WO2001029628A1 - Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique - Google Patents

Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique Download PDF

Info

Publication number
WO2001029628A1
WO2001029628A1 PCT/JP1999/005801 JP9905801W WO0129628A1 WO 2001029628 A1 WO2001029628 A1 WO 2001029628A1 JP 9905801 W JP9905801 W JP 9905801W WO 0129628 A1 WO0129628 A1 WO 0129628A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
feed shaft
feed
shaft motor
control unit
Prior art date
Application number
PCT/JP1999/005801
Other languages
English (en)
French (fr)
Inventor
Jun Yoshida
Yoshikatsu Teraoka
Original Assignee
Makino Milling Machine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co., Ltd. filed Critical Makino Milling Machine Co., Ltd.
Priority to EP06075420A priority Critical patent/EP1710643B1/en
Priority to JP2000601281A priority patent/JP4137386B2/ja
Priority to EP99949334A priority patent/EP1143316B1/en
Priority to PCT/JP1999/005801 priority patent/WO2001029628A1/ja
Priority to DE69939994T priority patent/DE69939994D1/de
Priority to US09/868,587 priority patent/US6566835B1/en
Priority to DE69934251T priority patent/DE69934251T2/de
Publication of WO2001029628A1 publication Critical patent/WO2001029628A1/ja
Priority to US11/032,795 priority patent/US20050137739A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41114Compensation for gravity, counter balance gravity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41154Friction, compensation for friction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41155During reversing, inversing rotation, movement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41161Adaptive friction compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41389Estimate torque from command torque and feedback acceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41436Feedforward of speed and acceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43106Time constant acceleration, deceleration as function of temperature of motor

