WO1996031997A1 - Surface treatment apparatus - Google Patents

Surface treatment apparatus Download PDF

Info

Publication number
WO1996031997A1
WO1996031997A1 PCT/JP1996/000935 JP9600935W WO9631997A1 WO 1996031997 A1 WO1996031997 A1 WO 1996031997A1 JP 9600935 W JP9600935 W JP 9600935W WO 9631997 A1 WO9631997 A1 WO 9631997A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas
discharge
surface treatment
discharge region
Prior art date
Application number
PCT/JP1996/000935
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Miyashita
Takuya Miyakawa
Yasutsugu Aoki
Isao Kubota
Osamu Kurashina
Yasuhiko Asano
Yoshio Oda
Yoshiaki Mori
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP52616196A priority Critical patent/JP3959745B2/en
Priority to US08/750,397 priority patent/US6086710A/en
Publication of WO1996031997A1 publication Critical patent/WO1996031997A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting

Definitions

  • the present invention relates to an apparatus for processing the surface of a material to be processed using plasma, and for example, in a semiconductor manufacturing process, etching and ashes the surface of the material to be processed, or performing surface modification to form a thin film. used.
  • FIG. 12 schematically shows an example of a conventional apparatus for surface-treating a large area at a time using the atmospheric pressure plasma.
  • the surface treatment device 1 has a disk-shaped upper electrode 3 and a lower electrode 6 disposed in parallel inside a housing 2 with a predetermined separation distance.
  • the lower electrode 6 is grounded, and the workpiece 4 is placed thereon via the dielectric 5.
  • the upper electrode 3 is connected to a power supply 7, and a porous dielectric 8 is disposed on the lower surface thereof for extinction of abnormal discharge and uniform distribution of discharge gas. When a predetermined voltage is applied from the power supply 7 to the upper electrode 3, discharge occurs between the two electrodes.
  • the upper electrode 3 has a large number of ventilation holes (not shown) opened toward the dielectric 8, and a gas supplied from an external gas supply source 10 is supplied into a chamber 9 defined on the upper side.
  • a gas supplied from an external gas supply source 10 is supplied into a chamber 9 defined on the upper side.
  • the gas is dispersed and supplied uniformly throughout the discharge region by the porous dielectric 8, and a plasma is uniformly formed in the discharge region 11.
  • the surface of the material to be treated 4 is treated.
  • the gas flows from the periphery of the discharge region 11 to the back side of the lower electrode 6 as shown by the arrow in FIG. 12, and from the gas outlet 12 provided at the center of the bottom of the housing 2 to the evening! Is discharged.
  • FIG. 13 schematically shows another conventional surface treatment apparatus 13.
  • the surface treatment device 13 is a so-called line type, which performs processing while scanning the surface of the material to be treated, which moves relatively directly below the surface treatment device, unlike the surface treatment device of the surface type described above. It has an elongated electrode 14 in a direction perpendicular to the direction of movement of the material to be processed indicated by the middle arrow A. On the lower surface of the electrode 14, two discharge generating portions 15 and 16 having the same dimensions and extending in parallel over the entire length thereof are projected downward.
  • a dielectric 18 is attached to a lower portion of the electrode 14 so as to define an intermediate chamber 17 along the entire length of the electrode 14 between the two discharge generating portions.
  • a gas outlet 19 that opens downward from the intermediate chamber 17 is formed in the dielectric 18 linearly over the entire length of the electrode 14. Further, a gas introduction port 20 opening on the upper surface of the electrode 14 communicates with the intermediate chamber 17.
  • a discharge is generated between the two discharge generating parts 15 and 16 and the material to be processed passing thereunder.
  • the gas supplied from an external gas supply source into the intermediate chamber 1 via the gas inlet 20 is ejected downward from the gas outlet 19 toward the surface of the material to be processed, and the plasma generated by the discharge To generate excited active species and process the surface of the material to be treated.
  • the porous dielectric 8 is directly fixed to the housing side by a fixing means such as a screw 21, the porous dielectric 8 is caused by local stress and high temperature of plasma discharge. There is a possibility that cracks or warpage may occur in the dielectric 8 due to thermal stress. If the porous dielectric 8 is cracked or warped, the desired function of uniformly distributing gas in the discharge region may not be exhibited. Conversely, excessively high temperatures If the output of the power supply is suppressed so as not to become insufficient, sufficient discharge cannot be obtained, and the surface treatment capacity may be reduced, and the processing speed may be reduced or the treatment may not be performed sufficiently. Furthermore, if the dielectric 8 cracks, the function of preventing the abnormal discharge, which is the original function of the dielectric 8, is impaired.
  • the exhaust gas is supplied to one of the power supply locations provided on the back side of the lower electrode, even though the distribution of gas to the discharge region is made uniform by using the porous dielectric. Since the gas discharge is performed only from the gas outlet, if a certain gap is not maintained between the dielectric 8 and the workpiece 4 due to an error in assembling the apparatus, the flow of the gas is biased, and the discharge region 11 There is a possibility that the distribution of the gas may become uneven, uneven, and the entire material may not be uniformly processed. In addition, the organic substances and the like removed from the material to be treated may adhere again while being discharged from the discharge region, and may contaminate the material to be treated or make maintenance of the apparatus difficult.
  • the conventional surface treatment apparatus shown in FIG. 13 unlike a vacuum discharge, under a pressure near the atmospheric pressure, even if the width of the discharge generating portion is constant, it is uniform along the longitudinal direction of the electrode. It is difficult to discharge.
  • the output to be discharged has a limit due to the problem of abnormal discharge, and the discharge area is fixed to a certain range by the discharge area depending on the width of the discharge generating part. Adjust the processing capacity-can not be improved. Therefore, especially when processing large areas, uniform processing is difficult and high-speed processing cannot be expected.
  • the intermediate chamber 17 is used to make the pressure of the gas supplied from the limited number of gas inlets 20 uniform in the longitudinal direction of the electrode and to uniformly eject the gas from the entire length of the gas outlet 19. belongs to.
  • gas outlet 19 and gas inlet 20 Since it is arranged on the same straight line in the center of the intermediate chamber 17, a large part of the gas introduced from the gas inlet 20 directly flows into the gas outlet 19 directly below the gas as it is. For this reason, the distribution of the gas ejected along the longitudinal direction of the electrode becomes non-uniform, and there is a possibility that the surface treatment may not be performed uniformly.
