gas is 6540ppm C H, 5000ppm CO, 160 NOx, 8 SOx.
  • the temperature of the integrated her-cam structure was raised to about 600 ° C.
  • NOx was detected by CLD.
  • FIG. 9 shows the relationship between the filter regeneration rate and the partition wall thickness difference j8 in the filter regeneration test on the inlet side of the integrated Hercam structure according to Examples 1-137 and Comparative Example 1-18-1.
  • a point with a solid fill represents an example, and a point with no fill filled represents a comparative example.
  • FIG. 10 shows the filter regeneration rate in the filter regeneration test and the partition walls separating adjacent large-volume through-holes 21a for the integrated her-cam structure according to Examples 38-81 and Comparative Example 9-116.
  • Fig. 23b is a graph showing the relationship with the platinum catalyst concentration in 23b for each cross-sectional shape of the integral type hard cam structure, where the inside is filled in, the example is shown, and the inside is not painted Represents a comparative example.
  • Example 15 0.45 74
  • Example 16 0.50
  • Example 17 0. 55
  • Example 18 0.15
  • Example 19 0.20
  • Example 20 0. 25
  • Actual 21 0, 30
  • Example 22 0. 35
  • Figure 3 51.
  • 77 4.45 0. 3 0. 15 0. 25 0. 52 0. 62
  • Example 23 0. 40
  • Example 24 0. 45
  • Example 25 0. 50
  • Example 26 0. 55
  • Example 27 0. 60 oo 61
  • Example 28 0. 20 61
  • Example 29 0. 25 £ 5
  • Example 46 O size 5. 3 49 Example 4 F 5. 7 47 Example 48 size 6. 0 46 Example 49 size 2. 6 49 Example 50 3. 0 53 Example 51 3. 3 55 Example 52 3.F 58 Example 53 4. 0 57 Example 54 Fig. 30)) 44. 79 2. 0 4. 3 56 Example 55 4. 7 55 Example 56 5. 0 53 Example 5 F 5. 3 50 Example 58 5. 7 48 Example 59 6. 0 47 Example 60 2. 6 48 Example 61 3. 0 50 Example 62 3. 3 51 Example 63 3. 7 52 Example 64 4.0 0 53 Example 65 Fig. 3 (c) 51. Huff 4. 45 2. 0 4. 3 53 Example 66 4. 752 Example 6 F 5. 0 51 Example 68 5. 3 51 Example 69 5. 7 49 Implementation Example 70 6. 0 48 Example 71 2. 6 47 Example 72 3.
  • Example 73 3. 3 50
  • Example 74 3. 7 51
  • Example 75 4.0 0 52
  • Example 76 Figure 3 (d) 6 00 2. 0 4. 3 53
  • Example Huff 4. F 53
  • Example 78 5.
  • Example 79 5.
  • Example 80 5.
  • Example 81 6. 0 49 Comparative Example 9 2.0 45
  • the integral type hard cam structure according to each example having a partition wall catalyst concentration ratio of 1.1.about.3.0 is the one after the heat treatment at 850 ° C.
  • the filter regeneration rate was 46% or more.
  • FIG. 1 (a) is a perspective view schematically showing an example of an integrated her-cam structure of the present invention
  • FIG. 1 (b) shows one embodiment of the present invention shown in FIG. 1 (a).
  • FIG. 3 is a cross-sectional view of the body-shaped her cam structure taken along line AA.
  • FIG. 2 A cross section perpendicular to the longitudinal direction of the honeycomb structure of the present invention configured such that the number of through holes is substantially 1: 2 between the inflow side through hole group 101 and the outflow side through hole group 102 FIG.
  • FIG. 3 (a) and (d) are cross-sectional views schematically showing a cross section perpendicular to the longitudinal direction in the integrated heart structure of the present invention, and (e) is a conventional one.
  • FIG. 2 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction in a body-type honeycomb structure.
  • FIG. 4 (a) and (f) are cross-sectional views schematically showing a part of a cross section perpendicular to the longitudinal direction in an integrated her-cam structure of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cross section perpendicular to the longitudinal direction in the integral honeycomb structure of the present invention.
  • FIG. 6 (a) and (d) are cross-sectional views schematically showing an example of a cross section perpendicular to the longitudinal direction in an integrated her-cam structure of the present invention.
  • FIG. 7 is a perspective view schematically showing an example of an aggregate type hard cam structure of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the her cam structure of the present invention is installed.
  • FIG. 9 shows the relationship between the filter regeneration rate and the difference in partition wall thickness j8 in the filter regeneration test, and the opening ratio on the inlet side for the integrated her-cam structures according to Examples 1-137 and Comparative Example 1-18-1. It is the graph shown for every.
  • FIG. 10 With respect to the integrated hard cam structure according to Examples 38-81 and Comparative Example 9-16, the filter regeneration rate in the filter regeneration test and the adjacent large-volume through-holes 21a are separated from each other. 6 is a graph showing the relationship with the platinum catalyst concentration in the partition walls 23b for each cross-sectional shape of the integral honeycomb structure.
  • FIG. 11 is a cross-sectional view schematically showing an example of a conventional honeycomb structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Laminated Bodies (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本発明は、パティキュレートの浄化性能を向上させることができ、パティキュレート捕集時の圧力損失の上昇を抑制することができるハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であって、多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大きくなるように、ハニカム構造体の一方の端部で封止されてなる大容積貫通孔群と、断面の面積の総和が相対的に小さくなるように、ハニカム構造体の他方の端部で封止されてなる小容積貫通孔群とからなり、ハニカム構造体の入口側の端面の総面積に対する大容積貫通孔群の面積の占める比率である開口率をα(%)とし、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁との断面における厚さの差をβ(mm)としたときに、式(1)及び(2)の関係を満たすことを特徴とする。 0.0022α+0.0329≦β≦0.0071α+0.2553 …(1) 36≦α≦60 …(2)