Definitions

  • the present invention relates to a milling machine, a machining center, and an electric discharge machine having three feed axes orthogonal to X, Y, and ⁇ axes, or a plurality of feed axes to which at least one rotation axis among A, B, and C axes is added.
  • TECHNICAL FIELD The present invention relates to a method of controlling a machine tool and a numerically controlled machine tool, and to a novel technology that does not degrade machining accuracy even when the feed speed of the machine is increased. Background art
  • Numerically controlled machine tools are required to process workpieces with high accuracy in a short time, that is, to enable high-efficiency and high-precision machining.
  • increasing the feed rate of a machine reduces machining accuracy. This is due to the lost motion of the feed axis and the delay in servo control of the numerical controller. Therefore, in numerically controlled machine tools, backlash compensation and friction compensation of the feed shaft, work weight and temperature of the feed shaft unit are performed so that high-precision machining can be achieved even when machining at high-speed feed.
  • the acceleration / deceleration control of the feed shaft is performed according to the following. For example, there is the following conventional technology.
  • the first conventional technique obtains the acceleration speed and adds it to the speed command value of the servo control unit. In an actual numerically controlled machine tool, it is ultimately required how much a torque command value or a current command value is to be output to the feed shaft motor drive means. If the speed command value during control is changed, there is a delay in converting the command value into a torque command value or a current command value and reaching the feed shaft motor drive means.
  • the backlash acceleration amount calculated based on the position deviation amount is used as the backlash acceleration amount in the speed control unit, so that the position feedback control is still performed. There is a delay in the servo system due to the means and speed feedback control means.
  • the acceleration is changed according to the work weight. That is, if the weight of the work is large, the acceleration is increased to the allowable limit, and if the weight of the work is small, the acceleration is reduced. Reducing the acceleration has the problem of reducing machining efficiency.
  • the fourth related art relates to a torque observer for estimating a load torque of a general servo motor.
  • the load observer is estimated based on a speed command value, and a load inertia is estimated in accordance with the estimated load torque.
  • the fifth related art relates to a technology for controlling the time constant of acceleration / deceleration according to the temperature of the feed shaft motor and preventing the feed shaft motor from overheating without changing the commanded feed speed. Overdrive of the feed shaft motor can be prevented, but the acceleration / deceleration time constant becomes large and machining accuracy deteriorates.
  • the conventional backlash correction and friction correction use a uniform correction value that does not consider the speed and acceleration of the moving object.
  • a uniform correction value that does not consider the speed and acceleration of the moving object.
  • the load inertia value of the conventional numerical control device is adopted as a constant value, for example, when a work of half the maximum load work weight is loaded. .
  • the value obtained by multiplying this constant value by the current acceleration value was output to the feed shaft motor drive means as a torque command value.
  • the required torque command value is not generated, and the actual movement of the feed axis is delayed with respect to the movement command.
  • an excessive torque command value is generated and an impact is applied to the moving body, causing fluctuations in the feed speed and poor machining accuracy. . Further processing If the torque command value remains constant while the load weight changes every moment, that is, the load inertia changes, the load conditions that change with time will be supported.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and a numerical control machine tool control method and numerical control capable of performing high-precision machining even when a moving body of a machine is moved at high speed. Is to get a machine tool
  • Another object is to improve the machining accuracy when performing contour machining or free-form machining by simultaneously moving a plurality of feed axes.
  • Another object is to enable high-precision machining in consideration of a change in the dynamic friction force and the static friction force of the feed mechanism at the time of reversing the moving direction of the feed shaft or at the time of starting the movement from the stop.
  • Another purpose is to change the weight of the work or the load loaded on the moving body of the feed shaft when the work is changed or when one work is processed and its weight becomes lighter with time. In order to perform high-precision machining in consideration of this.
  • Another object is to enable high-precision machining while maintaining high efficiency without overheating the feed shaft motor even when the feed shaft motor is continuously operated with frequent acceleration and deceleration.
  • the present invention uses the execution result of the numerical control program data extracted from the servo control unit of the numerical control device to determine the change in the weight of the frictional cradle of the feed mechanism of the feed shaft.
  • a desired torque command value or current command value corresponding thereto is calculated and output, and the predicted calculation value is output to the feed shaft motor driving means.
  • the moving command distribution control unit and the servo control unit execute the numerical control program data fetched from the reading and interpretation unit of the numerical control device, and the execution result is sent from the feed shaft motor driving means to the feed shaft motor of the feed shaft.
  • the execution result of the numerical control program data output from the servo control unit is fetched, and an appropriate torque command value or current corresponding to a change in the frictional force of the feed mechanism of the feed shaft or the weight of the work is taken. Predictive calculation of command value,
  • a suitable torque command value or current command value calculated and output to the feed shaft motor driving means is
  • control method for a numerically controlled machine tool that drives the feed shaft motor with an appropriate command value according to a change in the frictional force of the feed mechanism of the feed shaft or the weight of a work.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical controller is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means to the feed shaft motor.
  • a torque command value or a current command value is calculated by the servo control unit based on the movement command value of the feed shaft output from the movement command distribution control unit, and is output to the feed shaft motor driving means to perform the feed. Drive the shaft motor,
  • a torque command value or a current command value output from the servo control unit to the feed shaft motor driving unit is captured
  • Imported torque command value or current command value and acceleration of the feed axis From this value, a desired torque command value or current command value according to the change in the frictional force or the weight of the work of the feed mechanism is predicted and calculated.
  • a desired torque command value or current command value calculated and output to the feed shaft motor driving means is
  • a method for controlling a numerically controlled machine tool that drives the feed shaft motor with a desired command value is provided.
  • the prediction calculation of the desired torque command value or current command value according to the change in the frictional force or the weight of the work of the feed mechanism is performed by calculating the actual current value based on the fetched torque command value or current command value and the feed shaft.
  • a desired torque command value or current command value according to a change in the weight of the frictional force of the feed mechanism may be predicted and calculated from the acceleration value.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • the control method of the numerically controlled machine tool that outputs the feed axis model overnight and moves the moving body via the feed mechanism,
  • the servo control unit calculates a torque command value or a current command value based on the movement command value of the feed shaft output from the movement command distribution control unit, and outputs the calculated torque command value or current command value to the feed shaft motor driving means to output the feed shaft motor.
  • a load torque is calculated based on a torque command value or a current command value output from the servo control unit when the movement of the feed shaft is detected to be set as a load torque before the movement of the feed shaft is reversed.
  • the load torque sign reverse value before reversing the moving direction of the feed shaft is set in advance.
  • the value obtained by multiplying the constant by the specified constant is set as the target value of the load torque after reversing the moving direction of the feed axis,
  • a control method of a numerical control machine tool for moving the moving body via the feed shaft motor and a feed mechanism is provided.
  • the load torque may be calculated using a time constant inversely proportional to the square root of the acceleration at the time of detecting the reversal of the moving direction of the feed shaft.
  • the calculation of the load torque after reversing the moving direction of the feed shaft may be performed by using a plurality of time constants inversely proportional to the square root of the acceleration when detecting the reversal of the moving direction of the feed shaft. Good.
  • the calculation of the load torque after reversing the moving direction of the feed shaft is performed based on the ratio of the set load torque to the target value or the distance from the position of the feed shaft when the reversal of the moving direction of the feed shaft is detected.
  • the calculation of the torque may be stopped.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • Feed axis module In the control method of a numerically controlled machine tool that outputs in the evening and moves the moving body through the feed mechanism, A desired torque command value and speed command value or a desired current command value and speed command value corresponding to the static friction force of the feed mechanism are set in advance, and the feed shaft output from the movement command distribution control unit is set. A torque command value or a current command value is calculated by the servo control unit based on the movement command value, and is output to the feed shaft motor driving means to drive the feed shaft motor;
  • a control method of a numerical control machine tool for moving the moving body via the feed shaft motor and a feed mechanism is provided.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • a desired torque command value and speed command value or a desired current command value and speed command value corresponding to the static friction force of the feed mechanism are set in advance, and the feed shaft output from the movement command distribution control unit is set.
  • a torque command value or a current command value is calculated by the servo control unit based on the movement command value and output to the feed shaft motor driving means to drive the feed shaft motor;
  • the load torque is calculated based on the torque command value or the current command value, and is set as the load torque before reversing the moving direction of the feed shaft,
  • a value obtained by multiplying the sign reversal value of the load torque before reversing the moving direction of the feed axis by a preset constant is set as a target value of the load torque after reversing the moving direction of the feed axis
  • the preset desired torque command value and speed command value, or desired current command value and speed command value are set to the feed shaft motor driving means and Output to the servo control unit,
  • a control method of a numerical control machine tool for moving the moving body via the feed shaft motor and a feed mechanism is provided.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • Feed axis module In the control method of a numerically controlled machine tool that outputs in the evening and moves the moving body through the feed mechanism,
  • a torque command value or a current command value is calculated by the servo control unit based on a movement command value of the feed shaft output from the movement command distribution control unit, and is output to the feed shaft motor driving means to perform the feed.
  • a torque command value or a current command value output from the servo control unit to the feed shaft motor driving means is taken in as a torque command value or a current command value during movement of the feed shaft
  • a load inertia is calculated from a torque command value or a current command value during movement of the feed shaft and an acceleration value of the feed shaft,
  • a control method of a numerical control machine tool for moving the moving body via the feed shaft motor and a feed mechanism is provided.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is transmitted to the feed shaft motor drive.
  • the method of numerically controlling a machine tool which outputs a feed axis motor overnight from a means and moves a moving body through a feed mechanism,
  • the servo control unit calculates a torque command value or a current command value based on the movement command value of the feed shaft output from the movement command distribution control unit, and outputs the calculated torque command value or current command value to the feed shaft motor driving means to output the feed shaft motor.
  • a control method of a numerical control machine tool for moving the moving body via the feed shaft motor and a feed mechanism is provided.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • the control method of the numerically controlled machine tool that outputs the feed axis model overnight and moves the moving body via the feed mechanism,
  • the servo control unit calculates a torque command value or a current command value based on the movement command value of the feed shaft output from the movement command distribution control unit, and outputs the calculated torque command value or current command value to the feed shaft motor driving means to output the feed shaft motor.
  • a torque command value or a current command value output from the servo control unit to the feed shaft motor driving unit is captured
  • the preset temperature data of the feed shaft motor which is stored in advance and stored, is compared with the predicted and calculated temperature of the feed shaft motor.
  • a desired torque command value or current command value calculated and output to the feed shaft motor driving means is
  • a numerically controlled machine tool that drives the feed shaft motor with a desired command value; A control method is provided.
  • three feed axes orthogonal to the X, Y, and Z axes, or a plurality of feed axes to which at least one of the A, B, and C axes is added are provided.
  • Feed axis motor driving means for driving the feed axis motor, and numerical control program data for driving the feed axis motor are executed by a moving command distribution control unit and a servo control unit, and the execution result is expressed by the feed axis. Fetching the execution results of numerical control program data output from the motor drive unit to the feed shaft motor and numerical control program data output from the servo control unit, and responding to changes in the frictional force of the feed mechanism and the weight of the workpiece Calculation control means for predicting and calculating an appropriate torque command value or current command value and outputting it to the feed shaft motor driving means;
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is transmitted to the feed shaft motor drive.
  • the numerically controlled machine tool that outputs the feed axis model from the means in the evening and moves the moving body through the feed mechanism,
  • Feed axis motor driving means for driving the feed axis motor, and numerical control program data for driving the feed axis motor are executed by a moving command distribution control unit and a servo control unit, and the execution result is expressed by the Numerical control means for outputting from the feed shaft motor driving means to the feed shaft motor;
  • the friction of the feed mechanism based on a torque command value or a current command value output from the servo control unit to the feed shaft motor driving means when the feed shaft motor is being driven and the acceleration value of the feed shaft.
  • Calculation control means for predicting and calculating a desired torque command value or current command value according to a change in force or weight of a workpiece, and outputting the predicted and calculated desired torque command value or current command value to the feed shaft motor driving means.
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed shaft motor driving means.
  • the numerically controlled machine tool that outputs the feed axis model overnight and moves the moving body through the feed mechanism
  • Position control means for calculating a speed command value based on a movement command value of the feed axis output from the movement command distribution control unit;
  • Speed control means for calculating a torque command value or a current command value based on the speed command value of the feed shaft outputted from the position control means; and a torque command value for the feed shaft outputted from the speed control means.
  • a feed shaft motor driving means for outputting a current for driving the feed shaft motor based on a current command value;
  • Acceleration calculation means for calculating an acceleration when the detection means detects the reversal of the moving direction of the feed axis
  • the numerical control program data fetched from the reading / interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is transmitted to the feed shaft motor drive. From feed axis
  • Position control means for calculating a speed command value based on a movement command value of the feed axis output from the movement command distribution control unit;
  • Speed control means for calculating a torque command value or a current command value based on the speed command value of the feed shaft outputted from the position control means; and a torque command value for the feed shaft outputted from the speed control means.
  • a feed shaft motor driving means for outputting a current for driving the feed shaft motor based on a current command value;
  • Detecting means for detecting the start of movement of the feed axis from reversal or stop of the movement direction
  • Static friction correction means for outputting a current command value and a speed command value to the feed shaft motor drive means and the speed control means,
  • the numerical control program data fetched from the reading and interpreting unit of the numerical control device is executed by the movement command distribution control unit and the servo control unit, and the execution result is transmitted to the feed shaft motor.
  • Drive axis A numerically controlled machine tool that outputs light in the evening and moves the moving object through the feed mechanism
  • Position control means for calculating a speed command value based on a movement command value of the feed axis output from the movement command distribution control unit;
  • Speed control means for calculating a torque command value or a current command value based on the speed command value of the feed shaft outputted from the position control means; and a torque command value for the feed shaft outputted from the speed control means.
  • a feed shaft motor driving means for outputting a current for driving the feed shaft motor based on a current command value;
  • Detecting means for detecting the start of movement of the feed axis from reversal or stop of the movement direction
  • Acceleration calculation means for calculating an acceleration when the detection means detects the reversal of the moving direction of the feed axis
  • the time constant expressed as a function the load torque after reversing the moving direction of the feed shaft is calculated, and a desired torque command value or current command value corresponding to the calculated load torque is sent to the speed control means.
  • Static friction correction means for outputting a current command value and a speed command value to the feed shaft motor drive means and the speed control means,
  • the data is read from the reading / interpreting section of the numerical controller.
  • the numerical control program data is executed by the movement command distribution control unit and the servo control unit, and the execution result is output from the feed shaft motor driving means to the feed shaft motor overnight, and the moving body is moved via the feed mechanism.
  • Position control means for calculating a speed command value based on a movement command value of the feed axis output from the movement command distribution control unit;
  • Speed control means for calculating a torque command value or a current command value based on the speed command value of the feed shaft outputted from the position control means; and a torque command value for the feed shaft outputted from the speed control means.
  • a feed shaft motor driving means for outputting a current for driving the feed shaft motor based on a current command value;
  • Speed feed-forward control means for predicting and calculating a speed command value based on the movement command value of the feed axis output from the movement command distribution control section and outputting the calculated speed command value to the speed control means;
  • Acceleration feed-forward control means for predicting and calculating an acceleration value or a torque command value based on the movement command value of the feed shaft output from the movement command distribution control unit and outputting the calculation result to the feed shaft motor drive means
  • an inertia calculating means for calculating load inertia from the value and and outputting the calculated load inertia to the speed control means and the acceleration feedforward control means.
  • a numerical control machine tool which outputs a desired torque command value or current command value from the speed control means to the feed shaft motor drive means in accordance with the load inertia calculated by the inertia calculation means.
  • the data is read from the reading / interpreting section of the numerical controller.
  • the numerical control program data is executed by the movement command distribution control unit and the servo control unit, and the execution result is output from the feed shaft motor driving means to the feed shaft motor overnight, and the moving body is moved via the feed mechanism.
  • Position control means for calculating a speed command value based on a movement command value of the feed axis output from the movement command distribution control unit;
  • Speed control means for calculating a torque command value or a current command value based on the speed command value of the feed shaft outputted from the position control means; and a torque command value for the feed shaft outputted from the speed control means.
  • a feed shaft motor driving means for outputting a current for driving the feed shaft motor based on a current command value;
  • Speed feed-forward control means for predicting and calculating a speed command value based on the movement command value of the feed axis output from the movement command distribution control unit and outputting the calculated speed command value to the speed control means;
  • Acceleration feed-off control for predicting and calculating an acceleration value or a torque command value based on the movement command value of the feed shaft output from the movement command distribution control unit and outputting the calculated value to the feed shaft motor driving means Means for detecting the weight of the workpiece or the weight of the moving body on which the workpiece is mounted;
  • Inertia calculating means for calculating a load inertia from the weight detected by the weight detecting means and outputting the calculated load inertia to the speed control means and the acceleration feedback control means;
  • a numerically controlled machine tool for outputting a desired torque command value or current command value from the speed control means to the feed shaft motor drive means in accordance with the load inertia calculated by the inertia calculation means.
  • the data is read from the reading / interpreting section of the numerical controller.
  • the numerical control program data is executed by the movement command distribution control unit and the servo control unit, and the execution result is sent from the feed axis motor drive unit to the feed axis motor.
  • a feed axis motor driving means for driving the feed axis motor; and a moving command distribution control unit and a servo control unit for executing numerical control program data for driving the feed axis motor, and executing the execution result.
  • Numerical control means for outputting from the drive means to the feed shaft motor; data storage means for presetting and storing acceleration / deceleration time constants of the feed shaft and predetermined allowable temperature data of the feed shaft motor;
  • Temperature calculating means for fetching a torque command value or a current command value output from the servo control unit to the feed shaft motor driving means, and predicting and calculating the temperature of the feed shaft motor from the fetched torque command value or current command value; ,
  • a predetermined temperature data of the feed shaft motor which is set and stored in advance in the data storage means, is compared with the temperature of the feed shaft motor predicted and calculated by the temperature calculation means, and the feed is performed according to a comparison result.
  • Acceleration / deceleration time constant calculating means for setting the acceleration / deceleration time constant of the axis and outputting the same to the movement command distribution control unit;
  • the frictional force or the frictional force of the feed mechanism is determined from a torque command value or a current command value output from the servo control unit to the feed shaft motor driving unit when the feed shaft motor is driven and the acceleration value of the feed shaft.
  • a desired torque command value or current command value corresponding to a change in the weight of the work is predicted and calculated, and the predicted calculated desired torque command value or current command value is calculated as described above.
  • a numerical control machine tool comprising: an arithmetic control unit that outputs to a feed shaft motor driving unit.
  • the operation of the present invention is as follows.
  • the actual torque command value or current command value output from the servo control unit of the numerical controller to the feed axis motor driving means is taken into the arithmetic control means, and the acceleration value of the feed axis at that time is also taken.
  • the calculation control means takes in and predicts and calculates a desired torque command value or current command value corresponding to a change in the frictional force of the feed mechanism and a change in the weight of the work to be loaded in the calculation control means.
  • the desired torque command value or current command value calculated and output to the feed shaft motor drive means is output, so that the feed shaft is driven with a torque that matches the frictional force and a change in the weight of the work. A feed operation without delay from the command or fluctuation of the feed speed is achieved.
  • the numerically controlled machine tool of the present invention includes a movement command value output from a movement command distribution control unit, detection of a movement direction reversal, detection of a movement start from a stop, calculation of acceleration by second-order differentiation, speed feed-through. Since the word control and the acceleration feedforward control can be performed, the control by the above-described arithmetic control means is performed before the feed shaft motor is actually driven, and the feed speed is reduced. High-precision machining is realized even at high speed.
  • the invention of the present application predicts and calculates the temperature of the feed shaft motor, compares it with predetermined temperature data that is allowed for the feed shaft motor, and changes the acceleration / deceleration time constant of the feed shaft according to the comparison result.
  • the control can be performed in combination with the above-described control for outputting a desired torque command value or current command value according to a change in the frictional force of the feed shaft or the weight of the work to the feed shaft motor driving means.
  • the present invention provides a control method and a numerically controlled machine tool for a numerically controlled machine tool capable of performing high-precision machining even when the moving body of the machine is moved at a high speed. And multiple feed axes The machining accuracy is good even if the quadrant of a certain feed axis is switched while the contour machining or free-form surface machining is being performed by simultaneously moving the feed axes and the work weight of a certain feed axis changes. Will be kept.
  • High-precision machining can be performed even if there is a change in the dynamic friction force and static friction force of the feed mechanism at the time of reversing the movement of the feed shaft or at the start of movement after stopping. Also, when a work or a fixture mounted on the moving body of the feed shaft is replaced, or when one work is processed and its weight becomes lighter with time, the weight change Following the change in inertia, the desired torque command value or current command value is output to the feed shaft motor drive means.
  • the first prior art adds various acceleration speeds due to lost motion to a speed command value of a servo control unit, and then sends the acceleration command value through a speed control unit. While the shaft motor is driven, the present invention predicts and calculates a desired torque command value or current command value and outputs the result directly to the feed shaft motor driving means, so there is no delay. The feed shaft motor can be driven. The influence of the delay of the servo system due to the position feedback control means and the speed feedback control means which still exists in the second prior art does not occur in the present invention. In the third prior art, control is performed to decrease the acceleration of the feed shaft.
  • the acceleration of the feed shaft is maintained at an appropriate predetermined value, and the desired torque is changed by changing the initial value. Since the command value or current command value is output to the feed shaft motor drive means, there is no deterioration in machining efficiency.
