WO2000054879A1 - Catalyseur de conversion catalytique, procede d'elimination de monoxyde de carbone dans un gaz hydrogene et systeme de generation d'energie electrique de pile a combustible - Google Patents

Catalyseur de conversion catalytique, procede d'elimination de monoxyde de carbone dans un gaz hydrogene et systeme de generation d'energie electrique de pile a combustible Download PDF

Info

Publication number
WO2000054879A1
WO2000054879A1 PCT/JP2000/001600 JP0001600W WO0054879A1 WO 2000054879 A1 WO2000054879 A1 WO 2000054879A1 JP 0001600 W JP0001600 W JP 0001600W WO 0054879 A1 WO0054879 A1 WO 0054879A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift reaction
catalyst
gas shift
platinum
reaction catalyst
Prior art date
Application number
PCT/JP2000/001600
Other languages
English (en)
French (fr)
Inventor
Akira Igarashi
Hirokazu Higashi
Manabu Mizobuchi
Noboru Hashimoto
Kensaku Kinugawa
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP07327099A external-priority patent/JP3215680B1/ja
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to DE60044334T priority Critical patent/DE60044334D1/de
Priority to US09/720,262 priority patent/US6777117B1/en
Priority to CA002336847A priority patent/CA2336847C/en
Priority to EP00909671A priority patent/EP1161991B1/en
Priority to PCT/JP2000/002476 priority patent/WO2001003828A1/ja
Publication of WO2000054879A1 publication Critical patent/WO2000054879A1/ja
Priority to HK02103250.7A priority patent/HK1042064B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
    • C10K3/04Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • C01B3/16Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a water gas shift reaction catalyst used for converting and removing carbon monoxide (CO) contained in a hydrogen-rich gas by a water gas shift reaction, and a method for removing carbon monoxide in hydrogen gas using such a catalyst.
  • a method and a fuel cell power generation system using such a catalyst are known in the art.
  • the hydrogen-rich reformed gas is obtained by performing a steam reforming reaction of a fuel such as hydrocarbon gas, liquid or solid, or alcohol such as methanol with steam, and contains carbon monoxide as a by-product.
  • a fuel such as hydrocarbon gas, liquid or solid, or alcohol such as methanol with steam
  • This reformed gas is used as a fuel hydrogen supply source in the fuel cell power generation system.
  • polymer electrolyte fuel cells have low operating temperatures, high output densities, and can be expected to be smaller and lighter and have shorter operating times, so they can be used in automobiles, small generators, and household cogeneration systems. The use to is considered.
  • the polymer electrolyte fuel cell uses a perfluorosulfonate-based polymer membrane as a proton conductive solid electrolyte and operates at a temperature of 50 to 100 ° C.
  • polymer electrolyte fuel cells operate at low temperatures and are easily poisoned by impurities contained in hydrogen-rich reformed gas.
  • the platinum used for the electrodes of the fuel cell unit is easily poisoned by CO, and if the reformed gas contains CO of a predetermined concentration or more, the power generation performance is reduced.
  • the CO removal unit downstream of the reforming Yuni' Bok to produce hydrogen Ritsuchi reformed gas from the fuel the aqueous Gasushifu preparative reaction (CO + H 2 0 ⁇ C 0 2 + H 2) to take advantage
  • the CO concentration is usually reduced to 1% or less.
  • a water gas shift reaction catalyst is used as a CO conversion catalyst, and a Cu—Zn-based catalyst has generally been used conventionally.
  • a selective oxidation reaction unit is usually further provided downstream of the CO removal unit, and the CO concentration in the hydrogen gas is further reduced to, for example, 50 ppm or less. Hydrogen gas is supplied to the fuel cell unit. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to efficiently remove CO in hydrogen gas, preferably in a wide temperature range, and to reduce CO in hydrogen gas.
  • An object of the present invention is to provide a water gas shift reaction catalyst that can be used as a removal catalyst. Such a catalyst can be used as a catalyst for promoting a water gas shift reaction, particularly when removing CO in hydrogen rich gas generated in a fuel cell power generation system.
  • Another object of the present invention is to provide a method for reducing carbon monoxide in hydrogen gas by bringing a hydrogen gas containing carbon monoxide into contact with the above-mentioned water gas shift reaction catalyst.
  • Another object of the present invention is to provide a fuel cell power generation system characterized in that hydrogen gas containing carbon monoxide is brought into contact with an aqueous shift reaction catalyst to supply hydrogen gas with reduced carbon monoxide to a fuel cell unit.
  • the purpose is to provide.
  • the present invention provides a water gas shift reaction catalyst characterized in that at least platinum is supported on a metal oxide carrier as an active component.
  • the metal oxide support is at least one selected from the group consisting of zirconia, alumina, titania, silica, silica-magnesia, zeolite, magnesia, niobium oxide, zinc oxide and chromium oxide.
  • silicon is also included in the metal.
  • zirconia is particularly preferred.
  • Zirconia, alumina, silica, silica-magnesia, zeolite, magnesia, niobium oxide, zinc oxide or chromium oxide coated with titanium can also be used as the metal oxide carrier.
  • the supported amount of the active ingredient is calculated on the basis of the weight of the carrier (that is, based on the weight of the carrier itself containing no active ingredient; 0.1-10.0 weight. / 0 is preferred.
  • rhenium is further supported on a carrier as another active component in addition to platinum.
  • the supported amount of rhenium is 0.1 to 10.0 weight in terms of rhenium metal based on the weight of the carrier. / 0 is preferred.
  • the catalyst of the present invention comprises, in addition to the platinum active component and optionally rhenium as described above, yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum and At least one other metal selected from the group consisting of lanthanum is further supported as another active ingredient.
  • the amount of the additional active ingredient to be carried is preferably 0.1 to 10.0% by weight in terms of metal, based on the weight of the carrier.
  • the active ingredient may be supported on the carrier by any suitable method.
  • a solution of the active ingredient metal salt in a suitable solvent, for example, water and the obtained solution and the carrier (For example, in the form of powder) to obtain a mixture (for example, a slurry).
  • the mixture is dried (preferably dried by heating) to obtain a carrier on which the active ingredient is supported as the water gas shift reaction catalyst of the present invention.
  • the obtained water gas shift reaction catalyst is preferably fired thereafter.
  • the calcination is a treatment for maintaining the carrier on which the active ingredient is supported at a high temperature, and a catalyst with higher activity can be obtained.
  • the carrier is held at an appropriate atmosphere (for example, an air atmosphere or an inert atmosphere) for 1 to 6 hours (for example, 2 hours) at (for example, 500 ° C.).
  • an appropriate atmosphere for example, an air atmosphere or an inert atmosphere
  • the gas shift reaction catalyst is washed.
  • This washing treatment is performed with water, preferably hot water, more preferably hot water (eg boiling water).
  • the method can be carried out by dispersing a carrier carrying an active ingredient in water, stirring the mixture, separating the carrier (for example, by filtration), and then drying.
  • the present invention provides a method for producing a water gas shift reaction catalyst for removing carbon monoxide in hydrogen gas
  • the method of the present invention may further comprise (3) a step of calcining the obtained dried carrier. Alternatively, before or after the calcination step, (4) a step of washing the obtained dried carrier or calcined carrier, particularly a step of washing with hot water, may be included.
  • the salt of platinum is dried in a slurry (step
  • step 2 it is converted to platinum as an active ingredient and supported on a carrier.
  • the description relating to the catalyst of the present invention described above applies to the metal oxide carrier, the amount of supported platinum, calcination, washing, and the like.
  • rhenium may be supported on a carrier in addition to platinum. In this case, the method is carried out using a rhenium salt solution instead of the above-mentioned platinum salt solution.
  • platinum and rhenium When supporting rhenium, platinum and rhenium may be supported together.
  • an aqueous solution containing both a platinum salt and a rhenium salt is prepared (or an aqueous solution containing a platinum salt and a rhenium solution).
  • An aqueous solution containing a salt of the above) is mixed), and the above method is performed using the mixed solution.
  • the above steps (1) and (2) are repeated twice in order, so that one is loaded first, and then the other is loaded, to obtain a carrier loaded with platinum and rhenium.
  • At least one other active ingredient as described above May be supported on a carrier.
  • all metals may be supported together or separately.
  • the present invention according to the third aspect is characterized in that a hydrogen gas containing carbon monoxide is brought into contact with a water gas shift reaction catalyst comprising at least platinum supported on a metal oxide carrier. And a method for removing carbon monoxide.
  • a water gas shift reaction catalyst used in this method, the above-described catalyst of the present invention can be used.
  • a temperature of 200 ° C. to 400 ° C. in the presence of water vapor, a temperature of 200 ° C. to 400 ° C., preferably
  • a hydrogen gas containing carbon monoxide is contacted with the aqueous shift gas catalyst retained by any suitable method or means.
  • Steam may be provided in any suitable manner.
  • the hydrogen gas used for this removal method is not particularly limited as long as it contains carbon monoxide.
  • the removal method of the present invention is preferably applied to a reformed gas containing hydrogen as a main component and containing carbon monoxide and steam, and can reduce the concentration of carbon monoxide contained therein.
  • the present invention provides, in the fourth aspect, a fuel cell power generation system including a CO removal unit including a water gas shift reaction catalyst in which at least platinum is supported on a metal oxide carrier, and a CO removal unit Said that the reformed gas, which is a hydrogen gas containing carbon monoxide, obtained by the steam reforming reaction unit was brought into contact with a water gas shift reaction catalyst to generate hydrogen gas having a reduced carbon monoxide concentration.
  • Hydrogen gas with reduced carbon monoxide concentration is supplied to the fuel cell unit. When it is necessary to supply the fuel cell unit after further reducing the concentration of carbon monoxide in the hydrogen gas having such reduced carbon monoxide concentration (for example, in the case of a polymer electrolyte fuel cell power generation system).
  • FIG. 1 is a graph showing the relationship between the reaction temperature and the CO conversion ratio when the catalysts of Examples 1 to 5 and Comparative Example were used.
  • FIG. 2 is a graph showing the relationship between the reaction time and the CO conversion when the catalysts of Examples 3 and 4 and Comparative Example were used.
  • FIG. 3 is a graph showing the reaction selectivity when the catalysts of Example 3 and Examples 6 to 16 are used.
  • FIG. 4 is a graph showing the relationship between the reaction temperature and the CO conversion when the catalysts of Examples 3, 17 and 18 and Comparative Example were used.
  • FIG. 5 is a graph showing the relationship between the reaction time and the CO conversion rate when the catalysts of Examples 3, 4 and 19 and Comparative Example were used.
  • FIG. 6 is a graph showing the relationship between the C 2 O conversion rates when the catalysts of Examples 3 and 20 to 27 and Comparative Example were used.
  • FIG. 7 is a graph showing the relationship between the CO conversion and the reaction temperature when the catalysts of Example 17 and Comparative Example were used in Example 28.
  • the metal oxide as a carrier of the active ingredient includes zirconia, alumina, silica, silica-magnesia, zeolite, magnesia, niobium oxide, zinc oxide, chromium oxide, and metal oxides thereof. It is possible to use those obtained by coating titania on arsenal (eg, those coated by CVD), and at least one selected from titania, which may be commercially available.
  • a carrier may be in the form of, for example, a powder or granules, or may be a molded article such as a pellet.
  • metal oxides as described above may be produced from other compounds in any suitable manner.
  • zirconia as a carrier can be prepared by calcining zirconium hydroxide hydrate as a starting material.
  • Platinum is loaded on such a carrier (eg, a zirconia carrier) as an active ingredient.
  • a carrier eg, a zirconia carrier
  • This is accomplished by adding the carrier to an aqueous solution of a platinum salt (for example, chloroplatinic acid), evaporating to dryness with stirring, and, if necessary, further heating and drying the dried product.
  • a platinum salt for example, chloroplatinic acid
  • the water gas shift reaction catalyst of the present invention can be obtained.
  • the size of the obtained dried product or dried product is large (for example, when it is a lump), it may be pulverized.
  • the carrier carrying the active ingredient may be pulverized, if necessary, and then subjected to a calcination treatment, if necessary.
  • the obtained carrier When the obtained carrier is fine, it is formed into a pellet by using, for example, a press machine, and the obtained pellet is pulverized to a particle size of 0.5 to 1.0 mm to obtain a granular material.
  • It can be used as a catalyst in the form of water, which can be used as a water gas shift reaction catalyst in which an active component is supported on a carrier, and can be used to remove CO in hydrogen gas.
  • the amount of supported platinum is 0.1 to 10% by weight based on the weight of the carrier.
  • the range of / 0 is preferred. If the amount of supported platinum is less than zero. 1 wt%, it is difficult to obtain a catalytic activity in you remove the CO in H 2 is rolling I inhibit the CO 2 by the water gas shift reaction well, Further, even if the amount of supported platinum exceeds 10% by weight, the catalytic activity is not so improved, and the cost is disadvantageous in many cases.