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本出願は、 2003年 10月 20曰に出願された曰本国特許出願 2003— 359235号、お よび、 2003年 10月 22日に出願された日本国特許出願 2003— 362512号を基礎出 願として優先権主張する出願である。
本発明は、ディーゼルエンジン等の内燃機関カゝら排出される排気ガス中のパティキュ レート等を除去するフィルタや、触媒担持体等として用いられるハニカム構造体に関 する。
背景技術
[0002] バス、トラック等の車両や建設機械等の内燃機関力も排出される排気ガス中に含有さ れるスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となってい る。
そこで、排気ガス中のパティキュレートを捕集して、排気ガスを浄ィ匕することができる フィルタとして多孔質セラミック力もなるハ-カム構造体が種々提案されて!、る。
[0003] 従来、このようなハニカム構造体として、相対的に容積の大きな貫通孔(以下、大容 積貫通孔ともいう)と、相対的に容積の小さな貫通孔 (以下、小容積貫通孔ともいう) の 2種類の貫通孔を設け、いずれか一方の端部において、大容積貫通孔を封止材 により封止するとともに、他方の端部において、小容積貫通孔を封止材により封止し たものが知られている。このようなハ-カム構造体に関して、大容積貫通孔の開口側 をフィルタの流入側とし、小容積貫通孔の開口側をフィルタの流出側とする技術が開 示されている(例えば、特許文献 1一 13参照)。
[0004] また、フィルタの流入側が開口して 、る貫通孔(以下、流入側貫通孔とも!、う)の数を フィルタの流出側が開口している貫通孔(以下、流出側貫通孔ともいう)の数よりも多 くしたノヽ-カム構造体 (フィルタ)等も知られている(例えば、特許文献 6の図 3参照)。
[0005] これらのハニカム構造体では、貫通孔は、大容積貫通孔群 (表面積及び断面積の総 量が相対的に大きい)と、小容積貫通孔群 (表面積及び断面積の総量が相対的に小 さい)の 2種類力も構成されており、フィルタとして排気ガス浄ィ匕装置に用いる際に、 大容積貫通孔群の開口側をフィルタの流入側とし、小容積貫通孔群の開口側をフィ ルタの流出側とすることで、流入側貫通孔の表面積の総量と流出側貫通孔の表面積 の総量とが等 U ヽノヽ-カム構造体と比較して、捕集したパティキュレートの堆積層の 厚さを薄くすることができる。その結果、フィルタの小型化を図ること、パティキュレート 捕集時の圧力損失の上昇を抑制すること、及び、パティキュレートの捕集限界量を多 くすること等が可能となる。
[0006] また、昨今、ハ-カム構造体をフィルタとして排気ガス浄ィ匕装置に用いる場合には、 ハ-カム構造体に触媒を担持させることにより、パティキュレートの酸ィ匕除去や、排気 ガス中の有害なガス成分の酸化還元による浄化処理を行う方法等が採られている。
[0007] 特許文献 1:特開昭 56— 124418号公報
特許文献 2 :特開昭 56-124417号公報
特許文献 3:特開昭 62-96717号公報
特許文献 4:実開昭 58— 92409号公報
特許文献 5:米国特許第 4416676号明細書
特許文献 6:特開昭 58— 196820号公報
特許文献 7 :米国特許第 4420316号明細書
特許文献 8 :特開昭 58-150015号公報
特許文献 9:特開平 5— 68828号公報
特許文献 10 :仏国特許発明第 2789327号明細書
特許文献 11:国際公開第 02Z100514A1号パンフレット
特許文献 12:国際公開第 02Z10562A1号パンフレット
特許文献 13:国際公開第 03Z20407A1号パンフレット
発明の開示
発明が解決しょうとする課題
[0008] 上述のような大容積貫通孔群と小容積貫通孔群とが設けられたノヽニカム構造体では 、大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる 隔壁以外に、大容積貫通孔群を構成する貫通孔同士を隔てる隔壁が存在することに なる。
本発明の発明者は、鋭意検討した結果、大容積貫通孔群と小容積貫通孔群とが設 けられたハニカム構造体に触媒を担持させる際には、大容積貫通孔群を構成する貫 通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁よりも、大容積貫通孔群を 構成する貫通孔同士を隔てる隔壁に触媒をより多く担持させた方が、ハ-カム構造 体の圧力損失を上昇させることなぐ排気ガス等の浄ィ匕性能を向上させることができ ることを見出し、本発明に至った。
[0009] なお、特許文献 5には、流入側貫通孔同士を隔てる隔壁と、流入側貫通孔と流出側 貫通孔とを隔てる隔壁とで 20%以上厚みに差を設けたハ-カム構造体が開示され ている。し力しながら、このハ-カム構造体は、第 4コラム第 24行目一第 28行目に記 載されているように、流入側貫通孔と流出側貫通孔とを隔てる隔壁に最大限排気ガ スを通過させるものであって、流入側貫通孔同士を隔てる隔壁において、有効に排 気ガスを通過させるものではなぐ排気ガスを浄化させる触媒反応を生じさせることが 難しいものである。
課題を解決するための手段
[0010] 第一の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設 された柱状のハニカム構造体であって、
上記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大き くなるように、上記ハニカム構造体の一方の端部で封止されてなる大容積貫通孔群と 、上記断面における面積の総和が相対的に小さくなるように、上記ハニカム構造体の 他方の端部で封止されてなる小容積貫通孔群とからなり、
上記ハニカム構造体の入口側の端面の総面積に対する大容積貫通孔群の面積の 占める比率である開口率を α (%)とし、隣り合う上記大容積貫通孔群を構成する貫 通孔同士を隔てる上記隔壁と、隣り合う上記大容積貫通孔群を構成する貫通孔と上 記小容積貫通孔群を構成する貫通孔とを隔てる上記隔壁との上記断面における厚さ の差 (以下、隔壁厚みの差ともいう)を j8 (mm)としたときに、下記式(1)及び(2)の関 係を満たすことを特徴とする。
0. 0022 α +0. 0329≤ β≤0. 0071 α +Ο. 2553 · · · (!) 35≤ a≤60 - -- (2)
本明細書において、上記入口側の端面の総面積とは、貫通孔と隔壁とから構成され る部分の面積の総和をいい、シール材層の占める部分は、上記端面の総面積には 含まないこととする。
[0011] なお、上記大容積貫通孔群と上記小容積貫通孔群との組み合わせとしては、(1)大 容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群を構成する個々の貫通 孔とで、長手方向に垂直な断面の面積が同じであって、大容積貫通孔群を構成する 貫通孔の数が多い場合、(2)大容積貫通孔群を構成する個々の貫通孔と、小容積 貫通孔群を構成する個々の貫通孔とで、上記断面の面積が異なり、両者の貫通孔の 数も異なる場合、(3)大容積貫通孔群を構成する個々の貫通孔と、小容積貫通孔群 を構成する個々の貫通孔とで、大容積貫通孔群を構成する貫通孔の上記断面の面 積が大きぐ両者の貫通孔の数が同じ場合がある。
[0012] また、大容積貫通孔群を構成する貫通孔及び Z又は小容積貫通孔群を構成する貫 通孔は、その形状や長手方向に垂直な断面の面積等が同じ 1種の貫通孔からそれ ぞれ構成されていてもよぐその形状や長手方向に垂直な断面の面積等が異なる 2 種以上の貫通孔からそれぞれ構成されて!、てもよ!/、。
[0013] 本発明のハ-カム構造体は、基本ユニットとしての形状の繰り返しが起こっており、そ の基本ユニットでみて、断面の面積比が異なるものである。し力しながら、外周に近い 部分には、基本ユニットに欠けた部分が存在し、その部分については、上記原則から 外れる。従って、外周の 1一 2セルまでも厳密に測定した場合に、本発明のハ-カム 構造体に含まれる場合には、その 1一 2セルを除いて計算する力 基本ユニットの繰り 返しとならない部位を除いて計算する。具体的には、例えば、図 11に示すように、貫 通孔の長手方向に垂直な断面の形状が、その外周付近近傍以外の部分で、全て同 一であり、かつ、その断面形状が同一の貫通孔について、いずれか一方の端部が封 止されるとともに、全体として各端面の封止部と開放部とが市松模様を呈するように 配置された構成を有するハ-カム構造体は、本発明のハ-カム構造体に含まな 、も のとする。
[0014] 第一の本発明のハ-カム構造体は、さらに、下記式(3)の関係を満たすことが望まし い。
0. 0046 a +0. 0077≤ β≤0. 0071 a +0. 1553 - -- (3)
第一の本発明のハ-カム構造体では、隣り合う大容積貫通孔群を構成する貫通孔 同士を隔てる隔壁に触媒が担持されていることが望ましい。
第一の本発明のハ-カム構造体では、大容積貫通孔群を構成する貫通孔及び z又 は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、多角形で あることが望ましい。
第一の本発明のハニカム構造体では、大容積貫通孔群を構成する貫通孔の長手方 向に垂直な断面の形状は、八角形であり、小容積貫通孔群を構成する貫通孔の上 記断面の形状は、四角形であることが望ましい。
第一の本発明のハニカム構造体では、大容積貫通孔群の長手方向に垂直な断面に おける面積と、小容積貫通孔群の上記断面における面積との比が 1. 5-2. 7である ことが望ましい。
第一の本発明のハ-カム構造体では、長手方向に垂直な断面における隣り合う大容 積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う上記大容積貫通孔群を 構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁との交わる角の 少なくとも 1つが鈍角であることが望ましい。
第一の本発明のハ-カム構造体では、大容積貫通孔群を構成する貫通孔及び Z又 は小容積貫通群を構成する貫通孔の長手方向に垂直な断面の角部の近傍が曲線 により構成されて 、ることが望まし 、。
第一の本発明のハ-カム構造体では、隣り合う大容積貫通孔群を構成する貫通孔の 長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を構成する 貫通孔の上記断面における重心間距離とが等しいことが望ましい。
第二の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設 された柱状のハニカム構造体であって、
上記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大き くなるように、上記ハニカム構造体の一方の端部で封止されてなる大容積貫通孔群と 、上記断面における面積の総和が相対的に小さくなるように、上記ハニカム構造体の 他方の端部で封止されてなる小容積貫通孔群とからなり、
隣り合う上記大容積貫通孔群を構成する貫通孔同士を隔てる上記隔壁と、隣り合う 上記大容積貫通孔群を構成する貫通孔と上記小容積貫通孔群を構成する貫通孔と を隔てる上記隔壁とに触媒がそれぞれ担持されており、
上記隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁における触媒の 濃度と、上記隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成す る貫通孔とを隔てる隔壁における触媒の濃度との比が 1. 1-3. 0であることを特徴と する。
[0016] 第三の本発明のハ-カム構造体は、第一又は第二の本発明のハ-カム構造体がシ 一ル材層を介して複数個組み合わされてなるハ-カムブロックの外周面にシール材 層が形成されてなることを特徴とする。
なお、第一又は第二の本発明のハ-カム構造体は、第三の本発明のハ-カム構造 体の構成部材として用いられる場合のほか、 1個のみでフィルタとして用いられてもよ い。
以下においては、第一又は第二の本発明のハ-カム構造体のような、全体が一体と して形成された構造を有するハ-カム構造体を一体型ハ-カム構造体とも ヽ、第 三の本発明のハ-カム構造体のような、セラミック部材がシール材層を介して複数個 組み合わされた構造を有するハニカム構造体を集合体型ハニカム構造体とも!ヽぅ。ま た、一体型ハ-カム構造体と集合体型ハ-カム構造体とを特に区別しな!ヽ場合に、 ハ-カム構造体という。
[0017] 第一、第二又は第三の本発明のハ-カム構造体は、車両の排気ガス浄化装置に使 用されることが望ましい。
発明の効果
[0018] 第一の本発明のハ-カム構造体によれば、上記式(1)及び(2)の関係を満たすよう に、入口側の開口率 αと上記隔壁厚みの差 との関係が調整されているため、パテ ィキュレート捕集前の状態での圧力損失の上昇を低減しつつ、隣り合う大容積貫通 孔群を構成する貫通孔同士を隔てる隔壁に触媒を充分に担持させることができる。 従って、上記隔壁に触媒を担持させることにより、第一の本発明のハ-カム構造体は 、パティキュレートの浄ィ匕性能を向上させ、パティキュレート捕集時の圧力損失の上 昇を抑制することが可能である。特に、上記式(3)を満たすように、入口側の開口率 を αと、上記隔壁厚みの差 βとの関係が調整されると、より効果的に、パティキュレー ト捕集前の状態でのハニカム構造体の圧力損失の上昇を低減しつつ、隣り合う大容 積貫通孔群を構成する貫通孔同士を隔てる隔壁に触媒を充分に担持させることがで きる。
[0019] 第一の本発明のハニカム構造体では、隣り合う大容積貫通孔群を構成する貫通孔 同士を隔てる隔壁に触媒が担持されていると、パティキュレート捕集前の状態でのハ 二カム構造体の圧力損失の上昇を低減しつつ、パティキュレートの浄ィ匕性能を向上 させ、パティキュレート捕集時の圧力損失の上昇を抑制することができる。
[0020] 第一の本発明のハ-カム構造体では、大容積貫通孔群を構成する貫通孔及び Ζ又 は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状が多角形で あると、圧力損失を下げるために長手方向に垂直な断面における隔壁の面積を減少 させて開口率を高くしても、耐久性に優れ、長寿命のハニカム構造体を実現すること ができる。さらに、大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形 状が八角形であり、小容積貫通孔群を構成する貫通孔の上記断面の形状が四角形 であると、より耐久性に優れ、長寿命のハ-カム構造体を実現することができる。
[0021] 第一の本発明のハニカム構造体では、大容積貫通孔群の長手方向に垂直な断面に おける面積と、小容積貫通孔群の上記断面における面積との比が 1. 5-2. 7である と、入口側の開口率を相対的に大きくして、パティキュレート捕集時の圧力損失の上 昇を抑制することができるとともに、パティキュレート捕集前の圧力損失が高くなり過 ぎることち防止することがでさる。
[0022] 第一の本発明のハニカム構造体では、長手方向に垂直な断面における隣り合う大容 積貫通孔群を構成する貫通孔同士を隔てる隔壁と、隣り合う上記大容積貫通孔群を 構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁との交わる角の 少なくとも 1つが鈍角であると、圧力損失を低減することができる。
[0023] 第一の本発明のハ-カム構造体では、大容積貫通孔群を構成する貫通孔及び Ζ又 は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の角部の近傍が曲 線により構成されていると、貫通孔の角部に応力が集中することを防止することがで き、クラックの発生を防止することができ、また、圧力損失を低減することができる。
[0024] 第一の本発明のハニカム構造体では、隣り合う大容積貫通孔群を構成する貫通孔の 長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を構成する 貫通孔の上記断面における重心間距離とが等しいと、再生時に熱が均一に拡散して 温度分布が均一になりやすぐ長期間繰り返し使用しても、熱応力に起因するクラッ ク等が発生しにくい耐久性に優れたものとなる。
[0025] 第二の本発明のハ-カム構造体によれば、上記隣り合う大容積貫通孔群を構成する 貫通孔同士を隔てる隔壁における触媒の濃度と、上記隣り合う大容積貫通孔群を構 成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁における触媒の 濃度との比が 1. 1-3. 0に調整されているため、パティキュレート捕集前の状態での 圧力損失の上昇を低減しつつ、パティキュレートの浄ィ匕性能を向上させ、ノティキュ レート捕集時の圧力損失の上昇を抑制することができる。
[0026] 第三の本発明のハ-カム構造体によれば、第一又は第二の本発明のハ-カム構造 体がシール材層を介して複数個組み合わされてなるため、上記シール材層により熱 応力を低減して耐熱性を向上させること、及び、第一又は第二の本発明のハ-カム 構造体の個数を増減させることで自由にその大きさを調整すること等が可能となる。
[0027] 第一、第二又は第三の本発明のハ-カム構造体は、車両の排気ガス浄化装置に使 用されると、パティキュレート捕集時の圧力損失の上昇を抑制して再生までの期間を 長期化すること、パティキュレートの浄ィ匕性能を向上させること、耐熱性を向上させる こと、及び、自由にその大きさを調整すること等が可能となる。
発明を実施するための最良の形態
[0028] 第一の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設 された柱状のハニカム構造体であって、上記多数の貫通孔は、長手方向に垂直な断 面における面積の総和が相対的に大きくなるように、上記ハニカム構造体の一方の 端部で封止されてなる大容積貫通孔群と、上記断面における面積の総和が相対的 に小さくなるように、上記ハ-カム構造体の他方の端部で封止されてなる小容積貫通 孔群とからなり、上記ハニカム構造体の入口側の端面の総面積に対する大容積貫通 孔群の面積の占める比率である開口率を α (%)とし、隣り合う上記大容積貫通孔群 を構成する貫通孔同士を隔てる上記隔壁と、隣り合う上記大容積貫通孔群を構成す る貫通孔と上記小容積貫通孔群を構成する貫通孔とを隔てる上記隔壁との上記断 面における厚さの差を j8 (mm)としたときに、下記式(1)及び(2)の関係を満たすこと を特徴とする。