  • the gas supplied to the discharge region from the gas ejection port 19 is easily diffused into the atmosphere from the front and rear of the electrode with respect to the moving direction of the material to be processed, and is exhausted.
  • the gas is mixed with helium, which is relatively expensive, in order to stabilize the discharge.
  • the flow rate of helium is increased in response to the diffusion of the gas, there is a problem that the processing cost is significantly increased.
  • the air may enter the discharge region to make the discharge unstable, or the organic substances or the like once removed may react with impurities in the air and reattach to the surface of the material to be processed. is there.
  • the present invention has been made in view of the above-described problems of the conventional technology, and has as its object to perform surface treatment using plasma generated under a pressure near atmospheric pressure, so that the discharge region
  • a so-called surface-type surface treatment apparatus in which the supplied gas passes through a flat electrode, the plasma is uniformly generated by making the distribution of gas uniform in the discharge region, thereby increasing the large area.
  • An object of the present invention is to provide a surface treatment apparatus capable of performing uniform treatment, improving treatment capacity and reducing cost.
  • the present invention relates to a surface treatment apparatus in which a porous body is arranged on the surface of the flat electrode on the side where the discharge is generated, even when the output of a power supply applied to the electrode is increased.
  • the gas is always uniform without any damage
  • the purpose is to achieve distribution and thereby speed up the surface treatment and improve the processing capacity.
  • an object of the present invention is to be used in a surface treatment apparatus in which a gas supplied to a discharge region passes through an electrode as described above, thereby achieving uniform gas distribution in the discharge region, and
  • An object of the present invention is to provide a porous electrode which has high durability, has no risk of contaminating a material to be treated by being oxidized, corroded, or the like depending on the type of gas used, and can reduce running costs.
  • Another object of the present invention is to generate an elongated electrode extending linearly under a pressure near atmospheric pressure while scanning a workpiece relatively moving in a direction orthogonal to its longitudinal direction.
  • a surface treatment apparatus of a so-called line type in which surface treatment is performed using plasma, the discharge area can be adjusted along the longitudinal direction of the electrode, thereby treating each part of the electrode in accordance with the treatment conditions. It is an object of the present invention to provide a surface treatment apparatus capable of adjusting the speed or improving the processing capacity over the entire length thereof, and enabling high-speed processing of a large area.
  • the present invention also provides a surface treatment apparatus of a line type, in which the distribution of gas supplied along the entire length of the electrode can be made uniform, thereby making the plasma uniform and improving the processing capacity.
  • the goal is to be able to handle larger areas.
  • Yet another object of the present invention is to provide a line-type surface treatment apparatus, which restricts the exhaust path of the gas supplied to the discharge region, thereby suppressing the diffusion of the gas into the atmosphere, and It is an object of the present invention to provide an efficient and compact exhaust mechanism capable of preventing air from being mixed in, stabilizing plasma discharge and surface treatment by the plasma discharge, and improving processing capacity and reducing processing cost.
  • an object of the present invention is to eliminate the possibility that an abnormal discharge such as an arc discharge occurs between an electrode and a workpiece or a stage depending on a discharge condition, regardless of the above-described electrode structure, and to increase the output. It is an object of the present invention to provide a surface treatment apparatus using plasma under a pressure close to the atmospheric pressure, which can improve the processing capacity.
  • a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be treated, and the surface of the material to be treated is exposed.
  • a surface treatment device for treating
  • An electrode for generating the discharge having a hole through which the predetermined gas passes, a porous dielectric in which the electrode is arranged adjacent to an electrode surface facing the discharge region, and a porous dielectric And a support member on the support surface that allows thermal expansion and deformation of the dielectric due to the temperature rise due to the discharge.
  • the porous dielectric thermally expands due to a rise in temperature due to electric discharge, the heat of the porous dielectric is maintained on the support surface of the support member that supports the outer peripheral edge of the porous dielectric. Expansion deformation is allowed. For this reason, damage and warpage of the porous dielectric due to thermal stress are effectively prevented. Therefore, the function of protecting the electrode by the porous dielectric is ensured, and the function of uniformly diffusing the gas is also ensured.
  • the support surface of the support member is formed by an upwardly inclined surface, and the support surface is provided on the outer peripheral edge of the porous dielectric. It is preferable that a downwardly inclined surface that slides on is formed.
  • the outer peripheral edge of the porous dielectric is allowed to expand and deform along the upwardly inclined surface of the support member.
  • the support member may be movable in the vertical direction along with the thermal expansion deformation of the porous dielectric.
  • the support surface of the support member may be a horizontal surface that is in sliding contact with the lower surface of the outer peripheral edge of the porous dielectric.
  • a discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to a material to be processed.
  • the support member supports the dielectric with a degree of freedom in a direction in which the dielectric thermally expands and deforms as the temperature rises due to the discharge.
  • a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed.
  • a surface treatment apparatus for treating a surface of the material to be treated comprising: a hole through which the predetermined gas passes; and an electrode for generating the discharge; and an electrode adjacent to an electrode surface where the electrode faces the discharge region.
  • a plurality of gas exhaust ports capable of independently adjusting the flow rate are arranged around the discharge region between the porous dielectric and the material to be processed. It is characterized by having done.
  • the flow rate of each gas exhaust port by appropriately adjusting the flow rate of each gas exhaust port, even if the gap between the porous dielectric and the material to be processed is not constant, the flow of the gas exhausted to the surroundings from the gap can be reduced. It can be like. For this reason, the distribution of gas in the discharge region can be made more uniform, whereby the discharge state and the degree of treatment can be made uniform over the entire discharge region.
  • the plurality of gas exhaust ports are arranged at equal intervals along a circumferential direction around the discharge region.
  • the gas exhaust port is opened at a height position different from a height position where the discharge region is formed.
  • a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed.
  • a surface treatment apparatus for treating a surface of the material to be treated comprising a gas exhaust hole, an electrode for generating the discharge,
  • a plurality of gas inlets for introducing the predetermined gas toward the discharge region between the porous dielectric and the material to be processed, from around the discharge region;
  • the gas exposed to the material to be processed is exhausted by passing through the porous dielectric and the electrode.
  • the distribution of gas in the discharge region can be made uniform. Furthermore, by exhausting the gas through the porous dielectric and the electrode, the gas can be exhausted without affecting the gas distribution. Moreover, after the exhaust gas has passed through the electrode, it can be exhausted intensively at one location.