  • the fourth prior art torque observer employs a configuration in which a change in load torque estimated based on a speed command value is detected to estimate load inertia, whereas the configuration of the present invention is as follows. Is actually the feed axis Since the load inertia is calculated using the torque command value or current command value output to the motor drive means, a more practical load inertia can be obtained, and the accurate torque command value is sent to the feed shaft motor. Can be output to driving means.
  • the fifth conventional technique is a technique for preventing overheating of a feed shaft motor, whereas the present invention further provides a desired torque command value or a desired torque command value corresponding to a change in the weight of a frictional force peak of a feed mechanism. Since the current command value is sent to the axis motor drive means, high-precision machining can be performed.
  • FIG. 1 is a schematic diagram of a numerically controlled machine tool according to the present invention.
  • FIG. 2 is a configuration block diagram of a first embodiment of a control unit for controlling the numerically controlled machine tool of the present invention.
  • FIG. 3 is a block diagram showing a configuration of a control unit for controlling a numerically controlled machine tool according to a second embodiment of the present invention.
  • FIG. 4 is a configuration block diagram of a control unit for controlling a numerically controlled machine tool according to a third embodiment of the present invention.
  • FIG. 5 is a configuration block diagram of a control unit for controlling the numerically controlled machine tool according to the fourth embodiment of the present invention.
  • FIG. 6 is a configuration block diagram of a control unit for controlling a numerically controlled machine tool according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram for explaining the reversal of the direction of the feed shaft.
  • the upper side is a graph showing a change in feed speed with respect to time
  • the lower side is a graph showing a change in load torque with respect to time.
  • FIG. 8 is a diagram for explaining the method of calculating the load inertia.
  • the upper side is a graph showing the change of the feed rate with respect to time
  • the center is a graph showing the change of the acceleration with time
  • the lower side is a graph.
  • 6 is a graph showing a change in load torque with respect to time.
  • FIG. 9A is a flowchart of a method for calculating the load inertia.
  • FIG. 9B is a flowchart of a method for calculating the load inertia.
  • FIG. 10 is a flowchart showing a control method according to the fifth embodiment of the present invention.
  • FIG. 11 is a graph showing a temperature curve of a feed shaft motor and a motor created in the fifth embodiment of the present invention.
  • FIG. 12 is a graph showing the relationship between the slope 0 of the temperature curve and the acceleration / deceleration time constant according to the fifth embodiment of the present invention.
  • a numerically controlled machine tool 10 is a so-called horizontal machining center, and has a bed 12 installed on a floor surface of a factory or the like. On the upper surface of the bed 12, a Z-axis guide rail 28 extends in the horizontal Z-axis direction (in the left-right direction in FIG. 1).
  • a table 14 for slidably mounting is mounted slidably.
  • Fig. 1 shows an example in which a NC rotary table that can be rotated and fed in the B-axis direction is fixed on a table 14 and a workpiece W is loaded on it, with the NC rotary table interposed. The work W may be loaded directly on the table 14 without causing the work W to be loaded.
  • an X-axis guide rail 36 extends in the horizontal X-axis direction (perpendicular to the paper surface of FIG. 1) which is perpendicular to the Z-axis.
  • a column 16 is slidably mounted on the X-axis guide rail 36.
  • a Y-axis guide rail 34 extends in the Y-axis direction (vertical direction in FIG. 1) perpendicular to the X-axis and the Z-axis.
  • a spindle head 18 that rotatably supports the spindle 20 is slidably mounted on the shaft guide rail 34. I have.
  • a Z-axis feed screw 24 serving as a Z-axis feed shaft extends in the Z-axis direction below the table 14 in the bed 12, and the Z-axis feed is provided on the lower surface of the table 14.
  • a nut 26 screwed into the screw 24 is fixed.
  • One end of the Z-axis feed screw 2 4 is connected to Z-axis feed mono- Bomota M z, by rotating the Z-axis feed screw 2 4 drives the servo motor M z, Table 1 4 Move along Z-axis guide rail 28.
  • an X-axis feed screw (not shown) as an X-axis feed shaft extends in the X-axis direction below the column 16 in the bed 12.
  • a nut (not shown) screwed to the X-axis feed screw is fixed to the lower surface of the nut.
  • An X-axis feed servomotor ⁇ ⁇ ⁇ is connected to one end of the X-axis feed screw, and by driving the servomotor ⁇ ⁇ ⁇ to rotate the X-axis feed screw, the column 16 Move along the axis guide rail 36.
  • a ⁇ shaft feed screw 32 serving as a ⁇ shaft feed shaft extends in the ⁇ axis direction in the column 16, and a ⁇ shaft feed screw 3 2 is provided on the back of the spindle head 18.
  • the matching nut 30 is fixed.
  • Upsilon axis feed screw 3 2 The upper end of Upsilon axis feed screw 3 2 is connected is Upsilon shaft feed mono- Bomota Micromax gamma, by rotating the ⁇ Saichi Bomota Micromax drives Upsilon Upsilon axis feed screw 3 2, the spindle head 1 8 ⁇ Move along the axis guide rail 3 4.
  • the column 16, the spindle head 18, and the tape hole 14 are moved along the X axis while rotating the tool 22.
  • the workpiece W fixed to the table 14 is cut into a desired shape by relative movement in the ⁇ -axis and ⁇ -axis directions.
  • the numerically controlled machine tool 10 can be said to be a four-axis numerically controlled machine tool with an additional ⁇ axis.
  • Numerically controlled machine tool 10 has column 16, spindle head 18, table 1 4 is provided with a numerical controller 40 for controlling the X-axis, ⁇ -axis, and ⁇ -axis feed servomotors M x, MY, and M z that move in the three-axis directions in the X-axis, Y-axis, and ⁇ -axis directions.
  • a numerical controller 40 for controlling the X-axis, ⁇ -axis, and ⁇ -axis feed servomotors M x, MY, and M z that move in the three-axis directions in the X-axis, Y-axis, and ⁇ -axis directions.
  • M B B-axis feed servo motor
  • the numerical control unit 40 reads the NC program 42 and reads and interprets it.
  • the program reading and interpreting unit 44, the interpreted program storage unit 46 for temporarily storing the interpreted program, and the interpreted program storage unit The program execution command section 48, which extracts the program from the program as needed and issues execution program data, the X-axis, ⁇ -axis, and ⁇ -axis based on the execution program data from the program execution command section 48.
  • a movement command distribution control unit 50 that issues a movement command value in each direction, a feed shaft motor drive unit 54 based on a movement command value from the movement command distribution control unit 50 and a feedback signal described later.
  • the servo control unit 52 that generates the torque command value or current command value is included.
  • the feed axis motor drive unit 54 outputs a current based on the torque command value or the current command value from the servo control unit 52, and feeds the feed axis motors Mx, MY, X, ⁇ , ⁇ , Drive M z. Further, in the present embodiment, an arithmetic control unit 56 for correcting a torque command value or a current command value from the servo control unit 52 to the feed axis motor drive unit 54 is provided.
  • the arithmetic control unit 56 includes a load torque arithmetic unit 70 for performing so-called backlash acceleration correction as one mode.
  • corresponding components in FIG. 1 are designated by the same reference numerals.
  • the servo control unit 52 compares the movement command value from the movement command distribution control unit 50 with the position feedback signal from the position detector SP such as a digital linear scale attached to the table 14.
  • Subtractor 58 Position control unit 60 that amplifies the output from subtractor 58, Output value of position control unit 60 and speed feedback signal from pulse coder PC provided for feed axis motor Mz And a speed controller 64 for amplifying the output of the subtractor 62.
  • the movement command value from the movement command distribution control unit 50 is also transmitted to the detection unit 66 and the acceleration calculation unit 68 every moment.
  • the detector 66 monitors the change in the moving direction of the table 14 by analyzing the moving command from the moving command distribution controller 50, and moves when the moving direction of the table 14 reverses.
  • the direction inversion signal is sent to a load torque calculator 70 which is one mode of the acceleration calculator 68 and the calculation controller 56.
  • the load torque calculation section 70 includes a time constant calculation section 72, a load torque correction amount calculation section 74, and a load torque detection section 76 as main components.
  • the acceleration calculator 68 calculates the acceleration value of the moving object by second-order differentiation of the movement command value, and sends it to the time constant calculator 72.
  • the time constant calculator 72 calculates a time constant based on the acceleration value from the acceleration calculator 68.
  • the load torque detecting section 76 receives the moving direction reversal signal from the detecting section 66 and the torque command value or the current command value output from the speed control section 64 of the servo control section 52.
  • the torque command value or current command value immediately before the reversal of the movement direction in step 4 is sent to the load torque correction amount calculation unit 74.
  • Load Torque correction amount calculation unit 7 4 is a load constant correction value calculated based on the time constant calculated by the time constant calculation unit 72 and the torque command value or current command value immediately before the reversal of the moving direction from the load torque detection unit 76. Then, it sends it to the speed controller 64.
  • the reversal of the moving direction and the calculation of the acceleration value may be performed by taking in the output signal from the position control unit 60 or by using an acceleration sensor attached to the moving body, instead of obtaining from the movement command value. Is also good.
  • the feed control under the condition of constant acceleration shows the change of the feed speed with respect to time (upper graph in Fig. 7) and the corresponding load torque applied to the feed shaft.
  • the change (lower graph in Figure 7) is shown.
  • the change in speed with respect to time is shown by connecting the change in speed difference ⁇ V with respect to a predetermined time difference ⁇ T by a straight line.
  • the load torque value is calculated from the previous load torque Qp to the target load torque Qp. As shown by the broken line to t, the speed changes slowly and a projection is formed on the cut surface of the work.
  • the inventors of the present application have conducted various experiments to find that the conditions under which the moving direction of the moving body is reversed do not cause protrusions or dents on the machined surface, load torque correction There is a certain correlation between the amount and the acceleration of the moving object.More specifically, by setting the time constant of the load torque correction amount to a value that is inversely proportional to the square root of the acceleration, the above-described defect on the machined surface can be improved. Found that it can be removed.
  • the present embodiment determines the load torque correction value as follows. First, the change in the moving direction of the table 14 is monitored by the detecting unit 66, and when the moving direction of the table 14 is reversed, the detecting unit 66 sends a moving direction reversal signal from the acceleration calculating unit 68 and the load torque. It is sent to the operation unit 70.
  • the acceleration calculator 68 sends the acceleration value of the moving object when receiving the moving direction inversion signal to the time constant calculator 72.
  • the time constant calculating section 72 calculates a time constant based on the acceleration value from the acceleration calculating section 68 by the following equation, and sends it to the load torque correction amount calculating section 74. Where k is the time constant, is the acceleration, and k is a coefficient to match the time constant.
  • the load torque detector 76 sets the output value from the speed controller 64 when the moving direction reversal signal is received as the load torque before the moving direction reversal, and sets the load torque correction amount calculator 7 4 Send to
  • the load torque correction amount calculation unit 74 sets the load torque Qp from the load torque detection unit 76 before the reversal of the movement direction as the load torque reference value Qs.
  • the load torque correction amount calculation unit 74 inverts the sign of the load torque Qp before the movement direction inversion (that is, replaces 11), and multiplies this value by a preset constant. Set the value as the target value Qt of the load torque of the feed axis after reversing the movement direction.
  • the load torque correction amount calculation unit 74 calculates that the speed control unit 64 uses the movement command value and the feedback by the following equation. Calculate the load torque correction value ⁇ Q to be added to the load torque generated from the load signal.
  • the constant a is a constant obtained by an experiment.
  • the constant a is stored and stored as a data table in association with the acceleration value of the moving object obtained from the acceleration calculator 68, and is appropriately determined according to the acceleration. Can be used by calling.
  • the correction value ⁇ Q is calculated by the time constant expressed as a function of the acceleration ⁇ at the time of the movement direction reversal.
  • the change amount of the load torque Q after reversing the moving direction up to t is calculated, and based on the load torque Q, the speed control unit 64 determines a desired torque command according to the load torque Q after reversing the moving direction. Calculate the value or current command value. This is output to the feed axis motor drive unit 54 to rotate the feed axis motor M z and move the table 14.
  • the time constant is determined as a value inversely proportional to the square root of the acceleration.
  • this condition is based on the condition that the table 14, the column 16, and the spindle head 18 as the moving body are relatively lightweight. In this case, good results can be obtained.
  • the time constant is not the square root of the acceleration, for example, Calculating as a power or a power of 35 may give better results.
  • the calculation of the correction amount ⁇ ⁇ 3 of the load torque may be stopped based on the ratio of the set load torque to the target value Qt or the distance from the position of the feed axis when the moving direction is reversed.
  • a static friction correction unit 80 may be provided in the embodiment of FIG. 2 as shown in FIG. That is, the feed mechanism sets a desired torque command value, current command value or speed command value according to the static friction force in advance, and sets the desired torque command value, current command value or speed command value set in advance.
  • the torque command value or the current command value to the feed shaft motor drive unit 54 can be determined based on the above.
  • components corresponding to FIGS. 1 and 2 are designated by the same reference numerals.
  • the static friction correction unit 80 is provided between the detection unit 66 and the servo control unit 52, and a speed correction value 82, which is a desired speed command value, and a desired speed command value.
  • the torque correction value 84 which is the torque command value, is sent to the subtractor 62 and the subtractor 94 downstream of the speed controller 64, respectively.
  • the static friction is a problem when the table 14, column 16, and spindle head 18 as a moving body start moving from a stationary state, and when the moving direction of the moving body is reversed. Therefore, in the embodiment shown in FIG. 3, the detection unit 66 opens the movement from the stopped state as well as the movement direction inversion signal of the moving body based on the movement command value from the movement command distribution control unit 50.
  • a movement start signal indicating the start is sent to the load torque calculation unit 70 and the static friction correction unit 80.
  • the load torque calculator 70 operates in substantially the same manner as the embodiment of FIG.
  • the static friction compensator 80 outputs a moving direction reversal signal or Upon receiving the motion start signal, a predetermined speed command value, that is, a speed command value in which the speed linearly increases with time and then changes linearly into a chevron or triangular shape, is sent to the subtractor 62. . At the same time, the static friction correction unit 80 sends a predetermined torque command value consisting of a rectangular wave to the subtractor 94 downstream of the speed control unit 64 to perform acceleration control of the feed shaft motor Mz .
  • the load inertia value is set to a constant value, and a value calculated by multiplying the acceleration value at each time is output as a torque command value to the feed shaft motor drive unit 54. Since the inertia changes according to the weight of the workpiece W fixed to the table 14 and the progress of machining, it is impossible to increase machining accuracy if the torque command value remains constant.
  • a change in the load inertia is calculated, and a torque command value or a current command value to the feed shaft motor drive unit 54 is determined based on the calculation.
  • the same components as those in FIGS. 2 and 3 are designated by the same reference numerals.
  • the embodiment of FIG. 4 includes an inertia calculation unit 96 and an inertia storage unit 98 as the calculation control unit 56 of FIG.
  • the servo control unit 52 includes a position control unit 60, a speed control unit 64, a speed feedforward control unit 90, and an acceleration feedword.
  • a speed control unit 90 and an acceleration feedforward control unit 92 are provided with a position command value from the movement command distribution control unit 50.
  • the speed feed force control unit 90 which generates a speed feed force value and an acceleration feed force value on the basis of the speed feed force value, receives the movement command from the movement command distribution control unit 50.
  • the velocity value is calculated by differentiating the value first order, and this is output to the inertia calculation unit 96, and the velocity feed-forward — Output to the subtractor 62 downstream of the position control unit 60 as the load value.
  • the acceleration feedforward control unit 92 calculates the acceleration value by second-order differentiation of the movement command value from the movement command distribution control unit 50, and then calculates the acceleration value. Output to the control unit 96, and the calculated acceleration value is multiplied by the inertia to calculate the acceleration feedforward value, which is output to the subtractor 94 downstream of the speed control unit 64. I do.
  • the subtracter 62 the difference between the speed feedforward value, the output value of the position control unit 60, and the speed feed knock signal of the pulse coder PC force, etc. is used as the speed control signal. Entered in part 64.
  • the speed control section 64 sequentially multiplies the difference by a gain 64 a and an inertia 64 b to output a load torque value.
  • the acceleration feedforward value from the acceleration feedforward control section 92 is added to this load torque value, and the result is output to the feed shaft motor drive section 54 as a torque command value.
  • the inertia calculation section 96 includes a speed value from the speed feedforward control section 90, an acceleration value from the acceleration feedforward control section 92, and a feed axis motor drive section. 5 Calculate the load inertia based on the torque command value or current command value input to 4 as shown below.Refer to Fig. 8. The changes in speed, acceleration, and torque when fast-forwarding at speed VI after accelerating under the conditions described above are shown as functions of time. Hereinafter, the operation of this embodiment will be described with reference to the flow charts shown in FIGS. 9A and 9B, assuming the situation shown in FIG.
  • step S10 in response to the rapid traverse signal, in step S10, it is determined whether or not the axis traverse is rapid traverse, based on the speed value and acceleration feedback from the speed feedforward control unit 90. The judgment is made based on the acceleration value from the mode control section 92.
  • Step S 10 In the case of No
  • the flow chart waits for rapid traverse of the axis. If the axis feed is rapid traverse (Yes in step S10), in step S12, the condition that the axis feed is constant acceleration is determined from the change in the acceleration value from the acceleration feedforward control unit 92. It is determined whether or not the vehicle is accelerating.
  • step S 14 acceleration during acceleration is performed by the torque command value or current command value to the feed axis motor drive unit 54. Torque is sampled. When this sampling is performed N times a predetermined number of times, the above-mentioned sampling ends (in the case of Yes in step S16). If the number of samplings is less than N (No in step S16), the flow returns to step S10 to perform torque sampling again.
  • step S18 the axis feed is changed from the speed value from the speed feedforward control section 90 to the speed. It is determined whether it is performed at a constant rate. If the axis feed is constant speed (Yes in step S18), in step S20, the axis feed is performed at a constant speed by the torque command value or current command value to the feed shaft motor drive unit 54. The torque is sampled while in operation. When this sampling is performed a predetermined number of times M, the above-mentioned sampling is completed (in the case of Yes in step S22). If the number of samplings is less than M (if N0 in step S22), the process returns to step S10 to perform torque sampling again.
  • step S24 the average value Q1 of the torque during acceleration and the average value Qr of the torque during the constant speed are calculated. calculate.
  • step S 26 and step S 28 The friction torque Qf and the acceleration torque Qa proportional to the speed during acceleration are calculated from the constant speed torque.
  • Vr Constant axis feed speed during rapid traverse
  • Vm Average feed rate at constant acceleration
  • step S30 the load inertia J is calculated by the following equation.
  • step S32 the inertia calculation section 96 calculates the acceleration feedforward value related to the load inertia J and sends it to the inertia storage section 98. Rewrite the acceleration feed-forward value stored as above (step S34).
  • the calculated inertia value is output to the speed control unit 64, and the latest inertia value is used when calculating the torque command value or the current command value.
  • the calculated inertia value is also output to the acceleration feedback control unit 92, and the acceleration feedback value output to the adder 94 is calculated. In this case, the latest inertia value is used.
  • the load inertia J is calculated by observing the rate of change of the torque command value or current command value to the feed shaft motor drive unit 54. You can.
  • the speed values from the speed feed-force control unit 90 and the acceleration feed-force control unit 92 are used.
  • the acceleration value was used, the present invention is not limited to this.
  • a weight detector 100 such as a strain gauge attached to a table 14 was used to measure the workpiece W. The change in weight may be directly measured, and the measured value may be output to the inertia calculation unit 98 to calculate the load inertia J.
  • the servo control unit 52 (FIGS. 1 to 5) reads and interprets the NC program 42 by the program reading and interpreting unit 44, and temporarily stores the NC program 42 in the interpreted program storage unit 46.
  • the interpreted program is extracted by the program execution command section 48, and the feed axis motors Mx, MY, and MY of the numerically controlled machine tool 10 (Fig. 1) are read according to the movement command value output by the movement command distribution control section 50. Control the drive of M z.
  • the data storage unit 110 stores the acceleration / deceleration time constant of the feed axis suitable for the numerically controlled machine tool 10, the torque command value or current command value extracted from the servo control unit 52, and the feed shaft motor ⁇ ⁇ , ⁇ gamma, the relationship between the temperature of the M z, feed Rijiku motor M x, M Y, the feed shaft motor MX when continuously feeding the rated current to the M z, MY, temperature represents a change in the temperature of the M z
  • the relationship between the slope S of the temperature curve and the temperature curve and the acceleration / deceleration time constant It is determined by how, and memorized and set.
  • the feed shaft motors Micromax chi, MY also stores set parameters such as representing the size of the M Z and feed shaft motor driving unit 4.
  • the temperature calculation unit 1 1 2 uses the torque command value or current command value extracted from the servo control unit 5 2 and the torque command value or current command value extracted from the data storage unit 1 10 and the feed shaft motor.
  • the instantaneous feed axis motor MX In view of the relationship between the temperature of M x , MY and M 2, the instantaneous feed axis motor MX,
  • the temperature of the driving means such as MY and Mz is predicted and calculated.
  • the acceleration / deceleration time constant calculation unit 1 14 receives the calculation result from the temperature calculation unit 1 12 and stores the acceleration / deceleration time constant of the feed axis according to the instantaneous state in the data storage unit 110. Calculate and output from the relationship between the slope of the temperature curve (not shown) and the acceleration / deceleration time constant.
  • the acceleration / deceleration time constant command section 1 16 uses the acceleration / deceleration time constant of the feed axis that matches the instantaneous state output from the acceleration / deceleration time constant calculation section 114 to advance the operation of the numerically controlled machine tool 10.
  • the movement command distribution control unit 50 is commanded at the same time. In the initial stage of the control, a preset acceleration / deceleration time constant T O of the feed axis is directly sent from the data storage unit 110 to the movement command distribution control unit 50.
  • Necessary data is, as described above, the acceleration / deceleration time constant of the feed axis suitable for the numerically controlled machine tool 10, the torque command value or current command value extracted from the servo control unit 52, and the feed axis motors MX and MY.
  • the temperature calculation unit 112 is configured to transmit the torque command value or the current command value to the torque command value or the current command value stored in the data storage unit 110 and drive means such as the feed shaft motor MX, ⁇ , Mz, etc.
  • the temperature of the driving means is predicted and calculated every moment in consideration of the relationship with the temperature of the driving means, and the temperature curves of the driving means with respect to the passage of time, for example, the temperature curves (1) and (2) in FIG. 5 4).
  • Acceleration and deceleration time constant calculating unit 1 1 if the slope of the temperature curve generated every second (temperature curve (1), is a case theta 2 of the temperature curve (2), and set at step S 5 0 The slope of the temperature curve at the rated current at the same temperature (temperature MT1 in Fig. 11) is compared with (step S56), and the comparison result is sent as the slope 0 of the temperature curve shown in Fig. 12. Apply the relationship to the acceleration / deceleration time constant T of the revolving shaft.
  • the acceleration / deceleration time constant T of the feed axis has an upper limit Tmax. This value is used when acceleration / deceleration does not overheat the drive means even if acceleration / deceleration is repeatedly performed continuously. This is a constant, and there is a minimum slope of the temperature curve corresponding to T max. That is, ⁇ is ⁇ ? For larger ranges, T is T max.
  • the temperature curve of the driving means In addition to the format shown in Fig. 11, there is a format in which the relationship between time and slope 0 is tabulated at predetermined time intervals.
  • the temperature of the feed shaft motor is predicted and calculated from the number of times of acceleration and deceleration of the feed shaft, or the temperature of the feed shaft motor is detected by a temperature detection sensor, and a comparison result between these temperatures and the allowable temperature is obtained.
  • the so-called backlash acceleration / correction control is shown in FIGS. 2 and 3
  • the inertia correction control is shown in FIGS. 4 and 5
  • the acceleration / deceleration control of the feed shaft motor is separately shown in FIG.
  • FIGS. 2 and 3 the so-called backlash acceleration / correction control
  • FIGS. 4 and 5 the inertia correction control
  • FIGS. 4 and 5 the acceleration / deceleration control of the feed shaft motor
  • a horizontal machining center having three axes orthogonal to each other as shown in FIG. 1 as shown in FIG. 1 has been described, but the present invention is not limited to this.
  • a numerically controlled machine tool with a 5-axis configuration in which the table 14 can be fed and moved to the A-axis and the B-axis, which are rotations about a horizontal axis, in addition to the three axes of the X, Y, and Z axes. You may.
  • the present invention is also applied to a numerically controlled machine tool having four axes of X axis, Y axis, Z axis, A axis or X axis, Y axis, Z axis, and B axis, and other numerically controlled machine tools having six axes or more. Is applicable. Further, the present invention is applicable not only to a horizontal machining center as shown in FIG. 1, but also to a vertical machining center, a milling machine and other numerically controlled machine tools. Further, the present invention can be applied to a die sinking electric discharge machine having X, ⁇ , and ⁇ axes, and a wire electric discharge machine having X, Y, U, and V axes.
  • the calculation control unit 56, the detection unit 66, the acceleration calculation unit 68, the load torque calculation unit 70, the static friction correction unit 80, the inertia calculation unit 96, and the inertia storage unit 98 of the present invention are And the numerical control unit 40 are functionally independent.
  • the numerical control unit 40 and the frame may be provided together, or may be provided in a frame such as a separate machine control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