0. 0022 α + 0. 0329≤ β≤0. 0071 α + Ο. 2553
35≤ a≤60 - - - (2)
[0029] ここで、上記入口側の開口率 αとは、上記のように、ハ-カム構造体の入口側の端面 の総面積に対する大容積貫通孔群の面積の占める比率である。
[0030] 図 1 (a)は、第一の本発明の一体型ハ-カム構造体の一例を模式的に示した斜視図 であり、(b)は、(a)に示した第一の本発明の一体型ハ-カム構造体の A— A線断面 図である。
[0031] 図 1に示したように、一体型ハ-カム構造体 20は、略四角柱状であり、その長手方向 に多数の貫通孔 21が隔壁 23を隔てて並設されている。貫通孔 21は、一体型ハ-カ ム構造体 20の出口側の端部で封止材 22により封止されてなる大容積貫通孔 21aと 、一体型ハ-カム構造体 20の入口側の端部で封止材 22により封止されてなる小容 積貫通孔 21bとの 2種類の貫通孔からなり、大容積貫通孔 21aは、長手方向に垂直 な断面における面積が小容積貫通孔 21bに対して相対的に大きくなつており、これら の貫通孔 21同士を隔てる隔壁 23がフィルタとして機能するようになって 、る。即ち、 大容積貫通孔 21aに流入した排気ガスは、必ず隔壁 23を通過した後、小容積貫通 孔 21bから流出するようになって 、る。
なお、一体型ハ-カム構造体 20における上記大容積貫通孔群と上記小容積貫通孔 群との組み合わせは、大容積貫通孔群を構成する個々の貫通孔 21aと、小容積貫 通孔群を構成する個々の貫通孔 21bとで、大容積貫通孔群を構成する貫通孔 21a の長手方向に垂直な断面の面積が大きぐ両者の貫通孔の数が同じ場合に該当す る。
[0032] 第一の本発明の一体型ハニカム構造体は、入口側の端面の総面積に対する大容積 貫通孔群の面積の占める比率である開口率を α (%)とし、隣り合う上記大容積貫通 孔群を構成する貫通孔同士を隔てる上記隔壁と、隣り合う上記大容積貫通孔群を構 成する貫通孔と上記小容積貫通孔群を構成する貫通孔とを隔てる上記隔壁との上 記断面における厚さの差を j8 (mm)としたときに、下記式(1)及び(2)の関係を満た すことを特徴とする。
0. 0022 α +0. 0329≤ β≤0. 0071 α +Ο. 2553
35≤ a≤60 - - - (2)
[0033] なお、上記入口側の開口率 αを大きくすると、通常、隣り合う大容積貫通孔 21aと小 容積貫通孔 21bとを隔てる隔壁 23aの厚さは薄くなる。一方、排気ガス中の HC、 CO 等を触媒反応により充分に浄化し、パティキュレートを充分に燃焼させるためには、 隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bをある程度以上の厚さとし、触媒を 担持させる必要がある。従って、上記式(1)では、上記入口側の開口率 αの増大に 応じて、上記隔壁厚みの差 j8が増大している。
[0034] 上記隔壁厚みの差 βの下限 ίま、 0. 0022 α +0. 0329であり、上限 ίま、 0. 0071 a
+ 0. 2553である。 0. 0022 α +0. 0329未満であると、隣り合う大容積貫通孔 21a と小容積貫通孔 21bとを隔てる隔壁 23aの厚さが小さいため、触媒を充分に担持さ せることができず、隔壁 23b上のパティキュレートを充分に燃焼除去することができな い場合や、隣り合う大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23aの厚さ が大きぐ排気ガスの流入が困難になる場合がある。一方、 0. 0071 a +0. 2553を 超えると、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bの厚さが大きいため、隔 壁 23bの通気性が低下し、排気ガスの流入が減って、隔壁 23bによるパティキュレー トの捕集が行われにくくなつてしまったり、担持させる触媒の量に比べて必要以上に 隔壁 23bが厚くなつてしまったりする。上記隔壁厚みの差 j8の望ましい下限は、 0. 0 046 a +0. 0077であり、望まし ヽ上限 ίま、 0. 0071 a +0. 1553である。すなわち 、本発明の一体型ハ-カム構造体は、さらに、下記式 (3)の関係を満たすことが望ま しい。
0. 0046 a +0. 0077≤ β≤0. 0071 a +0. 1553 - - - (3)
[0035] 隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bの厚さは特に限定されないが、望 ましい下限は 0. 2mmであり、望ましい上限は 1. 2mmである。 0. 2mm未満であると 、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bに触媒を充分に担持させることが できないので、隔壁 23bに堆積したパティキュレートを充分に燃焼除去することがで きないことがある。 1. 2mmを超えると、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bの通気性が低下し、隔壁 23aにガスの流れが集中することとなって、隔壁 23aを 通過する断面流速が速くなり、パティキュレートがぬけやすく捕集能力が低下してし まつことがめる。
[0036] 隣り合う大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23aの厚さは特に限 定されないが、望ましい下限は 0. 2mmであり、望ましい上限は 1. 2mmである。 0. 2 mm未満であると、一体型ハ-カム構造体 20の強度が充分でないことがある。 1. 2m mを超えると、一体型ハ-カム構造体 20の圧力損失が高くなり過ぎることがある。
[0037] 一体型ハ-カム構造体 20の入口側の開口率 αの下限は 35%であり、上限は 60% である。入口側の開口率 αが 35%未満であると、一体型ハ-カム構造体 20の圧力 損失が高くなり過ぎることがある。入口側の開口率 αが 60%を超えると、一体型ハ- カム構造体 20の強度が充分でな力つたり、出口側の開口率が小さ過ぎて、一体型ハ 二カム構造体 20の圧力損失が高くなり過ぎることがある。上記入口側の開口率 αの 望まし 、下限は 40%であり、望まし 、上限は 55%である。
[0038] 第一の本発明の一体型ハ-カム構造体は、上記式(1)及び (2)の関係を満たすよう に、入口側の開口率 αと、上記隔壁厚みの差 j8との関係が調整されているため、 Λ ティキュレート捕集前の状態での圧力損失の上昇を低減しつつ、隣り合う大容積貫 通孔 21a同士を隔てる隔壁 23bに触媒を充分に担持させることができる。従って、第 一の本発明の一体型ハ-カム構造体は、 CO、 HC及び NOx等の排気ガス中の有害 なガス成分を浄ィ匕することができる触媒を隔壁 23bに担持させることにより、触媒反応 により隔壁 23bを通過する排気ガスを充分に浄ィ匕することが可能となり、上記触媒反 応で生じた反応熱は、パティキュレートの燃焼除去に利用することができる。また、パ ティキュレートの燃焼の活性ィ匕エネルギーを低下させる触媒を隔壁 23bに担持させる ことにより、隔壁 23bに付着したパティキュレートをより容易に燃焼除去することができ る。その結果、第一の本発明の一体型ハ-カム構造体は、パティキュレートの浄ィ匕性 能を向上させることができ、パティキュレート捕集時の圧力損失の上昇を抑制すること ができる。また、上記式(1)の関係を満たすように、隣り合う大容積貫通孔 21a同士を 隔てる隔壁 23bを厚くすることで、ハ-カム構造体の強度を向上させることが可能で ある。さらに、上記入口側の開口率 αの増大に応じて、上記式(1)の関係を満たすよ うに、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bを厚くすることで、ノ、二カム構 造体の熱容量が低下することを防ぐことができ、再生時に発生する熱衝撃等によって 、ハ-カム構造体にクラックが生じることを抑制することが可能である。
[0039] 特に、上記式(3)を満たすように、入口側の開口率を αと、上記隔壁厚みの差 j8との 関係が調整されると、より効果的に、パティキュレート捕集前の状態でのハ-カム構 造体の圧力損失の上昇を低減しつつ、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bに触媒を充分に担持させることができる。その結果、第一の本発明の一体型ハ 二カム構造体は、より効果的に、パティキュレートの浄ィ匕性能を向上させることができ 、パティキュレート捕集時の圧力損失の上昇を抑制することができる。
[0040] 第一の本発明の一体型ハ-カム構造体には、隣り合う大容積貫通孔群を構成する 貫通孔同士を隔てる隔壁に触媒が担持されていることが望ましい。
上記触媒としては特に限定されな 、が、パティキュレートの燃焼の活性ィ匕エネルギー を低下させるものや、 CO、 HC及び NOx等の排気ガス中の有害なガス成分を浄ィ匕 することができるもの等が望ましぐ例えば、白金、パラジウム、ロジウム等の貴金属等 を挙げることができる。なかでも、白金、パラジウム、ロジウムからなる、いわゆる三元 触媒が望ましい。また、貴金属に加えて、アルカリ金属 (元素周期表 1族)、アルカリ 土類金属 (元素周期表 2族)、希土類元素 (元素周期表 3族)、遷移金属元素等を担 持させてもよい。
[0041] 上記触媒は、隔壁 23内部の気孔の表面に担持されていてもよいし、隔壁 23上にあ る厚みをもって担持されていてもよい。また、上記触媒は、隔壁 23の表面及び Z又 は気孔の表面に均一に担持されていてもよいし、ある一定の場所に偏って担持され ていてもよい。なかでも、大容積貫通孔 21a内の隔壁 23の表面又は表面付近の気孔 の表面に担持されていることが望ましぐこれらの両方ともに担持されていることがより 望ましい。上記触媒とパティキュレートとが接触しやすいため、パティキュレートの燃 焼を効率よく行うことができるからである。 [0042] 第一の本発明のハニカム構造体では、隣り合う大容積貫通孔群を構成する貫通孔 同士を隔てる隔壁と、隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群 を構成する貫通孔とを隔てる隔壁とに触媒がそれぞれ担持されており、上記隣り合う 大容積貫通孔群を構成する貫通孔同士を隔てる隔壁における触媒の濃度 Aと、上 記隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔と を隔てる隔壁における触媒の濃度 Bとの比( = AZB;以下、隔壁触媒濃度比とも!、う )が 1. 1-3. 0であることが望ましい。 1. 1未満であると、隣り合う大容積貫通孔群を 構成する貫通孔同士を隔てる隔壁に担持されている触媒の量が少な過ぎて、パティ キュレートの浄ィ匕性能を充分に向上させることができな力つたり、隣り合う大容積貫通 孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁に担持さ れている触媒の量が多過ぎて、パティキュレート捕集前の状態で圧力損失が高くなり 過ぎることがある。 3. 0を超えると、排気ガス浄化装置内での使用時等の高温環境下 で、触媒のシンタリングが生じやすくなり、触媒の活性が低下しやすくなるため、フィ ルタの再生処理における再生率 (燃焼浄ィ匕されたパティキュレートの割合)が低下し てしまうと考えられる。また、 3. 0を超えて、隣り合う大容積貫通孔群を構成する貫通 孔同士を隔てる隔壁に触媒を担持させても、パティキュレートの浄ィ匕性能は大きく向 上しない。
[0043] また、一体型ハ-カム構造体 20に上記触媒を付与する際には、予めその表面をァ ルミナ等のサポート材により被覆した後に、上記触媒を付与することが望ましい。これ により、比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすこと ができる。また、サポート材によって触媒金属のシンタリングを防止することができるの で、触媒の耐熱性も向上する。カロえて、圧力損失を下げることを可能にする。
[0044] 一体型ハ-カム構造体 20は、上記触媒が担持されていることで、排気ガス中のパテ ィキュレートを捕集するフィルタとして機能するとともに、排気ガスに含有される CO、 HC及び NOx等を浄ィ匕するための触媒コンバータとして機能することができる。なお 、一般に、パティキュレートの燃焼浄ィ匕は、貴金属等の触媒の表面上で、酸素、 NOx 等が反応することで活性化された酸素により促進されているものと考えられる。このパ ティキュレートの燃焼浄化の際に、比較的低温でも分解浄化されやすい SOF、 CO 及び HC等を酸化反応させれば、発熱が生じて、触媒等が高温となるので、パティキ ュレートの燃焼浄ィ匕の反応速度をより向上させることが可能である。即ち、触媒が隣り 合う大容積貫通孔 21a同士を隔てる隔壁 23bに担持されていることで、 SOF、 CO及 び HC等を浄ィ匕する際に生じる反応熱を利用して、隔壁 23b上のパティキュレートを 効率よく燃焼除去することができる。
[0045] このように第一の本発明のハ-カム構造体では、隣り合う大容積貫通孔群を構成す る貫通孔同士を隔てる隔壁に触媒が担持されていると、パティキュレート捕集前の状 態でのハ-カム構造体の圧力損失の上昇を低減しつつ、パティキュレートの浄ィ匕性 能を向上させ、パティキュレート捕集時の圧力損失の上昇を抑制することができる。 なお、第一の本発明の一体型ハ-カム構造体は、触媒を担持させることにより、従来 公知の触媒付 DPF (ディーゼル ·パティキュレート'フィルタ)と同様のガス浄ィ匕装置と して機能するものである。従って、ここでは、第一の本発明の一体型ハ-カム構造体 の触媒担持体としての機能に関する詳しい説明を省略する。
[0046] 第一の本発明の一体型ハ-カム構造体では、ハ-カム構造体の入口側の開口率 α を大きくすると、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁の長さ が増すことになり、ハ-カム構造体を構成する隔壁において、隣り合う大容積貫通孔 群を構成する貫通孔同士を隔てる隔壁の割合が増すことになる。そこで、第一の本 発明の一体型ハ-カム構造体は、開口率に応じて、大容積貫通孔群を構成する貫 通孔同士を隔てる隔壁の厚みを調整したものであり、ガスの流入と流出とを制御する ことが可能である。さらに、ガスの流入、流出の状況に応じて触媒を担持させること〖こ より、第一の本発明の一体型ハ-カム構造体では、フィルタ全体の温度分布を一様 にすること、及び、フィルタ全体を均一に再生させること等が可能である。
[0047] このような第一の本発明の一体型ハ-カム構造体では、貫通孔は、大容積貫通孔群 と小容積貫通孔群との 2種類からなり、例えば、図 1に示したように、大容積貫通孔群 を構成する貫通孔として、八角形の大容積貫通孔 21aが設けられ、小容積貫通孔群 を構成する貫通孔として、正方形の小容積貫通孔 21bが設けられ、両者の封止数を 1対 1 (市松模様状)にしたもの等がある。
上述の第一の本発明の一体型ハ-カム構造体では、大容積貫通孔 21aと大容積貫 通孔 21aとを隔てる隔壁 23bと、大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔 壁 23aの 2種類が存在することとなる。
第一の本発明の一体型ハ-カム構造体が排気ガス浄化用フィルタとして使用された 場合、使用初期段階では、排気ガスは相対的に抵抗の低い隔壁 23aを主に通過し、 隔壁 23aは高温の排気ガスに直接的に晒される一方、相対的に抵抗の高い隔壁 23 bは高温の排気ガスにそれほど晒されることがない。このため、第一の本発明の一体 型ハ-カム構造体が触媒を担持したものである場合、隔壁 23aの触媒は反応するが 、隔壁 23bの触媒はあまり反応しな 、こととなる (捕集段階 1)。
しかしながら、その後も継続して使用すると、隔壁 23aにパティキュレートが蓄積され、 隔壁 23aを通過する際の抵抗が増大してくるため、隔壁 23bに流入する排気ガスの 量が多くなつてくる。このとき、隔壁 23bも高温の排気ガスに充分に晒され、隔壁 23b の触媒も反応することとなる (捕集段階 2)。
ある程度隔壁 23bにパティキュレートが蓄積されると、再度主に隔壁 23aに排気ガス が流れるようになる。この場合は、基本的には、捕集段階 1と同様である (捕集段階 3)
[0048] 以上に示したように、捕集段階が進むと、排気ガスは、隔壁 23bに流入し、隔壁 23b においても、パティキュレートが捕集されることとなる力 相対的に考えると、隔壁 23b は、構造上排気ガスが通過しにくぐ排気ガスは、隔壁 23aの方に流入しやすい。こ のため、隔壁 23bでは、 CO、 HC等の酸化反応が生じにくぐ昇温しにくいので、 ティキュレートの燃焼反応が生じにくかったり、ハ-カム構造体に温度分布が生じて、 クラックが入りやす力つたりすると考えられる。
[0049] 第一の本発明は、排気ガスが相対的に流入しにくいと考えられる隔壁 23bの厚さを 調整することにより、運転状況によって温度が変動しやすい排気ガスが流入しても、 フィルタ全体としての昇温温度の安定性、触媒反応の安定性を図って ヽることを特徴 としている。
すなわち、隔壁 23bを隔壁 23aよりも厚くしたことにより、フィルタの熱容量における隔 壁 23bの比率を高くしていること、排気ガスの流入が少ない隔壁 23bの触媒担持量を 多くし、排気ガスの浄ィ匕を促進していること、隔壁 23bにおける排気ガスの発熱反応 を促進して 、ること等を特徴として 、る。
[0050] 一体型ハ-カム構造体 20は、主として多孔質セラミック力 なることが望ましぐその 材料としては、例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、窒化チタン等の 窒化物セラミック、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タ ングステン等の炭化物セラミック、アルミナ、ジルコユア、コージユライト、ムライト、シリ 力等の酸ィ匕物セラミック等を挙げることができる。また、一体型ハ-カム構造体 20は、 シリコンと炭化珪素との複合体、チタン酸アルミニウムと 、つた 2種類以上の材料から 形成されて 、るものであってもよ 、。