  • Each of the plurality of gas inlets may have a flow rate adjusting means capable of independently adjusting the flow rate.
  • the distribution of the gas supplied to the discharge region can be made uniform.
  • the plurality of gas inlets are arranged at equal intervals along a circumferential direction around the discharge region.
  • An exhaust treatment catalyst can be provided adjacent to a second electrode surface of the electrode opposite to the first electrode surface.
  • a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed.
  • a porous dielectric wherein the electrode is disposed adjacent to an electrode surface facing the discharge region
  • the electrode is made of an aluminum porous material through which the predetermined gas passes.
  • the distribution of the gas introduced into the discharge region can be more easily made uniform, and aluminum reacts less with the fluorine-based gas. Even if the gas is highly reactive, the electrode reacts with the gas to cause corrosion and the like, and there is no possibility that the material to be treated or the device is contaminated by the missing portion.
  • the porous dielectric is formed of an alumina porous material.
  • a first electrode on which a material to be treated is placed,
  • a second electrode disposed opposite to the first electrode
  • a discharge is generated between the first electrode and the second electrode and between the second electrode and the auxiliary electrode under atmospheric pressure or a pressure near the atmospheric pressure.
  • An active species excited by the discharge between the electrode and the second electrode is exposed to the material to be treated, and the surface of the material to be treated is treated.
  • the abnormal discharge occurs first between the auxiliary electrode and the material to be processed due to the abnormal discharge, such as the first electrode or the like. Destruction and damage can be prevented beforehand.
  • the protrusion height of the auxiliary electrode is adjustable.
  • the occurrence limit of abnormal discharge can be adjusted according to processing conditions such as the surface condition of the material to be processed.
  • an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
  • the first electrode has a first width along a moving direction of the first electrode, is formed to extend in a direction orthogonal to the moving direction as a longitudinal direction, and generates the discharge region between the first electrode and the first electrode.
  • a second electrode is formed to extend in a direction orthogonal to the moving direction as a longitudinal direction, and generates the discharge region between the first electrode and the first electrode.
  • An auxiliary electrode portion detachably attached to the second electrode and having a second width along the moving direction of the first electrode;
  • the range of the discharge region can be adjusted by attaching and detaching the second electrode.
  • the width of the electrode can be adjusted by selectively attaching the auxiliary electrode portion, and the range of the discharge region, that is, the processing area can be adjusted according to the change of the material to be processed and the processing conditions. Can be.
  • the auxiliary electrode portion can be partially attached in the longitudinal direction of the second electrode.
  • the auxiliary electrode portion is provided at both ends in the longitudinal direction of the second electrode.
  • the processing speed at the both ends where the processing speed is slow can be improved.
  • the auxiliary electrode portion can be attached over the entire length of the second electrode in the longitudinal direction.
  • an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
  • a second electrode that is formed to extend in a direction perpendicular to the direction of movement of the first electrode as a longitudinal direction, and that generates the discharge region between the first electrode and the second electrode;
  • the second electrode is a first electrode
  • At least one gas inlet for introducing the gas into the intermediate chamber, and a gas formed in a slit shape along the longitudinal direction, which jets the gas in the intermediate chamber toward the discharge region.
  • the at least one gas inlet is open at a position off the extension of the gas outlet.
  • the amount of the gas introduced into the intermediate chamber from at least one gas inlet directly decreases to the gas outlet.
  • the gas pressure is made uniform along the longitudinal direction of the electrode, and then the gas flows to the gas ejection port, so that the gas distribution in the discharge region is made uniform. be able to.
  • the intermediate chamber has two opposing side walls, and a bottom wall on which the gas outlet is opened, and the at least one gas inlet can be opened on one of the side walls. .
  • the gas introduced from the gas inlet on one side wall is changed in the direction of the gas flow on the other side wall, and is diffused into the intermediate chamber and guided to the gas ejection port.
  • a dielectric that covers the electrode surface of the second electrode facing the discharge region can be further provided.
  • the intermediate chamber is formed between the second electrode and the dielectric, and the gas outlet is formed in the dielectric. In this case, the occurrence of abnormal discharge is reduced due to the presence of the dielectric, and the second electrode can be protected.
  • an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
  • a gas ejection port that is formed to extend in a direction perpendicular to the direction of movement of the first electrode and that ejects gas along the longitudinal direction, wherein the discharge is performed between the first electrode and the first electrode;
  • a second electrode for creating a region;
  • a first extension member that is provided upstream of the second electrode in the movement direction and forms a gap substantially equal to a gap between the second electrode and the workpiece;
  • the gas flowing in the direction opposite to the moving direction of the material to be processed is restricted by the first extension member and flows along the surface of the material to be processed without diffusing into the atmosphere.
  • the discharge can be stabilized even if the flow rate of the discharge gas such as helium to be used is considerably reduced.
  • the electrode and the material to be treated continue to move relative to each other. It can be treated again with active species contained in the gas flowing along the surface of the material.
  • a second extension member that forms a gap substantially equal to the gap between the second electrode and the material to be processed, downstream of the second electrode in the movement direction. Is preferably further provided.
  • an active species excited in the discharge region while moving the material to be processed with respect to the discharge region generated at or near atmospheric pressure.
  • a surface treatment apparatus that exposes the material to be treated to treat the surface of the material to be treated,
  • a longitudinal direction extending in a horizontal direction orthogonal to a moving direction of the first electrode, a gas ejection port for ejecting gas along the longitudinal direction, and the discharge between the first electrode and the first electrode;
  • a second electrode for creating a region;
  • Two first partition walls which are respectively arranged on the downstream side and the upstream side in the movement direction with respect to the second electrode, and are vertically arranged with a gap between the second electrode and the second electrode;
  • the gas exposed to the material to be processed is exhausted through the gap between the two first partition walls and the second electrode.
  • the gas supplied from the gas ejection port to the discharge region is not immediately diffused into the atmosphere but passes through the inside of the two first partition walls disposed on both sides of the second electrode. Exhausted. Therefore, mixing of the atmosphere into the discharge region is reduced, and the discharge can be stably maintained.
  • two second partition walls can be further provided outside the two first partition walls in parallel with the first partition walls.
  • the introduced gas forms gas curtains that partition the discharge region from the atmosphere on both sides of the discharge region. This can further reduce the incorporation of air into the discharge area.