  • other active components can be supported on the carrier to obtain a catalyst for removing CO.
  • active ingredients include rhenium and yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum and lanthanum.
  • rhenium and yttrium calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum and lanthanum.
  • a salt of the selected other active ingredient may be used in the above description of the supporting method.
  • a water gas shift reaction catalyst in which the above-mentioned active ingredient is supported on a carrier in addition to platinum, rhenium as an active ingredient or yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium,
  • a metal such as molybdenum and / or lanthanum
  • an aqueous solution of a platinum salt for example, chloroplatinic acid
  • an aqueous solution of these other metal salts or an aqueous solution containing all of these salts
  • the supported amount of rhenium is calculated as rhenium metal based on the weight of the carrier.
  • the supported amount of metals other than rhenium is preferably in the range of 0.1 to 10% by weight in total of those metals. Supported amount of these metals to zero. 1 by weight of less than 0/0, it is difficult possible to get a sufficient effect of preventing Metaneshiyon reaction, also supported amount of the metal even exceed 1 0 wt% The effect of preventing the metanation reaction does not improve so much, which is disadvantageous in terms of cost.
  • the water gas shift reaction catalyst of the present invention can also be prepared by performing a washing treatment, particularly a washing treatment with hot water, after evaporating to dryness or heating and drying. That is, a catalyst in which platinum and optionally other metals are supported on a carrier is stirred in hot water (about 80 ° C. to 100 ° C., preferably boiling water) for a predetermined time, for example, about 1 hour, Then the catalyst is filtered off. After repeating this washing operation several times (preferably until the filtrate becomes transparent), it is dried to obtain a catalyst.
  • the dried catalyst is pressed into pellets, and the resulting pellets are pulverized to a particle size of 0.5 to 1.0 mm, and a water gas shift reaction catalyst in which platinum or the like is supported on a carrier is used. Can be obtained.
  • a cleaning process especially when performing a process using hot water, Subsequent firing may or may not be performed.
  • the removal of CO remaining by the water gas shift reaction remaining in the carrier for example, a decrease in conversion, a decrease in selectivity, and an increase in by-products
  • the activity of a carrier or a salt of an active ingredient such as chloride ions can be reduced or removed from the carrier, and the catalytic activity for CO removal can be further enhanced.
  • the active metal may be oxidized. Therefore, it is common practice to carry out a reduction treatment before using the catalyst and then to use it for the water gas shift reaction. Is preferred.
  • This reduction treatment may be carried out by any suitable method, for example, by bringing hydrogen into contact with a catalyst under heating.
  • the water gas shift reaction catalyst of the present invention obtained as described above is converted into a steam-based gas from a hydrocarbon gas (for example, butane gas), a liquid or a solid, or an alcohol fuel such as methanol and steam. It can be used in a water gas shift reaction unit that removes CO from the hydrogen rich reformed gas obtained in the reaction unit, and a selective oxidation reaction unit (eg, R (a unit with a u-type selective oxidation catalyst) to reduce the CO concentration in the reformed gas to a specified concentration or less and supply it to the fuel cell unit, for vehicles, small generators, home cogeneration systems, etc.
  • An optimal fuel cell power generation system (for example, a polymer electrolyte fuel cell power generation system) can be constructed. That.
  • the water gas shift reaction catalyst of the present invention in which at least platinum is supported on a metal oxide carrier, efficiently removes CO in hydrogen gas in a wide temperature range, for example, 200 ° C to 400 ° C. It can be easily applied to a small and portable fuel cell power generation system that repeatedly starts and stops.
  • the metal oxide carrier is zirconia, alumina, silica, silica-magnesia, zeolite, magnesia, niobium oxide, zinc oxide and chromium oxide (and If the metal oxide is at least one selected from titania, the CO removal activity of the platinum-supported water-gas shift reaction catalyst can be effectively obtained. be able to. In particular, it is particularly effective when zirconia is used as a carrier. When the amount of supported platinum is 0.1 to 10% by weight based on the weight of the carrier, the catalytic activity for removing CO from the reformed gas becomes more effective.
  • a catalyst in which rhenium is supported on a carrier can enhance the catalytic activity for removing CO and prevent the methanation reaction from occurring.
  • the supported amount of rhenium is 0.1 to 10% by weight based on the weight of the carrier, the effect of preventing the metanation reaction can be effectively obtained.
  • the carrier supports platinum or platinum and rhenium, and at least one metal selected from yttrium, calcium, chromium, samarium, cerium, tungsten, neodymium, praseodymium, magnesium, molybdenum and lanthanum.
  • it can enhance the catalytic activity of CO removal and can prevent the occurrence of a metanalysis reaction.
  • the loading amount of these metals is 0.1 to 10% by weight based on the weight of the carrier, the effect of preventing the metanation reaction can be effectively obtained.
  • the catalyst obtained by carrying out a washing treatment, particularly a washing treatment with hot water, after carrying the active ingredient has a further enhanced activity, and is suitable for removing Co from hydrogen gas. is there.
  • the resulting reformed gas is brought into contact with a Ru-based selective oxidation catalyst, and the resulting reformed gas can be supplied to a polymer electrolyte fuel cell.
  • the reformed gas generated from the fuel by a steam reforming reaction, an aqueous shift reaction, and a selective oxidation reaction is obtained. It is possible to generate power with a fuel cell using the high quality gas.
  • Zirconium hydroxide n-hydrate (Z r 0 2 ⁇ nH 2 ⁇ , Mitsuwa Chemicals Co., Ltd.), using a firing furnace, the temperature in 1 hour to 500 ° C at 60 Miriritsutoru Z component of the air stream It was heated and calcined under the condition of holding at the same temperature for 1 hour to obtain zirconium oxide, which was used as a zirconia carrier.
  • a predetermined amount of the obtained zirconia carrier was put in an evaporating dish on a hot water bath, and pure water was mixed with the carrier to make it familiar.
  • An aqueous solution of chloroplatinic acid hexahydrate (manufactured by Nacalai Tesque, Inc.) was added to the evaporating dish, and pure water was further added to adjust the concentration to a predetermined concentration. This was stirred in a hot water bath, and evaporated to dryness in one hour while washing off the metal salt attached to the wall of the evaporating dish with pure water as the water evaporated.
  • the resulting dried product was dried at about 100 ° C for at least 15 hours. After crushing the dried product into a powder in a mortar, the temperature is raised to 5 ° C for 1 hour in an air stream of 60 milliliters min using a firing furnace, and the temperature is maintained for 1 hour at the same temperature. It was fired.
  • the catalyst was filled with 7 milliliters of catalyst into a reaction tube, heated to 500 ° C for 1 hour while flowing hydrogen, and then subjected to reduction treatment at the same temperature for 1 hour.
  • reaction temperature was raised to 250 ° C, 300 ° C, and 350 ° C, and a sample after the reaction was stabilized was collected and analyzed to determine the co conversion.
  • the catalyst of the present invention has more effective CO removing ability than the catalyst of the comparative example.
  • Example 6 A predetermined amount of the zirconia carrier prepared in Examples 1 to 5 was placed in an evaporating dish on a hot water bath, and mixed with pure water to make it compatible. An aqueous solution of chloroplatinic acid hexahydrate (manufactured by Nacalai Tesque, Inc.) and an aqueous solution of lanthanum nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) are added to the evaporating dish. I did it. The mixture was stirred for 1 hour in a hot water bath and evaporated to dryness for 1 hour while washing off the metal salt attached to the wall of the evaporating dish with pure water as the water evaporated.
  • chloroplatinic acid hexahydrate manufactured by Nacalai Tesque, Inc.
  • lanthanum nitrate hexahydrate manufactured by Wako Pure Chemical Industries, Ltd.
  • the resulting dried product was dried at about 100 ° C. for at least 15 hours.
  • the dried product is ground into a powder in a mortar and then heated to 500 C for 1 hour in a baking oven at 600 milliliters / min airflow and kept at the same temperature for 1 hour.
  • the zirconia carrier was calcined under the following conditions, and platinum was carried on the carrier at a loading of 3.0% by weight (based on the carrier weight), and lanthanum was carried on the carrier at a loading of 5.0% by weight.
  • the obtained powder was pressed with a manual hydraulic compressor at a pressure of about 360 kg / cm 2 for 10 seconds, and the obtained pellet was 0.5 to 1.0 mm. This was pulverized to a particle size to obtain a water gas shift reaction catalyst in which platinum and lanthanum were supported on a zirconia carrier.
  • a predetermined amount of the zirconia carrier prepared in Examples 1 to 5 was put in an evaporating dish on a hot water bath, and mixed with pure water to make it compatible.
  • An aqueous solution of ammonium perrhenate (manufactured by Mitsuwa Chemicals Co., Ltd.) was added to the evaporating dish, and pure water was further added to adjust the concentration to a predetermined value. While stirring this in a hot water bath, the metal salts adhering to the wall of the evaporating dish as the water evaporates are washed away with pure water, dried at about 100 ° C for at least 15 hours, and rhenium is added to the zirconia carrier. Supported.
  • platinum is carried in the same manner as in Examples 1 to 5 above. Platinum is carried in a loading amount of 3.0% by weight and rhenium is contained in a loading amount of 1.0% by weight. Water gas shift reaction catalysts supported on zirconia carriers in supported amounts were obtained.
  • a predetermined amount of the zirconia carrier prepared in Examples 1 to 5 was placed in an evaporating dish on a hot water bath, and mixed with a suitable amount of pure water to make it compatible.
  • chloroplatinic acid aqueous solution Nacalai Tesque (Manufactured by Co., Ltd.)
  • pure water was added so as to obtain a predetermined concentration. While stirring this in a hot water bath, the metal salts adhering to the wall of the evaporating dish as the water evaporates are washed away with pure water and evaporated for 1 hour to dryness. Dry at least 15 hours with c.
  • the catalyst thus obtained was stirred in hot water (about 100 ° C.) for about 1 hour, after which the catalyst was precipitated and filtered off. This operation was repeated until the filtrate became transparent. Thereafter, the filtered catalyst was dried at 100 ° C. for at least 15 hours.
  • the obtained catalyst was pressed using a manual hydraulic compressor at a pressure of about 360 kg / cm 2 for about 10 seconds, and the obtained pellet was 0.5 to 1.0.
  • the catalyst was crushed to a particle size of mm to obtain a CO removal catalyst in which 3.0% by weight of platinum was supported on a zirconia carrier.
  • Fig. 5 shows the results. From FIG. 5, is the catalyst of Example 19 even higher than Examples 3 and 4 as well as Comparative Example? It can be seen that the catalyst has tongue properties and the activity of the catalyst does not deteriorate as in Examples 3 and 4.
  • a predetermined amount of each of the obtained carriers was placed in an evaporating dish on a hot water bath, and pure water was mixed with the carriers to adjust them.
  • An aqueous solution of chloroauric acid hexahydrate (manufactured by Nacalai Tesque, Inc.) was added to the evaporating dish, and pure water was further added to adjust the concentration to a predetermined concentration. This was stirred on a hot water bath, and the metal salt attached to the wall of the evaporating dish as the water was evaporated was washed off with pure water and evaporated to dryness in about 2 hours. The resulting dried product was dried at about 100 nC for at least 15 hours.
  • the temperature is raised to 500 ° C in an air flow of 60 milliliters using a firing furnace at 500 ° C for one hour, and the same temperature is maintained for one hour.
  • the firing process was performed under the following conditions.
  • the resulting powder was 1 0 seconds pressed at the manual hydraulic compressor pressure of about 3600 k gZc m 2 by using the resulting peptidyl Re' preparative 1. 4 to 2. 0 mm grain size of Then, a water gas shift reaction catalyst having S gold supported on each carrier was obtained.
  • the amount of platinum carried was 3.0% by weight.
  • Example 17 Using the aqueous shift reaction catalyst of Example 17, the CO removal performance in hydrogen gas containing carbon monoxide was evaluated.
  • the evaluation experiment was performed in the same manner as in Examples 20 to 27 above. Was.
  • a comparative example a similar CO removal experiment was performed using CuZZ ⁇ . The results are shown in FIG. From FIG. 7, it can be seen that the CO removal method of Example 28 has a higher CO removal rate than the comparative example.
  • Example 17 Using the aqueous shift reaction catalyst of Example 7,
  • a hydrogen-rich reformed gas obtained by steam reforming reaction from steam After being brought into contact with a hydrogen-rich reformed gas obtained by steam reforming reaction from steam, it was brought into contact with a Ru-based selective oxidation catalyst, and the obtained reformed gas was supplied to a polymer electrolyte fuel cell.
  • the flow rate of the reformed gas supplied to the fuel cell was 11.6 liter / min with an integrating flow meter, and the power generation of the fuel cell was evaluated by an electronic load device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