[0051] 一体型ハ-カム構造体 20を製造する際に使用するセラミックの粒径としては特に限 定されないが、後の焼成工程で収縮が少ないものが望ましぐ例えば、 0. 3— 50 m程度の平均粒径を有する粉末 100重量部と、 0. 1-1. 程度の平均粒径を 有する粉末 5— 65重量部とを組み合わせたものが望ま 、。上記粒径のセラミック粉 末を上記配合で混合することで、多孔質セラミックからなる一体型ハ-カム構造体を 製造することができる。
[0052] なお、一体型ハ-カム構造体 20を構成する封止材 22と隔壁 23とは、同じ多孔質セ ラミックからなることがより望ましい。これにより、両者の接着強度を高くすることができ るとともに、封止材 22の気孔率を隔壁 23と同様に調整することで、隔壁 23の熱膨張 率と封止材 22の熱膨張率との整合を図ることができ、製造時や使用時の熱応力によ つて封止材 22と隔壁 23との間に隙間が生じたり、封止材 22や封止材 22に接触する 部分の隔壁 23にクラックが発生したりすることを防止することができる。
[0053] 一体型ハ-カム構造体 20の気孔率は特に限定されないが、望ましい下限は 20%で あり、望ましい上限は 80%である。 20%未満であると、一体型ハ-カム構造体 20が すぐに目詰まりを起こすことがあり、一方、 80%を超えると、一体型ハニカム構造体 2 0の強度が低下して容易に破壊されることがある。
なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等の従来公知の方法により測定することができる。
[0054] 一体型ハ-カム構造体 20の平均気孔径の望ましい下限は 1 μ mであり、望ましい上 限は 100 mである。: L m未満であると、パティキュレートが容易に目詰まりを起こ すことがある。一方、 100 mを超えると、パティキュレートが気孔を通り抜けてしまい 、該パティキュレートを捕集することができず、フィルタとして機能しないことがある。
[0055] 図 1に示した一体型ハ-カム構造体 20は、略四角柱状であるが、本発明の一体型ハ 二カム構造体の形状は柱状体であれば特に限定されず、例えば、長手方向に垂直 な断面の形状が多角形、円形、楕円形、扇形等力 なる柱状体を挙げることができる
[0056] また、第一の本発明の一体型ハ-カム構造体では、貫通孔は、長手方向に垂直な 断面における面積の総和が相対的に大きくなるように、第一の本発明の一体型ハ- カム構造体の一方の端部で封止されてなる大容積貫通孔群と、上記断面における面 積が相対的に小さくなるように、第一の本発明の一体型ハ-カム構造体の他方の端 部で封止されてなる小容積貫通孔群との 2種類力 なる。
[0057] パティキュレートを捕集して圧力損失が上昇した排気ガス浄ィ匕用フィルタを再生する 際には、パティキュレートを燃焼させる力 パティキュレート中には、燃焼して消滅する 炭素等のほかに、燃焼して酸ィ匕物となる金属等が含まれており、これらが排気ガス浄 化用フィルタ中にアッシュとして残留する。アッシュは、通常、排気ガス浄ィ匕用フィル タの出口に近いところに残留するので、排気ガス浄化用フィルタを構成する貫通孔は 、出口に近いところ力もアッシュが充填されていき、アッシュが充填された部分の容積 が次第に大きくなるとともに、排気ガス浄ィ匕用フィルタとして機能する部分の容積 (面 積)が次第に小さくなつていく。そして、アッシュの蓄積量が多くなりすぎると、もはや フィルタとして機能しなくなり、排気管カゝら取り出して逆洗浄を行ってアッシュを排気ガ ス浄ィ匕用フィルタから取り除くか、排気ガス浄ィ匕用フィルタを廃棄することとなる。 第一の本発明の一体型ハ-カム構造体は、流入側貫通孔の容積と流出側貫通孔の 容積とが同じものと比べると、アッシュが蓄積しても、排気ガス浄化用フィルタとして機 能する部分のろ過面積の減少比率が小さぐアッシュに起因する圧力損失も小さくな る。従って、逆洗浄等を必要とするまでの期間も長くなり、排気ガス浄ィ匕用フィルタと しての寿命を長くすることができる。その結果、逆洗や交換等により必要となるメンテ ナンス費用を大幅に削減することができる。
[0058] 第一の本発明の一体型ハニカム構造体では、隣り合う大容積貫通孔 (流入側貫通孔 ) 21aと小容積貫通孔 (流出側貫通孔) 21bとを隔てる隔壁 23aのみでなぐ隣り合う 大容積貫通孔 (流入側貫通孔) 21a同士を隔てる隔壁 23bにも一様にパティキュレー トが蓄積する。これは、パティキュレートの捕集開始直後は、大容積貫通孔 (流入側 貫通孔) 21aから小容積貫通孔 (流出側貫通孔) 21bへ向かってガスが流れるために 、パティキュレートは大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23a上に 堆積するのである力 パティキュレートの捕集が進んでケーク層を形成するにしたが い、大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23aにガスが流れに《な り、徐々に大容積貫通孔 21a同士を隔てる隔壁 23bにもガスの流れが生じることが分 かった。よって、ある一定期間パティキュレートの捕集を行った後には、大容積貫通 孔 (流入側貫通孔) 21aの隔壁 23上には一様にパティキュレートが堆積するようにな る。
[0059] 従って、開口率を一定として、隣り合う大容積貫通孔 (流入側貫通孔) 21a同士を隔 てる隔壁 23bのないフィルタと比較した際に、本発明の一体型ハ-カム構造体では、 ろ過するための隔壁 23の表面積が大きいため、同じ量のパティキュレートを蓄積させ たときに、隔壁 23に蓄積するパティキュレートの厚みを減少させることができる。この ため、本発明の一体型ハ-カム構造体では、使用を開始してから時間が経過するに 従って上昇する圧力損失の上昇率が小さくなり、フィルタとしての使用期間全体で考 えた際の圧力損失を低減することができ、再生までの期間を長期化することができる
[0060] 図 1に示したような構成力もなる第一の本発明の一体型ハ-カム構造体では、大容 積貫通孔群を構成する貫通孔及び Z又は小容積貫通孔群を構成する貫通孔の長 手方向に垂直な断面の形状は、多角形であることが望ましい。多角形にすることによ り、ハ-カム構造体の長手方向に垂直な断面における隔壁の面積を減少させて開口 率を高くしても、耐久性に優れるとともに、長寿命のハ-カム構造体を実現することが できるからである。なかでも、 4角形以上の多角形がより望ましぐその角の少なくとも 1つが鈍角であることがさらに望ましい。ガスが貫通孔を通過する際の摩擦に起因す る圧力損失を低減することができる力もである。なお、大容積貫通孔群を構成する貫 通孔のみの上記断面の形状を四角形、五角形、台形、八角形等の多角形としてもよ ぐ小容積貫通孔群を構成する貫通孔のみの上記断面の形状を多角形としてもよぐ 両方を多角形としてもよい。特に、大容積貫通孔群を構成する大容積貫通孔の長手 方向に垂直な断面の形状が八角形であり、小容積貫通孔群を構成する小容積貫通 孔の上記断面の形状が四角形であることが望ましい。
[0061] 第一の本発明の一体型ハニカム構造体では、大容積貫通孔群の長手方向に垂直な 断面における面積と、小容積貫通孔群の上記断面における面積との比(大容積貫通 孔群断面積 Z小容積貫通孔群断面積;以下、開口率比とも!、う)の望ま 、下限は 1 . 5であり、望ましい上限は 2. 7である。上記開口率比が 1. 5未満であると、殆ど大容 積貫通孔群と小容積貫通孔群とを設けた効果を得ることができな 、ことがある。一方 、上記開口率比が 2. 7を超えると、小容積貫通孔群の容積が小さすぎるため、パティ キュレート捕集前の圧力損失が大きくなり過ぎることがある。
[0062] 第一の本発明の一体型ハ-カム構造体では、大容積貫通孔群を構成する貫通孔及 び Z又は小容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の角部近傍 は、曲線により構成されていることが望ましい。曲線にすることにより、貫通孔の角部 に応力が集中することを防止して、クラックの発生を防止することができ、また、貫通 孔を通過する際の摩擦に起因する圧力損失を低減することができる。
[0063] 第一の本発明の一体型ハ-カム構造体では、隣り合う大容積貫通孔群を構成する 貫通孔の長手方向に垂直な断面における重心間距離と、隣り合う小容積貫通孔群を 構成する貫通孔の上記断面における重心間距離とが等しいことが望ましい。これによ り、再生時に熱が均一に拡散する結果、温度分布が均一になりやすぐ長期間繰り 返し使用しても、熱応力に起因するクラック等が発生しにくい耐久性に優れたハ-カ ム構造体となる。
なお、本発明において、「隣り合う大容積貫通孔群を構成する貫通孔の長手方向に 垂直な断面の重心間距離」とは、一の大容積貫通孔群を構成する貫通孔の長手方 向に垂直な断面における重心と、他の大容積貫通孔群を構成する貫通孔の上記断 面における重心との最小の距離のことを意味し、一方、「隣り合う小容積貫通孔群を 構成する貫通孔の上記断面の重心間距離」とは、一の小容積貫通孔群を構成する 貫通孔の長手方向に垂直な断面における重心と、他の小容積貫通孔群を構成する 貫通孔の上記断面における重心との最小の距離のことを意味する。
[0064] また、一体型ハ-カム構造体 10において、大容積貫通孔 21aと小容積貫通孔 21bと は、隔壁 23を隔てて上下方向及び左右方向に交互に並設されており、各方向にお ける大容積貫通孔 21aの長手方向に垂直な断面の重心と小容積貫通孔 21bの長手 方向に垂直な断面の重心とは、一直線上に存在する。
従って、上記「隣り合う大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面 における重心間距離」及び「隣り合う小容積貫通孔群を構成する貫通孔の上記断面 における重心間距離」とは、一体型ハ-カム構造体 10の長手方向に垂直な断面に おいて、互いに斜めに隣り合う大容積貫通孔 21a及び小容積貫通孔 21bの重心間 の距離をいう。
[0065] 第一の本発明の一体型ハ-カム構造体では、大容積貫通孔群を構成する貫通孔及 び小容積貫通孔群を構成する貫通孔の数は特に限定されないが、実質的に同数で あることが望ましい。このような構成にすると、排気ガスの濾過に関与しにくい隔壁を 最小限にすることができ、流入側貫通孔を通過する際の摩擦及び Z又は流出側貫 通孔を通過する際の摩擦に起因する圧力損失が必要以上に上昇することを抑えるこ とが可能である。例えば、図 2に示すような貫通孔の数が実質的に大容積貫通孔 10 1と小容積貫通孔 102とで 1: 2であるハ-カム構造体 100と比較すると、貫通孔の数 が実質的に同数である場合では、流出側貫通孔を通過する際の摩擦による圧力損 失が低いため、ハ-カム構造体全体としての圧力損失が低くなる。
[0066] 次に、第一の本発明の一体型ハ-カム構造体の長手方向に垂直な断面における大 容積貫通孔群を構成する貫通孔及び小容積貫通孔群を構成する貫通孔の構成の 具体例について説明する。
図 3 (a)一 (d)及び図 4 (a)一 (f)は、第一の本発明の一体型ハ-カム構造体におけ る長手方向に垂直な断面を模式的に示した断面図であり、図 3 (e)は、従来の一体 型ハニカム構造体における長手方向に垂直な断面を模式的に示した断面図である。
[0067] 図 3 (a)に示した一体型ハ-カム構造体 110は、上記開口率比がほぼ 1. 55、図 3 (b )に示した一体型ハ-カム構造体 120は、ほぼ 2. 54、図 3 (c)に示した一体型ハ-カ ム構造体 130は、ほぼ 4. 45、図 3 (d)に示した一体型ハ-カム構造体 140は、ほぼ 6. 00である。また、図 4 (a)、(c)、(e)は、上記開口率比がすべてほぼ 4. 45であり、 図 4 (b)、(d)、(f)は、すべてほぼ 6. 00である。
なお、図 3 (d)に示した一体型ハ-カム構造体 140のように、上記開口率比が大きい と、小容積貫通孔 141bの容積が小さすぎるため、初期の圧力損失が大きくなりすぎ ることがある。
[0068] 図 3 (a)—(d)は、すべて大容積貫通孔 11 la、 121a, 131a, 141aの上記断面形状 は 8角形であり、小容積貫通孔 l l lb、 121b, 131b, 141bの上記断面形状は 4角 形 (正方形)であり、それぞれが交互に配列されており、小容積貫通孔の断面積を変 化させ、大容積貫通孔の断面形状を少し変化させることにより、上記開口率比を任意 に変動させることが容易にできる。同様に、図 4に示す一体型ハ-カム構造体に関し ても任意にその開口率比を変動させることができる。また、図 3 (a)—(d)に示したよう に、本発明の一体型ハ-カム構造体の外周の角部には、面取りが施されていること が望ましい。
なお、図 3 (e)に示した一体型ハ-カム構造体 150は、流入側貫通孔 152a及び流出 側貫通孔 152bの上記断面形状はともに 4角形であり、それぞれが交互に配列されて いる。
[0069] 図 4 (a)—(b)に示す一体型ハ-カム構造体 160、 260では、大容積貫通孔 161a、 2 61aの上記断面形状は 5角形であり、そのうちの 3つの角がほぼ直角となっており、小 容積貫通孔 161b、 261bの上記断面形状は 4角形で、それぞれ大きな四角形の斜 めに対向する部分を占めるように構成されて 、る。図 4 (c)一 (d)に示す一体型ハ- カム構造体 170、 270では、図 3 (a)—(d)に示す上記断面形状を変形したものであ つて、大容積貫通孔 171a、 271aと小容積貫通孔 171b、 271bとが共有する隔壁を 小容積貫通孔側にある曲率を持って広げた形状である。この曲率は任意のものであ つてよく、例えば、隔壁を構成する曲線が 1Z4円に相当するものであってもよい。こ の場合、その上記開口率比は 3. 66となる。従って、図 4 (c)一(d)に示す一体型ハ 二カム構造体 170、 270では、隔壁を構成する曲線が 1Z4円に相当するものよりも、 さらに小容積貫通孔 171b、 271bの上記断面の面積が小さくなつている。図 4 (e)— (f)に示す一体型ハ-カム構造体 180、 280では、大容積貫通孔 181a、 281a及び 小容積貫通孔 281b、 28 lbは 4角形 (長方形)からなり、 2つの大容積貫通孔と 2つの 小容積貫通孔を組み合わせると、ほぼ正方形となるように構成されて 、る。
[0070] 第一の本発明の一体型ハ-カム構造体の長手方向に垂直な断面における大容積 貫通孔群を構成する貫通孔及び小容積貫通孔群を構成する貫通孔の構成のその 他の具体例としては、例えば、図 5に示した一体型ハ-カム構造体 190における大容 積貫通孔 191a及び小容積貫通孔 191bを設けた構成、図 6 (a)一 (d)に示した一体 型ノヽ-カム構造体 200、 21、 220、 230における大容積貫通孑し 201a、 211a, 221a 、 231a及び小容積貫通孔 201b、 211b, 221b, 23 lbを設けた構成等を挙げること ができる。
[0071] 第二の本発明のハニカム構造体は、多数の貫通孔が隔壁を隔てて長手方向に並設 された柱状のハニカム構造体であって、上記多数の貫通孔は、長手方向に垂直な断 面における面積の総和が相対的に大きくなるように、上記ハニカム構造体の一方の 端部で封止されてなる大容積貫通孔群と、上記断面における面積の総和が相対的 に小さくなるように、上記ハ-カム構造体の他方の端部で封止されてなる小容積貫通 孔群とからなり、隣り合う上記大容積貫通孔群を構成する貫通孔同士を隔てる上記 隔壁と、隣り合う上記大容積貫通孔群を構成する貫通孔と上記小容積貫通孔群を構 成する貫通孔とを隔てる上記隔壁とに触媒がそれぞれ担持されており、上記隣り合う 大容積貫通孔群を構成する貫通孔同士を隔てる隔壁における触媒の濃度と、上記 隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する貫通孔とを 隔てる隔壁における触媒の濃度との比が 1. 1-3. 0であることを特徴とする。
なかでも、上記触媒として白金を使用し、上記隣り合う大容積貫通孔群を構成する貫 通孔同士を隔てる隔壁における白金の濃度と、上記隣り合う大容積貫通孔群を構成 する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁における白金の濃 度との比が 1. 1一 3. 0であることが望ましい。
[0072] 第二の本発明のハ-カム構造体によれば、上記隣り合う大容積貫通孔群を構成する 貫通孔同士を隔てる隔壁における触媒の濃度と、上記隣り合う大容積貫通孔群を構 成する貫通孔と小容積貫通孔群を構成する貫通孔とを隔てる隔壁における触媒の 濃度との比が 1. 1-3. 0に調整されているため、パティキュレート捕集前の状態での 圧力損失の上昇を低減しつつ、パティキュレートの浄ィ匕性能を向上させ、ノティキュ レート捕集時の圧力損失の上昇を抑制することができる。一方、上記隔壁触媒濃度 比が 1. 1未満であると、隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔 壁に担持されている触媒の量が少な過ぎて、パティキュレートの浄ィ匕性能を充分に 向上させることができな力つたり、隣り合う大容積貫通孔群を構成する貫通孔と小容 積貫通孔群を構成する貫通孔とを隔てる隔壁に担持されている触媒の量が多過ぎて 、パティキュレート捕集前の状態で圧力損失が高くなり過ぎることがある。上記隔壁触 媒濃度比が 3. 0を超えると、排気ガス浄化装置内での使用時等の高温環境下で、触 媒のシンタリングが生じやすくなり、触媒の活性が低下しやすくなるため、フィルタの 再生処理における再生率 (燃焼浄化されたパティキュレートの割合)が低下してしまう と考えられる。また、 3. 0を超えて、隣り合う大容積貫通孔群を構成する貫通孔同士 を隔てる隔壁に触媒を担持させても、パティキュレートの浄ィ匕性能は大きく向上しな い。