  • an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated, A first electrode on which the workpiece is placed and horizontally moved;
  • a second electrode that is vertically arranged at a position facing a movement path of the first electrode and generates the discharge region between the first electrode and the second electrode;
  • a first partition wall vertically arranged on the upstream side in the movement direction with respect to the second electrode, and a first partition wall forming a space for introducing gas into the discharge region between the second electrode and the second electrode;
  • a second partition wall vertically arranged on the downstream side of the moving direction with respect to the second electrode and forming a space for exhausting gas from the discharge region between the second electrode and the second partition wall;
  • the gas is supplied to the discharge region from the downstream side of the second electrode in the moving direction of the material to be processed, and is exhausted upstream of the electrode.
  • the intrusion of the atmosphere into the discharge region can be prevented, and the discharge can be stabilized.
  • the re-adhered matter can be removed in the discharge region by moving the material to be processed.
  • the gas used in the discharge process can be exhausted from the vicinity of the discharge region, the exhaust gas can be efficiently treated without being discharged to the atmosphere, and the exhaust structure can be downsized. .
  • FIG. 1 is a cross-sectional view showing a surface facing type surface treatment apparatus of a first embodiment according to the present invention.
  • FIGS. 2A to 2C are partially enlarged views t showing different types of porous dielectric mounting structures.
  • c 4 the surface treatment apparatus of the second embodiment according to the present invention is a cross-sectional view schematically showing is a diagram showing a surface treatment apparatus of the third embodiment according to the present invention partially.
  • FIG. 5 is a partial sectional perspective view showing a line type surface treatment apparatus according to a fourth embodiment of the present invention.
  • FIG. 6A and 6B are bottom views each showing a different embodiment of the electrodes used in the surface treatment apparatus of FIG. 7A is an enlarged partial cross-sectional view of the surface treatment device of FIG. 5, and FIG. 7B is a longitudinal sectional view of the surface treatment device of FIG.
  • FIG. 8 is a cross-sectional view showing an exhaust structure of a surface treatment apparatus of a fifth embodiment according to the present invention.
  • FIG. 9 is a sectional view showing an exhaust structure of a surface treatment apparatus according to a sixth embodiment of the present invention.
  • FIG. 10 is a sectional view showing a modification of the exhaust structure shown in FIG.
  • FIG. 11 is a sectional view showing another modified example of the exhaust structure shown in FIG.
  • FIG. 12 is a cross-sectional view showing a conventional surface-facing type surface treatment apparatus.
  • FIG. 13 is a cross-sectional view showing a conventional line type surface treatment apparatus.
  • FIG. 14 is a schematic cross-sectional view showing a dielectric support structure different from FIGS. 2A to 2C.
  • FIG. 15 is a schematic sectional view showing a gas introduction structure different from FIG. 7A.
  • FIG. 16 is a schematic cross-sectional view showing a modification of the electrode on which the work of FIG. 1 is placed.
  • FIG. 1 shows a preferred embodiment of a surface facing type surface treatment apparatus according to the present invention.
  • the surface treatment device 30 has a disk-shaped electrode 32 horizontally disposed inside a circular housing 31.
  • the electrode 32 is a porous body made of, for example, an aluminum material, and is connected to an AC power supply 33.
  • the chamber 34 defined above the electrode 32 is connected to an external gas supply source 36 via a gas inlet 35.
  • a disk-shaped dielectric material 37 made of a porous material such as a ceramic material, for example, alumina (A1203) is arranged on the lower surface of the electrode 32.
  • a workpiece 39 such as a wafer to be treated, that is, a wafer to be surface-treated, is placed on a circular stage 38 with a constant gear of about 1 to 2 mm between the dielectric 37 and the dielectric 37. It is placed so as to have a top c.
  • the stage 38 has a ground electrode 38 A below the work 39, and a dielectric between the stage and the work if necessary. Can be provided.
  • an exhaust passage 40 is formed between the inner peripheral surface of the housing 31 and a gap b smaller than the gap c, and a large number of gas outlets 41 are formed in the housing 31.
  • Each gas outlet 41 is provided with a flow control means 42 composed of, for example, a needle valve.
  • FIG. 2A shows the mounting structure of the dielectric 37.
  • a downwardly inclined surface 43 is formed around the entire periphery.
  • a thin ring-shaped support member 45 also made of a dielectric material such as ceramic is provided on the lower surface of a mounting portion 44 made of a dielectric material such as ceramics disposed between the electrode 32 and the housing 31. It is fixed by mounting tools such as countersunk screws 46.
  • a support surface 47 is formed around the entire periphery and is formed of an upwardly inclined surface. The support surface 47 is formed to have the same inclination angle as the inclined surface 43 of the dielectric 37 and to extend further obliquely upward than the inclined surface 43.
  • the dielectric material 37 has its inclined surface 43 slidably in contact with the support surface 47 of the support member 45, and is supported so as to be relatively displaceable in the radial direction along the support surface. . With such support, the position of the dielectric 37 is centered-9.
  • FIG. 2B and 2C show different embodiments of the mounting structure of the dielectric 37.
  • FIG. The mounting structure of FIG. 2B has a downward step 48 formed on the outer peripheral edge of the dielectric 37, while the inner peripheral edge of the support member 45 extends from the outer periphery of the dielectric 37 over the entire circumference.
  • a large upward step 49 is provided, and its shoulder is used as a horizontal support surface, on which a step 48 of the dielectric 37 is placed and supported.
  • the inner peripheral end of the support member 45 projects inward from the mounting portion 44 to form a shoulder 50, which is used as a horizontal support surface, on which a dielectric material 3 is placed.
  • the outer peripheral edge of 7 is supported so as to have a certain gap between the outer peripheral edge and the inner peripheral surface of the mounting portion 44. 2B and 2C, the outer periphery of the dielectric 37 is relatively displaced in the radial direction along the support surface of the support member 45, similarly to the mounting structure of FIG. 2A. Supported as possible.
  • a predetermined discharge gas is supplied from a gas supply source 36 through a gas inlet 35 to replace the inside of the chamber 34 with the discharge gas.
  • the electrical gas is suitably selected according to the surface treatment to be performed, and it is advantageous to mix helium to facilitate and stabilize the start of the discharge.
  • the discharge gas is continuously supplied into the chamber 34, and passes through the porous electrode 32 and the dielectric 37 to form a discharge region 51 between the dielectric 37 and the work 39. They are supplied almost uniformly.