明 細 書 水性ガスシフト反応触媒、 水素ガス中の一酸化炭素除去方法
および
燃料電池発電: 技術分野
本発明は、 水素リッチなガスに含まれる一酸化炭素 (C O) を水性ガスシフト 反応によって転化除去するために用いられる水性ガスシフト反応触媒、 そのよう な触媒を利用する、 水素ガス中の一酸化炭素除去方法、 およびそのような触媒を 使用する燃料電池発電システムに関する。 背景技術
水素リッチな改質ガスは、 炭化水素の気体、 液体もしくは固体、 あるいはメタ ノール等のアルコール等の燃料を水蒸気と水蒸気改質反応させて得られ、 副生成 物としての一酸化炭素を含む。 この改質ガスは、 燃料電池発電システムにおいて、 燃料水素の供給源として利用されている。
燃料電池の中でも、 固体高分子型燃料電池は作動温度が低く、 出力密度が高く、 また、 小型軽量化および作動時間の短縮化が期待できるので、 自動車、 小型発電 器および家庭用コジェネレーションシステム等への利用が考えられている。
固体高分子型燃料電池は、 パーフルォロスルフォン酸系の高分子膜をプロ トン 伝導性固体電解質として使用し、 5 0〜1 0 0 °Cの温度で作動する。 しカゝし、 固 体高分子型燃料電池は低温作動のため、 水素リッチな改質ガス中に含まれる不純 物によって被毒され易い。 特に、 燃料電池ユニットの電極に使用されている白金 は C Oによって被毒され易く、 改質ガス中に所定濃度以上の C Oが含まれている と発電性能が低下する。
そこで、 燃料から水素リツチな改質ガスを生成する改質ュニッ卜の後段に C O 除去ユニッ トを設け、 水性ガスシフ ト反応 (C O + H 2 0→C 0 2 + H 2 ) を利 用して C Oを選択的に転化除去して、 C O濃度を通常 1 %以下に低減している。 この C O除去のために C O転化触媒として水性ガスシフト反応触媒が用いられ、 従来から一般に C u— Z n系触媒が使用されている。 尚、 固体高分子型燃料電池 発電システムでは、 通常、 C O除去ユニットの下流に選択的酸化反応ユニットを 更に設け、 水素ガス中の C O濃度を一層に下げて、 例えば 5 0 p p m以下にし、 そのような水素ガスが燃料電池ュニットに供給される。 発明の開示
しかし、 C u— Z n系触媒は活性が低いため、 水素ガス中の C O濃度を 1 %以 下に低減させるためには大量に使用する必要があり、 また、 活性が経時劣化する ため、 定期的に触媒を交換する必要があるという問題点があった。 従って、 従来 の C u— Z n系触媒を、 起動 停止が繰り返して行なわれる燃料電池発電システ ム、 特に小型の燃料電池発電システムに、 適用することが難しいものであった。 本発明は上述の問題点に鑑みてなされたものであり、 本発明の目的は、 水素ガ ス中の C Oを、 好ましくは広い温度範囲で、 効率良く除去することができ、 水素 ガス中の C O除去用触媒としても使用できる水性ガスシフト反応触媒を提供する ことである。 そのような触媒は、 特に燃料電池発電システムにおいて生成する水 素リツチガス中の C Oを除去する場合に、 水性ガスシフト反応を促進する触媒と して使用できる。
本発明のもう 1つの目的は、 上述の水性ガスシフト反応触媒に、 一酸化炭素を 含有する水素ガスを接触させて水素ガス中の一酸化炭素を減少させる方法を提供 することである。
本発明の別の目的は、 一酸化炭素を含有する水素ガスを水性シフト反応触媒と 接触させて、 一酸化炭素が減少した水素ガスを燃料電池ュニットに供給すること を特徴とする燃料電池発電システムを提供することを目的とするものである。 第 1の要旨において、 本発明は、 少なくとも白金を活性成分として金属酸化物 担体に担持させてなることを特徴とする水性ガスシフト反応触媒を提供する。 本発明の触媒において、 金属酸化物担体は、 ジルコユア、 アルミナ、 チタニア、 シリカ、 シリカ—マグネシア、 ゼォライ ト、 マグネシア、 酸化ニオブ、 酸化亜鉗 および酸化クロムから成る群から選ばれる少なくとも 1種であるのが好ましい (尚、 本発明においてはケィ素も金属に含まれるものとする) 。 中でも、 ジルコ ニァが特に好ましい。 また、 ジルコニァ、 アルミナ、 シリカ、 シリカ一マグネシ ァ、 ゼォライ ト、 マグネシア、 酸化ニオブ、 酸化亜鉛または酸化クロムをチタ二 ァでコーティングしたものも、 金属酸化物担体として使用できる。
本発明の触媒において、 活性成分の担持量は、 担体重量を基準として (即ち、 活性成分を含まない担体自体の重量を基準として、 以下、 担持量に関しては同じ 基準) 、 白金金属に換算して 0 . 1〜1 0 . 0重量。 /0であるのが好ましい。
1つの態様では、 本発明の触媒において、 白金の他に、 レニウムを別の活性成 分として担体に更に担持させて成る。 この場合、 レニウムの担持量は、 担体重量 を基準として、 レニウム金属に換算して 0 . 1〜1 0 . 0重量。 /0であるのが好ま しい。
別の態様では、 本発明の触媒において、 白金活性成分および上述のように場合 により存在するレニウムの他に、 イットリウム、 カルシウム、 クロム、 サマリゥ ム、 セリウム、 タングステン、 ネオジゥム、 プラセオジム、 マグネシウム、 モリ ブデンおよびランタンから成る群から選ばれる少なくとも 1種の他の金属を更に 別の活性成分として担持させて成る。 その場合、 この更に別の活性成分の担持量 は、 担体重量を基準として、 金属に換算して総量で 0 . 1〜1 0 . 0重量%であ るのが好ましい。
本発明の触媒は、 いずれの適当な方法によって活性成分を担体に担持させても よく、 例えば、 活性成分である金属の塩を適当な溶媒、 例えば水に溶解し、 得ら れた溶液と担体 (例えば粉末形態) を混合して混合物 (例えばスラリー) を得、 その後、 混合物を乾燥 (好ましくは加熱して乾燥) して、 活性成分が担持された 担体を本発明の水性ガスシフト反応触媒として得る。
得られた水性ガスシフト反応触媒は、 その後、 焼成するのが好ましい。 本発明 において、 焼成とは、 活性成分が担持された担体を高温下で保持する処理であり、 活性のより高レ、触媒を得ることができる。 例えば、 4 0 0 °C〜 6 0 0 °Cの温度
(例えば 5 0 0 °C) にて 1〜6時間 (例えば 2時間) 、 適当な雰囲気 (例えば空 気雰囲気または不活性雰囲気) にて担体を保持する。
別の態様では、 焼成に代えて、 あるいは焼成の前に、 担持により得られた水性 ガスシフト反応触媒を洗浄処理するのが好ましい。 この洗浄処理は、 水、 好まし くは温水、 より好ましくは熱水 (例えば沸騰状態の水) により実施する。 具体的 には、 水中に活性成分を担持した担体を分散させて撹拌し、 その後、 担体を分離 (例えば濾別) した後、 乾燥することによって実施できる。
第 2の要旨において、 本発明は、 水素ガス中の一酸化炭素を除去する水性ガス シフ ト反応触媒の製造方法を提供し、
( 1 ) 金属酸化物担体と白金の塩の溶液、 好ましくは水溶液を混合してスラリ —を得る工程、 および
( 2 ) 得られたスラリーを乾燥して乾燥担体を得る工程
を含んで成る。 この方法によって、 上述のような本発明の水性ガスシフ ト反応触 媒を得ることができる。
本発明の方法は、 (3 ) 得られた乾燥担体を焼成する工程を更に含んで成って よい。 別法では、 この焼成工程に代えて、 あるいはそれを実施する前に、 (4 ) 得られた乾燥担体または焼成担体を洗浄処理、 特に熱水により洗浄処理する工程 を含んでよい。 尚、 本発明の方法において、 白金の塩は、 スラリー乾燥 (工程
2 ) の間、 更にこれに加えて焼成 (工程 3 ) および/または洗浄処理 (工程 4 ) を経る間に、 活性成分としての白金に変換され、 担体に担持される。
本発明の触媒の製造方法において、 金属酸化物担体、 白金の担持量、 焼成、 洗 浄等に関して、 上述の本発明の触媒に関連した説明が当て嵌まる。 また、 本発明 の方法において、 白金に加えて、 レニウムを担体に担持させてよく、 その場合、 上述の白金の塩の溶液に代えて、 レニウムの塩の溶液を用いて実施する。
レニウムの担持に際しては、 白金とレニウムを一緒に担持してもよく、 その場 合には、 白金の塩およびレニウムの塩を一緒に含む水溶液を調製して (あるいは 白金の塩を含む水溶液およびレニウムの塩を含む水溶液を混合して) 、 それを用 いて上述の方法を実施する。 別法では、 上述の工程 (1 ) および (2 ) を順に 2 回繰り返して、 一方を先に担持させて、 次に、 他方を担持させて、 白金およびレ ニゥムを担持した担体を得る。
本発明の方法において、 白金の他に、 あるいは白金および別の活性成分として のレニウムの他に、 上述のような更に別の活性成分としての少なくとも 1種の他 の金属を担体に担持させてよい。 その場合、 上述のレニウムの場合と同様に、 全 ての金属を一緒に担持させても、 あるいは別々に担持させてもよい。 尚、 レニゥ ムおよび他の金属の担持量に関しては、 上述の本発明の触媒に関連した説明が当 て嵌まる。
また、 本発明は、 第 3の要旨において、 金属酸化物担体に少なくとも白金を担 持させてなる水性ガスシフト反応触媒に、 一酸化炭素を含有する水素ガスを接触 させることを特徴とする水素ガス中の一酸化炭素を除去する方法を提供する。 こ の方法において用いる水性ガスシフト反応触媒としては、 上述の本発明の触媒を 用いることができる。
この方法では、 水蒸気の存在下、 2 0 0 °C〜4 0 0 °Cの温度、 好ましくは 2 2
0 °C〜3 5 0 °Cの温度にて、 いずれかの適当な方法または手段で保持された水性 シフトガス触媒に一酸ィヒ炭素を含む水素ガスを接触させる。 水蒸気は、 いずれの 適当な方法で供給してもよい。 この除去方法に用いる水素ガスは、 一酸化炭素を 含むものであれば特に制限されるものではなレ、。 本発明の除去方法は、 例えば、 水素を主成分として含み、 一酸化炭素および水蒸気を含む改質ガスに適用するの が好ましく、 含まれている一酸化炭素の濃度を低減することができる。
従って、 本発明は、 第 4の要旨において、 金属酸化物担体に少なくとも白金を 担持させてなる水性ガスシフト反応触媒を含む C O除去ュニットを有して成る燃 料電池発電システムを提供し、 C O除去ユニットは、 水蒸気改質反応ユニットに より得られた、 一酸化炭素を含有する水素ガスである改質ガスを水性ガスシフト 反応触媒と接触させて、 一酸化炭素濃度が減少した水素ガスを生成することを特 徴とする。 一酸化炭素濃度が減少した水素ガスは、 燃料電池ユニットに供給され る。 尚、 そのように一酸化炭素濃度が減少した水素ガス中の一酸化炭素濃度を更 に下げた後に燃料電池ュニットに供給する必要がある場合 (例えば固体高分子型 燃料電池発電システムの場合) には、 C O除去ユニットを経て一酸化炭素濃度が 減少した水素ガスを選択的酸化ュニッ トに通した後に、 燃料電池ュニットに供給 する。 図面の簡単な説明 図 1は、 実施例 1〜 5および比較例の触媒を用いた場合の反応温度と C O転ィ匕 率との関係を示すグラフである。
図 2は、 実施例 3および 4ならびに比較例の触媒を用いた場合の反応時間との c o転化率の関係を示すグラフである。
図 3は、 実施例 3および実施例 6〜 1 6の触媒を用いた場合の反応選択率を示 すグラフである。
図 4は、 実施例 3、 1 7および 1 8ならびに比較例の触媒を用いた場合の反応 温度と C O転化率との関係を示すダラフである。
図 5は、 実施例 3、 4および 1 9ならびに比較例の触媒を用いた場合の反応時 間と C O転ィヒ率との関係を示すグラフである。