[0073] 第二の本発明のハニカム構造体は、上記隣り合う大容積貫通孔群を構成する貫通 孔同士を隔てる隔壁における触媒の濃度を向上させて触媒反応の反応点を増大さ せたものであり、一方、第一の本発明のハ-カム構造体は、上記隣り合う大容積貫通 孔群を構成する貫通孔同士を隔てる隔壁を相対的に厚くして触媒反応の反応点を 増大させることを可能にしたものである。従って、第二の本発明のハ-カム構造体は 、その構成材料、及び、長手方向に垂直な断面形状を含む構造において、隣り合う 大容積貫通孔群を構成する貫通孔同士を隔てる隔壁に触媒を担持させた第一の本 発明のハニカム構造体と同様であってよぐ同様の効果を奏するものである。
[0074] 第一又は第二の本発明の一体型ハ-カム構造体は、 1個のみで一体型フィルタとし て用いられてもよ ヽが、シール材層を介して複数個結束されて集合体型フィルタとし て用いられることが望ましい。上記集合体型フィルタとすることにより、上記シール材 層により熱応力を低減してフィルタの耐熱性を向上させること、及び、第一又は第二 の本発明の一体型ハ-カム構造体の個数を増減させることで自由にその大きさを調 整すること等が可能となるからである。
なお、一体型フィルタと集合体型フィルタとは、同様の機能を有するものである。 [0075] なお、第一又は第二の本発明の一体型ハ-カム構造体からなる一体型フィルタでは 、その材料として、通常、コージエライト等の酸ィ匕物セラミックが使用される。安価に製 造することができるとともに、比較的熱膨張係数が小さいため、製造中及び使用中に 熱応力によってフィルタが破損する恐れが少な 、からである。
[0076] また、図 1には示していないが、第一又は第二の本発明の一体型ハ-カム構造体か らなる一体型フィルタでは、下述の本発明の集合体型ハニカム構造体と同様に、外 周面に第一又は第二の本発明の一体型ハ-カム構造体よりも気体を通過させにくい 材質カゝらなるシール材層が形成されていることが望ましい。上記シール材層が外周 面に形成されることにより、上記シール材層により第一又は第二の本発明の一体型 ハ-カム構造体を圧縮することができ、強度が向上し、クラックの発生に伴うセラミック 粒子の脱粒を防止することができる。
[0077] 第三の本発明の集合体型ハ-カム構造体は、第一又は第二の本発明の一体型ハ- カム構造体がシール材層を介して複数個組み合わされてなるハ-カムブロックの外 周面に、第一又は第二の本発明の一体型ハ-カム構造体よりも気体を通過させにく V、材質カゝらなるシール材層が形成されてなるものであり、集合体型フィルタとして機 能する。
[0078] 図 7は、本発明の集合体型ハ-カム構造体の一例を模式的に示した斜視図である。
図 7に示す集合体型ハ-カム構造体において、多数の貫通孔は、長手方向に垂直 な断面における面積の総和が相対的に大きくなるように、上記ハニカム構造体の一 方の端部で封止されてなる大容積貫通孔群と、上記断面における面積の総和が相 対的に小さくなるように、上記ハニカム構造体の他方の端部で封止されてなる小容積 貫通孔群とからなるものである。なお、上述したように、上記断面における面積の総和 には、下記シール材層が占める部分は含まないこととする。
[0079] 図 7に示したように、集合体型ハ-カム構造体 10は、排気ガス浄ィ匕用フィルタとして 用いられるものであり、一体型ハ-カム構造体 20がシール材層 14を介して複数個結 束されてハ-カムブロック 15を構成し、このハ-カムブロック 15の周囲に、排気ガス の漏洩を防止するためのシール材層 13が形成されているものである。なお、シール 材層 13は、一体型ハ-カム構造体 20よりも気体を通過させにくい材質力もなる。 [0080] なお、集合体型ハ-カム構造体 10では、一体型ハ-カム構造体 20を構成する材料 として、熱伝導性、耐熱性、機械的特性及び耐薬品性等に優れた炭化珪素が望まし い。
[0081] 集合体型ハ-カム構造体 10において、シール材層 14は、一体型セラミック構造体 2 0間に形成され、複数個の一体型セラミック構造体 20同士を結束する接着剤として 機能することが望ましぐ一方、シール材層 13は、ハ-カムブロック 15の外周面に形 成され、集合体型ハ-カム構造体 10を内燃機関の排気通路に設置した際、ハ-カ ムブロック 15の外周面力 貫通孔を通過する排気ガスが漏れ出すことを防止するた めの封止材として機能するものである。
なお、集合体型ハ-カム構造体 10において、シール材層 13とシール材層 14とは、 同じ材料力もなるものであってもよぐ異なる材料からなるものであってもよい。さらに 、シール材層 13及びシール材層 14が同じ材料からなるものである場合、その材料の 配合比は同じであってもよぐ異なっていてもよい。
[0082] ただし、シール材層 14は、緻密体力もなるものであってもよぐその内部への排気ガ スの流入が可能なように、多孔質体力もなるものであってもよいが、シール材層 13は 、緻密体力もなるものであることが望ましい。シール材層 13は、集合体型ハ-カム構 造体 10を内燃機関の排気通路に設置した際、ハ-カムブロック 15の外周面カも排 気ガスが漏れ出すことを防止する目的で形成されているからである。
[0083] シール材層 13、 14を構成する材料としては特に限定されず、例えば、無機バインダ 一と、有機バインダーと、無機繊維及び Z又は無機粒子カゝらなるもの等を挙げること ができる。
[0084] 上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることがで きる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダー のなかでは、シリカゾノレが望ましい。
[0085] 上記有機バインダーとしては、例えば、ポリビュルアルコール、メチルセルロース、ェ チルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単 独で用いてもよぐ 2種以上を併用してもよい。上記有機バインダーのなかでは、カル ボキシメチルセルロースが望まし 、。 [0086] 上記無機繊維としては、例えば、シリカ アルミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、シリカ アルミナファイバーが望ましい。
[0087] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には 、炭化珪素、窒化珪素、窒化硼素等力 なる無機粉末又はウイスカ一等を挙げること ができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子 のなかでは、熱伝導性に優れる炭化珪素が望ま 、。
[0088] なお、上述したように、第一又は第二の本発明の一体型ハ-カム構造体をそのまま 排気ガス浄ィ匕用フィルタとして用いる場合には、本発明の集合体型ハ-カム構造体 と同様のシール材層が第一又は第二の本発明の一体型ハ-カム構造体の外周面に 設けられてもよい。
[0089] 図 7に示した集合体型ハ-カム構造体 10は、円柱状である力 本発明の集合体型ハ 二カム構造体の形状としては、柱状体であれば特に限定されず、例えば、長手方向 に垂直な断面の形状が多角形、楕円形等力もなる柱状体を挙げることができる。 また、本発明の集合体型ハ-カム構造体は、第一又は第二の本発明の一体型ハ- カム構造体を複数個結束させた後、上記断面形状が多角形、円形又は楕円形等と なるように外周部を加工したものであってもよぐ予め第一又は第二の本発明の一体 型ハ-カム構造体の上記断面形状を加工した後に、それらを接着剤により結束させ ることによって、上記断面形状を多角形、円形又は楕円形等としたものであってもよく 、予め第一又は第二の本発明の一体型ハ-カム構造体をそれぞれの上記断面形状 が所望の形状となるように成形して製造し、それらを接着剤により結束させることによ つて、上記断面形状を多角形、円形又は楕円形等としたものであってもよぐ例えば 、上記断面形状が円を 4分割した扇形である柱状の第一又は第二の本発明の一体 型ハニカム構造体を 4個結束させて円柱状の本発明の集合体型ハニカム構造体を 製造することができる。
[0090] 次に、上述した本発明のハ-カム構造体の製造方法の一例について説明する。
本発明のハ-カム構造体力 S、その全体が一の焼結体力 構成された一体型フィルタ である場合、まず、上述したようなセラミックを主成分とする原料ペーストを用いて押 出成形を行い、本発明の一体型ハニカム構造体と略同形状のセラミック成形体を作 製する。
この際、例えば、貫通孔が大容積貫通孔と小容積貫通孔との 2種類の貫通孔からな る押出成形に使用する金型を、貫通孔の密度に合わせて選定する。
なお、第一の本発明の一体型ハ-カム構造体を製造する場合には、上記式(1)及び (2)を満たすようなセラミック成形体を作製する。
[0091] 上記原料ペーストとしては特に限定されないが、製造後の第一又は第二の本発明の 一体型ハ-カム構造体の気孔率が 20— 80%となるものが望ましぐ例えば、上述し たようなセラミック力もなる粉末に、バインダー及び分散媒液等を加えたものを挙げる ことができる。
[0092] 上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭脂 、エポキシ榭脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末 100重量部に対して、 1一 10重量 部程度が望ましい。
[0093] 上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール 等のアルコール、水等を挙げることができる。
上記分散媒液は、上記原料ペーストの粘度が一定範囲内となるように適量配合され る。
[0094] これらセラミック粉末、バインダー及び分散媒液は、アトライター等で混合し、ニーダ 一等で充分に混練した後、押出成形される。
[0095] また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸石鹼、ポリアルコール等を挙げることができる。
[0096] さらに、上記原料ペーストには、必要に応じて酸ィ匕物系セラミックを成分とする微小中 空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加してもよ い。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、フライアッシュバルーンが望ましい。
[0097] 次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次 いで、大容積貫通孔の出口側の端部、及び、小容積貫通孔の入口側の端部に、封 止材となる封止材ペーストを所定量充填し、貫通孔を目封じする。
[0098] 上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材 の気孔率が 20— 80%となるものが望ましぐ例えば、上記原料ペーストと同様のもの を用いることができる力 上記原料ペーストで用いたセラミック粉末に、潤滑剤、溶剤 、分散剤、バインダー等を添加したものであることがより望ましい。上記封止処理の途 中で封止材ペースト中のセラミック粒子等が沈降することを防止することができるから である。
[0099] 次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱 脂、焼成を行う。
上記セラミック乾燥体の脱脂及び焼成の条件は、従来から多孔質セラミックからなる フィルタを製造する際に用いられている条件を適用することができる。
[0100] 次に、焼成して得られたセラミック焼成体の表面に高い比表面積のアルミナ膜を形成 し、このアルミナ膜の表面に白金等の触媒を付与することにより、表面に触媒が担持 された多孔質セラミックからなり、その全体が一の焼結体力 構成された第一又は第 二の本発明の一体型ハ-カム構造体を製造することができる。
なお、第二の本発明の一体型ハ-カム構造体を製造する場合には、ー且、ハ-カム 構造体全体に触媒を付与した後、大容積貫通孔群を構成する貫通孔と小容積貫通 孔群を構成する貫通孔とを隔てる隔壁にマスキングを行 、、その状態で再度触媒を 付与する方法や、一旦、ハニカム構造体全体に触媒又は触媒の原料を含有するスラ リーを付与した後、大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成する 貫通孔とを隔てる隔壁に付着した上記スラリーのみを、高圧の気体を吹き付けること により除去する方法等が挙げられる。
[0101] 上記セラミック焼成体の表面にアルミナ膜を形成する方法としては、例えば、 Al(NO ) 等のアルミニウムを含有する金属化合物の溶液をセラミック焼成体に含浸させて
3 3
加熱する方法、アルミナ粉末を含有する溶液をセラミック焼成体に含浸させて加熱す る方法等を挙げることがでさる。
上記アルミナ膜に助触媒等を付与する方法としては、例えば、 Ce (NO ) 等の希土
3 3 類元素等を含有する金属化合物の溶液をセラミック焼成体に含浸させて加熱する方 法等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸 溶液([Pt (NH ) (NO ) ]HNO )等をセラミック焼成体に含浸させて加熱する方法
3 2 2 2 3
等を挙げることができる。
[0102] また、本発明のハ-カム構造体力 図 7に示したような、一体型ハ-カム構造体 20が シール材層 14を介して複数個結束されて構成された集合体型ハ-カム構造体 10で ある場合、次に、一体型ハ-カム構造体 20の側面に、シール材層 14となるシール材 ペーストを均一な厚さで塗布して、順次他の一体型ハ-カム構造体 20を積層するェ 程を繰り返し、所定の大きさの角柱状の一体型ハニカム構造体 20の積層体を作製 する。
なお、上記シール材ペーストを構成する材料としては、既に説明しているので、ここで はその説明を省略する。
[0103] 次に、この一体型ハ-カム構造体 20の積層体を加熱してシール材ペースト層を乾燥 、固化させてシール材層 14とし、その後、ダイヤモンドカッター等を用いて、その外周 部を図 7に示したような形状に切削することで、ハ-カムブロック 15を作製する。 そして、ハ-カムブロック 15の外周に上記シール材ペーストを用 、てシール材層 13 を形成することで、一体型ハ-カム構造体 20がシール材層 14を介して複数個結束さ れて構成された本発明の集合体型フィルタ 10を製造することができる。
[0104] 本発明のハニカム構造体の用途は特に限定されないが、車両の排気ガス浄化装置 に用いることが望ましい。
図 8は、本発明のハ-カム構造体が設置された車両の排気ガス浄ィ匕装置の一例を模 式的に示した断面図である。
[0105] 図 8に示したように、排気ガス浄化装置 600は、主に、ハ-カム構造体 60、ハ-カム 構造体 60の外方を覆うケーシング 630、ハ-カム構造体 60とケーシング 630との間 に配置される保持シール材 620、及び、ハ-カム構造体 60の排気ガス流入側に設 けられた加熱手段 610から構成されており、ケーシング 630の排気ガスが導入される 側の端部には、エンジン等の内燃機関に連結された導入管 640が接続されており、 ケーシング 630の他端部には、外部に連結された排出管 650が接続されている。な お、図 8中、矢印は排気ガスの流れを示している。
また、図 8において、ハ-カム構造体 60は、図 1に示した一体型ハ-カム構造体 20 であってもよぐ図 7に示した集合体型ハ-カム構造体 10であってもよい。
[0106] このような構成力もなる排気ガス浄ィ匕装置 600では、エンジン等の内燃機関から排出 された排気ガスは、導入管 640を通ってケーシング 630内に導入され、大容積貫通 孔 21aからハ-カム構造体 60内に流入し、隔壁 23を通過して、この隔壁 23でパティ キュレートが捕集されて浄化された後、小容積貫通孔 21bからハ-カム構造体 60外 に排出され、排出管 650を通って外部へ排出されることとなる。
[0107] また、排気ガス浄ィ匕装置 600では、ハ-カム構造体 60の隔壁に大量のパティキユレ ートが堆積し、圧力損失が高くなると、ハ-カム構造体 60の再生処理が行われる。 上記再生処理では、加熱手段 610を用いて加熱されたガスをノヽ-カム構造体 60の 貫通孔の内部へ流入させることで、ハ-カム構造体 60を加熱し、隔壁に堆積したパ ティキュレートを燃焼除去する。また、ポストインジェクション方式を用いてパティキユレ ートを燃焼除去してもよい。そのほか、ケーシング 630の手前の導入管 640の部分に 酸ィ匕触媒を付与したフィルタを設置してもよぐケーシング 630の内部であって、加熱 手段 610より排気ガス流入側に酸ィ匕触媒を付与したフィルタを設置してもよい。 実施例
[0108] 以下に実施例を掲げ、図面を参照して本発明を更に詳しく説明するが、本発明はこ れら実施例のみに限定されるものではない。
[0109] (実施例 1)
(1)平均粒径 10 mの α型炭化珪素粉末 60重量%と、平均粒径 0. 5 μ ΐη<Ό β 炭化珪素粉末 40重量%とを湿式混合し、得られた混合物 100重量部に対して、有 機バインダー (メチルセルロース)を 5重量部、水を 10重量部加えて混練して混合組 成物を得た。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練し た後、押出成形を行い、図 3 (a)に示した断面形状と略同様の断面形状で、入口側 の開口率が 37. 97%、開口率比が 1. 52の生成形体を作製した。なお、隣り合う大 容積貫通孔 21a同士を隔てる隔壁 23bの厚さを 0. 45mm,隣り合う大容積貫通孔 2 laと小容積貫通孔 21bとを隔てる隔壁 23aの厚さを 0. 30mmとした。
[0110] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを所定の貫通孔に充填した。 次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2200°C、 3時間で焼成を行うことにより、気孔率が 42%、平均気孔径が 9 m、 その大きさが 34. 3mm X 34. 3mm X 150mm,貫通孔 21の数が 28個 Zcm2 (大容 積貫通孔 21a: 14個 Zcm2、小容積貫通孔 21b : 14個 Zcm2)で、炭化珪素焼結体 力もなるセラミック焼成体を製造した。
なお、一体型ハ-カム構造体 20では、出口側の端面において、大容積貫通孔 21a のみを封止材により封止し、入口側の端面において、小容積貫通孔 21bのみを封止 材により封止した。