  • a predetermined voltage is applied from the power supply 33 to the electrode 32, a discharge occurs between the electrode 32 and the ground electrode 38A.
  • Active species such as excited species and ions of the gas are generated in the discharge region 51 between the dielectric 37 and the work 39 by dissociation, ionization, excitation, and the like of the discharge gas by plasma.
  • a desired treatment corresponding to the type of the discharge gas is performed on the surface of the work 39.
  • the electrode 32 is formed of an aluminum porous body, and the aluminum material has a low reaction with fluorine as well known, and a gas such as 02 or CF 4 is used as the discharge gas. Even in such a case, there is no possibility that the surface of the work or the inside of the device may be contaminated due to loss due to oxidation or corrosion.
  • the dielectric 37 is formed of alumina (A1203), the dielectric 37 is not oxidized or corroded.
  • the discharge gas supplied into the discharge region 51 flows radially outward around the discharge region 51, changes its direction downward along the inner peripheral surface of the housing 31, and passes through the exhaust passage 40 to The gas is exhausted from the gas outlet 41. Since each gas outlet 41 is opened at a position lower by a distance a from the center of the discharge region 51 as shown in the figure, it is possible to prevent the flow of exhaust gas from being concentrated in a certain direction. Further, since the width b of the exhaust passage 40 is provided in a relationship of c> b, the gas can be more uniformly exhausted from around the discharge region 51 by using the conductance.
  • the dielectric 37 thermally expands in the radial direction due to the temperature rise due to the discharge.
  • the dielectric 37 is relatively expanded at its outer peripheral edge by the separate support member 45. Displaceably mounted, radially outward along the support surface 47 -At 1 o ⁇ , for example, move to the position shown by the imaginary line 52 in FIG. 2A. Therefore, there is no possibility that the dielectric 37 is restrained by the fixture as in the related art, and is cracked by thermal stress. For this reason, the output to the electrode 32 can be considerably increased, whereby plasma can be generated at a higher density and the processing speed can be increased.
  • the support member 45 is not necessarily limited to the one fixed to the mounting portion 44.
  • FIG. 14 it can be vertically movable along a shaft portion 100 having a flange 101.
  • a spring 103 is disposed between the lower surface of the support member 45 and the flange 101, and an air-tight sealing material such as an O-ring is provided between the upper surface of the support member 45 and the lower surface of the mounting portion 44. It is preferable to arrange 104.
  • the embodiment of FIG. 14 even if the dielectric 37 thermally expands, the horizontal height of the dielectric 37 does not change as shown in FIG. 2A. This point is the same in the embodiments of FIGS. 2B and 2C. Therefore, the embodiments of FIGS. 2B, 2C and 14 are excellent in that the gap between the dielectric 37 and the material to be processed 39 can be kept constant. Further, in the embodiment of FIG. 14, there is an effect that the dielectric 37 can be centered.
  • FIG. 3 shows a second embodiment of the surface type surface treatment apparatus according to the present invention.
  • the surface treatment device 52 of the present embodiment has substantially the same configuration as the surface treatment device 30 of FIG. 1, but a large number of gas inlets 53 are provided in the housing 31 between the dielectric 37 and the work 39.
  • the discharge region 51 having a gap of about 1 to 2 mm is provided at equal intervals in the circumferential direction so as to uniformly supply the discharge gas from multiple directions from the periphery.
  • Each gas inlet 53 is provided with a flow rate adjusting means 54.
  • a catalyst 55 for absorbing ozone is disposed above the electrode 32.
  • a discharge gas is supplied from each gas supply port 53, and the inside of the housing 31 is filled with the discharge gas. Replace.
  • a predetermined voltage is applied to the electrode 32 to generate a discharge between the electrode and the ground electrode.
  • the discharge gas is continuously supplied to the discharge region 51, passes through the dielectric 37, the electrode 32, and the catalyst 55, enters the chamber 34, and is discharged to the outside through the gas discharge port 56. Is done.
  • the surface of the work 39 is treated with the excited active species of the gas generated in the discharge region 51.
  • Ozone generated during this discharge and organic substances removed from the surface of the work 39 by asshing or the like are removed by the catalyst 55 when exhausted from the electrode 32 side, so that the ozone pollutes the atmosphere.
  • This is advantageous because there is no risk of organic substances being re-adhered to the work 39 or the inside of the apparatus.
  • since the exhaust treatment can be performed simultaneously with the exhaust it is not necessary to provide a separate exhaust treatment device, simplifying the configuration of the entire device, reducing the size and cost. Can be planned.
  • FIG. 4 shows a third embodiment of the surface treatment apparatus of the present invention.
  • an auxiliary ground electrode 57 for abnormal discharge treatment protrudes from the upper surface of the stage (first electrode) 38 at a position outside the work 39 of the stage 38 and below the electrode 32.
  • the auxiliary grounding electrode 57 can change the amount of projection from the stage 38 with a screw or the like, and can appropriately adjust the gap between the tip and the electrode (second electrode) 32. That is, the gap is set so that the impedance between the opposing electrode 32 and the auxiliary grounding electrode 57 is locally low due to the plasma impedance of the abnormal discharge occurrence limit of the workpiece to be surface-treated.
  • the auxiliary ground electrode 57 is advantageously formed of a high melting point metal so as not to be easily melted by abnormal discharge.
  • abnormal discharge to the work surface and the stage can be avoided, so that the discharge output can be higher than the abnormal discharge occurrence limit of the work. Destruction or damage of the work or stage can be effectively prevented.
  • FIG. 5 shows an embodiment of a surface treatment apparatus for a line-type eve according to the present invention.
  • the surface processing device 60 has a substantially rectangular parallelepiped electrode 61 elongated in a direction orthogonal to the moving direction of the work indicated by the arrow A.
  • FIG. 5 does not show the first electrode on which the workpiece is placed and moved.
  • two discharge generating portions (second electrodes) 62, 63 of the same size are formed along the longitudinal direction thereof. Protruding downward.
  • auxiliary electrodes 64, 65 are integrally fixed by bolts 66 to the outer ends of both discharge generating parts 62, 63, respectively, at both ends in the longitudinal direction. I have.
  • the width of the discharge generating portions 62 and 63 of the electrode 61 is expanded outward at both ends in the longitudinal direction.
  • the auxiliary electrodes 67, 68 are integrally attached with the bolts 69 over the entire length of the discharge generating portions 62, 63, and the width thereof is set to the full length. Can be expanded.