図 6は、 実施例 3および 2 0〜2 7ならびに比較例の触媒を用いた場合の C O 転化率の関係を示すグラフである。
図 7は、 実施例 2 8において、 実施例 1 7および比較例の触媒を用いた場合の c o転化率と反応温度との関係を示すグラフである。 発明を実施するための形態
以下、 本発明の実施の形態を説明する。
本発明において、 活性成分の担体である金属酸化物としては、 上述のようにジ ルコユア、 アルミナ、 シリカ、 シリカ一マグネシア、 ゼォライ ト、 マグネシア、 酸化ニオブ、 酸化亜鉛、 酸化クロムおよびこれらの金属酸ィヒ物にチタニアをコ一 ティングしたもの (例えば C V Dによりコーティングしたもの) 、 ならびにチタ ニァから選ばれる少なくとも 1種を用いることができ、 これらは市販のものであ つてもよレ、。 このような担体は、 例えば粉末、 粒状の形態であってもよく、 ある いはペレツトのような成形体であってもよい。
別法では、 上述のような金属酸化物は、 他の化合物からいずれかの適当な方法 で製造されたものであってもよい。 例えば、 担体としてのジルコニァは、 出発原 料としての水酸化ジルコニウム水和物を焼成することによって調製することがで さる。
このような担体 (例えばジルコニァ担体) に白金を活性成分として担持させる ことは、 担体を白金の塩 (例えば塩化白金酸) の水溶液に加え、 これを撹拌しな がら蒸発乾固させ、 必要に応じて、 得られた乾固物を更に加熱して乾燥すること によって実施でき、 それによつて、 本発明の水性ガスシフト反応触媒を得ること ができる。 要すれば、 得られた乾固物または乾燥物の寸法が大きい場合 (例えば 塊状である場合) 、 それを粉砕してよい。 活性成分を担持した担体を、 要すれば 粉砕した後、 必要に応じて、 焼成処理を実施してよい。
尚、 得られた担体が微細である場合には、 例えばプレス機を用いてペレッ ト状 にし、 得られたペレッ トを 0 . 5〜1 . O mmの粒径に粉砕することによって粒 状の形態の触媒としてよく、 これを担体に活性成分を担持させた水性ガスシフト 反応触媒として使用することができ、 これを用いて水素ガス中の C Oを除去でき る。
本発明の水性ガスシフト反応触媒において、 白金の担持量は、 担体重量に対し て、 0 . 1〜 1 0重量。 /0の範囲が好ましい。 白金の担持量が 0 . 1重量%未満の 場合は、 水性ガスシフト反応によって H 2中の C Oを C O 2に転ィヒさせて除去す る際の触媒活性を十分に得ることが困難であり、 また、 白金の担持量が 1 0重 量%を超えても触媒活性はそれ程向上せず、 コスト的に不利になる場合が多い。 担体には白金の他に他の活性成分を担持させて C O除去用触媒を得ることもで きる。 この他の活性成分としては、 レニウム、 ならびにイットリウム、 カルシゥ ム、 クロム、 サマリウム、 セリウム、 タングステン、 ネオジゥム、 プラセオジム、 マグネシウム、 モリブデンおよびランタンを用いることができる。 これらの金属 の中から 1種あるいは 2種以上を選んでジルコユア担体に担持させることができ る。 このように他の活性成分を担持させる場合には、 上述の担持方法の説明にお いて、 選択した他の活性成分の塩を使用すればよい。
白金の他に上述の活性成分を担体に担持させた水性ガスシフト反応触媒を調製 するにあたっては、 活性成分としてレニウム、 ならびに またはイットリウム、 カルシウム、 クロム、 サマリウム、 セリウム、 タングステン、 ネオジゥム、 プラ セオジム、 マグネシウム、 モリブデンおよび/もしくはランタンのような金属を 用いる場合には、 白金の塩 (例えば塩化白金酸) の水溶液およびこれらの他の金 属の塩の水溶液 (あるいはこれらの塩を全部含む水溶液) と担体を混合し、 これ を撹拌しながら蒸発乾固させ、 必要に応じて得られた乾固物を加熱して更に乾燥 する。 その後の処理については、 上述の白金を担持させる場合と同様であってよ レ、。 このように担体に複数の金属が担持されている場合、 水性ガスシフト反応に 対する効果が存在する限り、 これらの金属がどのような形態で担体に担持されて いるかということは特に問題ではない。 従って、 これらの金属は合金の状態であ つてもよく、 あるいはそうでなくてもよい。
白金の他に上述の金属から選択された少なくとも 1種を担体に担持させること によって、 C O除去の触媒活性を高めることができると共に、 H 2中の C Oを C O 2に転化させて除去する際に、 C Oが H 2と反応してメタン化するメタネーシ ヨン反応が副反応として起こって水素が消費されることを防止できる。 特に、 白 金に加えてレニウムを担持させることによって、 C O除去の触媒活性を一層高め る効果を得ることができる。
この場合、 レニウムの担持量は、 担体重量に対して、 レニウム金属に換算して
0 . :!〜 1 0重量%の範囲が好ましい。 レニウム以外の金属の担持量は、 それら の金属の合計で 0 . 1〜1 0重量%の範囲が好ましい。 これらの金属の担持量が 0 . 1重量0 /0未満の場合は、 メタネーシヨン反応を防止する効果を十分に得るこ とが難しく、 また上記の金属の担持量が 1 0重量%を超えてもメタネーシヨン反 応を防止する効果はそれ程向上せず、 コスト的に不利になる。
また、 上述の説明では、 担体に白金等の活性成分の塩の水溶液を加えて蒸発乾 固させた後に加熱乾燥し、 これを焼成することによって、 白金等の活性成分を担 持させるようにしたが、 蒸発乾固または加熱乾燥の後に洗浄処理、 特に熱水によ る洗浄処理を施して本発明の水性ガスシフト反応触媒を調製することもできる。 即ち、 担体に白金および場合によりその他の金属を担持させた触媒を、 熱水 (約 8 0 °C〜1 0 0 °C、 好ましくは沸騰水) 中で所定時間、 例えば約 1時間撹拌し、 その後触媒を濾別する。 そして、 この洗浄操作を数回繰り返した後 (好ましくは、 濾液が透明になるまで) 、 乾燥して触媒を得る。 別法では、 乾燥触媒をプレスし てペレッ ト状にし、 得られたペレットを 0 . 5〜1 . O mmの粒径に粉砕してよ く、 担体に白金等を担持させた水性ガスシフト反応触媒を得ることができるもの である。 このように洗浄処理を行う場合、 特に熱水による処理を行う場合は、 そ の後の焼成は行っても、 あるいは行わなくてもよい。
このように洗浄処理を施すことによって、 担体中に残存している、 水性ガスシ フト反応による C O除去に悪影響 (例えば転化率の悪化、 選択率の悪化および副 生物の増加) を与え得るもの (例えば塩素イオン等の担体または活性成分の塩に 由来するもの) を担体から減らすまたは除去することができ、 C O除去の触媒活 性を更に高めることができると考えられる。
尚、 本発明の触媒を用いて水性ガスシフト反応させる場合、 活性金属が酸化さ れている場合があるので、 触媒の使用前に還元処理して、 その後、 水性ガスシフ ト反応に使用するのが一般的に好ましい。 この還元処理は、 いずれの適当な方法 で実施してもよく、 例えば、 加熱下で水素を触媒と接触させることによって実施 してよい。
本発明によれば、 上述のようにして得られる本発明の水性ガスシフト反応触媒 を、 炭化水素系の気体 (例えばブタンガス) 、 液体、 または固体、 あるいはメタ ノール等のアルコール燃料と水蒸気から水蒸気改質反応ュニットにて得られる水 素リツチな改質ガスからその中の C Oを除去する水性ガスシフト反応ュニットに て使用することができ、 そして、 そのユニットの下流に位置する選択酸化反応ュ ニット (例えば R u系選択酸化触媒を有するユニット) と組み合わせて改質ガス 中の C O濃度を所定濃度以下にして、 これを燃料電池ユニッ トに供給する、 自動 車、 小型発電器、 家庭用コージェネレーションシステム等に最適な燃料電池発電 システム (例えば固体高分子型燃料電池発電システム) を構築することができる ものである。
産業上の利用の可能性
金属酸化物担体に、 少なくとも白金を担持させて成る本発明の水性ガスシフト 反応触媒は、 水素ガス中の C Oを広い温度範囲、 例えば 2 0 0 °C〜4 0 0 °Cで効 率良く除去することができ、 起動 ·停止を繰り返す小型で可搬型の燃料電池発電 システムに容易に適用することができる。
金属酸化物担体が、 ジルコニァ、 アルミナ、 シリカ、 シリカ一マグネシア、 ゼ ォライ ト、 マグネシア、 酸化ニオブ、 酸化亜鉛および酸化クロム (ならびにこれ らの金属酸化物にチタニアをコ一ティングしたものを含む) ならびにチタニアか ら選ばれる少なくとも 1種である場合には、 白金を担持させてなる水性ガスシフ ト反応触媒の C O除去活性を有効に得ることができる。 中でも、 ジルコユアを担 体として用いる場合、 特に有効である。 また、 白金の担持量が、 担体重量に対し て、 0 . 1〜1 0重量%である場合には、 改質ガスの C O除去の触媒活性が一層 有効なものとなる。
白金の他に、 レニウムを担体に担持させて成る触媒は、 C O除去の触媒活性を 高めることができると共に、 メタネーション反応が起こることを防止することが できるものである。 そして、 レニウムの担持量が、 担体重量に対して、 0 . 1〜 1 0重量%である場合には、 メタネーシヨン反応を防ぐ効果を有効に得ることが できるものである。
担体が、 白金、 または白金およびレニウムの他に、 イットリウム、 カルシウム、 クロム、 サマリウム、 セリウム、 タングステン、 ネオジゥム、 プラセオジム、 マ グネシゥム、 モリブデンおよびランタンから選ばれる少なくとも 1種の金属を担 持させて成る場合にも、 C O除去の触媒活性を高めることができると共に、 メタ ネーシヨン反応が起こることを防止することができるものである。 そして、 これ らの金属の担持量が、 担体重量に対して、 0 . 1〜1 0重量%である場合には、 メタネーシヨン反応を防ぐ効果を有効に得ることができる。
尚、 活性成分を担持した後に、 更に洗浄処理、 特に熱水による洗浄処理を行う ことにより得られる触媒は、 活性が更に高められているので、 水素ガス中から C oを除去する場合に好適である。
また、 本発明の水性ガスシフト反応触媒を、 炭化水素系燃料としてブタンガス と水蒸気から水蒸気改質反応で得られる水素リツチな改質ガスと接触させた後、
R u系選択酸化触媒と接触させ、 得られた改質ガスを固体高分子型燃料電池に供 給することができ、 燃料から水蒸気改質反応、 水性シフト反応および選択酸化反 応により生成した改質ガスを用いて、 燃料電池により発電することができる。 実施例
次に、 本発明を実施例によってより具体的に説明する。 (実施例 1〜 5 )
水酸化ジルコニウム n水和物 (Z r 02 · nH2〇、 三津和化学薬品株式会社 製) を、 焼成炉を用いて、 60ミリリツトル Z分の空気気流中で 500°Cまで 1 時間で昇温し、 同温度で 1時間保持する条件で焼成処理することによって、 酸ィ匕 ジルコニウムにし、 これをジルコユア担体とした。
得られたジルコユア担体を湯浴上の蒸発皿に所定量入れ、 これに純水を混ぜて 馴染ませた。 蒸発皿に塩化白金酸六水和物 (ナカライテスク株式会社製) の水溶 液を加え、 更に、 純水を加えて所定濃度になるようにした。 これを湯浴上で撹拌 しながら、 水分の蒸発に伴って蒸発皿の壁面に付着する金属塩を純水で洗い落と しながら、 1時間で蒸発乾固させた。