明 細 書 数値制御工作機械の制御方法及び数値制御工作機械 技術分野
本願発明は、 X、 Y、 Ζ軸の直交 3軸の送り軸、 またはそれに A 、 B、 C軸のうち少なく とも 1 つの回転軸を付加した複数の送り軸 を有するフライス盤、 マンニングセンタ、 放電加工機等の数値制御 工作機械の制御方法及び数値制御工作機械に関するものであり、 機 械の送り速度を高速にしても加工精度を劣化させない新規な技術に 関するものである。 背景技術
数値制御工作機械は、 ワークを短時間に精度よく加工すること、 つまり高能率、 高精度加工を可能にすることが要求される。 一般的 に、 機械の送り速度を上げると加工精度が低下することが知られて いる。 これは送り軸のロス トモー シ ョ ンや数値制御装置のサーボ制 御の遅れに起因している。 したがって、 数値制御工作機械では、 高 速送りで加工を行っても高精度加工が達成できるように、 送り軸の バックラ ッ シ補正や摩擦補正を行ったり、 ワーク重量や送り軸モ一 夕の温度に応じた送り軸の加減速制御を行つており、 例えば次のよ うな従来技術がある。
第 1 の従来技術と して、 特許第 2 6 0 6 7 7 3号に開示のサーボ システムにおける加速制御方法及び装置がある。 これは、 ノく ッ クラ ッ シ、 弾性変形、 静摩擦に起因する送り軸のロス ト モーショ ンをそ れぞれの特性に対応した最適な加速制御を行い加工精度の劣化を低 減することを目的と して、 送り軸の移動方向反転時に、 送り系のバ ッ クラ ッ シ、 弾性変形、 静摩擦に起因する各ロス トモー シ ョ ンを補 償する第 1 、 第 2、 第 3の加速速度をサーボ制御部の速度指令値に 加え、 いち早く ロ ス トモー シ ョ ンによる遅れを解消する技術を開示 したものである。
第 2の従来技術と して、 特許第 2 7 0 9 9 6 9号に開示のサーボ モータの制御方法がある。 これは、 切削条件等の変動があっても最 適なバッ クラ ッ シ補正を行う ことを目的と して、 移動方向反転前の 速度制御部の積分器の逆符号の値を目標値と し、 目標値から速度制 御部の積分器の値を減算した値に、 定数を乗じたもの、 例えば移動 方向が反転した瞬間の位置偏差量の平方根に比例する値を乗じて得 られた値を速度制御部におけるバックラ ッ シ加速量とする技術を開 示したものである。
第 3の従来技術と して、 特開平 1 1 — 9 0 7 6 9 に開示の工作機 械の加減速制御方法および装置がある。 これは、 工具やワーク等の 移動物を交換することによって移動物重量が変化する場合に高い加 ェ精度を維持して加工時間を短縮することを目的と して、 工作機械 の剛性、 加工精度 (許容誤差) 、 ワーク重量に見合った加速度で駆 動系を制御する、 すなわち予め設定された負荷イナ一シ ャ に合わせ て加速度を変える技術を開示したものである。
第 4の従来技術と して、 特開平 6 — 2 8 4 7 6 3 に開示のサーボ モータの速度制御装置がある。 これは、 送り軸モータの出力 トルク と駆動対象の加速度とから負荷 トルクを推定する トルクオブザーバ に関する内容であり、 負荷 トルクの推定値の変化を検出して負荷ィ ナ一シャの推定を行い、 トルクオブザーバ内に設定されている負荷 イナ一シャを更新する技術を開示したものである。
第 5の従来技術と して、 特許第 2 8 5 3 0 2 3号に開示の数値制 御による機械装置の制御方法および装置がある。 これは、 送り軸モ 一夕を早送り等で頻繁な加減速を伴って連続運転してもその送り軸 モータがオーバヒー ト しないこ とを目的と して、 送り軸モータの温 度を測定して、 予め設定した送り軸モータの許容される所定の温度 データと比較し、 その比較結果に応じて送り軸の加減速カーブを変 更制御する技術を開示したものである。
第 1 の従来技術は、 加速速度を求めてそれをサーボ制御部の速度 指令値に加えている。 実際の数値制御工作機械では、 送り軸モータ 駆動手段にどれだけの トルク指令値または電流指令値を出力するか が最終的に要求されるのであって、 第 1 の従来技術のようにサ一ボ 制御途中の速度指令値を変えているのでは、 その指令値が トルク指 令値または電流指令値に変換されて送り軸モータ駆動手段に到達す るのに遅れが存在する。
第 2 の従来技術は、 位置偏差量に基づいて演算したバッ ク ラ ッ シ 加速量を速度制御部におけるバッ ク ラ ッ シ加速量と しているため、 依然と して位置フィ一 ドバッ ク制御手段及び速度フ ィ一 ドバッ ク制 御手段によるサ一ボ系の遅れが存在する。
第 3 の従来技術は、 負荷イナ一シャを予め所定値に設定している ので、 ワーク重量に合わせて加速度を変える ものである。 すなわち ワーク重量が大きい場合は、 加速度を許容限度まで高く し、 ワーク 重量が小さい場合は、 加速度を下げる制御をしている。 加速度を下 げるという ことは加工能率が悪化する問題点がある。
第 4 の従来技術は、 一般的なサ一ボモータの負荷 トルクを推定す る トルクオブザーバに関する内容であり、 速度指令値に基づいて負 荷 トルクを推定し、 推定した負荷 トルクに応じて負荷イナ一シャを 推定し、 その値を機械系の伝達関数に送出するように して送り制御 を行う技術が開示されている。 これは、 負荷イナ一シャはあ く まで も推定値なので、 機械の送り軸にゆらぎや遅れが発生し、 加工精度 に悪影響を及ぼす問題点は依然と して存在する。
第 5 の従来技術は、 送り軸モータの温度に応じて加減速の時定数 を制御し、 指令送り速度を変更しないで送り軸モータのオーバヒ一 トを防止する技術に関する内容であり、 これは、 送り軸モータのォ 一バヒ一 トは防止できるが、 加減速の時定数が大き く なり、 加工精 度が悪く なる問題点がある。
上述の従来技術の他に、 従来のバッ クラ ッ シ補正や摩擦補正は、 移動体の速度や加速度を考慮していない一律の補正値を用いている 。 実加工時においては、 同一形状を送り速度を変えて加工した場合 、 従来の補正では加工寸法に差が生じる。 また同一送り速度で曲率 の異なる曲面を複数の象限にわたって加工した場合、 象限切換わり 時、 少なく と も 1 つの送り軸については、 送り速度が一旦 0 になり 、 その後方向反転するので加速度が発生するが、 曲率によ りその加 速度値が変わる。 これに従来の補正を適用するとこれまた加工寸法 に差が生じる。 つま り移動方向反転時や一旦停止後の移動開始時に おいては、 移動体の速度や加速度に応じた摩擦補正をしなければな らない。
また、 従来の数値制御装置の負荷イナ一シャの値は、 例えば最大 積載ワーク重量の半分の重量のワークが積載されている場合の負荷 イナ一シャの値が一定値と して採用されていた。 この一定値にその 時々の加速度値を掛けて求めた値が トルク指令値と して送り軸モー 夕駆動手段に出力されていた。 この様な制御下では重いワークが積 載されて負荷イナ一シャが大き く なつても、 必要な トルク指令値が 発生せず、 実際の送り軸の移動が移動指令に対して遅れていた。 ま た軽いワークが積載されて負荷イナ一シャが小さ く なつても、 必要 以上の トルク指令値が発生されて移動体に衝撃が加わり、 送り速度 にゆらぎが生じ加工の形状精度が悪く なつた。 更に加工により ヮー ク重量が刻々変化する、 つま り負荷イナ一シャが変化するのに トル ク指令値が一定値のままでは、 時間と と もに変化する負荷条件にサ
—ボ制御が追従していないので加工精度が変化することになる。 発明の開示
本願発明の目的は、 上述の従来技術の問題点を解決するためのも のであり、 機械の移動体を高速で移動させても高精度な加工が行え る数値制御工作機械の制御方法及び数値制御工作機械を得るこ とで ある
他の目的は、 複数の送り軸を同時に移動させて輪郭加工や自由曲 面加工を行っている時の加工精度を向上させることである。
他の目的は、 送り軸の移動方向反転時や、 停止からの移動開始時 における送り機構の動摩擦カゃ静摩擦力の変化を考慮して高精度な 加工を行えるようにするこ とである。
他の目的は、 送り軸の移動体に積載されるワークや取付具が交換 された時や、 一つのワークが加工されてその重量が時間とと もに軽 く なる時にも、 その重量の変化を考慮して高精度な加工を行えるよ うにするこ とである。
他の目的は、 送り軸モータを頻繁な加減速を伴って連続運転して も送り軸モータがオーバヒー トせず、 高能率を保ったまま、 高精度 な加工が行えるようにすることである。
上述の目的に鑑みて、 本願発明は、 数値制御装置のサーボ制御部 から取り 出 した数値制御プログラムデータの実行結果を用い、 送り 軸の送り機構がもつ摩擦カゃヮ一クの重量の変化に応じた所望の ト ルク指令値または電流指令値を予測演算し、 その予測演算値を送り 軸モータ駆動手段に出力するよう に したものである。
本願発明によれば、 X、 Y、 Ζ軸の直交 3軸の送り軸、 またはそ れに A、 B、 C軸のうち少なく と も 1 つの回転軸を付加した複数の 送り軸を有した数値制御工作機械の制御方法において、
数値制御装置の読取解釈部から取り込んだ数値制御プログラムデ 一夕を移動指令分配制御部及びサ一ボ制御部で実行し、 その実行結 果を送り軸モータ駆動手段から前記送り軸の送り軸モータに出力 し 前記サ一ボ制御部から出力される数値制御プログラムデータの実 行結果を取り込み、 前記送り軸の送り機構がもつ摩擦力やワークの 重量の変化に応じた適当な トルク指令値または電流指令値を予測演 算し、
予測演算した適当な トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力し、
前記送り軸モータを前記送り軸の送り機構がもつ摩擦力やワーク の重量の変化に応じた適当な指令値で駆動する数値制御工作機械の 制御方法が提供される。
また本願発明によれば、 数値制御装置の読取解釈部から取り込ん だ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制御 部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モー 夕に出力 し、 送り機構を介して移動体を移動させる数値制御工作機 械の制御方法において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記サ一ボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、
取り込んだ トルク指令値または電流指令値と前記送り軸の加速度 値とから前記送り機構がもつ摩擦力やワー クの重量の変化に応じた 所望の トルク指令値または電流指令値を予測演算し、
予測演算した所望の トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力し、
前記送り軸モータを所望の指令値で駆動する数値制御工作機械の 制御方法が提供される。
前記送り機構がもつ摩擦力やワークの重量の変化に応じた所望の トルク指令値または電流指令値の予測演算は、 前記取り込んだ トル ク指令値または電流指令値に基づく 実電流値と前記送り軸の加速度 値とから前記送り機構がもつ摩擦力ゃヮ一クの重量の変化に応じた 所望の トルク指令値または電流指令値を予測演算するよう に しても よい。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転を検出 し、
移動方向反転検出時の前記送り軸の加速度を演算し、
前記送り軸の移動方向反転検出時の前記サーボ制御部から出力さ れる トルク指令値または電流指令値に基づいて負荷 トルクを演算し て前記送り軸の移動方向反転前の負荷 トルク と して設定し、
前記送り軸の移動方向反転前の負荷 トルクの符号反転値に予め設 定した定数を乗算した値を前記送り軸の移動方向反転後の負荷 トル クの目標値と して設定し、
前記送り軸の移動方向反転検出時から設定した負荷 トルクの目標 値に至るまでの前記送り軸の移動方向反転後の負荷 トルクを前記送 り軸の移動方向反転検出時の加速度の関数と して表わされる時定数 を用いて演算し、
演算した前記送り軸の移動方向反転後の負荷 トルクに応じた所望 の トルク指令値または電流指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力 し、
前記送り軸モータと送り機構を介して前記移動体を移動させる数 値制御工作機械の制御方法が提供される。
前記送り軸の移動方向反転後の負荷 トルクの演算は、 前記送り軸 の移動方向反転検出時の加速度の平方根に反比例した時定数を用い て負荷 トルクを演算するようにしてもよい。
また、 前記送り軸の移動方向反転後の負荷 トルクの演算は、 前記 送り軸の移動方向反転検出時の加速度の平方根に反比例した複数の 時定数を用いて負荷 トルクを演算するよ うにしてもよい。
前記送り軸の移動方向反転後の負荷 トルクの演算は、 設定した負 荷 トルクの目標値に至るまでの割合または前記送り軸の移動方向反 転検出時の前記送り軸の位置からの距離で負荷 トルクの演算を停止 するようにしてもよい。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ —夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、 前記送り機構がもつ静摩擦力に応じた所望の トルク指令値及び速 度指令値、 または所望の電流指令値及び速度指令値を予め設定し、 前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転または停止からの移動開始を検出 し、 前記送り軸の移動方向反転検出時または停止からの移動開始検出 時に前記予め設定した所望の トルク指令値及び速度指令値、 または 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記サーボ制御部に出力し、
前記送り軸モータと送り機構を介して前記移動体を移動させる数 値制御工作機械の制御方法が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ
—夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、
前記送り機構がもつ静摩擦力に応じた所望の トルク指令値及び速 度指令値、 または所望の電流指令値及び速度指令値を予め設定し、 前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転または停止からの移動開始を検出 し、 移動方向反転検出時の前記送り軸の加速度を演算し、
前記送り軸の移動方向反転検出時の前記サ一ボ制御部から出力さ れる トルク指令値または電流指令値に基づいて負荷 トルクを演算し て前記送り軸の移動方向反転前の負荷 トルク と して設定し、
前記送り軸の移動方向反転前の負荷 トルクの符号反転値に予め設 定した定数を乗算した値を前記送り軸の移動方向反転後の負荷 トル クの目標値と して設定し、
前記送り軸の移動方向反転検出時から設定した負荷 トルクの目標 値に至るまでの前記送り軸の移動方向反転後の負荷 トルクを前記送 り軸の移動方向反転検出時の加速度の関数と して表わされる時定数 を用いて演算し、
演算した前記送り軸の移動方向反転後の負荷 トルクに応じた所望 の トルク指令値または電流指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力 し、
前記送り軸の移動方向反転検出時または停止からの移動開始検出 時に前記予め設定した所望の トルク指令値及び速度指令値、 または 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記サ一ボ制御部に出力 し、
前記送り軸モータと送り機構を介して前記移動体を移動させる数 値制御工作機械の制御方法が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ —夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力 して前記送り軸モータを駆動 し、
前記サ一ボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を前記送り軸の移動中の トルク指令値 または電流指令値と して取り込み、
前記送り軸の移動中の トルク指令値または電流指令値と前記送り 軸の加速度値とから負荷イナ一シャを演算し、
演算した負荷イナ一シャに応じた所望の トルク指令値または電流 指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力 し、
前記送り軸モータと送り機構を介して前記移動体を移動させる数 値制御工作機械の制御方法が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力 し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
ワークの重量またはワークを載置した移動体の重量を検出し、 検出 した重量から負荷イナ一シャを演算し、
演算した負荷イナ一シャに応じた所望の トルク指令値または電流 指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力 し、 前記送り軸モータと送り機構を介して前記移動体を移動させる数 値制御工作機械の制御方法が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械の制御方法において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力 して前記送り軸モータを駆動 し、
前記送り軸の加減速時定数及び前記送り軸モータの許容される所 定の温度データを予め設定 · 記憶し、
前記サ一ボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、
取り込んだ トルク指令値または電流指令値から前記送り軸モータ の温度を予測演算し、
予め設定 ' 記憶した前記送り軸モータの許容される所定の温度デ —夕と予測演算した前記送り軸モータの温度とを比較し、
比較結果に応じた前記送り軸の加減速時定数を設定して前記移動 指令分配制御部に出力し、
取り込んだ トルク指令値または電流指令値と前記送り軸の加速度 値とから前記送り機構がもつ摩擦力やワークの重量の変化に応じた 所望の 卜ルク指令値または電流指令値を予測演算し、
予測演算した所望の トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力し、
前記送り軸モータを所望の指令値で駆動する数値制御工作機械の 制御方法が提供される。
さ らに本願発明によれば、 X、 Y、 Z軸の直交 3軸の送り軸、 ま たはそれに A、 B、 C軸のうち少なく と も 1 つの回転軸を付加した 複数の送り軸を有した数値制御工作機械において、
前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータ と、
前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プロ グラ ムデータを移動指 令分配制御部及びサーボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記サーボ制御部から出力される数値制御プログラムデータの実 行結果を取り込み、 前記送り機構がもつ摩擦力やワークの重量の変 化に応じた適当な トルク指令値または電流指令値を予測演算して前 記送り軸モータ駆動手段に出力する演算制御手段と、
を具備して構成する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ —夕に出力 し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータ と、
前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プロ グラ ムデータを移動指 令分配制御部及びサ一ボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記送り軸モータを駆動している時の前記サ一ボ制御部から前記 送り軸モータ駆動手段に出力される トルク指令値または電流指令値 と前記送り軸の加速度値とから前記送り機構がもつ摩擦力やワーク の重量の変化に応じた所望の 卜ルク指令値または電流指令値を予測 演算し、 予測演算した所望の トルク指令値または電流指令値を前記 送り軸モータ駆動手段に出力する演算制御手段と、
を具備して構成する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転を検出する検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時の加速度を 演算する加速度演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時の前記速度 制御手段から出力される トルク指令値または電流指令値と前記加速 度演算手段で演算した前記送り軸の移動方向反転検出時の加速度の 関数と して表わされる時定数とを用いて前記送り軸の移動方向反転 後の負荷 トルクを演算し、 演算した負荷 トルクに応じた所望の トル ク指令値または電流指令値を前記速度制御手段に出力する負荷 トル ク演算手段と、
を具備して構成する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ
—夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転または停止からの移動開始を検出する 検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時または停止 からの移動開始検出時に前記送り機構がもつ静摩擦力に応じた予め 設定した所望の トルク指令値及び速度指令値、 または予め設定した 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記速度制御手段に出力する静摩擦補正手段と、