  • a dielectric 70 is attached to the lower part of the electrode 61 so as to completely surround the discharge generating parts 62 and 63.
  • An intermediate chamber 71 extending along the longitudinal direction of the electrode 61 is defined between the two discharge generating portions 62 and 63.
  • a gas outlet 72 communicating with the intermediate chamber 71 opens straight downward along the longitudinal direction of the electrode 61 toward the surface of the workpiece 73.
  • three gas inlets 74 are opened at equal intervals, each communicating with the intermediate chamber 71. As best shown in FIG.
  • the gas outlet 72 is connected to the center of the intermediate chamber 71, while the gas inlet 74 is connected to the end of the intermediate chamber 71.
  • the gas inlet 74 is connected to the end of the intermediate chamber 71.
  • three gas inlets 72 are arranged at positions off the extension of the gas outlet # 2.
  • the discharge gas introduced from the three gas inlets 74 changes its flow direction in the intermediate chamber 71 and heads for the gas outlet 72. That is, as shown in FIG. 7B, the discharge gas has a substantially uniform gas pressure along the longitudinal direction in the intermediate chamber, and is ejected almost uniformly along the entire length of the gas ejection port 72.
  • one of the two side walls 61 a and 61 b forming the intermediate chamber 71 is provided with a gas inlet port 7 4 Is open.
  • the direction of the flow of the discharge gas introduced from the gas inlet 74 is changed on the other side wall 61b, and is diffused in the intermediate chamber 71.
  • the discharge gas is ejected from the gas ejection port 72, so that the discharge gas can be introduced from the lateral direction as in the case of FIG.
  • the gas can be ejected uniformly.
  • a porous body can be disposed on the gas outlet 72 in the intermediate chamber 71.
  • the discharge gas can be more uniformly distributed over the entire length of the gas outlet 72.
  • each of the discharge generating portions 62 Discharge occurs between the work 63 and the work 73 placed and moved on the first electrode (not shown).
  • the discharge gas ejected from the gas outlet 72 generates plasma-excited active species in the discharge regions 75 and 76, whereby the surface of the peak 73 is treated.
  • auxiliary electrodes 64, 65 are attached to both ends of both discharge generating portions 62, 63, and the width thereof is enlarged, so that, as shown in FIG.
  • the conventional elliptical discharge region indicated by 7 is enlarged to the region indicated by reference numeral 78 at both ends in the longitudinal direction. Therefore, the processing capability at both ends in the longitudinal direction of the electrode 61 can be improved to the same extent as the central portion, and a larger work can be processed.
  • FIG. 6B when the width of the discharge generating portions 62 and 63 is increased over the entire length, the entire discharge region is expanded.
  • FIG. 8 shows a modification of the line type surface treatment apparatus shown in FIG.
  • the work 73 placed on the first electrode is moved along the moving direction A, and the work 73 is moved upstream of the electrode (second electrode) 61 in the moving direction.
  • One extension member 80 and a second extension member 79 on the downstream side are integrally attached to the electrode 61.
  • a narrow exhaust passage similar to the gap between the dielectric 70 and the surface of the work 73 is formed upstream and downstream of the electrode 61 from each discharge area 75 and 76. Is done. Accordingly, the discharge gas is discharged from the discharge regions 75 and 76 to the atmosphere after passing through the discharge passage.
  • the electrode and the workpiece can be connected without immediately diffusing the discharge gas into the atmosphere.
  • stable discharge can be achieved even if the flow rate of the helium contained in the discharge gas is significantly reduced from the conventional level of about 20 liters per minute to about 5 liters per minute. I got it.
  • the extension member prevents the air from getting into the discharge areas 75 and 76, so that the reattachment of the organic matter once removed from the work can be prevented.
  • the exhaust gas flows backward in the moving direction of the work, so that the exhaust gas easily becomes turbulent and the air is easily entrained, but it is possible to prevent the entrainment of the air here. .
  • a passage for guiding a workpiece to be surface-treated below the electrode 61 is similarly formed in a narrow tunnel shape. Accordingly, the same operation and effect can be obtained.
  • FIG. 9 shows another embodiment of an exhaust mechanism for a line-type surface treatment apparatus according to the present invention.
  • the electrode (second electrode) 61 is located downstream and upstream of the electrode 61 at a certain distance from the mark.
  • Two first partition walls 8 1, 8 2, which are perpendicular to each other, are arranged so as to define an upwardly-directed exhaust passage in between each of them.
  • the gap between the lower end of each of the partition walls 81 and 82 and the surface of the workpiece 3 is formed to be narrower than the gap between the dielectric 70 and the surface of the workpiece.
  • FIG. 10 shows a modification of the exhaust mechanism shown in FIG.
  • two second partition walls 8 3, 8 4 are further disposed outside the two first partition walls 8 1, 8 2 at a fixed distance.
  • Helium is contained between the first partition walls 81, 82 and the adjacent second partition walls 83, 84 from above toward the work surface.
  • One gas is supplied.
  • the exhaust mechanism described with reference to FIGS. 9 and 10 can also be used for surface treatment by directly discharging between the relatively moving electrode 85 and the surface of the workpiece 73 as shown in FIG. , Can be applied.
  • the partition walls 86, 87 on the upstream and downstream sides of the electrode 85 along the moving direction ⁇ ⁇ ⁇ of the workpiece 73, respectively, define a gas supply passage and a gas exhaust passage, and
  • the gap between the lower end and the workpiece surface is arranged to be narrower than the gap between the electrode 85 and the workpiece 73.
  • the downstream side with respect to the moving direction A of the workpiece 73 is a gas supply passage
  • the upstream side is a gas exhaust passage.
  • the discharge gas is supplied to the discharge region 88 from the downstream side and is discharged from the upstream side. Therefore, air may enter the surface of the workpiece 73 upstream of the discharge region 88 from a gap between the partition wall 87 and the gas exhaust passage, and the organic matter and the like that has been once removed may adhere again.
  • the re-adhered organic substances 89 are processed again when the workpiece 73 moves and passes through the discharge area 88. Further, in the present embodiment, when the workpiece 73 is reciprocated below the electrode 85 to perform the surface treatment, the direction in which the discharge gas is supplied may be changed depending on the moving direction.
  • the present invention includes various modifications and changes to the above embodiment within the technical scope thereof.