得られた乾固物を約 100°Cで少なくとも 1 5時間乾燥させた。 乾燥物をメノ ゥ乳鉢で粉末状に砕いた後、 焼成炉を用いて、 60ミリリツトル "m i nの空気 気流中で 5◦ 0°Cまで 1時間昇温し、 同温度で 1時間保持する条件で焼成処理し た。
次に、 得られた粉末を手動式油圧圧縮機を用いて約 3600 k gZcm2の圧 力で 1 0秒間プレスし、 得られたぺレッ トを 0. 5〜1. 0 mmの粒径に粉砕し て、 ジルコユア担体に 3. 0重量% (担体の重量基準) の白金を担持させた水性 ガスシフト反応触媒を得た。
尚、 塩化白金酸水溶液の添加量を変えることによって、 白金の担持量が下記の 表 1のように異なる実施例 1〜5の CO除去用触媒としての水性ガスシフト反応 触媒 (P t/Z r02触媒) を調製した。
【表 1】
Figure imgf000013_0001
上記の実施例 1〜5の触媒について、 CO除去性能を以下のようにして評価し た。
まず、 触媒◦. 7ミリ リツ トルを反応管に充填し、 水素を流しながら 500°C まで 1時間で昇温し、 その後 1時間同温度を保持して還元処理を行なった。 次に ヘリゥムを流しながら 1時間で 200°Cまで降温した後、 ヘリゥムの供給を止め、 H20と COを H20/CO= 1. 3のモル比で混合した CO含有ガスを 365
0 S V (空間速度) [lZh] (CO基準) の条件で反応管に供給し、 反応温度 200°Cで水性ガスシフト反応させて CO除去の実験を開始した。
反応が安定した後、 反応管の入り口と出口のガス試料を採取してガスクロマト グラフィ (熱伝導度検出器) によって分析し、 COが CO 2に転化される CO転 化率を求めた。 また、 反応温度を 250°C、 300°C、 350°Cに昇温させ、 同 様に反応が安定した後の試料を採取して分析し、 c o転化率を求めた。
尚、 比較例として、 CuZZ nO触媒 (日揮化学株式会社製 「N21 1」 ) を 用い、 300°Cで還元処理した他は、 実施例 1〜5と同様にして CO除去の実験 を行なった。 結果を図 1に示す。
次に、 触媒の活性経時変化を測定した。 この測定は、 実施例 3、 実施例 4、 比 較例の触媒について行なった。 まず、 上述の還元処理を行なった後、 ヘリウムを 流しながら 1時間で 250°Cまで降温させ、 ヘリゥムを止めて先と同様にして C O含有ガスを供給し、 反応が安定した後、 30分毎に反応管の入り口と出口の試 料を採取してガスクロマトグラフィによって分析し、 CO転化率を求めた。 結果 を図 2に示す。
図 1から、 200°Cでは比較例と大差ないものの、 それより高い温度では、 各 実施例の P tZZ r 02触媒 (特に担持量が多いもの) は比較例の CuZZ nO 触媒よりも活性が高いことがわかる。 また、 図 2から、 比較例の Cu/ZnO触 媒は実験開始直後より活性が徐々に劣化しているのに対して、 実施例 3、 4の P t/Z r O 2触媒の活性は劣化しないことがわかる。
従って、 図 1および図 2の双方を考慮すると、 本発明の触媒は、 比較例の触媒 よりも有効な CO除去能力を有すると考えることができる。
(実施例 6) 実施例 1〜 5で調製したジルコニァ担体を湯浴上の蒸発皿に所定量入れ、 これ に純水を混ぜて馴染ませた。 蒸発皿に塩化白金酸六水和物 (ナカライテスク株式 会社製) の水溶液と硝酸ランタン六水和物 (和光純薬工業株式会社製) の水溶液 を加え、 さらに純水を加えて所定濃度になるようにした。 これを湯浴上で撹拌し ながら、 水分の蒸発に伴って蒸発皿の壁面に付着する金属塩を純水で洗い落とし ながら、 1時間蒸発乾固させた。
得られた乾固物を約 1 0 0 °Cで少なくとも 1 5時間乾燥させた。 乾燥物をメノ ゥ乳鉢で粉末状に砕いた後、 焼成炉を用いて、 6 0 ミ リ リツ トル/ m i nの空気 気流中で 5 0 0 Cまで 1時間昇温し、 同温度で]時間保持する条件で焼成処理し てジルコニァ担体に、 白金を 3 . 0重量%の担持量 (担体重量基準) で、 ランタ ンを 5 . 0重量%の担持量でそれぞれ担持させた。
次に、 得られた粉末を手動式油圧圧縮機を用いて約 3 6 0 0 k g / c m 2の圧 力で 1 0秒間プレスし、 得られたペレットを 0 . 5〜 1 . O m mの粒径に粉砕し て、 ジルコユア担体に白金およびランタンを担持させた水性ガスシフト反応触媒 媒を得た。
(実施例 7〜: 1 6 )
硝酸ランタン六水和物の代わりに表 2の担持すべき活性成分である金属の塩を 用い、 実施例 6と同様にして、 白金の他に以下の表 3に示す他の金属をジルコ二 ァ担体に担持させた水性ガスシフ ト反応触媒を得た。
【表 2】
Figure imgf000016_0001
【表 3】
Figure imgf000016_0002
上記のようにして得た実施例 6 1 6及び実施例 3の触媒について、 上記と同 様にして CO除去の実験を行なった。 結果を図 3に示す。 図 3は反応温度 35
0 Cで COを C02に転化させて除去するにあたって、 C Oが Cトし 転化され ず C O に転化される率である反応選択率を示すものであり、 実施例 6 〗 6の 触媒は、 白金のみを担持する実施例 3のものよりも反応選択率が一層高いことが わ力 る c
(実施例 1 7 )
実施例 1〜5で調製したジルコニァ担体を湯浴上の蒸発皿に所定量入れ、 これ に純水を混ぜて馴染ませた。 蒸発皿に過レニウム酸アンモニゥム (三津和化学薬 品株式会社製) の水溶液を加え、 さらに純水を加えて所定濃度になるようにした。 これを湯浴上で撹拌しながら、 水分の蒸発に伴って蒸発皿の壁面に付着する金属 塩を純水で洗い落とし、 約 1 0 0 °Cで少なくとも 1 5時間乾燥させ、 ジルコユア 担体にレニウムを担持させた。
次に、 このレニウムを担持させたジルコニァ担体を用い、 上記の実施例 1〜5 と同様にして白金を担持させ、 白金を 3 . 0重量%の担持量で、 レニウムを 1 . 0重量%の担持量でジルコユア担体にそれぞれ担持させた水性ガスシフト反応触 媒を得た。
(実施例 1 8 )
過レニウム酸アンモニゥム (三津和化学薬品株式会社製) の水溶液の添加量を 変えた以外は実施例 1 7と同様にして、 白金を 3 . 0重量%の担持量で、 レニゥ ムを 3 . 0重量%の担持量でジルコユア担体にそれぞれ担持させた水性ガスシフ ト反応触媒を得た。 得た実施例 1 7、 1 8及び実施例 3、 比較例の触媒について、 上記と同様にし て C O除去の実験を行なった。 結果を図 4に示す。 図 4から、 実施例 1 7、 1 8 の触媒は高い活性を有し、 特に 2 5 0 °Cまたはそれ以下の低温でも高活性である ことがわかる。
(実施例〗 9 )
実施例 1〜 5で調製したジルコユア担体を湯浴上の蒸発皿に所定量入れ、 これ に適当 aの純水を混ぜて馴染ませた。 ここに塩化白金酸水溶液 (ナカライテスク 株式会社製) を加え、 さらに純水を加えて所定濃度になるようにした。 これを湯 浴上で撹拌しながら、 水分の蒸発に伴って蒸発皿の壁面に付着する金属塩を純水 で洗い落とし、 1時間蒸発乾固させ、 得られた乾固物を約 1 0 o °cで少なくとも 1 5時間乾燥させた。
この様にして得られた触媒を熱水 (約 1 0 0 °C) 中で約 1時間撹拌し、 その後 触媒を沈殿させて濾別した。 この操作を濾液が透明になるまで繰り返した。 その 後、 濾別した触媒を 1 0 0 °Cにて少なくとも 1 5時間乾燥させた
次に、 得られた触媒を手動式油圧圧縮機を用いて約 3 6 0 0 k g / c m 2の圧 力で 1 0秒程プレスし、 得られたぺレッ トを 0 . 5〜 1 . 0 m mの粒径に破砕し てジルコユア担体に 3 . 0重量%の白金を担持させた C O除去用触媒を得た。 得られた実施例 1 9について、 実施例 3、 実施例 4、 比較例の触媒について行 つた触媒の活性経時変化と同様の実験を行った。 結果を図 5に示す。 図 5から、 実施例 1 9の触媒は、 比較例はもちろん、 実施例 3、 実施例 4よりもさらに高い ?舌性を有し、 触媒の活性も実施例 3、 実施例 4と同様に劣化しないことがわかる。
(実施例 2 0〜 2 7 )
焼成炉を用いて、 以下の表 4に示す各試薬を、 6 0ミリリツ 卜ル Z分の空気流 中で 5 0 0 "Cまで 1時問で昇温し、 同温度で 1時間保持する条件で焼成処理する ことによって実施例 2 0〜 2 7の各担体を得た。
得られた各担体を湯浴上の蒸発皿に所定量入れ、 これに純水を混ぜて馴染ませ た。 蒸発皿に塩化 金酸六水和物 (ナカライテスク株式会社製) の水溶液を加え、 更に、 純水を加えて所定濃度になるようにした。 これを湯浴上で攪拌し、 水分の 蒸発に伴って蒸発皿の壁面に付着する金属塩を純水で洗い落としながら、 約 2時 間で蒸発乾固させた。 得られた乾固物を約 1 0 0 nCで少なくとも 1 5時間乾燥させた。 乾燥物をメノ ゥ乳鉢で粉末状に砕いた後、 焼成炉を用いて、 6 0ミリリツトル 分の空気流中 で 5 0 0 °Cまで 1時問で昇温し、 同温度で 1時問保持する条件で焼成処理した。 次に、 得られた粉末を手動式油圧圧縮機を用いて約 3600 k gZc m2の圧 力で 1 0秒間プレスし、 得られたぺレッ トを 1. 4〜2. 0 mmの粒径に粉砕し て、 各担体に S金を担持させた水性ガスシフト反応触媒を得た。 尚、 各実施例に おいて、 白金の担持量は、 3. Ow t%であった。
【表 4】
Figure imgf000019_0001
上記の実施例 3、 20〜 27の水性ガスシフト反応触媒について、 C O除去性 能を評価した。 評価実験は次のようにして行った:
まず、 水性ガスシフト反応触媒 3. 3ミリリットルを反応管に充填し、 H2 (70%) 、 CO (1 0%) 、 CO 2 (1 5%) および CH4 ( 5 %) から成る 混合ガスと H20を H20/CO= 7. 5 (モル比) にして、 SV= 5000 [1/h] の条件 (混合ガス基準) の条件で供給し、 反応温度 250°Cで CO除 去反応の実験を開始した。
反応が安定した後、 反応管出口の試料を採取して、 ガスクロマトグラフィ (熱 伝導度検出器、 水素炎イオン化検出器) によって分析し、 COが co2に転化さ れる CO転化率を求めた。
結果を第 6図に示す。 図 6力 ら、 各実施例の触媒は比較例の C uZZ n O触媒 よりも活性が高いことがわかる。
(実施例 28)
実施例 1 7の水性シフト反応触媒を用い、 一酸化炭素を含有する水素ガスにお ける CO除去性能を評価した。 評価実験は、 上記実施例 20〜27と同様に行つ た。 尚、 比較例として、 C u Z Z η θを用いて同様の C O除去実験を行った。 結果を第 7図に示す。 図 7から、 実施例 2 8の C O除去方法で、 比較例より もさらに高い C O除去率であることがわかる。
(実施例 2 9 )
実施例 1 7の水性シフト反応触媒を用い、 炭化水素系燃料と
水蒸気から水蒸気改質反応で得られる水素リツチな改質ガスと接触させた後、 R u系選択酸化触媒と接触させ、 得られた改質ガスを固体高分子型燃料電池に供給 した。 燃料電池に供給した改質ガス流量は積算流量計で 1 1 . 6リツトル/分で あり、 燃料電池の発電は、 電子負荷装置によって評価した。
燃料電池の発電性能の結果を以下の表に示す:
Figure imgf000020_0001
上の表から理解できるように、 実施例 2 9の燃料電池発電システムにおいて、 燃料から水蒸気改質反応、 水性シフト反応、 選択酸化反応により生成した改質ガ スで、 燃料電池により発電することが確認される。