を具備して構成する数値制御工作機械が提供される。
. さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ —夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転または停止からの移動開始を検出する 検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時の加速度を 演算する加速度演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時の前記速度 制御手段から出力される トルク指令値または電流指令値と前記加速 度演算手段で演算した前記送り軸の移動方向反転検出時の加速度の 関数と して表わされる時定数とを用いて前記送り軸の移動方向反転 後の負荷 トルクを演算し、 演算した負荷 トルクに応じた所望の トル ク指令値または電流指令値を前記速度制御手段に出力する負荷 トル ク演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時または停止 からの移動開始検出時に前記送り機構がもつ静摩擦力に応じた予め 設定した所望の トルク指令値及び速度指令値、 または予め設定した 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記速度制御手段に出力する静摩擦補正手段と、
を具備して構成する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を予測演算して前記速度制御手段に出力する 速度フ イ ー ドフ ォ ヮ一ド制御手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて加速度値または トルク指令値を予測演算して前記送り軸 モータ駆動手段に出力する加速度フ ィ 一 ドフ ォ ヮー ド制御手段と、 前記速度制御手段から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、 取り込んだ前記送り軸の 移動中の トルク指令値または電流指令値と前記送り軸の加速度値と から負荷イナ一シャを演算して前記速度制御手段及び前記加速度フ イ ー ドフ ォ ワー ド制御手段に出力するイナーシャ演算手段と、 を具備して構成され、
前記速度制御手段から前記イナ一シャ演算手段で演算した負荷ィ ナ一シャに応じた所望の トルク指令値または電流指令値を前記送り 軸モータ駆動手段に出力する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサーボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ 一夕に出力し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を予測演算して前記速度制御手段に出力する 速度フ イ ー ドフ ォ ヮ一 ド制御手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて加速度値または トルク指令値を予測演算して前記送り軸 モータ駆動手段に出力する加速度フ イ ー ドフ ォ ヮ一ド制御手段と、 ワークの重量またはワークを載置した移動体の重量を検出する重 量検出手段と、
前記重量検出手段で検出した重量から負荷イナ一シャを演算して 前記速度制御手段及び前記加速度フ イ ー ドフ ォ ヮ一 ド制御手段に出 力するイナ一シャ演算手段と、
を具備して構成され、
前記速度制御手段から前記イナ一シャ演算手段で演算した負荷ィ ナーシャに応じた所望の 卜ルク指令値または電流指令値を前記送り 軸モータ駆動手段に出力する数値制御工作機械が提供される。
さ らに本願発明によれば、 数値制御装置の読取解釈部から取り込 んだ数値制御プログラムデータを移動指令分配制御部及びサ一ボ制 御部で実行し、 その実行結果を送り軸モータ駆動手段から送り軸モ
—夕に出力 し、 送り機構を介して移動体を移動させる数値制御工作 機械において、
前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータ と、
前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プログラムデータを移動指 令分配制御部及びサーボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記送り軸の加減速時定数及び前記送り軸モータの許容される所 定の温度データを予め設定 ' 記憶するデータ記憶手段と、
前記サーボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、 取り込んだ トルク指令値 または電流指令値から前記送り軸モータの温度を予測演算する温度 演算手段と、
前記データ記憶手段で予め設定 · 記憶した前記送り軸モータの許 容される所定の温度データと前記温度演算手段で予測演算した前記 送り軸モータの温度とを比較し、 比較結果に応じた前記送り軸の加 減速時定数を設定して前記移動指令分配制御部に出力する加減速時 定数演算手段と、
前記送り軸モータを駆動している時の前記サーボ制御部から前記 送り軸モータ駆動手段に出力される トルク指令値または電流指令値 と前記送り軸の加速度値とから前記送り機構がもつ摩擦力やワーク の重量の変化に応じた所望の トルク指令値または電流指令値を予測 演算し、 予測演算した所望の トルク指令値または電流指令値を前記 送り軸モータ駆動手段に出力する演算制御手段と、 を具備して構成する数値制御工作機械が提供される。
本願発明の作用は、 数値制御装置のサーボ制御部から送り軸モー タ駆動手段に出力される実際の トルク指令値または電流指令値を演 算制御手段に取り込み、 そのときの送り軸の加速度値も演算制御手 段に取り込み、 演算制御手段の中で送り機構がもつ摩擦力の変化や 、 積載されるワークの重量の変化に応じた所望の トルク指令値また は電流指令値を予測演算する。 この予測演算した所望の トルク指令 値または電流指令値を送り軸モータ駆動手段に出力 しているので、 送り軸は摩擦力やワークの重量の変化に合った トルクで駆動される ことになり、 移動指令から遅れを生じたり、 送り速度のゆらぎが発 生するこ とのない送り動作が達成される。
また本願発明の数値制御工作機械は、 移動指令分配制御部から出 力される移動指令値から移動方向反転検出、 停止からの移動開始検 出、 二階微分による加速度の演算、 速度フ ィ ー ドフ ォ ワー ド制御、 及び加速度フ ィ ー ドフ ォ ヮー ド制御を行う ことができるので、 実際 に送り軸モータが駆動されるのに先回り して上述の演算制御手段に よる制御が行われ、 送り速度が速く ても高精度加工が実現する。
また本願発明は、 送り軸モータの温度を予測演算し、 予め設定し た送り軸モータの許容される所定の温度データと比較し、 その比較 結果に応じて送り軸の加減速時定数を変更する制御と、 上述の送り 軸の摩擦力やワークの重量の変化に応じた所望の トルク指令値また は電流指令値を送り軸モータ駆動手段に出力する制御とを組み合わ せて行う こ とができる。
上述のような構成及び作用により、 本願発明では、 機械の移動体 を高速で移動させていても高精度な加工が行える数値制御工作機械 の制御方法及び数値制御工作機械が得られる。 そ して複数の送り軸 を同時に移動させて輪郭加工や自由曲面加工を行っている時に、 あ る送り軸の象限が切換わったと しても、 またある送り軸のワーク重 量が変わったと しても加工精度は良好に保たれる。
送り軸の移動反転時や、 停止からの移動開始時における送り機構 の動摩擦カゃ静摩擦力の変化があっても高精度な加工が行える。 そ して、 送り軸の移動体に積載されるワークや取付具が交換された時 や、 一つのワークが加工されてその重量が時間とと もに軽く なる時 にも、 その重量の変化によるイナ一シャの変化に追従して所望の 卜 ルク指令値または電流指令値が送り軸モータ駆動手段に出力されて
、 加工精度は良好に保たれる。 更に送り軸モータを頻繁な加減速を 伴って連続運転しても送り軸モータがオーバヒー 卜せず、 高精度な 加工が行える。
本願発明と前述の五つの従来技術とを対比すると、 第 1 の従来技 術は、 ロス トモーシ ョ ンに起因する各種の加速速度をサーボ制御部 の速度指令値に加え、 その後速度制御部を通して送り軸モータを駆 動しているのに対し、 本願発明は所望の トルク指令値または電流指 令値を予測演算して、 その結果を直接送り軸モータ駆動手段に出力 しているので、 遅れのない送り軸モータ駆動が行える。 第 2の従来 技術に依然と して存在する位置フ ィ一ドバッ ク制御手段及び速度フ ィ一ドバッ ク制御手段によるサーボ系の遅れの影響は、 本願発明で は起きない。 第 3 の従来技術は、 送り軸の加速度を下げる制御をし ているのに対し、 本願発明では送り軸の加速度は適正な所定値に維 持し、 イナ一シ ャ値の変更によって所望の トルク指令値または電流 指令値を送り軸モータ駆動手段に出力しているので加工能率の悪化 はない。 第 4 の従来技術の トルクオブザーバは、 速度指令値に基づ き推定した負荷 トルクの変化を検出して、 負荷イナ一シャを推定す る構成をとつているのに対して、 本願発明の構成は、 実際に送り軸 モータ駆動手段に出力される トルク指令値または電流指令値を用い て負荷イナ一シャの演算を行っているのでより実際的な負荷イナ一 シャが求ま り、 正確な トルク指令値を送り軸モータ駆動手段に出力 できる。 第 5の従来技術は、 送り軸モータのオーバヒー トを防止す る技術であるのに対して、 本願発明は更に送り機構の摩擦力ゃヮー クの重量の変化に応じた所望の トルク指令値または電流指令値を送 り軸モータ駆動手段に出力しているので、 高精度な加工が行える。 図面の簡単な説明
図 1 は、 本願発明の数値制御工作機械の概略図である。
図 2 は、 本願発明の数値制御工作機械を制御する制御部の第 1 の 実施形態の構成プロ ッ ク図である。
図 3 は、 本願発明の数値制御工作機械を制御する制御部の第 2の 実施形態の構成ブロ ッ ク図である。
図 4 は、 本願発明の数値制御工作機械を制御する制御部の第 3の 実施形態の構成プロ ッ ク図である。
図 5 は、 本願発明の数値制御工作機械を制御する制御部の第 4の 実施形態の構成ブロ ッ ク図である。
図 6 は、 本願発明の数値制御工作機械を制御する制御部の第 5 の 実施形態の構成ブロ ッ ク図である。
図 7 は、 送り軸の方向反転を説明するための図であり、 上側が時 間に対する送り速度の変化を示すグラフであり、 下側が時間に対す る負荷 トルクの変化を示すグラフである。
図 8 は、 負荷イナ一シャの算出方法を説明するための図であり、 上側が時間に対する送り速度の変化を示すグラフであり、 中央が時 間に対する加速度の変化を示すグラフであり、 下側が時間に対する 負荷 トルクの変化を示すグラフである。 図 9 Aは、 負荷イナ一シ ャの算出方法のフローチ ヤ 一 トである。 図 9 Bは、 負荷イナ一シ ャの算出方法のフロ一チ ヤ 一 トである。 図 1 0 は、 本願発明第 5の実施形態による制御方法を示すフロー チ ヤ 一 卜である。
図 1 1 は、 本願発明第 5 の実施形態において作成する送り軸モー 夕の温度曲線を示したグラフである。
図 1 2 は、 本願発明第 5の実施形態における温度曲線の傾き 0 と 加減速時定数て との関係を示したグラフである。 発明を実施する最良の態様
図 1 を参照して、 本願発明の数値制御工作機械を説明する。
図 1 において、 数値制御工作機械 1 0 は所謂横形マ シニ ングセン 夕であり、 工場等の床面に設置されるべッ ド 1 2を具備している。 べッ ド 1 2の上面には、 Z軸ガィ ドレ一ノレ 2 8が水平な Z軸方向 ( 図 1 において左右方向) に延設されており、 該 Z軸ガイ ドレール 2 8 にはワーク Wを固定するためのテーブル 1 4が摺動自在に取り付 けられている。 図 1 は、 テーブル 1 4上に B軸方向に回転送り可能 な N Cロータ リテ一ブルを固定し、 その上にワーク Wを積載してい る例を示しているが、 N Cロータ リテ一ブルを介在させることなく テーブル 1 4上に直接ワーク Wを積載しても良い。 べッ ド 1 2の上 面には、 更に、 X軸ガイ ドレール 3 6が Z軸に対して垂直でかつ水 平な X軸方向 (図 1 の紙面に垂直方向) に延設されており、 該 X軸 ガイ ドレール 3 6 にはコラム 1 6が摺動自在に取り付けられている 。 コラム 1 6 においてワーク Wに対面する前面には、 X軸および Z 軸に対して垂直な Y軸方向 (図 1 において上下方向) に Y軸ガイ ド レール 3 4が延設されており、 該 Y軸ガイ ドレール 3 4 には、 主軸 2 0を回転自在に支持する主軸頭 1 8が摺動自在に取り付けられて いる。
べッ ド 1 2 内においてテーブル 1 4 の下側には Z軸送り軸と して の Z軸送りねじ 2 4 が Z軸方向に延設されており、 テーブル 1 4 の 下面には Z軸送りねじ 2 4 に螺合するナツ 卜 2 6 が固定されている 。 Z軸送りねじ 2 4 の一端には Z軸送りサ一ボモータ M z が連結さ れており、 該サーボモータ M z を駆動し Z軸送りねじ 2 4 を回転さ せることにより、 テーブル 1 4 は Z軸ガイ ドレール 2 8 に沿って移 動する。 同様にべッ ド 1 2 内においてコラム 1 6 の下側には X軸送 り軸と しての X軸送りねじ (図示せず) が X軸方向に延設されてお り、 コラム 1 6 の下面には前記 X軸送りねじに螺合するナツ ト (図 示せず) が固定されている。 前記 X軸送りねじの一端には X軸送り サ一ボモータ Μ χ が連結されており、 該サ一ボモータ Μ χ を駆動し 前記 X軸送りねじを回転させるこ とにより、 コラム 1 6 は前記 X軸 ガイ ドレール 3 6 に沿って移動する。 更に、 コラム 1 6 内には Υ軸 送り軸と しての Υ軸送りねじ 3 2が Υ軸方向に延設されており、 主 軸頭 1 8 の背面には Υ軸送りねじ 3 2 に螺合するナツ 卜 3 0 が固定 されている。 Υ軸送りねじ 3 2 の上端には Υ軸送りサ一ボモータ Μ γ が連結されており、 該サ一ボモータ Μ Υ を駆動し Υ軸送りねじ 3 2 を回転させることにより、 主軸頭 1 8 は Υ軸ガイ ドレール 3 4 に 沿って移動する。
主軸 2 0 の先端には工具 2 2、 例えばェン ド ミ ルが装着されてお り、 工具 2 2 を回転させながら、 コラム 1 6 、 主軸頭 1 8 、 テープ ノレ 1 4 を各々 X軸、 Υ軸、 Ζ軸方向に相対動作させることにより、 テーブル 1 4 に固定されたワーク Wを所望形状に切削加工する。 Ν C ロータ リ テーブルが固定されている場合、 数値制御工作機械 1 0 は、 更に Β軸を有する 4軸の数値制御工作機械と言える。
数値制御工作機械 1 0 は、 コラム 1 6 、 主軸頭 1 8、 テーブル 1 4 の X軸、 Y軸、 Ζ軸方向に 3軸方向へ移動させる X軸、 Υ軸、 Ζ 軸送りサーボモータ M x 、 M Y 、 M z を制御する数値制御部 4 0 を 具備している。 もちろん N C ロータ リ テ一ブルが固定されている場 合には、 B軸送りサーボモータ M B (図示せず) を具備している。 数値制御部 4 0 は、 N Cプログラム 4 2 を読取り これを解釈するプ ログラ ム読取解釈部 4 4 、 解釈されたプログラムを一時的に記憶す る解釈済みプログラム記憶部 4 6 、 解釈済みプログラム記憶部 4 6 からプログラムを適宜引き出 して実行プ ΰグラムデータを発するプ 口グラム実行指令部 4 8 、 プログラム実行指令部 4 8 からの実行プ ログラムデータに基づいて X軸、 Υ軸、 Ζ軸の各々の方向への移動 指令値を発する移動指令分配制御部 5 0 、 移動指令分配制御部 5 0 からの移動指令値および後述する フ ィ一ドバッ ク信号に基づいて送 り軸モータ駆動部 5 4 へ トルク指令値または電流指令値を発するサ —ボ制御部 5 2 を含んでいる。 送り軸モータ駆動部 5 4 は、 サーボ 制御部 5 2 からの トルク指令値または電流指令値に基づき電流を出 力して X軸、 Υ軸、 Ζ軸の各々の送り軸モータ M x 、 M Y 、 M z を 駆動する。 更に、 本実施形態では、 サ一ボ制御部 5 2から送り軸モ —夕駆動部 5 4への トルク指令値または電流指令値を補正する演算 制御部 5 6 が設けられている。
次に、 図 2 を参照して、 サーボ制御部 5 2 および演算制御部 5 6 の好ま しい実施形態を説明する。 図 2 の実施形態では、 演算制御部 5 6 は、 その一態様と して所謂バッ ク ラ ッ シ加速補正を行う負荷 卜 ルク演算部 7 0 を具備している。 図 2 において図 1 の対応する構成 要素には同じ参照符号にて指示されている。 また、 以下の記載では テーブル 1 4 に関する Z軸の送り制御についてのみ説明する力 X 軸および Y軸の送り制御についても同様に構成されているこ とは理 解されよう。 サーボ制御部 5 2 は、 移動指令分配制御部 5 0 からの移動指令値 と、 テーブル 1 4 に取着したデジタル直線スケール等の位置検出器 S P からの位置フ ィ ー ドバッ ク信号とを比較する減算器 5 8、 減算 器 5 8 からの出力を増幅する位置制御部 6 0 、 位置制御部 6 0 の出 力値と送り軸モータ M z に設けたパルスコーダ P Cからの速度フ ィ — ドバッ ク信号を比較する減算器 6 2、 減算器 6 2 の出力を増幅す る速度制御部 6 4 を含んでいる。
一方、 移動指令分配制御部 5 0 からの移動指令値は、 検出部 6 6 および加速度演算部 6 8 へも刻々 と送出されている。 検出部 6 6 で は、 移動指令分配制御部 5 0 からの移動指令を解析してテーブル 1 4 の移動方向の変化を監視しており、 テーブル 1 4 の移動方向が反 転したときに、 移動方向反転信号を加速度演算部 6 8 および演算制 御部 5 6 の一態様である負荷 トルク演算部 7 0 へ送出する。
負荷 トルク演算部 7 0 は、 時定数演算部 7 2 、 負荷 トルク補正量 演算部 7 4、 負荷 トルク検出部 7 6 を主要な構成要素と して含んで いる。 加速度演算部 6 8 は移動指令値を二階微分して移動体の加速 度値を算出 しこれを時定数演算部 7 2 に送出する。 時定数演算部 7 2 は加速度演算部 6 8 からの加速度値に基づき時定数を演算する。 一方、 負荷 トルク検出部 7 6 は、 検出部 6 6 からの移動方向反転信 号、 およびサーボ制御部 5 2 の速度制御部 6 4 の出力である トルク 指令値または電流指令値を受取り、 テーブル 1 4 の移動方向の反転 直前の トルク指令値または電流指令値を負荷 トルク補正量演算部 7 4へ送出する。 こ こで、 速度制御部 6 4 から出力される トルク指令 値または電流指令値に基づき送り軸モータ駆動部 5 4 から送り軸モ —夕 M z に出力される実電流値を受取り、 テーブル 1 4 の移動方向 の反転直前の トルク指令値または電流指令値を負荷 トルク補正量演 算部 7 4へ送出するよ うに してもよい。 負荷 トルク補正量演算部 7 4 は、 時定数演算部 7 2 における演算結果である時定数、 および負 荷 トルク検出部 7 6 からの移動方向の反転直前の トルク指令値また は電流指令値に基づいて負荷 トルク補正値を演算し、 速度制御部 6 4 へ送出する。 移動方向の反転や加速度値の算出は、 移動指令値か ら求めるのではな く 、 位置制御部 6 0 からの出力信号を取り込んで 行っても良い し、 移動体に取付けた加速度センサで行っても良い。
こ こで図 7 を参照すると、 加速度一定の条件での送り制御の様子 が時間に対する送り速度の変化 (図 7 の上側のグラフ) 、 およびそ れに対応する送り軸に印加される負荷 トルクの変化 (図 7 の下側の グラフ) が示されている。 特に図 7 において、 時間に対する速度の 変化は、 所定の時間差分 Δ Tに対する速度差分 Δ Vの変化を直線で 結んで示している。
図 7 のグラフにおいて、 送り速度 Vが負から正に変化した瞬間 ( このとき送り速度は零となっている) が T C にて指示されている。 このとき負荷 トルクの変化を見ると、 負荷 トルクは、 T C 以前の負 荷 トルク Q p から目標負荷 トルク Q t に変化しており、 図 7 に示す 例では、 加速度一定の条件の下、 従前の負荷 トルク Q p と目標負荷 トルク Q t とは絶対値が同一で符号 (+—) が逆となっている。 このように、 サ一ボモータの駆動方向の反転は、 例えば、 数値制 御工作機械 1 0が円弧に沿って切削加工を行っている場合で、 工具 2 2 の移動経路が 1 つの象限から他の象限に移るときに生じる。 こ のとき、 送りねじのバッ クラ ッ シュや摩擦の影響のために、 機械は 即座に反転することができず一般に遅れを生じ、 負荷 トルク値は、 従前の負荷 トルク Q p から目標負荷 トルク Q t へ破線で示すように 緩慢に変化しワークの切削面に突起が形成される。
本願発明者等は数々の実験から、 移動体の移動方向が反転する際 に加工面に突起や凹みを生じさせない条件と して、 負荷 トルク補正 量と移動体の加速度の間には一定の相関関係あり、 より詳細には、 負荷 トルク補正量の時定数を加速度の平方根に反比例する値とする こ とにより、 上述した加工面における欠陥を良好に除去できる こ と を見い出 した。