  • the auxiliary grounding electrode structure shown in Fig. 4 for preventing damage to a workpiece or the like due to abnormal discharge is not only a surface-facing type surface treatment device, but also a line type surface treatment device shown in Fig.
  • the present invention can be similarly applied to various surface treatment apparatuses having the above electrode structure.
  • the mounting electrode portion of the work 39 shown in FIG. 1 may be configured as shown in FIG. In FIG. 16, a dielectric 111 is arranged on the ground electrode 110.
  • the dielectric 111 has a recess 112 that can accommodate the work 39.
  • the step distance d from the surface of the dielectric 111 to the surface of the work 39 can be made smaller than the plate thickness of the work 39. In this way, abnormal discharge, which is likely to occur at the outer edge of the work 39, could be reduced.
  • the depth of the recesses 1 1 and 2 may be made substantially the same as the thickness of the work 39, and the above-mentioned step distance d may be made substantially zero.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A surface treatment apparatus (30) for performing surface treatment of a work (39) by means of plasma generated under a pressure close to the atmospheric pressure, in which apparatus a porous dielectric substance (37) is supported on an undersurface of a porous electrode (32) with its outer peripheral edge supported by a support member (45). The support member (45) is formed with an upwardly inclined surface, and the dielectric substance (37) is formed with a downwardly inclined surface, so that the dielectric substance (37) can be supported by the support member (45) while permitted to undergo thermal expansion deformation. Also, discharge gas can be uniformly supplied to a discharge area (51) through both the porous electrode (32) and the porous dielectric substance (37). A multiplicity of flow rate regulatable gas exhaust ports (41) are arranged around the discharge area (51). The gas is uniformly exhausted around the discharge area (51). In particular, the gas can be uniformly exhausted around the discharge area (51) even if a gap between the dielectric substance (37) and the work (39) is not uniform from place to place depending upon a mounting accuracy.

Description

明 細 書 表面処理装置  Description Surface treatment equipment
[技術分野] [Technical field]
本発明は、 プラズマを利用して被処理材の表面を処理するための装置に関し、 例えば半導体の製造において被処理材の表面をエッチングし、 アツシングし、 又 は表面改質ゃ薄膜形成のために使用される。  The present invention relates to an apparatus for processing the surface of a material to be processed using plasma, and for example, in a semiconductor manufacturing process, etching and ashes the surface of the material to be processed, or performing surface modification to form a thin film. used.
[背景技術] [Background technology]
このようにプラズマを用いて被処理材の表面を様々に処理するための技術が、 従来より様々な分野で利用されている。 従来のプラズマ表面処理方法は、 一般に 減圧された環境下でプラズマ放電をさせるために、 真空チャンバ等の特別な装置 •設備が必要であり、 処理能力が低くかつ大面積の処理が困難で、 製造コストが 高くなるという問題があった。 そこで、 最近では、 例えば特開平 6— 2 1 4 9号 公報に記載されるように、 大気圧付近の圧力下でプラズマ放電させることにより 、 真空設備を必要とせず、 装置を簡単かつ小型化することができ、 しかも低コス トで大面積の処理を可能にした表面処理技術が提案されている。  As described above, techniques for variously treating the surface of a material to be treated using plasma have been used in various fields. Conventional plasma surface treatment methods generally require special equipment such as a vacuum chamber to perform plasma discharge in a depressurized environment, and have low processing capacity and difficult to process large areas. There was a problem of high costs. Therefore, recently, for example, as described in Japanese Patent Application Laid-Open No. 6-21949, by performing plasma discharge under a pressure near the atmospheric pressure, a vacuum facility is not required, and the apparatus can be simplified and downsized. Surface treatment techniques that can perform large area treatment at low cost have been proposed.
このように大気圧プラズマを用いて一度に大面積を表面処理するための従来装 置の一例が図 1 2に概略的に示されている。 この表面処理装置 1は、 ハウジング 2の内部に一定の離隔距離をもって平行に配設された円板状の上部電極 3と下部 電極 6とを有する。 下部電極 6は接地され、 かつその上に誘電体 5を介して被処 理材 4が載置される。 上部電極 3は電源 7に接続され、 かつその下面に多孔質の 誘電体 8が、 異常放電の蘚消及び放電ガスの均一分布のために配置されている。 電源 7から上部電極 3に所定の電圧を印加することによって、 前記両電極間に放 電が発生する。  FIG. 12 schematically shows an example of a conventional apparatus for surface-treating a large area at a time using the atmospheric pressure plasma. The surface treatment device 1 has a disk-shaped upper electrode 3 and a lower electrode 6 disposed in parallel inside a housing 2 with a predetermined separation distance. The lower electrode 6 is grounded, and the workpiece 4 is placed thereon via the dielectric 5. The upper electrode 3 is connected to a power supply 7, and a porous dielectric 8 is disposed on the lower surface thereof for extinction of abnormal discharge and uniform distribution of discharge gas. When a predetermined voltage is applied from the power supply 7 to the upper electrode 3, discharge occurs between the two electrodes.
上部電極 3は、 図示されない多数の通気孔が誘電体 8側に向けて開設されてお り、 その上部に画定されるチャンバ 9内に外部のガス供給源 1 0から供給される ガスが、 前記通気孔から誘電体 8を通過してハウジング 2内の放電領域 1 1に導 WO 96/31997 - l - PCT/JP96/00935 入される。 前記ガスは、 多孔質誘電体 8によって放電領域全体に分散して均一に 供給され、 放電領域 1 1内にプラズマが均一に作られる。 このプラズマにより生 成された前記ガスの励起活性種を曝露することにより、 被処理材 4の表面を処理 する。 前記ガスは、 図 1 2に矢印で示すように、 放電領域 1 1の周囲から下部電 極 6の裏側へ流れ、 ハウジング 2の底部中央に設けられたガス排出口 1 2から夕!^ 部に排出される。 The upper electrode 3 has a large number of ventilation holes (not shown) opened toward the dielectric 8, and a gas supplied from an external gas supply source 10 is supplied into a chamber 9 defined on the upper side. Through the dielectric 8 from the vent to the discharge area 11 in the housing 2 WO 96/31997-l-PCT / JP96 / 00935 The gas is dispersed and supplied uniformly throughout the discharge region by the porous dielectric 8, and a plasma is uniformly formed in the discharge region 11. By exposing the excited active species of the gas generated by the plasma, the surface of the material to be treated 4 is treated. The gas flows from the periphery of the discharge region 11 to the back side of the lower electrode 6 as shown by the arrow in FIG. 12, and from the gas outlet 12 provided at the center of the bottom of the housing 2 to the evening! Is discharged.