Claims

請 求 の 範 囲
1 . 金属酸化物担体に、 少なくとも白金を担持させてなることを特徴とする水 性ガスシフト反応触媒。
2 . 金属酸化物担体が、 ジルコニァ、 アルミナ、 チタニア、 シリカ、 シリカ— マグネシア、 ゼォライト、 マグネシア、 酸化ニオブ、 酸化亜鉛、 酸化クロムから 選ばれる少なくとも 1種であることを特徴とする請求の範囲 1に記載の水性ガス シフ ト反応触媒。
3 . 白金の担持量が、 金属酸化物担体重量に対して、 0 . 1〜1 0重量。 /0であ ることを特徴とする請求項 1または 2に記載の水性ガスシフト反応触媒。
4 . 金属酸化物担体に白金の他に、 レニウムを更に担持させて成ることを特徴 とする請求項 1〜 3のいずれかに記載の水性ガスシフト反応触媒。
5 . 上記レニウムの担持量が、 金属酸化物担体重量に対して、 0 . 1〜: 1 0重 量%であることを特徴とする請求項 4に記載の水性ガスシフト反応触媒。
6 . 白金および場合により存在するレニウムの他に、 イットリウム、 カルシゥ ム、 クロム、 サマリウム、 セリウム、 タングステン、 ネオジゥム、 プラセオジム、 マグネシウム、 モリブデン、 ランタンから選ばれる少なくとも一種の金属を、 金 属酸化物担体に更に担持させて成ることを特徴とする請求項 1〜 5のいずれかに 記載の水性ガスシフト反応触媒。
7 . 金属の担持量が、 金属酸化物担体重量に対して、 0 . 1〜1 0重量%でぁ ることを特徴とする請求項 6に記載の水性ガスシフト反応触媒。
8 . 金属酸ィヒ物担体に白金および場合により他の金属を担持させた後に、 熱水 処理が行われていることを特徴とする請求項 1〜 7の 、ずれかに記載の水性ガス シフ ト反応触媒。
9 . 金属酸化物担体に少なくとも白金を担持させてなる水性ガスシフト反応触 媒に、 一酸化炭素を含有する水素ガスを接触させることを特徴とする水素ガス中 の一酸化炭素除去方法。
1 0 . 請求の範囲 1〜8のいずれかに記載の水性ガスシフト反応触媒を使用す る請求の範囲 9に記載の一酸化炭素除去方法。 訂正された用紙 (規則 91 )
1 1 . 金属酸化物担体に少なくとも白金を担持させてなる水性シフト反応触媒 に、 一酸化炭素を含有する水素ガスを接触させて一酸化炭素を除去した水素ガス を、 燃料電池に供給することを特徴とする燃料電池発電システム。
1 2 . 請求の範囲 1〜8のいずれかに記載の水性ガスシフト反応触媒を使用す る請求の範囲 1 1に記載の燃料電池発電:
PCT/JP2000/001600 1999-03-18 2000-03-16 Catalyseur de conversion catalytique, procede d'elimination de monoxyde de carbone dans un gaz hydrogene et systeme de generation d'energie electrique de pile a combustible WO2000054879A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE60044334T DE60044334D1 (de) 1999-03-18 2000-03-16 Verwendung eines katalysators für die wasser-gas-umwandlungsreaktion, verfahren zur entfernung von krgieerzeugung aus einer brennstoffzelle
US09/720,262 US6777117B1 (en) 1999-03-18 2000-03-16 Catalysts for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
CA002336847A CA2336847C (en) 1999-03-18 2000-03-16 Catalyst for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
EP00909671A EP1161991B1 (en) 1999-03-18 2000-03-16 Use of a catalyst for the water gas shift reaction, method for removing carbon monoxide in hydrogen gas and electric power-generating system of fuel cell
PCT/JP2000/002476 WO2001003828A1 (fr) 1999-07-08 2000-04-17 Conversion catalytique, procede d'elimination du monoxyde de carbone dans le gaz hydrogene et systeme de generation d'energie d'une pile a combustible
HK02103250.7A HK1042064B (zh) 1999-03-18 2002-04-30 水氣轉移反應的催化劑的應用以及移除在氫氣和燃料電池的發電系統中的一氧化碳的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP07327099A JP3215680B1 (ja) 1999-03-18 1999-03-18 水素ガス中のco除去用触媒
JP11/73270 1999-03-18
JP11/194104 1999-07-08
JP19410499 1999-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/823,609 Continuation US20050031920A1 (en) 1999-03-18 2004-04-14 Catalysts for water gas shift reaction, method for removing carbon monoxide in hydrogen gas and fuel cell generation system