この知見に基づき、 本実施形態では以下のように負荷 トルク補正 値を求めるようにした。 先ず、 検出部 6 6 によりテーブル 1 4 の移 動方向の変化を監視し、 テーブル 1 4 の移動方向が反転したときに 、 検出部 6 6 から移動方向反転信号を加速度演算部 6 8 および負荷 トルク演算部 7 0 へ送出する。 加速度演算部 6 8 は、 移動方向反転 信号を受けたときの移動体の加速度値を時定数演算部 7 2 へ送出す る。 時定数演算部 7 2 は、 加速度演算部 6 8 からの加速度値に基づ き以下の式にて時定数を演算し、 負荷 トルク補正量演算部 7 4 へ送 出する。 て = k 一 こ こで、 て は時定数、 は加速度であり、 kは時定数に合わせる ための係数である。
このとき、 負荷 トルク検出部 7 6 は、 移動方向反転信号を受けた ときの速度制御部 6 4からの出力値を移動方向反転前の負荷 トルク と して設定し負荷 トルク補正量演算部 7 4へ送出する。 負荷 トルク 補正量演算部 7 4 は、 負荷 トルク検出部 7 6 からの移動方向反転前 の負荷 トルク Q p を負荷 トルク基準値 Q s と して設定する。 次いで 、 負荷 トルク補正量演算部 7 4 は、 前記移動方向反転前の負荷 トル ク Q p の'符号を反転し (つま り、 十一を入れ替える) 、 この値に予 め設定した定数を乗算した値を移動方向反転後の送り軸の負荷 トル ク 目標値 Q t と して設定する。 次いで、 負荷 トルク補正量演算部 7 4 は、 以下の式にて、 速度制御部 6 4 が移動指令値とフ ィ ー ドバッ ク信号とから生成する負荷 トルクに加える負荷 トルク補正値 Δ Qを 求める。
Δ Q = a X Q s x l Z て
1 ,
= a X Q s x— α Ύ
k
こ こで、 定数 a は実験により求められる定数であり、 例えば加速 度演算部 6 8 から得られる移動体の加速度値に関連づけてデータテ —ブルと して記憶、 格納し、 加速度 に応じて適宜に呼出 して使用 することができる。
このように、 移動方向反転時の加速度 αの関数と して表わされる 時定数て により補正値△ Qを演算し、 それに基づいてテーブル 1 4 の移動方向反転検出時に設定した負荷 トルクの目標値 Q t に至るま での移動方向反転後の負荷 トルク Qの変化量を演算し、 該負荷 トル ク Qに基づいて速度制御部 6 4 が移動方向反転後の負荷 トルク Qに 応じた所望の トルク指令値または電流指令値を演算する。 これを送 り軸モータ駆動部 5 4 に出力して送り軸モータ M z を回転駆動し、 テーブル 1 4 を移動させる。
図 2の実施形態では、 時定数を加速度の平方根に反比例する値と して求めたが、 この条件は、 移動体と してのテーブル 1 4、 コラム 1 6、 主軸頭 1 8 が比較的軽量の場合に良好な結果を得るこ とがで きる。 然しながら、 移動体と してのテーブル 1 4 、 コラム 1 6、 主 軸頭 1 8 が比較的重量であったり、 静摩擦が大きい場合には、 時定 数を加速度の平方根ではなく 、 例えば 1 ノ 3乗や 3 5乗と して求 めた方が良好な結果となるこ とがある。 また、 設定した負荷 トルク の目標値 Q t に至るまでの割合や移動方向反転時の送り軸の位置か らの距離で負荷 トルクの補正量 Δ <3の演算を停止するよう にしても よい。 更に、 静摩擦が大きな場合には、 大小 2 つの時定数 τ ΐ 、 τ 2 を 用いて移動方向が反転したときに小さな時定数て 1 を選択し、 次い で大きな時定数て 2 を選択するよ うにしてもよい。 これによ り、 図 7 の下側のグラフにおいて実線で示すように、 移動方向反転直後に は大きな負荷 トルクを軸送りサーボモータ Μ X 、 M Y 、 M z に印加 するこ とができサ一ボ制御の遅れを低減可能となる。
また、 静摩擦が大きい場合には図 3 に示すように図 2 の実施形態 に、 特に静摩擦補正部 8 0 を設けてもよい。 つま り、 送り機構がも っ静摩擦力に応じた所望の トルク指令値、 電流指令値または速度指 令値を予め設定し、 この予め設定した所望の トルク指令値、 電流指 令値または速度指令値に基づいて送り軸モータ駆動部 5 4 への トル ク指令値または電流指令値を決定することができる。 なお、 図 3 に おいて図 1 、 2 に対応する構成要素は同 じ参照符号にて指示されて いる。
図 3 の実施形態において、 静摩擦補正部 8 0 は、 検出部 6 6 とサ ーボ制御部 5 2 との間に設けられており、 所望の速度指令値である 速度補正値 8 2、 所望の トルク指令値である トルク補正値 8 4 を各 々減算器 6 2、 速度制御部 6 4 の下流の減算器 9 4 へ送出する。 こ こで、 静摩擦は、 移動体と してのテーブル 1 4 、 コラム 1 6、 主軸 頭 1 8 が静止した状態から移動を開始するときと、 移動体の移動方 向が反転したときに問題となるので、 図 3 に示す実施形態では検出 部 6 6 は移動指令分配制御部 5 0 からの移動指令値に基づいて、 移 動体の移動方向反転信号のみならず移動体が停止状態から移動を開 始したときを示す移動開始信号を負荷 トルク演算部 7 0 および静摩 擦補正部 8 0へ送出する。 負荷 トルク演算部 7 0 は概ね図 2 の実施 形態と同様に作用する。
静摩擦補正部 8 0が、 検出部 6 6 から移動方向反転信号または移 動開始信号を受信すると、 所定の速度指令値、 すなわち時間に対し て速度が直線的に増加し、 次いで直線的に減少する山形または三角 形状に変化する速度指令値を減算器 6 2 に送出する。 静摩擦補正部 8 0 は、 これと同時に矩形波から成る所定の トルク指令値を速度制 御部 6 4 の下流の減算器 9 4 に送出 して送り軸モータ M z の加速制 御を行う。
従来技術では、 負荷イナ一シャ値を一定値と して、 その時々の加 速度値を乗じて算出 した値を トルク指令値と して送り軸モータ駆動 部 5 4 に出力されているが、 負荷イナーシャは、 テーブル 1 4 に固 定されるワーク Wの重さや加工の進埗により変化するので トルク 令値が一定値のままでは加工精度を高めるこ とができなく なる。
そこで、 図 4 に示す実施形態では、 負荷イナ一シャの変化を演算 し、 これに基づいて送り軸モータ駆動部 5 4への トルク指令値また は電流指令値を決定する。 なお、 図 4 において、 図 2、 3 と同様の 構成要素は同じ参照符号にて指示されている。
図 4 の実施形態は、 図 1 の演算制御部 5 6 と してイナーシャ演算 部 9 6 およびイナーシャ記憶部 9 8 を具備している。 更に、 図 4 の 実施形態では、 サ―ボ制御部 5 2 は、 位置制御部 6 0 、 速度制御部 6 4 に加えて速度フ ィ ー ドフ ォーヮ一 ド制御部 9 0 、 加速度フ ィ 一 ドフ ォーワー ド制御部 9 2 を具備しており、 速度フ ィ ー ドフ ォーヮ ー ド制御部 9 0 および加速度フ ィ ー ドフ ォーワー ド制御部 9 2 は、 移動指令分配制御部 5 0 からの位置指令値に基づいて、 速度フ ィ 一 ドフ ォーヮ一 ド値および加速度フ イ ー ドフ ォーヮ一 ド値を生成する 速度フィ ー ドフ ォーヮ一 ド制御部 9 0 は、 移動指令分配制御部 5 0 からの移動指令値を一階微分するこ とにより速度値を算出 し、 こ れをイナ一シャ演算部 9 6 へ出力する共に、 速度フ ィ ー ドフ ォーヮ — ド値と して位置制御部 6 0 の下流の減算器 6 2 に出力する。 加速 度フ ィ ー ドフ ォ ー ヮ 一 ド制御部 9 2 は、 移動指令分配制御部 5 0か らの移動指令値を二階微分するこ とによ り加速度値を算出 し、 これ をイナ一シ ャ制御部 9 6 へ出力すると共に、 算出 した加速度値にィ ナ一シャを乗じて加速度フ ィ ー ドフ ォーワー ド値を算出 し、 これを 速度制御部 6 4 の下流の減算器 9 4 に出力する。
減算器 6 2 において、 該速度フ ィ ー ドフ ォ ーワー ド値と、 位置制 御部 6 0 の出力値と、 パルスコーダ P C力、らの速度フ ィ ー ドノ 'ッ ク 信号の差分が速度制御部 6 4 に入力される。 速度制御部 6 4 は、 こ の差分にゲイ ン 6 4 a、 イナーシャ 6 4 bを順次に乗じて負荷 トル ク値を出力する。 この負荷 トルク値に加速度フ ィ ー ドフ ォ ーヮー ド 制御部 9 2 からの加速度フ ィ ー ドフ ォ ーワー ド値が加算されて、 ト ルク指令値と して送り軸モータ駆動部 5 4 に出力される。
イナ一シ ャ演算部 9 6 は、 速度フ ィ ー ドフ ォ ーワー ド制御部 9 0 からの速度値、 加速度フ ィ ー ドフ ォ ーワー ド制御部 9 2 からの加速 度値および送り軸モータ駆動部 5 4 に入力される トルク指令値また は電流指令値に基づき以下のようにして負荷イナ一シ ャを演算する 図 8 を参照すると、 静止状態から、 移動体を所定の速度 V I へ加 速度一定の条件で加速した後に、 速度 V I にて早送りする場合の速 度、 加速度、 トルクの変化が時間の関数にて示されている。 以下、 図 8 に示すような状況を想定して、 図 9 A、 9 Bに示すフ ローチ ヤ 一卜を参照しつつ本実施形態の作用を説明する。
先ず、 早送り信号を受けてステップ S 1 0 において軸送りが早送 りであるか否かが、 速度フ ィ ー ドフ ォ ー ワー ド制御部 9 0 からの速 度値および加速度フ イ ー ドフ ォ ーヮー ド制御部 9 2 からの加速度値 により判断される。 軸送りが早送りでない場合 (ステップ S 1 0 に おいて N oの場合) 、 フローチャー トは軸送りが早送り となるのを 待機する。 軸送りが早送りの場合 (ステップ S 1 0 において Y e s の場合) 、 ステップ S 1 2 において、 加速度フ イ ー ドフ ォーワー ド 制御部 9 2 からの加速度値の変化から、 軸送りが加速度一定の条件 で加速中か否かが判断される。 軸送りが加速度一定の場合 (ステ ツ プ S 1 2 において Y e sの場合) 、 ステップ S 1 4 において、 送り 軸モータ駆動部 5 4への 卜ルク指令値または電流指令値により、 加 速中の トルクがサンプリ ングされる。 このサンプリ ングを所定回数 N回行う と上記サンプリ ングが終了する (ステップ S 1 6 において Y e s の場合) 。 サンプリ ングが N回に満たないときは (ステップ S 1 6 において N oの場合) ステップ S 1 0 に戻って再び トルクの サンプリ ングを行う。
軸送りが加速度一定ではない場合 (ステップ S 1 2 において N 0 の場合) 、 ステップ S 1 8 において、 速度フ ィ ー ドフ ォーワー ド制 御部 9 0 からの速度値の変化から、 軸送りが速度一定で行われてい るか否かが判断される。 軸送りが速度一定の場合 (ステップ S 1 8 において Y e sの場合) 、 ステップ S 2 0 において、 送り軸モータ 駆動部 5 4への トルク指令値または電流指令値により、 一定速度で 軸送りがなされている間の トルクがサンプリ ングされる。 このサン プリ ングを所定回数 M回行う と上記サンプリ ングが終了する (ステ ップ S 2 2 において Y e s の場合) 。 サンプリ ングの回数が M回に 満たないときは (ステップ S 2 2 において N 0の場合) ステップ S 1 0 に戻って再び トルクのサンプリ ングを行う。
上記のようにして加速度一定または速度一定の元での トルクのサ ンプリ ングが終了すると、 ステップ S 2 4 において加速中の トルク の平均値 Q 1 と、 一定速度中の トルクの平均値 Q r を算出する。 次 いで、 ステップ S 2 6 およびステップ S 2 8 において以下の式から 一定速度の トルクから加速中の速度に比例した摩擦 トルク Q f およ び加速 トルク Qa を算出する。
Q f = Q r x (Vm V r )
Qa = Qm 一 Q f = Q m 一 Q r x ( V m / V r )
こ こで、
V r : 早送り中の一定の軸送り速度
Vm : 一定加速度ひ における平均軸送り速度
a : 加速中の一定加速度
Qm : 加速度ひ中の平均 トルク
Q r : 早送り一定速度中の平均 トルク
Q a : カ Π速 トノレク
でめる。
次いで、 ステップ S 3 0 において以下の式により負荷イナー シ ャ Jを算出する。
J = Q a / α— J M
こ こで、 J は負荷イナ一シ ャ、 J M はモータイナ一シ ャである。 次いで、 ステップ S 3 2 において、 イナ一シ ャ演算部 9 6 は、 こ の負荷イナ一シ ャ J に関連した加速度フ ィ ー ドフ ォ ーヮー ド値を算 出 し、 イナーシャ記憶部 9 8 に送出して記憶されている加速度フ ィ 一 ドフ ォ一ワー ド値を書換える (ステップ S 3 4 ) 。
こ う して算出されたイナ一シャ値は速度制御部 6 4 に出力されて 、 トルク指令値または電流指令値を演算する際に最新のイナ一シ ャ 値が用いられる。 これと同時に加速度フ ィ 一 ドフ ォ ー ヮ一 ド制御部 9 2 にも算出されたイナ一シ ャ値が出力され、 加算器 9 4 へ出力さ れる加速度フ ィ 一 ドフ ォ ーヮー ド値を算出する際に最新のイナー シ ャ値が用いられる。 また、 送り軸モータ駆動部 5 4 への トルク指令 値または電流指令値の変化率をみて、 負荷イナー シ ャ Jを演算する こ と もできる。
図 4 の実施形態では、 負荷イナ一シャ Jを算出するために、 速度 フ ィ 一 ドフ ォーヮ一 ド制御部 9 0 および加速度フ ィ ー ドフ ォ一ヮ一 ド制御部 9 2 からの速度値および加速度値を用いたが、 本発明はこ れに限定されず、 図 5 に示すよう に、 例えばテーブル 1 4 に取着し た歪み計等の重量検出器 1 0 0 を用いて、 ワーク Wの重量の変化を 直接測定し、 その測定値をイナーシャ演算部 9 8 へ出力して、 負荷 イナーシャ Jを算出するようにしてもよい。
次に、 図 6 を参照して、 本願発明の更に他の実施形態を説明する 。 図 6 においても、 既述した実施形態の対応する構成要素には同 じ 参照符号が付されている。
既述したよう に、 サーボ制御部 5 2 (図 1 〜図 5 ) は、 N Cプロ グラム 4 2 をプログラム読取解釈部 4 4 により読み取り解釈し、 解 釈済みプログラム記憶部 4 6 に一時記憶されている解釈済みプログ ラムをプログラム実行指令部 4 8 により引き出し、 移動指令分配制 御部 5 0 が出力する移動指令値に従い数値制御工作機械 1 0 (図 1 ) の各送り軸モータ M x 、 M Y 、 M z の駆動を制御する。 この駆動 が短い周期で加減速を伴って繰り返し行われると、 送り軸モータ駆 動部 5 4 および送り軸モータ M x 、 M Y 、 M z が発熱し、 その許容 上限温度に達するとサーマルアラームとなり、 数値制御工作機械 1 0 の動作が非常停止する。
データ記憶部 1 1 0 に、 数値制御工作機械 1 0 に適合した送り軸 の加減速時定数、 サ一ボ制御部 5 2から取り出す トルク指令値また は電流指令値と送り軸モータ Μ χ 、 Μ γ 、 M z の温度との関係、 送 り軸モータ M x 、 M Y 、 M z に定格電流を連続して供給したときの 送り軸モータ M X 、 M Y 、 M z の温度の変化を表した温度曲線およ び温度曲線の傾き S と送り軸の加減速時定数との関係を予め実験な どによって求め、 記憶設定させておく 。 また、 各送り軸モータ Μ χ 、 M Y 、 M Z や送り軸モータ駆動部 5 4 のサイズを表すパラメ ータ 等も記憶設定する。 温度演算部 1 1 2 は、 サ一ボ制御部 5 2 から取 り 出 した トルク指令値または電流指令値を、 データ記憶部 1 1 0 か ら取り出した トルク指令値または電流指令値と送り軸モータ M x 、 M Y 、 M 2 の温度との関係に照ら して、 刻々の送り軸モータ M X 、
M Y 、 M z 等の駆動手段の温度を予測演算する。
加減速時定数演算部 1 1 4 は、 温度演算部 1 1 2 からの演算結果 を受けて、 刻々の状態に合った送り軸の加減速時定数をデータ記憶 部 1 1 0 に記憶してある温度曲線 (図示せず) の傾き と加減速時定 数との関係から演算し、 出力する。 加減速時定数指令部 1 1 6 は、 加減速時定数演算部 1 1 4 から出力された刻々の状態に合った送り 軸の加減速時定数を数値制御工作機械 1 0 の動作の進涉にタイ ミ ン グを合わせて移動指令分配制御部 5 0へ指令する。 なお、 制御の初 期においては、 データ記憶部 1 1 0 から移動指令分配制御部 5 0 へ 予め設定した送り軸の加減速時定数 T O が直接送出される。
次に図 1 0 を参照して本実施形態の作用を説明する。
まず、 データ記憶部 1 1 0 に必要データを設定する (ステップ S 5 0 ) 。 必要データとは、 既述したとおり、 数値制御工作機械 1 0 に適合した送り軸の加減速時定数、 サ一ボ制御部 5 2 から取り出す トルク指令値または電流指令値と送り軸モータ M X 、 M Y 、 M 2 の 温度との関係、 送り軸モ一夕 M x 、 M Y 、 M z に定格電流を連続し て供給したときの送り軸モータ Μ χ 、 M Y 、 M z の温度の変化を表 した温度曲線 (図示せず) 、 温度曲線の傾きと送り軸の加減速時定 数との関係および各送り軸モ一夕 Μ χ 、 M Y 、 M z や送り軸モータ 駆動部 5 4 のサイズを表すパラメ ータのこ とである。 これらは予め 実験等によって求め、 数値制御工作機械 1 0 の製造の段階で予め記 憶、 設定しておく 。 数値制御工作機械 1 0 を N Cプログラム 4 2 で 運転させたとき、 サーボ制御部 5 2 から トルク指令値または電流指 令値を逐次温度演算部 1 1 2 に取り込む (ステ ップ S 5 2 ) 。
温度演算部 1 1 2 は、 トルク指令値または電流指令値をデータ記 憶部 1 1 0 に記憶されている トルク指令値または電流指令値と送り 軸モータ M X 、 Μ γ 、 M z 等の駆動手段の温度との関係に照ら して 、 刻々の駆動手段の温度を予測演算して時間経過に対する駆動手段 の温度曲線、 例えば図 1 1 の温度曲線 ( 1 ) 、 ( 2 ) を作成する ( ステップ S 5 4 ) 。 加減速時定数演算部 1 1 4 は、 刻々作成した温 度曲線の傾き (温度曲線 ( 1 ) の場合 , 、 温度曲線 ( 2 ) の場 合 θ 2 と、 ステップ S 5 0で設定してある定格電流時の温度曲線の 同温度 (図 1 1 の温度 M T 1 ) における傾き 。 とを比較し (ステ ップ S 5 6 ) 、 比較した結果を図 1 2 に示す温度曲線の傾き 0 と送 り軸の加減速時定数 Tとの関係に当てはめる。
θ 〉 Θ Q のと き θ = θ \ のようにステ ップ S 5 8 において Y e s の場合) は、 図 1 2 の関係から T O よ り大きな加減速時定数を演 算し (ステップ S 6 0 ) 、 加減速時定数指令部 1 1 6 を介して移動 指令分配制御部 5 0 へ出力する (ステップ S 6 2 ) 。 Θ ぐ θ a のと き ( 0 = 0 2 のよう にステップ S 5 2 において N oの場合) は、 ス テツプ S 5 0で設定してある送り軸の加減速時定数 T O を加減速時 定数指令部 1 1 6 を介してそのまま移動指令分配制御部 5 0 へ送出 する (ステップ S 6 4 ) 。
図 1 2 において、 送り軸の加減速時定数 Tは上限値 T max を有し ており、 この値は加減速を繰り返し連続して行わせても絶対に駆動 手段がオーバーヒー 卜 しない加減速時定数のこ とであり、 T max に 対応する温度曲線の最小の傾き が存在する。 つま り、 Θ が Θ ? より大きい範囲では Tは T max となる。 なお、 駆動手段の温度曲線 とは、 図 1 1 のような形式のほか、 時間と傾き 0 との関係を所定の 時間間隔で数表化した形式のものもある。 本実施形態には、 送り軸 の加減速回数から送り軸モータの温度を予測演算したり、 または温 度検出センサで送り軸モータの温度を検出し、 これらの温度と許容 温度との比較結果に応じた送り軸の加減速制御を行う方法もある。 本願発明の好ま しい実施形態を説明したが、 本願発明がこれに限 定されず本願発明の精神と範囲内で種々の変更、 修正が可能である ことは当業者の当然とするところである。
例えば、 .既述の実施形態では、 図 2及び 3 に所謂バックラ ッ シ加 速補正制御、 図 4及び 5 にイナ一シャ補正制御、 図 6 に送り軸モー 夕の加減速制御について個別に説明したが、 これらを適宜に組み合 わせることにより、 更に高能率で高精度な加工が可能となる。
また、 本願発明の数値制御工作機械と して、 図 1 に示すように X 軸、 Y軸、 Z軸の直交する 3軸を有する横形マシニングセンタを説 明したが、 本願発明はこれに限定されず、 例えば X軸、 Y軸、 Z軸 の 3軸に加えてテーブル 1 4を水平な軸線まわりの回転動作である A軸および B軸に送り移動可能にした 5軸構成の数値制御工作機械 であってもよい。 更には、 X軸、 Y軸、 Z軸、 A軸または X軸、 Y 軸、 Z軸、 B軸の 4軸を有した数値制御工作機械、 その他 6軸以上 の数値制御工作機械にも本発明は適用可能である。 更に、 本発明は 、 図 1 に示すような横形マシニングセンタのみならず、 立形マシニ ングセンタやフライス盤その他の数値制御工作機械に適用可能であ る。 また、 X、 Υ、 Ζ軸を有した形彫放電加工機や、 X、 Y、 U、 V軸を有したワイヤ放電加工機にも適用可能である。
本願発明の演算制御部 5 6、 検出部 6 6、 加速度演算部 6 8、 負 荷 トルク演算部 7 0、 静摩擦補正部 8 0、 イナ一シャ演算部 9 6、 イナ一シャ記憶部 9 8 は、 数値制御部 4 0 とは機能的に独立してい る構成要素であり、 数値制御部 4 0 と框体を共にして設けても良い し、 別置の機械制御装置等の框体内に設けても良い。