[0111] (2)Α1(ΝΟ ) を 1, 3-ブタンジオール中に投入し、 60°Cで 5時間攪拌することにより
3 3
Α1(ΝΟ ) を 30重量%含有する 1, 3—ブタンジオール溶液を作製した。この 1, 3—ブ
3 3
タンジオール溶液中に上記セラミック焼成体を浸漬した後、 150°Cで 2時間、 400°C で 2時間加熱し、更に 80°Cの水に 2時間浸漬した後、 700°Cで 8時間加熱して上記 セラミック焼成体の表面にアルミナ層を形成した。
[0112] Ce (NO ) をエチレングリコール中に投入し、 90°Cで 5時間攪拌することにより Ce (N
3 3
O ) を 6重量0 /0含有するエチレングリコール溶液を作製した。このエチレングリコール
3 3
溶液中に上記アルミナ層が形成された上記セラミック焼成体を浸漬した後、 150°Cで 2時間、窒素雰囲気中 650°Cで 2時間加熱して、上記セラミック焼成体の表面に触媒 を担持させるための希土類酸化物含有アルミナ層を形成した。
[0113] 白金濃度 4. 53重量%のジニトロジアンミン白金硝酸([Pt (NH ) (NO ) ]HNO )
3 2 2 2 3 を蒸留水で希釈し、上記希土類酸ィ匕物含有アルミナ層が形成された上記セラミック 焼成体に Ptが 2gZLとなるように浸漬した後、 110°Cで 2時間、窒素雰囲気中 500°C で 1時間加熱して、上記セラミック焼成体の表面に、白金触媒を担持させ、一体型ハ 二カム構造体 20の製造を終了した。
[0114] (実施例 2— 37、比較例 1一 8)
表 1に示したように、一体型ハ-カム構造体 20の長手方向に垂直な断面形状、及び 、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bの厚さを変更したほかは、実施例 1と同様にして一体型ハ-カム構造体 20を製造した。
なお、一体型ハニカム構造体 20の長手方向に垂直な断面形状、及び、隣り合う大容 積貫通孔 21a同士を隔てる隔壁 23bの厚さは、混合組成物の押出成形を行う際のダ ィの形状を変更することにより調整した。
[0115] (実施例 38)
(1)平均粒径 10 mの α型炭化珪素粉末 60重量%と、平均粒径 0. 5 μ ΐη<Ό β 炭化珪素粉末 40重量%とを湿式混合し、得られた混合物 100重量部に対して、有 機バインダー (メチルセルロース)を 5重量部、水を 10重量部加えて混練して混合組 成物を得た。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練し た後、押出成形を行い、図 3 (a)に示した断面形状と略同様の断面形状で、入口側 の開口率が 37. 97%、開口率比が 1. 52の生成形体を作製した。なお、隣り合う大 容積貫通孔 21a同士を隔てる隔壁 23bの厚さ、及び、隣り合う大容積貫通孔 21aと小 容積貫通孔 21bとを隔てる隔壁 23aの厚さをともに 0. 30mmとした。
[0116] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを所定の貫通孔に充填した。 次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2200°C、 3時間で焼成を行うことにより、気孔率が 42%、平均気孔径が 9 m、 その大きさが 34. 3mm X 34. 3mm X 150mm,貫通孔 21の数が 28個 Zcm2 (大容 積貫通孔 21a : 14個 Zcm2、小容積貫通孔 21b : 14個 Zcm2)で、炭化珪素焼結体 力もなるセラミック焼成体を製造した。
なお、一体型ハ-カム構造体 20では、出口側の端面において、大容積貫通孔 21a のみを封止材により封止し、入口側の端面において、小容積貫通孔 21bのみを封止 材により封止した。 [0117] (2)Α1(ΝΟ ) を 1, 3—ブタンジオール中に投入し、 60°Cで 5時間攪拌することにより
3 3
Α1(ΝΟ ) を 30重量%含有する 1, 3—ブタンジオール溶液を作製した。この 1, 3—ブ
3 3
タンジオール溶液中に上記セラミック焼成体を浸漬した後、 150°Cで 2時間、 400°C で 2時間加熱し、更に 80°Cの水に 2時間浸漬した後、 700°Cで 8時間加熱して上記 セラミック焼成体の表面にアルミナ層を形成した。
[0118] Ce (NO ) をエチレングリコール中に投入し、 90°Cで 5時間攪拌することにより Ce (N
3 3
O ) を 6重量0 /0含有するエチレングリコール溶液を作製した。このエチレングリコール
3 3
溶液中に上記アルミナ層が形成された上記セラミック焼成体を浸漬した後、 150°Cで 2時間、窒素雰囲気中 650°Cで 2時間加熱して、上記セラミック焼成体の表面に触媒 を担持させるための希土類酸化物含有アルミナ層を形成した。
[0119] ジニトロジアンミン白金硝酸水溶液中に、上記希土類酸化物含有アルミナ層が形成 された上記セラミック焼成体を浸漬させた後、 110°Cで 2時間、窒素雰囲気中 500°C で 1時間加熱して、上記セラミック焼成体の表面全体に、白金触媒を 2gZL担持させ た。
[0120] 次いで、隣り合う大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23aの表面 にフエノール榭脂を流し込み、加熱して硬化させ、マスキング処理を施した。そして、 再びジニトロジアンミン白金硝酸水溶液中に、上記マスキング処理を施したセラミック 焼成体を浸漬させた後、 110°Cで 2時間、窒素雰囲気中 500°Cで 1時間加熱して、 隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bに、白金触媒をさらに lgZL担持さ せた。次に、 500°Cで 5時間加熱して、フエノール榭脂を燃焼除去し、一体型ハ-カ ム構造体 20の製造を終了した。
また、触媒担持量の調整は、上述したような各種触媒付与用の溶液に浸潰した後、 エアーブロー等で隔壁上の液量を減少させることにより行うこともできる。
なお、得られた一体型ハ-カム構造体 20において、白金触媒は、隣り合う大容積貫 通孔 21aと小容積貫通孔 21bとを隔てる隔壁 23aに 2gZL担持させられており、隣り 合う大容積貫通孔 21a同士を隔てる隔壁 23bに 2. 6gZL担持させられていた。なお 、隔壁 23a、 23bにおける触媒担持量は、隔壁 23a、 23bのそれぞれについての触 媒量 (重量)、および、各隔壁のハ-カム構造体に占める割合に基いて計算した。 [0121] (実施例 39— 81、比較例 9一 16)
表 2に示したように、一体型ハ-カム構造体 20の長手方向に垂直な断面形状、及び 、隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bに担持させた白金触媒の量を変 更したほかは、実施例 38と同様にして一体型ハ-カム構造体 20を製造した。
なお、一体型ハ-カム構造体 20の長手方向に垂直な断面形状は、混合組成物の押 出成形を行う際のダイの形状を変更することにより調整した。また、一体型ハ-カム構 造体 20の隣り合う大容積貫通孔 21a同士を隔てる隔壁 23bに担持させた白金触媒 の量は、マスキング処理を施したセラミック焼成体を浸漬させるジニトロジアンミン白 金硝酸水溶液の濃度を変更することにより調整した。
[0122] (フィルタ再生試験)
図 8に示したように、各実施例及び比較例に係る一体型ハ-カム構造体をエンジン の排気通路に配設して排気ガス浄ィ匕装置とし、上記エンジンを運転して、一体型ハ 二カム構造体にパティキュレートを 7gZL捕集させた。
次に、パティキュレートを捕集させた一体型ハ-カム構造体を反応試験機内に設置 し、上記一体型ハ-カム構造体に窒素ガスを 130LZminの流量で導入しながら、上 記一体型ハ-カム構造体を 200°Cに保持した。
次に、パティキュレートを含有していないこと以外はディーゼルエンジンの排気ガスと ほぼ同じ組成の模擬ガスを上記一体型ハ-カム構造体内に、温度 650°C、圧力 8kP a、時間 7分間の条件で保持させ、パティキュレートを燃焼させた。なお、この際、上記 一体型ハ-カム構造体よりも模擬ガス流入側に、市販の基材がコージエライトからな るハ-カム構造の触媒担持体(大きさ 34. 3mm X 34. 3mm X 70mm、セル密度 40 0セル Zinch、白金担持量 5gZL)を設置し、このハ-カム構造の触媒担持体を通 過させた模擬ガスを上記一体型ハ-カム構造体に導入させた。
最後に、一体型ハ-カム構造体の重量を測定して、 7gZL捕集させたパティキュレー トのうち、燃焼したパティキュレートの割合 (フィルタ再生率)を求め、パティキュレート の浄ィ匕性能を評価した。
なお、実施例 38— 81及び比較例 9一 16に係る一体型ハ-カム構造体については、 前処理として、エンジンの排気通路に配設する前に、大気雰囲気中、 850°Cで 20時 間加熱した。
また、上記模擬ガスは、 C Hを 6540ppm、 COを 5000ppm、 NOxを 160、 SOxを 8
3 6
ppm、 COを 0. 038%、 H Oを 10%
2 2 、 Oを 10%含有するものとした。上記模擬ガス
2
の導入により、上記一体型ハ-カム構造体は、 600°C程度まで昇温した。
なお、測定装置としては、(堀場製作所社製、 MOTOR EXHAUST GAS ANA
LYZER(MEXA— 7500D)を用いた。本装置では、 CO、 CO
2、 SOは NDIR (非分 2
散式赤外線吸収反応式)で、 Oは MPOP (磁気圧式)で、 HCは FID (水素炎イオン
2
化検出)で、 NOxは CLDで検出した。
[0123] 上記フィルタ再生試験の結果を表 1、 2及び図 9、 10に示した。
なお、図 9は、実施例 1一 37及び比較例 1一 8に係る一体型ハ-カム構造体につい て、フィルタ再生試験におけるフィルタ再生率と隔壁厚みの差 j8との関係を、入口側 の開口率ごとに示したグラフであり、中が塗りつぶされた点は、実施例を表し、中が塗 りつぶされていない点は、比較例を表す。
また、図 10は、実施例 38— 81及び比較例 9一 16に係る一体型ハ-カム構造体につ いて、フィルタ再生試験におけるフィルタ再生率と、隣り合う大容積貫通孔 21a同士 を隔てる隔壁 23bにおける白金触媒濃度との関係を、一体型ハ-カム構造体の断面 形状ごとに示したグラフであり、中が塗りつぶされた点は、実施例を表し、中が塗りつ ぶされていない点は、比較例を表す。
[0124] [表 1]
二カム 入口側 隔壁 23a 隔壁厚さ 0. 0022 or
構造体 関口率 関口率比 厚さ の差 β 再生率
+0.0329
断面形状 W (mm) (%) 実施例 1 0. 15 66 実施例 2 0. 20 73 実施例 3 0 25 79 実施例 4 0.30 81 図 3(a) 3 97 1. 55 0. 3 0. 12 0. IS 0.42 0.52 実施例 5 0.35 7 実施例 6 40 72 実施例 7 0.45 64 実施例 8 0.50 60 実施例 9 0. 15 62 実施例 10 0. 20 69 実施例 0. 25 78 実施例 12 0. 30 8 実施例 13 図 3(b) 44.79 2.54 0. 3 0. 35 0. 13 0. 21 0, 47 0. 57 86 実施例 14 0.40
実施例 15 0.45 74 実施例 16 0.50 68 実施例 17 0. 55 62 実施例 18 0.15 61 実施例 19 0.20 67 実施例 20 0. 25 72 実關 21 0, 30 80 実施例 22 0. 35 83 図 3 51. 77 4.45 0. 3 0. 15 0. 25 0. 52 0. 62 実施例 23 0. 40 82 実施例 24 0. 45 74 実施例 25 0. 50 72 実施例 26 0. 55 67 実施例 27 0. 60 o o 61 実施例 28 0. 20 61 実施例 29 0. 25 £5
d + 66 実施例 30 0.30 1 実施例 31 0.35 o 74 実施例 32 0. 40 79 図 3(d) 59. 04 6. 00 0, 3 0, 16 0. 0, 57 0. 67 実施例 33 0. 45 78 実施例 34 0. 50 75 実施例 35 0.55 70 実 例 36 0. οθ 6^ 実譲 37 0. 65 e 61 比較例 1 0. 10 58 図 3(a) 37, 97 1. 55 0. 3 0. 12 18 0. 42 0. 52 比較例 2 0. 55 55 比較例 3 0. 10 55 図 3(b) 44. 79 2. 54 0. 3 0. 13 0. 21 0. 47 0. 57 比較例 4 0. 60 56 比較例 5 0. 10 52 図 3 51 ' 7 4, 45 0. 3 0. 15 0. 25 0.52 0. 62 比較例 6 0. 65 57 比較例 7 0. 15 54 図 3(d) 59. 04 6. 00 0. 3 0. 16 0. 28 0. 57 0. 67 比較例 8 0. 70 57 2] /、二カム 入口側 隔壁 23a 隔壁 23b フィルタ再生率 (%) 構造体 関口率 開口率比 触媒濃度 触媒澴度 く 850°C20時間 断面形状 (g/ L) (g/ L) 前処理後〉 実施例 38 2. 6 50 実施例 39 3. 0 52 実施例 40 3. 3 53 実施例 41 3. 7 54 実施例 42 4. 0 54 実施例 43 図 3(a) 1 . 55 2. 0 4. 3 53 実施例 44 4. 7 52 実施例 45 5. 0 50
o
実施例 46 O寸 5. 3 49 実施例 4フ 5. 7 47 実施例 48 寸 6. 0 46 実施例 49 寸 2. 6 49 実施例 50 3. 0 53 実施例 51 3. 3 55 実施例 52 3. フ 58 実施例 53 4. 0 57 実施例 54 図 30)) 44. 79 2. 0 4. 3 56 実施例 55 4. 7 55 実施例 56 5. 0 53 実施例 5フ 5. 3 50 実施例 58 5. 7 48 実施例 59 6. 0 47 実施例 60 2. 6 48 実施例 61 3. 0 50 実施例 62 3. 3 51 実施例 63 3. 7 52 実施例 64 4. 0 53 実施例 65 図 3(c) 51 . フフ 4. 45 2. 0 4. 3 53 実施例 66 4. 7 52 実施例 6フ 5. 0 51 実施例 68 5. 3 51 実施例 69 5. 7 49 実施例 70 6. 0 48 実施例 71 2. 6 47 実施例 72 3. 0 49 実施例 73 3. 3 50 実施例 74 3. 7 51 実施例 75 4. 0 52 実施例 76 図 3(d) 6. 00 2. 0 4. 3 53 実施例フフ 4. フ 53 実施例 78 5. 0 52 実施例 79 5. 3 50 実施例 80 5. 7 50 実施例 81 6. 0 49 比較例 9 2. 0 45
図 3(a) 3フ. 9フ 1 . 55 2. 0
比較例 1 0 6. 6 42 比較例 1 1 2. 0 44
図 3(b) 44. 79 2. 54 2. 0
比較例 1 2 6. 6 44 比較例 1 3 2. 0 43
図 3(c) 2. 0
比較例 14 6. 6 45 比較例 1 5 2. 0 41
図 3(d) 6. 00 2. 0
比較例 1 6 6. 6 45 [0126] 表 1及び図 9に示したように、上記式(1)及び(2)の関係を満たす各実施例に係る一 体型ハ-カム構造体は、 、ずれもフィルタ再生率が 60%以上であった。
表 2及び図 10に示したように、隔壁触媒濃度比が 1. 1-3. 0である各実施例に係る 一体型ハ-カム構造体は、 、ずれも 850°Cでの熱処理後のフィルタ再生率が 46% 以上であった。
図面の簡単な説明
[0127] [図 1] (a)は、本発明の一体型ハ-カム構造体の一例を模式的に示した斜視図であり 、(b)は、(a)に示した本発明の一体型ハ-カム構造体の A— A線断面図である。
[図 2]貫通孔の数が実質的に流入側貫通孔群 101と流出側貫通孔群 102とで 1: 2と なるように構成された本発明のハニカム構造体の長手方向に垂直な断面を模式的に 示した断面図である。
[図 3] (a)一 (d)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断 面を模式的に示した断面図であり、(e)は、従来の一体型ハニカム構造体における 長手方向に垂直な断面を模式的に示した断面図である。
[図 4] (a)一 (f)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断面 の一部を模式的に示した断面図である。
[図 5]本発明の一体型ハニカム構造体における長手方向に垂直な断面の一例を模 式的に示した断面図である。
[図 6] (a)一 (d)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断 面の一例を模式的に示した断面図である。
[図 7]本発明の集合体型ハ-カム構造体の一例を模式的に示した斜視図である。
[図 8]本発明のハ-カム構造体が設置された車両の排気ガス浄化装置の一例を模式 的に示した断面図である。
[図 9]実施例 1一 37及び比較例 1一 8に係る一体型ハ-カム構造体について、フィル タ再生試験におけるフィルタ再生率と隔壁厚みの差 j8との関係を、入口側の開口率 ごとに示したグラフである。
[図 10]実施例 38— 81及び比較例 9一 16に係る一体型ハ-カム構造体について、フ ィルタ再生試験におけるフィルタ再生率と、隣り合う大容積貫通孔 21a同士を隔てる 隔壁 23bにおける白金触媒濃度との関係を、一体型ハニカム構造体の断面形状ごと に示したグラフである。
[図 11]従来のハニカム構造体の一例を模式的に示した断面図である。
符号の説明
10 集合体型ハニカム構造体
13、 14 シール材層
15 /ヽニカムブロック
20 一体型ハ-カム構造体
21 貫通孔
21a 大容積貫通孔
21b 小容積貫通孔
22 封止材
23 隔壁
23a 隣り合う大容積貫通孔 21aと小容積貫通孔 21bとを隔てる隔壁
23b 隣り合う大容積貫通孔 21a同士を隔てる隔壁