Publications (1)

Publication Number Publication Date
WO2000054879A1 true WO2000054879A1 (fr) 2000-09-21

Family

ID=26414421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001600 WO2000054879A1 (fr) 1999-03-18 2000-03-16 Catalyseur de conversion catalytique, procede d'elimination de monoxyde de carbone dans un gaz hydrogene et systeme de generation d'energie electrique de pile a combustible

Country Status (8)

Country Link
US (2) US6777117B1 (ja)
EP (1) EP1161991B1 (ja)
KR (1) KR100386435B1 (ja)
CN (1) CN1174802C (ja)
CA (1) CA2336847C (ja)
DE (1) DE60044334D1 (ja)
HK (1) HK1042064B (ja)
WO (1) WO2000054879A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047802A1 (fr) * 1999-12-28 2001-07-05 Matsushita Electric Industrial Co., Ltd. Dispositif de formation d'hydrogene
JP2002095966A (ja) * 2000-09-26 2002-04-02 Toyota Central Res & Dev Lab Inc Coシフト反応用触媒
WO2002059038A1 (fr) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Dispositif de purification d'hydrogene et systeme de generation de puissance a pile a combustible
JP2002226204A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 水素精製装置
JP2002362904A (ja) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd 水素精製装置
WO2003000585A1 (fr) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Dispositif de production d'hydrogene, systeme de pile a combustible et procede de commande du dispositif de production d'hydrogene
US6713032B2 (en) 2002-04-12 2004-03-30 Matsushita Electric Works, Ltd. Catalyst for removing carbon monoxide in hydrogen rich gas and production method therefor
JP2006511333A (ja) * 2002-12-20 2006-04-06 本田技研工業株式会社 中低温での水素生成用アルカリ含有触媒配合物
JP2006523004A (ja) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー 燃料電池発電設備用の高性能燃料処理システム
US7744849B2 (en) * 2002-12-20 2010-06-29 Honda Giken Kogyo Kabushiki Kaisha Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822691A1 (de) * 1998-05-20 1999-11-25 Volkswagen Ag Brennstoffzellensystem und Verfahren zum Erzeugen elektrischer Energie mittels eines Brennstoffzellensystems
KR100386435B1 (ko) * 1999-03-18 2003-06-02 마츠시다 덴코 가부시키가이샤 수성가스 시프트 반응 촉매, 수소가스중의 일산화 탄소제거방법 및 연료전지 발전(發電) 시스템
DE10013895A1 (de) 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Cerdec Ag Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch
DE10013894A1 (de) * 2000-03-21 2001-10-04 Dmc2 Degussa Metals Catalysts Verfahren zur katalytischen Umsetzung von Kohlenmonoxid in einem Wasserstoff enthaltenden Gasgemisch mit verbessertem Kaltstartverhalten und Katalysator hierfür
US20030186805A1 (en) 2002-03-28 2003-10-02 Vanderspurt Thomas Henry Ceria-based mixed-metal oxide structure, including method of making and use
US7871957B2 (en) * 2002-03-28 2011-01-18 Utc Power Corporation Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
US6790432B2 (en) 2002-06-12 2004-09-14 Engelhard Corporation Suppression of methanation activity of platinum group metal water-gas shift catalysts
US7105148B2 (en) * 2002-11-26 2006-09-12 General Motors Corporation Methods for producing hydrogen from a fuel
US7459224B1 (en) 2002-11-26 2008-12-02 General Motors Corporation Methods, apparatus, and systems for producing hydrogen from a fuel
US7160534B2 (en) * 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-free ruthenium-cobalt catalyst formulations for hydrogen generation
EP1832552A1 (en) * 2002-12-20 2007-09-12 Honda Giken Kogyo Kabushiki Kaisha Alkali metal-containing catalyst formulations for low and medium temperature hydrogen generation
US7160533B2 (en) 2002-12-20 2007-01-09 Honda Giken Kogyo Kabushiki Kaisha Platinum-ruthenium containing catalyst formulations for hydrogen generation
WO2004058399A2 (en) 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Platinum and rhodium and/or iron containing catalyst formulations for hydrogen generation
CA2511018A1 (en) 2002-12-20 2004-07-15 Honda Giken Kogyo Kabushiki Kaisha Catalyst formulations for hydrogen generation
US20040247960A1 (en) * 2003-03-31 2004-12-09 Kabushiki Kaisha Toshiba Fuel cell system
US7153334B2 (en) * 2003-05-21 2006-12-26 General Motors Corporation Fuel reforming system and method of operation
US20050119119A1 (en) * 2003-12-02 2005-06-02 Rogers David B. Water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
DE102004002477A1 (de) * 2004-01-16 2005-08-11 Viessmann Werke Gmbh & Co Kg Vorrichtung zur Erzeugung von Wasserstoff
JP4537091B2 (ja) * 2004-03-01 2010-09-01 エヌ・イーケムキャット株式会社 水素ガス中の一酸化炭素除去用触媒
KR100703727B1 (ko) 2005-01-12 2007-04-05 삼성전자주식회사 비휘발성 메모리, 이를 위한 사상 제어 장치 및 방법
US7704486B2 (en) * 2005-02-16 2010-04-27 Basf Corporation Precious metal water-gas shift catalyst with oxide support modified with rare earth elements
CN1832234B (zh) * 2005-03-09 2010-04-14 中国科学院大连化学物理研究所 一种质子交换膜燃料电池抗co催化剂及其制备方法
ES2279691B1 (es) * 2005-07-08 2008-08-01 Consejo Sup. De Invest. Cientificas Catalizadores para conversion de monoxido de carbono en hidrogeno y su uso en el proceso catalitico de enriquecimiento en hidrogeno de una corriente de gas que puede alimentar una pila de combustible.
KR100753055B1 (ko) * 2005-10-20 2007-08-31 한국과학기술연구원 이온성 액체를 이용하는 개선된 졸-겔 공정에 의해 제조된아나타제형 결정구조를 갖는 이산화티탄과 이의 제조방법및 이를 이용한 촉매
US7357911B2 (en) * 2005-12-16 2008-04-15 Basf Catalysts Llc Process conditions for Pt-Re bimetallic water gas shift catalysts
KR101293679B1 (ko) * 2005-12-23 2013-08-06 에스케이이노베이션 주식회사 산화/환원 반응용 백금계 촉매 및 그 용도
KR100723392B1 (ko) * 2006-02-02 2007-05-30 삼성에스디아이 주식회사 복합 산화물 담지체, 저온 쉬프트 반응 촉매 및 그의 제조방법
KR100723394B1 (ko) * 2006-02-07 2007-05-30 삼성에스디아이 주식회사 비자연발화성 쉬프트 반응 촉매 및 그의 제조 방법
KR101320388B1 (ko) * 2006-02-18 2013-10-22 삼성에스디아이 주식회사 탄화수소 개질 촉매, 그 제조방법 및 이를 포함하는연료처리장치
KR100790012B1 (ko) * 2006-08-04 2008-01-02 한국화학연구원 유기산을 주형으로 하여 합성된 메조기공 실리카를주형제로 이용한 메조기공을 갖는 티타니아 입자의제조방법 및 이를 이용한 수성가스반응
ES2307408B1 (es) * 2006-12-27 2009-10-07 Consejo Superior Investigaciones Cientificas Catalizadores y proceso catalitico para la oxidacion selectiva de monoxido de carbono en presencia de hidrogeno.
KR101071804B1 (ko) 2007-12-21 2011-10-11 주식회사 엘지화학 개질 반응기
KR20090072534A (ko) * 2007-12-28 2009-07-02 삼성전자주식회사 비자연발화성 수성가스 쉬프트 반응 촉매 및 그 제조 방법
US8119558B2 (en) * 2008-03-14 2012-02-21 Süd-Chemie Inc. Ultra high temperature shift catalyst with low methanation
DE102008021083A1 (de) 2008-04-28 2009-10-29 Viessmann Werke Gmbh & Co Kg Verfahren zur Herstellung eines wasserstoffhaltigen Gasgemisches
US20100292076A1 (en) * 2009-05-18 2010-11-18 Sud-Chemie Inc. Ultra high temperature shift catalyst with low methanation
KR101790066B1 (ko) * 2010-09-29 2017-10-26 한국전력공사 촉진수성가스전환 반응 공정용 촉매 및 그 제조 방법
KR101256816B1 (ko) 2011-08-11 2013-04-22 한국에너지기술연구원 관통형 금속촉매가 내장된 마이크로채널 wgs 반응장치
KR20130035639A (ko) * 2011-09-30 2013-04-09 한국전력공사 유동층 수성가스전환촉매
CN102921421A (zh) * 2012-11-22 2013-02-13 福州大学 一种Cu-Ti二元氧化物低温水煤气变换催化剂
CN104291269A (zh) * 2013-07-18 2015-01-21 通用电气公司 发电***和方法
KR102356149B1 (ko) * 2014-02-07 2022-01-28 바스프 코포레이션 공급원료의 열분해용 촉매
WO2016197211A1 (pt) * 2015-06-12 2016-12-15 Petróleo Brasileiro S.A. - Petrobras Catalisador tolerante a enxofre para uso em reações de deslocamento gás-água, e, processo de deslocamento gás-água
CN107915255B (zh) * 2016-10-10 2020-10-16 中国石油化工股份有限公司 纳米氧化锆的制备方法及其制备的纳米氧化锆
CN107915205B (zh) * 2016-10-10 2021-02-09 中国石油化工股份有限公司 水煤气变换反应的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119004A (ja) * 1998-10-09 2000-04-25 Matsushita Electric Ind Co Ltd 水素精製装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA911135A (en) 1972-10-03 Esso Research And Engineering Company Catalyst for low temperature water gas shift reaction
CA911136A (en) 1972-10-03 L. Alridge Clyde Low temperature water gas shift reaction
US2848377A (en) * 1953-10-19 1958-08-19 Standard Oil Co Platinum catalyst composite employed in the hydroforming of a naphtha
US3415737A (en) * 1966-06-24 1968-12-10 Chevron Res Reforming a sulfur-free naphtha with a platinum-rhenium catalyst
CA925107A (en) 1969-11-24 1973-04-24 W. Cornely Kurt Process for isomerizing alkylated benzenes
US3755556A (en) * 1970-07-07 1973-08-28 Exxon Research Engineering Co Low temperature shift reaction involving an alkali metal compound anda hydrogenation dehydrogenation component
GB1491499A (en) 1973-11-23 1977-11-09 Exxon Research Engineering Co Process and catalyst for conversion of carbon monoxide and steam to hydrogen and carbon dioxide
US4708946A (en) 1985-05-23 1987-11-24 Nippon Shokubai Kagaku Kogyo Co., Ltd. Catalyst for purifying exhaust gas
DE68905891T2 (de) * 1988-07-22 1993-10-14 Ici Plc Erzeugung von Wasserstoff welche Kohlenmonoxidkonvertierung mittels Wasserdampf umfasst.
US5271916A (en) 1991-07-08 1993-12-21 General Motors Corporation Device for staged carbon monoxide oxidation
US5417774A (en) * 1992-12-22 1995-05-23 Air Products And Chemicals, Inc. Heat treating atmospheres
PL175047B1 (pl) 1993-04-22 1998-10-30 Kti Group Bv Sposób wytwarzania katalizatora do procesu wytwarzania gazu syntezowego
JPH07299359A (ja) * 1994-04-30 1995-11-14 Tanaka Kikinzoku Kogyo Kk 燃料電池用アノード電極触媒
US5759950A (en) * 1995-06-10 1998-06-02 China Petrochemical Corporation Catalyst supported with noble metal(s) for the isomerization of alkylaromatics
FR2735489B1 (fr) 1995-06-16 1997-08-22 Inst Francais Du Petrole Procede de transformation catalytique d'hydrocarbures en composes aromatiques avec un catalyseur contenant du titane, zirconium, hafnium, cobalt, nickel et/ou zinc
US5702838A (en) 1995-08-18 1997-12-30 Matsushita Electric Industrial Co., Ltd. Fuel cell device equipped with catalyst material for removing carbon monoxide and method for removing carbon monoxide
US6126908A (en) * 1996-08-26 2000-10-03 Arthur D. Little, Inc. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
JP2978785B2 (ja) 1996-09-12 1999-11-15 ニッポン高度紙工業株式会社 アルカリ電池用セパレータ紙
JPH10101302A (ja) * 1996-09-24 1998-04-21 Toyota Motor Corp 一酸化炭素濃度低減装置および一酸化炭素濃度低減方法
US5900839A (en) 1996-09-25 1999-05-04 U.S. Philips Corporation Radio transmission apparatus comprising a retractable antenna and an antenna device for such apparatus
US5962366A (en) * 1996-11-21 1999-10-05 Akzo Nobel N.V. Treatment to improve the durability and selectivity of a hydrodechlorination catalyst and catalyst
US6409974B1 (en) * 1998-12-11 2002-06-25 Uop Llc Water gas shift process and apparatus for purifying hydrogen for use with fuel cells
US6069288A (en) * 1996-12-31 2000-05-30 Exxon Chemical Patents Inc. Process for selectively separating hydrogen, or both hydrogen and carbon monoxide from olefinic hydrocarbons
JP3129670B2 (ja) * 1997-02-28 2001-01-31 三菱電機株式会社 燃料改質装置
GB9720353D0 (en) * 1997-09-25 1997-11-26 Johnson Matthey Plc Hydrogen purification
US6562088B2 (en) 1998-09-09 2003-05-13 Matsushita Electric Industrial Co., Ltd. Method for operating a hydrogen generating apparatus
US6177381B1 (en) * 1998-11-03 2001-01-23 Uop Llc Layered catalyst composition and processes for preparing and using the composition
KR100286425B1 (ko) * 1999-01-23 2001-03-15 박호군 용융 탄산염 연료 전지용 개질 촉매 및 그의 제조 방법
KR100386435B1 (ko) * 1999-03-18 2003-06-02 마츠시다 덴코 가부시키가이샤 수성가스 시프트 반응 촉매, 수소가스중의 일산화 탄소제거방법 및 연료전지 발전(發電) 시스템
JP3473898B2 (ja) 1999-04-22 2003-12-08 松下電器産業株式会社 水素精製装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119004A (ja) * 1998-10-09 2000-04-25 Matsushita Electric Ind Co Ltd 水素精製装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047802A1 (fr) * 1999-12-28 2001-07-05 Matsushita Electric Industrial Co., Ltd. Dispositif de formation d'hydrogene
US6972119B2 (en) 1999-12-28 2005-12-06 Matsushita Electric Industrial Co., Ltd. Apparatus for forming hydrogen
JP2002095966A (ja) * 2000-09-26 2002-04-02 Toyota Central Res & Dev Lab Inc Coシフト反応用触媒
WO2002059038A1 (fr) * 2001-01-26 2002-08-01 Matsushita Electric Industrial Co., Ltd. Dispositif de purification d'hydrogene et systeme de generation de puissance a pile a combustible
JP2002226204A (ja) * 2001-01-26 2002-08-14 Matsushita Electric Ind Co Ltd 水素精製装置
US7147680B2 (en) 2001-01-26 2006-12-12 Matsushita Electric Industrial Co., Ltd. Hydrogen purification apparatus and method and fuel cell power generation system and method
US7132178B2 (en) 2001-06-12 2006-11-07 Matsushita Electric Industrial Co., Ltd. Hydrogen generator, fuel cell system and control method of hydrogen generator
JP2002362904A (ja) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd 水素精製装置
WO2003000585A1 (fr) * 2001-06-12 2003-01-03 Matsushita Electric Industrial Co., Ltd. Dispositif de production d'hydrogene, systeme de pile a combustible et procede de commande du dispositif de production d'hydrogene
US6713032B2 (en) 2002-04-12 2004-03-30 Matsushita Electric Works, Ltd. Catalyst for removing carbon monoxide in hydrogen rich gas and production method therefor
JP2006511333A (ja) * 2002-12-20 2006-04-06 本田技研工業株式会社 中低温での水素生成用アルカリ含有触媒配合物
US7744849B2 (en) * 2002-12-20 2010-06-29 Honda Giken Kogyo Kabushiki Kaisha Platinum-alkali/alkaline-earth catalyst formulations for hydrogen generation
JP2006523004A (ja) * 2003-03-28 2006-10-05 ユーティーシー フューエル セルズ,エルエルシー 燃料電池発電設備用の高性能燃料処理システム
JP4829779B2 (ja) * 2003-03-28 2011-12-07 ユーティーシー パワー コーポレイション 燃料電池発電設備用の高性能燃料処理システム