Claims

請 求 の 範 囲
1 . X、 Y、 Ζ軸の直交 3軸の送り軸、 またはそれに A、 B、 C 軸のう ち少な く と も 1 つの回転軸を付加した複数の送り軸を有した 数値制御工作機械の制御方法において、
数値制御装置の読取解釈部から取り込んだ数値制御プログラムデ 一タを移動指令分配制御部及びサ一ボ制御部で実行し、 その実行結 果を送り軸モータ駆動手段から前記送り軸の送り軸モータ に出力 し 前記サ一ボ制御部から出力される数値制御プログラムデータの実 行結果を取り込み、 前記送り軸の送り機構がもつ摩擦カゃヮ一クの 重量の変化に応じた適当な トルク指令値または電流指令値を予測演 算し、
予測演算した適当な トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力 し、
前記送り軸モータを前記送り軸の送り機構がもつ摩擦力やワーク の重量の変化に応じた適当な指令値で駆動するこ とを特徴と した数 値制御工作機械の制御方法。
2 . 数値制御装置の読取解釈部から取り込んだ数値制御プログラ ムデータを移動指令分配制御部及びサーボ制御部で実行し、 その実 行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り機 構を介して移動体を移動させる数値制御工作機械の制御方法におい て、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力 して前記送り軸モータを駆動 し、 前記サーボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、
取り込んだ トルク指令値または電流指令値と前記送り軸の加速度 値とから前記送り機構がもつ摩擦力やワークの重量の変化に応じた 所望の トルク指令値または電流指令値を予測演算し、
予測演算した所望の トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力 し、
前記送り軸モータを所望の指令値で駆動するこ とを特徴と した数 値制御工作機械の制御方法。
3 . 前記送り機構がもつ摩擦力やワークの重量の変化に応じた所 望の トルク指令値または電流指令値の予測演算は、 前記取り込んだ トルク指令値または電流指令値に基づく 実電流値と前記送り軸の加 速度値とから前記送り機構がもつ摩擦力やワークの重量の変化に応 じた所望の トルク指令値または電流指令値を予測演算する請求項 2 に記載の数値制御工作機械の制御方法。
4 . 数値制御装置の読取解釈部から取り込んだ数値制御プログラ ムデータを移動指令分配制御部及びサーボ制御部で実行し、 その実 行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り機 構を介して移動体を移動させる数値制御工作機械の制御方法におい て、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転を検出 し、
移動方向反転検出時の前記送り軸の加速度を演算し、
前記送り軸の移動方向反転検出時の前記サーボ制御部から出力さ れる トルク指令値または電流指令値に基づいて負荷 トルクを演算し て前記送り軸の移動方向反転前の負荷 トルク と して設定し、
前記送り軸の移動方向反転前の負荷 トルクの符号反転値に予め設 定した定数を乗算した値を前記送り軸の移動方向反転後の負荷 卜ル クの目標値と して設定し、
前記送り軸の移動方向反転検出時から設定した負荷 トルクの目標 値に至るまでの前記送り軸の移動方向反転後の負荷 トルクを前記送 り軸の移動方向反転検出時の加速度の関数と して表わされる時定数 を用いて演算し、
演算した前記送り軸の移動方向反転後の負荷 トルクに応じた所望 の トルク指令値または電流指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力 し、
前記送り軸モータと送り機構を介して前記移動体を移動させるこ とを特徴と した数値制御工作機械の制御方法。
5 . 前記送り軸の移動方向反転後の負荷 トルクの演算は、 前記送 り軸の移動方向反転検出時の加速度の平方根に反比例した時定数を 用いて負荷 トルクを演算す.る請求項 4 に記載の数値制御工作機械の 制御方法。
6 . 前記送り軸の移動方向反転後の負荷 トルクの演算は、 前記送 り軸の移動方向反転検出時の加速度の平方根に反比例した複数の時 定数を用いて負荷 トルクを演算する請求項 4 に記載の数値制御工作 機械の制御方法。
7 . 前記送り軸の移動方向反転後の負荷 トルクの演算は、 設定し た負荷 トルクの目標値に至るまでの割合または前記送り軸の移動方 向反転検出時の前記送り軸の位置からの距離で負荷 トルクの演算を 停止する請求項 4 に記載の数値制御工作機械の制御方法。
8 . 数値制御装置の読取解釈部から取り込んだ数値制御プログラ ムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その実 行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り機 構を介して移動体を移動させる数値制御工作機械の制御方法におい て、
前記送り機構がもつ静摩擦力に応じた所望の トルク指令値及び速 度指令値、 または所望の電流指令値及び速度指令値を予め設定し、 前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力 して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転または停止からの移動開始を検出 し、 前記送り軸の移動方向反転検出時または停止からの移動開始検出 時に前記予め設定した所望の トルク指令値及び速度指令値、 または 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記サ一ボ制御部に出力し、
前記送り軸モータ と送り機構を介して前記移動体を移動させるこ とを特徴と した数値制御工作機械の制御方法。
9 . 数値制御装置の読取解釈部から取り込んだ数値制御プログラ ムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その実 行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り機 構を介して移動体を移動させる数値制御工作機械の制御方法におい て、
前記送り機構がもつ静摩擦力に応じた所望の トルク指令値及び速 度指令値、 または所望の電流指令値及び速度指令値を予め設定し、 前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて.トルク指令値または電流指令値を前記サーボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の移動方向反転または停止からの移動開始を検出 し、 移動方向反転検出時の前記送り軸の加速度を演算し、
前記送り軸の移動方向反転検出時の前記サ一ボ制御部から出力さ れる トルク指令値または電流指令値に基づいて負荷 トルクを演算し て前記送り軸の移動方向反転前の負荷 トルク と して設定し、
前記送り軸の移動方向反転前の負荷 トルクの符号反転値に予め設 定した定数を乗算した値を前記送り軸の移動方向反転後の負荷 トル クの目標値と して設定し、
前記送り軸の移動方向反転検出時から設定した負荷 トルクの目標 値に至るまでの前記送り軸の移動方向反転後の負荷 トルクを前記送 り軸の移動方向反転検出時の加速度の関数と して表わされる時定数 を用いて演算し、
演算した前記送り軸の移動方向反転後の負荷 トルクに応じた所望 の トルク指令値または電流指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力し、
前記送り軸の移動方向反転検出時または停止からの移動開始検出 時に前記予め設定した所望の トルク指令値及び速度指令値、 または 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記サーボ制御部に出力 し、
前記送り軸モータ と送り機構を介して前記移動体を移動させるこ とを特徴と した数値制御工作機械の制御方法。
1 0 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力 し、 送り 機構を介して移動体を移動させる数値制御工作機械の制御方法にお いて、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記サーボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を前記送り軸の移動中の トルク指令値 または電流指令値と して取り込み、
前記送り軸の移動中の トルク指令値または電流指令値と前記送り 軸の加速度値とから負荷イナ一シャを演算し、
演算した負荷イナ一シャに応じた所望の トルク指令値または電流 指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力し、
前記送り軸モータ と送り機構を介して前記移動体を移動させるこ とを特徴と した数値制御工作機械の制御方法。
1 1 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械の制御方法にお いて、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
ワークの重量またはワークを載置した移動体の重量を検出 し、 検出 した重量から負荷イナ一シャを演算し、
演算した負荷イナ一シャに応じた所望の トルク指令値または電流 指令値を演算し、
所望の トルク指令値または電流指令値を前記送り軸モータ駆動手 段に出力し、
前記送り軸モータと送り機構を介して前記移動体を移動させるこ とを特徴と した数値制御工作機械の制御方法。
1 2 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械の制御方法にお いて、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて トルク指令値または電流指令値を前記サ一ボ制御部で演 算し前記送り軸モータ駆動手段に出力して前記送り軸モータを駆動 し、
前記送り軸の加減速時定数及び前記送り軸モータの許容される所 定の温度データを予め設定 · 記憶し、
前記サーボ制御部から前記送り軸モータ駆動手段に出力される 卜 ルク指令値または電流指令値を取り込み、
取り込んだ トルク指令値または電流指令値から前記送り軸モータ の温度を予測演算し、
予め設定 · 記憶した前記送り軸モータの許容される所定の温度デ 一夕 と予測演算した前記送り軸モータの温度とを比較し、
比較結果に応じた前記送り軸の加減速時定数を設定して前記移動 指令分配制御部に出力 し、
取り込んだ トルク指令値または電流指令値と前記送り軸の加速度 値とから前記送り機構がもつ摩擦力やワークの重量の変化に応じた 所望の トルク指令値または電流指令値を予測演算し、
予測演算した所望の トルク指令値または電流指令値を前記送り軸 モータ駆動手段に出力し、
前記送り軸モータを所望の指令値で駆動するこ とを特徵と した数 値制御工作機械の制御方法。
1 3 . X、 Y、 Ζ軸の直交 3軸の送り軸、 またはそれに A、 B、 C軸のう ち少なく と も 1 つの回転軸を付加した複数の送り軸を有し た数値制御工作機械において、
前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータ と、
前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プログラムデータを移動指 令分配制御部及びサ―ボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記サーボ制御部から出力される数値制御プログラムデータの実 行結果を取り込み、 前記送り機構がもつ摩擦力やワークの重量の変 化に応じた適当な トルク指令値または電流指令値を予測演算して前 記送り軸モータ駆動手段に出力する演算制御手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
1 4 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、 前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータ と、 前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プログラムデータを移動指 令分配制御部及びサーボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記送り軸モータを駆動している時の前記サーボ制御部から前記 送り軸モータ駆動手段に出力される トルク指令値または電流指令値 と前記送り軸の加速度値とから前記送り機構がもつ摩擦力やワーク の重量の変化に応じた所望の トルク指令値または電流指令値を予測 演算し、 予測演算した所望の 卜ルク指令値または電流指令値を前記 送り軸モータ駆動手段に出力する演算制御手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
1 5 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転を検出する検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時の加速度を 演算する加速度演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時の前記速度 制御手段から出力される トルク指令値または電流指令値と前記加速 度演算手段で演算した前記送り軸の移動方向反転検出時の加速度の 関数と して表わされる時定数とを用いて前記送り軸の移動方向反転 後の負荷 トルクを演算し、 演算した負荷 トルクに応じた所望の トル ク指令値または電流指令値を前記速度制御手段に出力する負荷 トル ク演算手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
1 6 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力 し、 送り 機構を介して移動体を移動させる数値制御工作機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転または停止からの移動開始を検出する 検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時または停止 からの移動開始検出時に前記送り機構がもつ静摩擦力に応じた予め 設定した所望の トルク指令値及び速度指令値、 または予め設定した 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記速度制御手段に出力する静摩擦捕正手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
1 7 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラ ムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記送り軸の移動方向反転または停止からの移動開始を検出する 検出手段と、
前記検出手段による前記送り軸の移動方向反転検出時の加速度を 演算する加速度演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時の前記速度 制御手段から出力される トルク指令値または電流指令値と前記加速 度演算手段で演算した前記送り軸の移動方向反転検出時の加速度の 関数と して表わされる時定数とを用いて前記送り軸の移動方向反転 後の負荷 トルクを演算し、 演算した負荷 トルクに応じた所望の トル ク指令値または電流指令値を前記速度制御手段に出力する負荷 トル ク演算手段と、
前記検出手段による前記送り軸の移動方向反転検出時または停止 からの移動開始検出時に前記送り機構がもつ静摩擦力に応じた予め 設定した所望の トルク指令値及び速度指令値、 または予め設定した 所望の電流指令値及び速度指令値を前記送り軸モータ駆動手段及び 前記速度制御手段に出力する静摩擦補正手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
1 8 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、 前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記移動指令分配制御部から出力され'る前記送り軸の移動指令値 に基づいて速度指令値を予測演算して前記速度制御手段に出力する 速度フ イ ー ドフ ォ ヮ一ド制御手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて加速度値または トルク指令値を予測演算して前記送り軸 モータ駆動手段に出力する加速度フ ィ ー ドフ ォ ヮ一 ド制御手段と、 前記速度制御手段から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、 取り込んだ前記送り軸の 移動中の 卜ルク指令値または電流指令値と前記送り軸の加速度値と から負荷イナ一シャを演算して前記速度制御手段及び前記加速度フ ィ ー ドフ ォ ヮー ド制御手段に出力するイナ一シャ演算手段と、 を具備して構成され、
前記速度制御手段から前記イナーシャ演算手段で演算した負荷ィ ナーンャに応じた所望の トルク指令値または電流指令値を前記送り 軸モータ駆動手段に出力することを特徴と した数値制御工作機械。
1 9 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサーボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を演算する位置制御手段と、
前記位置制御手段から出力される前記送り軸の速度指令値に基づ いて トルク指令値または電流指令値を演算する速度制御手段と、 前記速度制御手段から出力される前記送り軸の トルク指令値また は電流指令値に基づいて前記送り軸モータを駆動する電流を出力す る送り軸モータ駆動手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて速度指令値を予測演算して前記速度制御手段に出力する 速度フィ 一 ドフ ォ ヮー ド制御手段と、
前記移動指令分配制御部から出力される前記送り軸の移動指令値 に基づいて加速度値または トルク指令値を予測演算して前記送り軸 モータ駆動手段に出力する加速度フィ 一 ドフォ ヮ一 ド制御手段と、 ワークの重量またはワークを載置した移動体の重量を検出する重 量検出手段と、
前記重量検出手段で検出 した重量から負荷イナ一シャを演算して 前記速度制御手段及び前記加速度フ イ ー ドフ ォ ヮ一 ド制御手段に出 力するイナーシャ演算手段と、
を具備して構成され、
前記速度制御手段から前記イナ一シャ演算手段で演算した負荷ィ ナーシャに応じた所望の トルク指令値または電流指令値を前記送り 軸モータ駆動手段に出力するこ とを特徴と した数値制御工作機械。
2 0 . 数値制御装置の読取解釈部から取り込んだ数値制御プログ ラムデータを移動指令分配制御部及びサ一ボ制御部で実行し、 その 実行結果を送り軸モータ駆動手段から送り軸モータに出力し、 送り 機構を介して移動体を移動させる数値制御工作機械において、
前記各送り軸の移動体を移動する送り機構と、
前記送り機構を駆動する送り軸モータと、
前記送り軸モータを駆動するための送り軸モータ駆動手段と、 前記送り軸モータを駆動する数値制御プログラムデータを移動指 令分配制御部及びサーボ制御部で実行し、 その実行結果を前記送り 軸モータ駆動手段から前記送り軸モータに出力する数値制御手段と 前記送り軸の加減速時定数及び前記送り軸モータの許容される所 定の温度データを予め設定 · 記憶するデータ記憶手段と、
前記サ一ボ制御部から前記送り軸モータ駆動手段に出力される ト ルク指令値または電流指令値を取り込み、 取り込んだ トルク指令値 または電流指令値から前記送り軸モータの温度を予測演算する温度 演算手段と、
前記データ記憶手段で予め設定 · 記憶した前記送り軸モータの許 容される所定の温度データと前記温度演算手段で予測演算した前記 送り軸モータの温度とを比較し、 比較結果に応じた前記送り軸の加 減速時定数を設定して前記移動指令分配制御部に出力する加減速時 定数演算手段と、
前記送り軸モータを駆動している時の前記サーボ制御部から前記 送り軸モータ駆動手段に出力される トルク指令値または電流指令値 と前記送り軸の加速度値とから前記送り機構がもつ摩擦力やワーク の重量の変化に応じた所望の トルク指令値または電流指令値を予測 演算し、 予測演算した所望の トルク指令値または電流指令値を前記 送り軸モータ駆動手段に出力する演算制御手段と、
を具備して構成するこ とを特徴と した数値制御工作機械。
PCT/JP1999/005801 1999-10-20 1999-10-20 Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique WO2001029628A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP06075420A EP1710643B1 (en) 1999-10-20 1999-10-20 NC machine tool and method of controlling NC machine tool
JP2000601281A JP4137386B2 (ja) 1999-10-20 1999-10-20 数値制御工作機械の制御方法及び数値制御工作機械
EP99949334A EP1143316B1 (en) 1999-10-20 1999-10-20 Nc machine tool, and method of controlling nc machine tool
PCT/JP1999/005801 WO2001029628A1 (fr) 1999-10-20 1999-10-20 Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique
DE69939994T DE69939994D1 (de) 1999-10-20 1999-10-20 NC-Werkzeugmaschine und Steuerverfahren für eine NC-Werkzeugmaschine
US09/868,587 US6566835B1 (en) 1999-10-20 1999-10-20 Nc machine tool, and method of controlling nc machine tool
DE69934251T DE69934251T2 (de) 1999-10-20 1999-10-20 Nc-werkzeugmaschine und verfahren zur steuerung der nc-werkzeugmaschine
US11/032,795 US20050137739A1 (en) 1999-10-20 2005-01-10 Method of controlling numerically controlled machine tool and numerically controlled machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005801 WO2001029628A1 (fr) 1999-10-20 1999-10-20 Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/868,587 A-371-Of-International US6566835B1 (en) 1999-10-20 1999-10-20 Nc machine tool, and method of controlling nc machine tool
US10/440,726 Continuation US20030205984A1 (en) 1999-10-20 2003-05-19 Method of controlling numerically controlled machine tool and numerically controlled machine tool