Claims

請求の範囲
[1] 多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であつ て、
前記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大き くなるように、前記ハニカム構造体の一方の端部で封止されてなる大容積貫通孔群と 、前記断面における面積の総和が相対的に小さくなるように、前記ハニカム構造体の 他方の端部で封止されてなる小容積貫通孔群とからなり、
前記ハニカム構造体の入口側の端面の総面積に対する大容積貫通孔群の面積の 占める比率である開口率を α (%)とし、隣り合う前記大容積貫通孔群を構成する貫 通孔同士を隔てる前記隔壁と、隣り合う前記大容積貫通孔群を構成する貫通孔と前 記小容積貫通孔群を構成する貫通孔とを隔てる前記隔壁との前記断面における厚さ の差を β (mm)としたときに、下記式(1)及び (2)の関係を満たすことを特徴とするハ 二カム構造体。
0. 0022 α + 0. 0329≤ β≤0. 0071 α + 0. 2553
36≤ a≤60 - - - (2)
[2] さらに、下記式(3)の関係を満たす請求項 1に記載のハニカム構造体。
0. 0046 a + 0. 0077≤ β≤0. 0071 a + 0. 1553 - - - (3)
[3] 隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁に触媒が担持されてい る請求項 1又は 2に記載のハ-カム構造体。
[4] 大容積貫通孔群を構成する貫通孔及び Z又は小容積貫通孔群を構成する貫通孔 の長手方向に垂直な断面の形状は、多角形である請求項 1一 3のいずれか 1に記載 のハニカム構造体。
[5] 大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面の形状は、八角形であ り、小容積貫通孔群を構成する貫通孔の前記断面の形状は、四角形である請求項 1 一 4の!、ずれか 1に記載のハ-カム構造体。
[6] 大容積貫通孔群の長手方向に垂直な断面における面積と、小容積貫通孔群の前記 断面における面積との比が 1. 5-2. 7である請求項 1一 5のいずれか 1に記載のハ 二カム構造体。
[7] 長手方向に垂直な断面における隣り合う大容積貫通孔同士群を構成する貫通孔を 隔てる隔壁と、隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成 する貫通孔とを隔てる隔壁との交わる角の少なくとも 1つが鈍角である請求項 1一 6の
V、ずれか 1に記載のハ-カム構造体。
[8] 大容積貫通孔群を構成する貫通孔及び Z又は小容積貫通孔群を構成する貫通孔 の長手方向に垂直な断面の角部の近傍が曲線により構成されて 、る請求項 1一 7の
V、ずれか 1に記載のハ-カム構造体。
[9] 隣り合う大容積貫通孔群を構成する貫通孔の長手方向に垂直な断面における重心 間距離と、隣り合う小容積貫通孔群を構成する貫通孔の前記断面における重心間距 離とが等しい請求項 1一 8に記載のハニカム構造体。
[10] 多数の貫通孔が隔壁を隔てて長手方向に並設された柱状のハニカム構造体であつ て、
前記多数の貫通孔は、長手方向に垂直な断面における面積の総和が相対的に大き くなるように、前記ハニカム構造体の一方の端部で封止されてなる大容積貫通孔群と 、前記断面における面積の総和が相対的に小さくなるように、前記ハニカム構造体の 他方の端部で封止されてなる小容積貫通孔群とからなり、
隣り合う前記大容積貫通孔群を構成する貫通孔同士を隔てる前記隔壁と、隣り合う 前記大容積貫通孔群を構成する貫通孔と前記小容積貫通孔群を構成する貫通孔と を隔てる前記隔壁とに触媒がそれぞれ担持されており、
前記隣り合う大容積貫通孔群を構成する貫通孔同士を隔てる隔壁における触媒の 濃度と、前記隣り合う大容積貫通孔群を構成する貫通孔と小容積貫通孔群を構成す る貫通孔とを隔てる隔壁における触媒の濃度との比が 1. 1-3. 0であることを特徴と するハニカム構造体。
[11] 請求項 1一 10のいずれか 1に記載のハ-カム構造体が接着剤層を介して複数個組 み合わされてなるハ-カムブロックの外周面にシール材層が形成されてなるハ-カム 構造体。
[12] 車両の排気ガス浄ィ匕装置に使用される請求項 1一 11の 、ずれか 1に記載のハ-カ ム構造体。
PCT/JP2004/015505 2003-10-20 2004-10-20 ハニカム構造体 WO2005037405A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04792671A EP1676620B2 (en) 2003-10-20 2004-10-20 Honeycomb structure
ES04792671T ES2302042T5 (es) 2003-10-20 2004-10-20 Estructura de panal
PL04792671T PL1676620T5 (pl) 2003-10-20 2004-10-20 Struktura plastra miodu
DE602004011971T DE602004011971T3 (de) 2003-10-20 2004-10-20 Wabenstruktur
US11/341,507 US7785695B2 (en) 2003-10-20 2006-01-30 Honeycomb structured body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-359235 2003-10-20
JP2003359235A JP4471621B2 (ja) 2003-10-20 2003-10-20 ハニカム構造体
JP2003-362512 2003-10-22
JP2003362512A JP4471622B2 (ja) 2003-10-22 2003-10-22 ハニカム構造体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/341,507 Continuation US7785695B2 (en) 2003-10-20 2006-01-30 Honeycomb structured body

Publications (1)

Publication Number Publication Date
WO2005037405A1 true WO2005037405A1 (ja) 2005-04-28

Family

ID=34467781

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/015507 WO2005037406A1 (ja) 2003-10-20 2004-10-20 ハニカム構造体
PCT/JP2004/015505 WO2005037405A1 (ja) 2003-10-20 2004-10-20 ハニカム構造体

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015507 WO2005037406A1 (ja) 2003-10-20 2004-10-20 ハニカム構造体

Country Status (7)

Country Link
US (2) US7556782B2 (ja)
EP (2) EP1676621A4 (ja)
AT (1) ATE386581T1 (ja)
DE (1) DE602004011971T3 (ja)
ES (1) ES2302042T5 (ja)
PL (1) PL1676620T5 (ja)
WO (2) WO2005037406A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046526A1 (ja) * 2005-10-21 2007-04-26 Toyota Jidosha Kabushiki Kaisha Pm浄化装置およびその製造方法
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
US8039415B2 (en) * 2006-10-05 2011-10-18 Ibiden Co., Ltd. Honeycomb structure

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320943C (zh) * 2002-03-25 2007-06-13 揖斐电株式会社 废气净化用过滤器
US7510588B2 (en) * 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
EP1686107A4 (en) * 2003-09-12 2008-12-03 Ibiden Co Ltd FRITTED CERAMIC TABLET AND CERAMIC FILTER
ES2302042T5 (es) * 2003-10-20 2012-10-11 Ibiden Co., Ltd. Estructura de panal
JP4439236B2 (ja) 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
US7387829B2 (en) * 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
EP1808228A4 (en) * 2004-09-02 2008-02-13 Ibiden Co Ltd BEAT NEST STRUCTURE, PRODUCTION METHOD AND EXHAUST GAS PURIFYING DEVICE
WO2006035822A1 (ja) 2004-09-30 2006-04-06 Ibiden Co., Ltd. ハニカム構造体
WO2006041174A1 (ja) * 2004-10-12 2006-04-20 Ibiden Co., Ltd. セラミックハニカム構造体
JP5142532B2 (ja) * 2004-11-26 2013-02-13 イビデン株式会社 ハニカム構造体
WO2006106785A1 (ja) 2005-03-31 2006-10-12 Ibiden Co., Ltd. ハニカム構造体
EP1899280B1 (de) * 2005-07-05 2015-09-02 MANN+HUMMEL Innenraumfilter GmbH & Co. KG PORÖSER ß-SIC-HALTIGER KERAMISCHER FORMKÖRPER MIT EINER ALUMINIUMOXIDBESCHICHTUNG UND VERFAHREN ZU DESSEN HERSTELLUNG
EP1741685B1 (de) * 2005-07-05 2014-04-30 MANN+HUMMEL Innenraumfilter GmbH & Co. KG Poröser beta-SiC-haltiger keramischer Formkörper und Verfahren zu dessen Herstellung.
JPWO2007097056A1 (ja) * 2006-02-23 2009-07-09 イビデン株式会社 ハニカム構造体および排ガス浄化装置
DE202006007876U1 (de) * 2006-05-15 2007-09-20 Bauer Technologies Gmbh Optimierung von zellulären Strukturen, insbesondere für die Abgasreinigung von Verbrennungsaggregaten und andere Anwendungsbereiche
US20080115989A1 (en) * 2006-11-20 2008-05-22 Matte Francois Diesel engine vehicle configurations for evacuation of engine and/or exhaust system heat
US7779961B2 (en) * 2006-11-20 2010-08-24 Matte Francois Exhaust gas diffuser
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099450A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
DE102007012928B4 (de) * 2007-03-19 2009-09-03 Umicore Ag & Co. Kg Verfahren zur Einbringung einer katalytischen Beschichtung in die Poren eines keramischen Durchfluß-Wabenkörpers
JP5292280B2 (ja) * 2007-03-28 2013-09-18 日本碍子株式会社 ハニカムフィルタ
WO2008126330A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
JPWO2008126335A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2008126329A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008126321A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. 排ガス浄化システム
JP5063604B2 (ja) * 2007-03-30 2012-10-31 イビデン株式会社 ハニカムフィルタ
WO2008126433A1 (ja) * 2007-03-30 2008-10-23 Ngk Insulators, Ltd. ハニカムセグメント及びハニカム構造体
JPWO2008126328A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 ハニカムフィルタ
WO2008126332A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
WO2008129670A1 (ja) 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
WO2008129671A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
WO2008136078A1 (ja) * 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ
US9089992B2 (en) 2007-04-30 2015-07-28 Corning Incorporated Methods and apparatus for making honeycomb structures with chamfered after-applied akin and honeycomb structures produced thereby
DE102007024189A1 (de) * 2007-05-24 2008-11-27 Robert Bosch Gmbh Verfahren zur Herstellung einer elektronischen Baugruppe
CN101808956B (zh) * 2007-09-28 2013-03-20 京瓷株式会社 蜂窝结构体及使用其的净化装置
EP2065575B1 (en) * 2007-11-29 2012-08-15 Corning Incorporated Wall-flow honeycomb filter having high-storage capacity and low backpressure
JP2009233587A (ja) * 2008-03-27 2009-10-15 Ngk Insulators Ltd 触媒付きディーゼルパティキュレートフィルタ及びその製造方法
JP2009243274A (ja) * 2008-03-28 2009-10-22 Mazda Motor Corp パティキュレートフィルタ
JP5604046B2 (ja) * 2008-03-28 2014-10-08 日本碍子株式会社 ハニカム構造体
WO2009122539A1 (ja) * 2008-03-31 2009-10-08 イビデン株式会社 ハニカム構造体
PL2296781T3 (pl) * 2008-05-29 2017-06-30 Corning Incorporated Częściowy filtr przegrodowy przepływowy i sposób
WO2010099317A2 (en) * 2009-02-27 2010-09-02 Donaldson Company, Inc. Filter cartridge; components thereof; and methods
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
JP5231305B2 (ja) * 2009-03-27 2013-07-10 日本碍子株式会社 ハニカム構造体及び接合型ハニカム構造体
WO2011042976A1 (ja) * 2009-10-08 2011-04-14 イビデン株式会社 排ガス浄化装置及び排ガス浄化方法
WO2011042990A1 (ja) 2009-10-09 2011-04-14 イビデン株式会社 ハニカムフィルタ
US20110126973A1 (en) * 2009-11-30 2011-06-02 Andrewlavage Jr Edward Francis Apparatus And Method For Manufacturing A Honeycomb Article
US20110206896A1 (en) * 2010-02-25 2011-08-25 Mark Lee Humphrey Ceramic Honeycomb Body And Process For Manufacture
WO2012132004A1 (ja) * 2011-03-31 2012-10-04 イビデン株式会社 ハニカム構造体及び排ガス浄化装置
US8865084B2 (en) 2011-11-30 2014-10-21 Corning Incorporated Pass-through catalytic substrate including porous ceramic beveled corner portions and methods
JP5785870B2 (ja) * 2011-12-27 2015-09-30 日本碍子株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186923A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP6267452B2 (ja) * 2013-07-31 2018-01-24 イビデン株式会社 ハニカムフィルタ
JP6239303B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239305B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239307B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239306B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239304B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
KR20160041945A (ko) * 2013-08-14 2016-04-18 스미또모 가가꾸 가부시끼가이샤 파티큘레이트 필터
JP6219796B2 (ja) * 2014-09-04 2017-10-25 日本碍子株式会社 ハニカムフィルタ
JP6451615B2 (ja) 2015-01-09 2019-01-16 株式会社デンソー 排ガスフィルタ
JP6506993B2 (ja) 2015-03-16 2019-04-24 日本碍子株式会社 ハニカムフィルタ
USD851229S1 (en) * 2015-05-13 2019-06-11 Ngk Insulators, Ltd. Filter segment for removing particle matter
JP6581851B2 (ja) * 2015-09-02 2019-09-25 日本碍子株式会社 目封止ハニカム構造体、及び目封止ハニカムセグメント
JP6548528B2 (ja) * 2015-09-02 2019-07-24 日本碍子株式会社 目封止ハニカム構造体、及び目封止ハニカムセグメント
JP6578938B2 (ja) * 2015-12-25 2019-09-25 株式会社デンソー 排ガスフィルタ
USD837357S1 (en) 2016-09-15 2019-01-01 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
USD837356S1 (en) 2016-09-15 2019-01-01 Ngk Insulators, Ltd. Catalyst carrier for exhaust gas purification
US10940421B2 (en) 2017-01-31 2021-03-09 Corning Incorporated Pattern-plugged honeycomb bodies, particulate filters, and extrusion dies therefor
JP7472911B2 (ja) 2019-08-08 2024-04-23 株式会社プロテリアル セラミックハニカムフィルタ
CN113982731B (zh) * 2021-10-14 2024-03-08 中国舰船研究设计中心 船用柴油机除碳除尘消声一体化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263416A (ja) * 1997-01-21 1998-10-06 Toyota Motor Corp 排ガス浄化用触媒
JP2001334114A (ja) * 2000-05-29 2001-12-04 Ngk Insulators Ltd フィルターエレメントおよびその製造方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
WO2003080218A1 (fr) * 2002-03-25 2003-10-02 Ngk Insulators, Ltd. Filtre en nid d'abeille