Also Published As

Publication number Publication date
KR20010092261A (ko) 2001-10-24
CA2336847A1 (en) 2000-09-21
EP1161991A4 (en) 2002-08-21
HK1042064A1 (en) 2002-08-02
EP1161991A1 (en) 2001-12-12
CA2336847C (en) 2005-08-02
KR100386435B1 (ko) 2003-06-02
EP1161991B1 (en) 2010-05-05
US20050031920A1 (en) 2005-02-10
CN1306457A (zh) 2001-08-01
HK1042064B (zh) 2011-01-14
CN1174802C (zh) 2004-11-10
US6777117B1 (en) 2004-08-17
DE60044334D1 (de) 2010-06-17

Similar Documents

Publication Publication Date Title
WO2000054879A1 (fr) Catalyseur de conversion catalytique, procede d'elimination de monoxyde de carbone dans un gaz hydrogene et systeme de generation d'energie electrique de pile a combustible
KR101319137B1 (ko) 탄화수소를 분해하는 촉매, 상기 촉매를 이용한 탄화수소의분해 방법 및 수소의 제조 방법, 및 발전 시스템
JP2004530618A (ja) 改良された触媒組成物を有するシフト変成装置
JP2004522672A (ja) 水性ガス転換反応触媒によるメタン化活性の抑制
WO2005094988A1 (ja) 一酸化炭素除去触媒及びその製造方法並びに一酸化炭素除去装置
JP3215680B1 (ja) 水素ガス中のco除去用触媒
Tao et al. Sol–gel auto-combustion synthesis of Ni–Ce x Zr 1− x O 2 catalysts for carbon dioxide reforming of methane
EP1571125A2 (en) Catalyst for removal of carbon monoxide from hydrogen gas
JP2003144925A (ja) 一酸化炭素シフト反応用触媒の製造方法
EP1494806A1 (en) Catalyst for removing carbon monoxide in hydrogen rich gas according to water gas shift reaction
EP3384985A1 (en) Steam reforming catalyst for hydrocarbons
JPH11179204A (ja) 一酸化炭素及び二酸化炭素を含有するガスのメタン化触媒及びその製造方法
WO2001003828A1 (fr) Conversion catalytique, procede d'elimination du monoxyde de carbone dans le gaz hydrogene et systeme de generation d'energie d'une pile a combustible
JP2001054734A (ja) 一酸化炭素選択酸化触媒、一酸化炭素の選択除去方法、水素精製触媒及び水素精製方法
JP4465478B2 (ja) 水素製造用触媒
JP4120862B2 (ja) Coシフト反応用触媒
JP4250971B2 (ja) 無機材料およびこれを用いたシフト触媒
JP2001224965A (ja) 一酸化炭素選択酸化触媒及び一酸化炭素の選択除去方法
JP2007160254A (ja) 一酸化炭素選択酸化触媒及びその製造方法
JP2004134299A (ja) 一酸化炭素除去装置および固体高分子燃料電池システム
JP4759221B2 (ja) Co除去触媒体、co除去触媒体の製造方法、水素精製装置、および燃料電池システム
JP2006297194A (ja) 燃料改質触媒
JP2007160255A (ja) 一酸化炭素選択酸化触媒及びその製造方法
JP4569408B2 (ja) 水性ガスシフト反応触媒とこれを用いる水素ガス中の一酸化炭素ガスを除去する方法
JP2002226204A (ja) 水素精製装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00800941.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000909671

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020007014988

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2336847

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 09720262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020007014988

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000909671

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007014988

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: JP