Publications (1)

Publication Number Publication Date
WO2001029628A1 true WO2001029628A1 (fr) 2001-04-26

Family

ID=14237061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005801 WO2001029628A1 (fr) 1999-10-20 1999-10-20 Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique

Country Status (5)

Country Link
US (1) US6566835B1 (ja)
EP (2) EP1143316B1 (ja)
JP (1) JP4137386B2 (ja)
DE (2) DE69934251T2 (ja)
WO (1) WO2001029628A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048136A (ja) * 2001-08-09 2003-02-18 Mori Seiki Co Ltd 送り装置の制御方法及び制御装置
JP2007257515A (ja) * 2006-03-24 2007-10-04 Toshiba Mach Co Ltd サーボモータの制御方法
JP2012056005A (ja) * 2010-09-08 2012-03-22 Makino Milling Mach Co Ltd パラメータ設定方法およびパラメータ設定装置
CN105710711A (zh) * 2014-12-19 2016-06-29 大隈株式会社 机床中的进给轴的位置控制装置
KR101786075B1 (ko) * 2010-12-07 2017-10-17 두산공작기계 주식회사 소재 무게 감응식 마찰저감 기능을 갖는 이송장치 및 이송방법
DE102017010245A1 (de) 2016-11-07 2018-05-09 Fanuc Corporation Steuervorrichtung für einen servomotor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10139931B4 (de) * 2001-08-14 2013-02-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Gewichtskraftkompensation bei der Bewegungsführung eines beweglichen Maschinenelementes
WO2004015507A1 (en) * 2002-08-07 2004-02-19 Koninklijke Philips Electronics N.V. Method and device for identification of the parameters of an electro-mechanical system
JP3739749B2 (ja) * 2003-01-07 2006-01-25 ファナック株式会社 制御装置
ATE500543T1 (de) * 2003-01-29 2011-03-15 Open Mind Technologies Ag Verfahren zur steuerung von relativbewegungen eines werkzeuges gegen ein werkstück
KR100645034B1 (ko) * 2004-03-26 2006-11-13 마키노 밀링 머신 주식회사 절삭 가공 방법 및 장치와 방전 가공용 리브 전극
JP4543967B2 (ja) * 2004-03-31 2010-09-15 セイコーエプソン株式会社 モータ制御装置及び印刷装置
US7222050B2 (en) * 2004-07-13 2007-05-22 Seiko Epson Corporation Apparatus for determining overheating of motor, method for determining overheating of motor, computer-readable medium, motor control apparatus, motor control method, and printing apparatus
JP4299793B2 (ja) * 2005-01-20 2009-07-22 ファナック株式会社 制御装置
US20070033785A1 (en) * 2005-08-09 2007-02-15 Kohring Mark D Ridge vent with biocidal source
JP4109280B2 (ja) * 2005-09-08 2008-07-02 ファナック株式会社 サーボモータによって駆動制御される可動部を有する機械
DE102005056603B4 (de) 2005-11-28 2019-02-21 Siemens Aktiengesellschaft Verfahren zur Reduktion von während eines Bearbeitungsvorgangs auftretenden Schwingungen eines Maschinenelementes und/oder eines Werkstücks
DE102006006162A1 (de) * 2006-02-10 2007-08-16 Dr. Johannes Heidenhain Gmbh Reglerstruktur
JP5096019B2 (ja) * 2007-02-26 2012-12-12 オークマ株式会社 サーボモータ制御装置
DE102009004894A1 (de) 2009-01-16 2010-09-16 Maschinenfabrik Berthold Hermle Ag Bearbeitungszentrum zum Fräsen und Bohren mit einer Einrichtung zur Anpassung der Vorschubbewegung an den Bearbeitungsvorgang
JP4677037B2 (ja) * 2009-01-20 2011-04-27 ファナック株式会社 バックラッシュを抑制するサーボ制御装置
JP5351550B2 (ja) * 2009-02-20 2013-11-27 三菱重工業株式会社 工作機械および加工方法
JP5457901B2 (ja) * 2010-03-25 2014-04-02 オークマ株式会社 位置制御装置
US8299742B2 (en) * 2010-03-30 2012-10-30 Haas Automation, Inc. Systems and methods for decelerating a motor in a computer numerical controlled machine tool
KR101827572B1 (ko) 2011-05-13 2018-02-08 두산공작기계 주식회사 공작기계의 백래시 자동 검출과 보상을 위한 방법 및 장치
JP5118232B2 (ja) * 2011-05-18 2013-01-16 ファナック株式会社 タップ加工を行う工作機械の制御装置
DE102012223806B4 (de) * 2012-12-19 2018-11-29 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum materialabtragenden Bearbeiten eines Werkstücks und zugehöriges Computerprogrammprodukt
JP5698798B2 (ja) * 2013-06-24 2015-04-08 ファナック株式会社 熱変位量補正機能を有する工作機械
US10295475B2 (en) 2014-09-05 2019-05-21 Rolls-Royce Corporation Inspection of machined holes
DE102015201439A1 (de) * 2015-01-28 2016-07-28 P & L Gmbh & Co. Kg Verfahren zur Kompensation von Verformungen einer Drehschwenkeinheit einer Werkzeugmaschine aufgrund von dynamischen Bewegungsvorgängen
US10228669B2 (en) * 2015-05-27 2019-03-12 Rolls-Royce Corporation Machine tool monitoring
DE102016105693A1 (de) * 2016-03-29 2017-10-05 Feng-Tien Chen Computergestütztes numerisches Steuer-Servo-Antriebs-System
CN107873122B (zh) * 2016-07-28 2019-05-07 三菱电机株式会社 电动机控制***
JP6444959B2 (ja) * 2016-11-01 2018-12-26 ファナック株式会社 ワイヤ放電加工機
DE102018209094B4 (de) * 2017-06-14 2021-10-28 Fanuc Corporation Motorsteuereinheit
DE102017116400A1 (de) * 2017-07-20 2019-01-24 Logicdata Electronic & Software Entwicklungs Gmbh Elektrisch verstellbares Tischsystem
US11385139B2 (en) 2018-11-21 2022-07-12 Martin E. Best Active backlash detection methods and systems
CN109551485B (zh) * 2019-01-21 2020-10-16 北京镁伽机器人科技有限公司 运动控制方法、装置和***及存储介质
US11413751B2 (en) * 2019-02-11 2022-08-16 Hypertherm, Inc. Motion distribution in robotic systems
US11349424B2 (en) * 2020-01-10 2022-05-31 Steering Solutions Ip Holding Corporation Observer design for estimating motor velocity of brush electric power steering system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212407A (ja) * 1988-06-30 1990-01-17 Okuma Mach Works Ltd 数値制御装置
JPH03290706A (ja) * 1990-04-09 1991-12-20 Mitsubishi Electric Corp 数値制御装置
JPH0580824A (ja) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp サーボモータの制御装置
JPH08249031A (ja) * 1995-03-09 1996-09-27 Fanuc Ltd モータで駆動する機械系のイナーシャおよび摩擦特性の推定方法
JPH09179623A (ja) * 1995-12-22 1997-07-11 Makino Milling Mach Co Ltd 数値制御による機械装置の制御方法および装置
JPH1063339A (ja) * 1996-08-26 1998-03-06 Mori Seiki Co Ltd 数値制御工作機械の制御装置
JPH1063325A (ja) * 1996-08-21 1998-03-06 Toshiba Mach Co Ltd サーボモータの制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148315A (ja) * 1986-12-12 1988-06-21 Fanuc Ltd サ−ボモ−タ制御装置
DE3723466A1 (de) * 1987-07-16 1989-01-26 Barry Controls Gmbh Nachstelleinrichtung zum korrigieren der lage einer maschine
JPH02297602A (ja) * 1989-05-12 1990-12-10 Fanuc Ltd 非線形項補償を含むスライディングモード制御方式
JP2709969B2 (ja) 1989-12-12 1998-02-04 ファナック株式会社 サーボモータの制御方法
JP3164580B2 (ja) * 1990-09-27 2001-05-08 豊田工機株式会社 ディジタルサーボ制御装置
JP2606773B2 (ja) * 1992-03-31 1997-05-07 株式会社牧野フライス製作所 サーボシステムにおける加速制御方法及び装置
JPH05324086A (ja) * 1992-05-22 1993-12-07 Fanuc Ltd サーボモータの制御方式
JP3084928B2 (ja) * 1992-05-29 2000-09-04 三菱電機株式会社 電動機の位置制御装置
US5374884A (en) * 1992-11-18 1994-12-20 University Of Michigan, The Board Of Regents Acting . . . Model-based position-repeatable disturbance compensation
JPH07110717A (ja) * 1993-08-19 1995-04-25 Fanuc Ltd モータの制御方式
US5710498A (en) * 1994-12-06 1998-01-20 Trinova Corporation Method and apparatus for friction compensation
US6060854A (en) * 1998-11-12 2000-05-09 Vickers, Inc. Method and apparatus for compensating for windup in a machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212407A (ja) * 1988-06-30 1990-01-17 Okuma Mach Works Ltd 数値制御装置
JPH03290706A (ja) * 1990-04-09 1991-12-20 Mitsubishi Electric Corp 数値制御装置
JPH0580824A (ja) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp サーボモータの制御装置
JPH08249031A (ja) * 1995-03-09 1996-09-27 Fanuc Ltd モータで駆動する機械系のイナーシャおよび摩擦特性の推定方法
JPH09179623A (ja) * 1995-12-22 1997-07-11 Makino Milling Mach Co Ltd 数値制御による機械装置の制御方法および装置
JPH1063325A (ja) * 1996-08-21 1998-03-06 Toshiba Mach Co Ltd サーボモータの制御方法
JPH1063339A (ja) * 1996-08-26 1998-03-06 Mori Seiki Co Ltd 数値制御工作機械の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1143316A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048136A (ja) * 2001-08-09 2003-02-18 Mori Seiki Co Ltd 送り装置の制御方法及び制御装置
JP2007257515A (ja) * 2006-03-24 2007-10-04 Toshiba Mach Co Ltd サーボモータの制御方法
JP2012056005A (ja) * 2010-09-08 2012-03-22 Makino Milling Mach Co Ltd パラメータ設定方法およびパラメータ設定装置
KR101786075B1 (ko) * 2010-12-07 2017-10-17 두산공작기계 주식회사 소재 무게 감응식 마찰저감 기능을 갖는 이송장치 및 이송방법
CN105710711A (zh) * 2014-12-19 2016-06-29 大隈株式会社 机床中的进给轴的位置控制装置
CN105710711B (zh) * 2014-12-19 2019-04-12 大隈株式会社 机床中的进给轴的位置控制装置
DE102017010245A1 (de) 2016-11-07 2018-05-09 Fanuc Corporation Steuervorrichtung für einen servomotor
JP2018077575A (ja) * 2016-11-07 2018-05-17 ファナック株式会社 サーボモータ制御装置
US10171013B2 (en) 2016-11-07 2019-01-01 Fanuc Corporation Servomotor control device
DE102017010245B4 (de) 2016-11-07 2022-03-24 Fanuc Corporation Steuervorrichtung für einen Servomotor

Also Published As

Publication number Publication date
EP1710643A2 (en) 2006-10-11
EP1710643A3 (en) 2007-03-07
JP4137386B2 (ja) 2008-08-20
DE69934251T2 (de) 2007-07-05
EP1143316A4 (en) 2005-03-09
EP1710643B1 (en) 2008-11-26
DE69934251D1 (de) 2007-01-11
EP1143316B1 (en) 2006-11-29
DE69939994D1 (de) 2009-01-08
EP1143316A1 (en) 2001-10-10
US6566835B1 (en) 2003-05-20

Similar Documents

Publication Publication Date Title
WO2001029628A1 (fr) Machine-outil a commande numerique et procede de commande de cette machine-outil a commande numerique
JP4879091B2 (ja) 数値制御工作機械の制御方法及び数値制御工作機械
US20050137739A1 (en) Method of controlling numerically controlled machine tool and numerically controlled machine tool
US8093856B2 (en) Position control apparatus for numerically controlled machine
US5272423A (en) Velocity control method for a synchronous AC servo motor
EP1821168B1 (en) Controller for servomotor
JP4361071B2 (ja) サーボ制御装置
US8098038B2 (en) Servomotor control system enabling high-speed oscillating motion to be highly precise
EP1967924A1 (en) Apparatus for synchronously controlling a plurality of servomotors
EP0557530A1 (en) Numerical control device
JP5890473B2 (ja) モータを制御するモータ制御装置
JP6592143B2 (ja) 電動機の制御装置
WO2012057231A1 (ja) 送り軸反転時の補正方法
KR20010041353A (ko) 동기제어장치
JPH0722873B2 (ja) 送り軸の位置制御装置
JP2853023B2 (ja) 数値制御による機械装置の制御方法および装置
JP2002258922A (ja) 数値制御システム
WO2013046736A1 (ja) ギブ締め付け状態把握方法及び装置
JPH08110808A (ja) 数値制御工作機械の制御方法及び装置
JPH1063339A (ja) 数値制御工作機械の制御装置
JP7193361B2 (ja) 位置制御装置
JPH0719180B2 (ja) 送り軸の位置制御方式
JP3232252B2 (ja) 位置決め制御装置及び位置決め制御方法
CN114281018A (zh) 一种数控机床倾斜进给***反向跃冲误差峰值离线预测方法
JPH044405A (ja) 数値制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 601281

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): CA IL IN JP KR NO SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999949334

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09868587

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999949334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11032795

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1999949334

Country of ref document: EP