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2064360B (en) 1979-12-03 1984-05-16 Gen Motors Corp Ceramic filters for diesel exhaust particulates and methods for making such filters
CA1145270A (en) 1979-12-03 1983-04-26 Morris Berg Ceramic filters for diesel exhaust particulates and methods of making
US4276071A (en) 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
JPS5892409A (ja) 1981-11-27 1983-06-01 Asahi Glass Co Ltd 選択性透過膜
US4420316A (en) 1982-02-22 1983-12-13 Corning Glass Works Filter apparatus and method of making it
US4417908A (en) 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
US4416676A (en) 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
JPS58150015A (ja) 1982-03-01 1983-09-06 Mazda Motor Corp デイ−ゼルエンジンの排気浄化装置
US4416670A (en) 1982-05-20 1983-11-22 Gte Laboratories Incorporated Carbide coated composite silicon nitride cutting tools
JPS61424A (ja) 1984-06-12 1986-01-06 Nippon Denso Co Ltd セラミツクフイルタ
JPS62297109A (ja) * 1986-06-17 1987-12-24 日本碍子株式会社 セラミツクハニカム構造体押出成形用ダイス
JPS63185425A (ja) 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
JPH0751008B2 (ja) 1989-07-15 1995-06-05 ヤンマー農機株式会社 乗用田植機における動力伝達構造
JP2619291B2 (ja) 1989-09-18 1997-06-11 キヤノン株式会社 自動給紙装置
JP3102016B2 (ja) 1990-06-26 2000-10-23 井関農機株式会社 移植機
JP3130587B2 (ja) 1991-09-17 2001-01-31 イビデン株式会社 排気ガス浄化装置のハニカムフィルタ
JPH0647620A (ja) 1991-10-11 1994-02-22 Isuzu Motors Ltd 歯車類の加工方法
JP2726616B2 (ja) 1993-12-15 1998-03-11 日本碍子株式会社 多孔質セラミックハニカムフィルタ
JPH08299809A (ja) * 1995-05-12 1996-11-19 Hitachi Ltd ハニカム状触媒の調製方法
EP1270202B1 (en) * 1996-01-12 2006-04-26 Ibiden Co., Ltd. Filter for purifying exhaust gas
US5930994A (en) 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP2000167329A (ja) 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
FR2789327B1 (fr) 1999-02-09 2001-04-20 Ecia Equip Composants Ind Auto Structure de filtration poreuse et dispositif de depollution la comportant
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
JP3803009B2 (ja) 1999-09-29 2006-08-02 イビデン株式会社 セラミックフィルタ集合体
EP1142619B1 (en) 1999-09-29 2007-01-24 Ibiden Co., Ltd. Honeycomb filter and ceramic filter assembly
JP4051163B2 (ja) 1999-09-29 2008-02-20 イビデン株式会社 セラミックフィルタ集合体
CA2392216A1 (en) 1999-11-16 2001-05-25 Ibiden Co., Ltd. Catalyst and method of producing the same
JP4455708B2 (ja) 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4049501B2 (ja) 2000-01-24 2008-02-20 日本碍子株式会社 セラミックス構造体
JP2001246250A (ja) * 2000-03-08 2001-09-11 Mitsubishi Heavy Ind Ltd 有害物質分解触媒およびその製造方法
JP2001329830A (ja) 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
DE10037403A1 (de) 2000-08-01 2002-02-14 Daimler Chrysler Ag Partikelfilter
JP2002070531A (ja) 2000-08-24 2002-03-08 Ibiden Co Ltd 排気ガス浄化装置、排気ガス浄化装置のケーシング構造
JP2002177793A (ja) 2000-10-02 2002-06-25 Nippon Soken Inc セラミック担体およびセラミック触媒体
EP1371825B1 (en) 2001-03-22 2006-06-14 Ibiden Co., Ltd. Exhaust gas cleanup apparatus
JP2003001029A (ja) 2001-06-18 2003-01-07 Hitachi Metals Ltd 多孔質セラミックハニカムフィルタ
KR100518112B1 (ko) 2001-08-08 2005-10-04 도요타지도샤가부시키가이샤 배기가스 정화장치
US20030041730A1 (en) 2001-08-30 2003-03-06 Beall Douglas M. Honeycomb with varying channel size
JP3893049B2 (ja) 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
DE10160611A1 (de) 2001-12-11 2003-06-26 Siemens Ag Bildgebende medizinische Untersuchungseinrichtung
ATE389100T1 (de) 2002-02-05 2008-03-15 Ibiden Co Ltd Wabenkörperfilter zur abgasreinigung, kleber, beschichtungsmaterial und verfahren zur herstellung eines solchen wabenfilterkörpers
CN101126335B (zh) 2002-02-05 2011-10-26 揖斐电株式会社 废气净化用蜂巢式过滤器
US7427308B2 (en) 2002-03-04 2008-09-23 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination and exhaust gas decontamination apparatus
ATE376880T1 (de) 2002-03-22 2007-11-15 Ibiden Co Ltd Herstellungsverfahren eines wabenfilters zur reinigung von abgas
CN1320943C (zh) 2002-03-25 2007-06-13 揖斐电株式会社 废气净化用过滤器
US7510588B2 (en) 2002-03-29 2009-03-31 Ibiden Co., Ltd. Ceramic filter and exhaust gas decontamination unit
US20050180898A1 (en) 2002-04-09 2005-08-18 Keiji Yamada Honeycomb filter for clarification of exhaust gas
JPWO2003093657A1 (ja) 2002-04-10 2005-09-08 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
WO2003093658A1 (fr) 2002-04-11 2003-11-13 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarifier des gaz d'echappement
FR2840545B1 (fr) 2002-06-07 2008-07-04 Saint Gobain Ct Recherches Corps filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
WO2004024295A1 (ja) 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
WO2004024293A1 (ja) 2002-09-13 2004-03-25 Ibiden Co., Ltd. ハニカム構造体
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
US7387657B2 (en) 2002-10-07 2008-06-17 Ibiden Co., Ltd. Honeycomb structural body
KR100632161B1 (ko) 2003-02-28 2006-10-11 이비덴 가부시키가이샤 세라믹 하니컴 구조체
KR20060018828A (ko) 2003-05-06 2006-03-02 이비덴 가부시키가이샤 벌집형 구조체
US8246710B2 (en) 2003-06-05 2012-08-21 Ibiden Co., Ltd. Honeycomb structural body
KR20060021912A (ko) 2003-06-23 2006-03-08 이비덴 가부시키가이샤 허니컴 구조체
KR100679190B1 (ko) 2003-06-23 2007-02-06 이비덴 가부시키가이샤 벌집형 구조체
ES2302042T5 (es) 2003-10-20 2012-10-11 Ibiden Co., Ltd. Estructura de panal
JP4439236B2 (ja) 2003-10-23 2010-03-24 イビデン株式会社 ハニカム構造体
KR100779815B1 (ko) 2003-11-12 2007-11-28 이비덴 가부시키가이샤 세라믹 구조체
EP1703095A4 (en) 2003-12-25 2007-02-28 Ibiden Co Ltd EXHAUST GAS CLEANING DEVICE AND METHOD FOR RECOVERING AN EXHAUST GAS CLEANING DEVICE
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
CN100577995C (zh) 2004-02-23 2010-01-06 揖斐电株式会社 蜂窝结构体及废气净化装置
JP4666390B2 (ja) 2004-04-05 2011-04-06 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
PL1626037T3 (pl) 2004-05-06 2008-11-28 Ibiden Co Ltd Struktura ulowa i sposób jej wytwarzania
CN101249349B (zh) 2004-05-18 2012-01-25 揖斐电株式会社 蜂窝结构体及废气净化装置
PL1647790T3 (pl) 2004-07-01 2009-01-30 Ibiden Co Ltd Sposób wytwarzania porowatego elementu ceramicznego
ATE392594T1 (de) 2004-08-04 2008-05-15 Ibiden Co Ltd Durchlaufbrennofen und verfahren zur herstellung eines porösen keramikglieds damit
PL1662219T3 (pl) 2004-08-04 2009-02-27 Ibiden Co Ltd Piec do wypalania oraz sposób wytwarzania w nim porowatego elementu ceramicznego
WO2008126329A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
JP5063604B2 (ja) 2007-03-30 2012-10-31 イビデン株式会社 ハニカムフィルタ
WO2008126332A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカムフィルタ
JPWO2008126328A1 (ja) 2007-03-30 2010-07-22 イビデン株式会社 ハニカムフィルタ
WO2008126321A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. 排ガス浄化システム
WO2008126330A1 (ja) 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体
WO2008136078A1 (ja) 2007-04-20 2008-11-13 Ibiden Co., Ltd. ハニカムフィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10263416A (ja) * 1997-01-21 1998-10-06 Toyota Motor Corp 排ガス浄化用触媒
JP2001334114A (ja) * 2000-05-29 2001-12-04 Ngk Insulators Ltd フィルターエレメントおよびその製造方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
WO2003080218A1 (fr) * 2002-03-25 2003-10-02 Ngk Insulators, Ltd. Filtre en nid d'abeille

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7611764B2 (en) 2003-06-23 2009-11-03 Ibiden Co., Ltd. Honeycomb structure
WO2007046526A1 (ja) * 2005-10-21 2007-04-26 Toyota Jidosha Kabushiki Kaisha Pm浄化装置およびその製造方法
JP2007111660A (ja) * 2005-10-21 2007-05-10 Toyota Motor Corp Pm浄化装置およびその製造方法
CN101291719B (zh) * 2005-10-21 2011-12-21 丰田自动车株式会社 粒状物质净化装置及其制造方法
US8252374B2 (en) 2005-10-21 2012-08-28 Toyota Jidosha Kabushiki Kaisha Particulate matter purifying device and manufacturing method thereof
US8039415B2 (en) * 2006-10-05 2011-10-18 Ibiden Co., Ltd. Honeycomb structure

Also Published As

Publication number Publication date
DE602004011971T3 (de) 2012-10-18
US7556782B2 (en) 2009-07-07
US20060188415A1 (en) 2006-08-24
ES2302042T5 (es) 2012-10-11
DE602004011971T2 (de) 2009-02-26
US20060194018A1 (en) 2006-08-31
ES2302042T3 (es) 2008-07-01
EP1676621A1 (en) 2006-07-05
DE602004011971D1 (de) 2008-04-03
EP1676620A1 (en) 2006-07-05
WO2005037406A1 (ja) 2005-04-28
EP1676620A4 (en) 2006-07-05
EP1676620B1 (en) 2008-02-20
ATE386581T1 (de) 2008-03-15
EP1676620B2 (en) 2012-05-16
US7785695B2 (en) 2010-08-31
PL1676620T5 (pl) 2012-10-31
EP1676621A4 (en) 2006-07-05
PL1676620T3 (pl) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2005037405A1 (ja) ハニカム構造体
KR100680078B1 (ko) 벌집형 구조체
JP4812316B2 (ja) ハニカム構造体
JP5142529B2 (ja) ハニカム構造体
KR100692356B1 (ko) 벌집형 구조체
KR100831836B1 (ko) 벌집형 유닛 및 벌집형 구조체
JP4471622B2 (ja) ハニカム構造体
JP5726414B2 (ja) 触媒担持フィルタ、及び排ガス浄化システム
KR101046899B1 (ko) 허니컴 구조체
JP5270879B2 (ja) ハニカム構造体
JPWO2006035823A1 (ja) ハニカム構造体
JPWO2005002709A1 (ja) ハニカム構造体
JPWO2006041174A1 (ja) セラミックハニカム構造体
JP2006223983A (ja) ハニカム構造体
JP2018122261A (ja) 目封止ハニカム構造体
JP5096978B2 (ja) ハニカム触媒体
JP4471621B2 (ja) ハニカム構造体
JP4426381B2 (ja) ハニカム構造体及びその製造方法
JP2014148924A (ja) 排ガス浄化装置
JP5749940B2 (ja) 排ガス浄化装置
KR101933917B1 (ko) Dpf의 채널 내부 표면 상 촉매 코팅방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004792671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11341507

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004792671

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11341507

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004792671

Country of ref document: EP