図 1 3には、 別の従来の表面処理装置 1 3が概略的に示されている。 この表面 処理装置 1 3は、 上述した面タイプの表面処理装置と異なり、 そのすぐ下側を相 対的に移動する被処理材の表面を走査しながら処理する所謂ライン夕イブであつ て、 図中矢印 Aで示す被処理材の移動方向に直交する向きに細長い電極 1 4を有 する。 電極 1 4の下面には、 その全長に亘つて平行に延長する同一寸法 .形状の 2本の放電発生部 1 5、 1 6が下向きに突設されている。 電極 1 4の下部には、 前記両放電発生部の間に電極 1 4の全長に豆って中間チャンバ 1 7を画定するよ うに、 誘電体 1 8が装着されている。 誘電体 1 8には、 中間チャンバ 1 7から下 向きに開口するガス噴出口 1 9が、 電極 1 4の全長に亘つて直線状に形成されて いる。 また、 中間チャンバ 1 7には、 電極 1 4の上面に開口するガス導入口 2 0 が連通している。  FIG. 13 schematically shows another conventional surface treatment apparatus 13. The surface treatment device 13 is a so-called line type, which performs processing while scanning the surface of the material to be treated, which moves relatively directly below the surface treatment device, unlike the surface treatment device of the surface type described above. It has an elongated electrode 14 in a direction perpendicular to the direction of movement of the material to be processed indicated by the middle arrow A. On the lower surface of the electrode 14, two discharge generating portions 15 and 16 having the same dimensions and extending in parallel over the entire length thereof are projected downward. A dielectric 18 is attached to a lower portion of the electrode 14 so as to define an intermediate chamber 17 along the entire length of the electrode 14 between the two discharge generating portions. A gas outlet 19 that opens downward from the intermediate chamber 17 is formed in the dielectric 18 linearly over the entire length of the electrode 14. Further, a gas introduction port 20 opening on the upper surface of the electrode 14 communicates with the intermediate chamber 17.
電極 1 4に所定の電圧を印加すると、 両放電発生部 1 5、 1 6とその下側を通 過する被処理材との間で放電が発生する。 外部のガス供給源からガス導入口 2 0 を介して中間チャンバ 1 Ί内に供給されたガスは、 ガス噴出口 1 9から下向きに 被処理材表面に向けて噴出し、 前記放電により発生したプラズマ内に導入されて 励起活性種を生成し、 前記被処理材表面を処理する。  When a predetermined voltage is applied to the electrode 14, a discharge is generated between the two discharge generating parts 15 and 16 and the material to be processed passing thereunder. The gas supplied from an external gas supply source into the intermediate chamber 1 via the gas inlet 20 is ejected downward from the gas outlet 19 toward the surface of the material to be processed, and the plasma generated by the discharge To generate excited active species and process the surface of the material to be treated.
しかしながら、 図 1 2及び図 1 3に示す装置では、 下記のような問題が生じて いる。 ―  However, the devices shown in FIGS. 12 and 13 have the following problems. ―
まず、 図 1 2に示す従来の表面処理装置では、 多孔質誘電体 8が、 ハウジング 側にねじ 2 1等の固定手段によって直接固定されているため、 その局部応力と、 ブラズマ放電の高温により生じる熱応力とによって誘電体 8に割れや反りが生じ る虞がある。 多孔質誘電体 8に、 割れや反りが生ずると、 放電領域にガスを均一 に分布させるという所望の機能を発揮できなくなる虞がある。 逆に、 過度に高温 にならないように電源の出力を抑えると、 十分な放電が得られず、 表面処理能力 が低下して、 処理速度が遅くなつたり十分に処理できなくなる虞がある。 さらに は、 誘電体 8に割れが生ずると、 誘電体 8の本来の機能である異常放電の防止機 能が損なわれてしまう。 First, in the conventional surface treatment apparatus shown in FIG. 12, since the porous dielectric 8 is directly fixed to the housing side by a fixing means such as a screw 21, the porous dielectric 8 is caused by local stress and high temperature of plasma discharge. There is a possibility that cracks or warpage may occur in the dielectric 8 due to thermal stress. If the porous dielectric 8 is cracked or warped, the desired function of uniformly distributing gas in the discharge region may not be exhibited. Conversely, excessively high temperatures If the output of the power supply is suppressed so as not to become insufficient, sufficient discharge cannot be obtained, and the surface treatment capacity may be reduced, and the processing speed may be reduced or the treatment may not be performed sufficiently. Furthermore, if the dielectric 8 cracks, the function of preventing the abnormal discharge, which is the original function of the dielectric 8, is impaired.
また、 この従来装置では、 多孔質誘電体を用いて放電領域へのガスの分布を均 一化しているにも拘わらず、 上述したように排気が、 下部電極の裏側に設けた 1 力所のガス排出口のみから行われるので、 装置の組付誤差等のため誘電体 8と被 処理材 4との間に一定のギヤップが維持されないと、 ガスの流れに偏りが生じ、 放電領域 1 1におけるガス分布に粗密ゃ不均一が生じて、 被処理材全体を均一に 処理できなくなる虞がある。 また、 被処理材から除去された有機物質等が、 放電 領域から排出される途中で再付着して、 被処理材を汚染したり装置のメンテナン スを困難にする虞がある。  Further, in this conventional device, as described above, the exhaust gas is supplied to one of the power supply locations provided on the back side of the lower electrode, even though the distribution of gas to the discharge region is made uniform by using the porous dielectric. Since the gas discharge is performed only from the gas outlet, if a certain gap is not maintained between the dielectric 8 and the workpiece 4 due to an error in assembling the apparatus, the flow of the gas is biased, and the discharge region 11 There is a possibility that the distribution of the gas may become uneven, uneven, and the entire material may not be uniformly processed. In addition, the organic substances and the like removed from the material to be treated may adhere again while being discharged from the discharge region, and may contaminate the material to be treated or make maintenance of the apparatus difficult.
更に、 上部電極 3には、 多数の通気孔を設ける代わりに、 多孔質板を使用する とガスの分布の均一化に好都合であるが、 カーボン材料や S U S系の材料を用い た場合には、 02、 C F 4等のガスと反応して酸化や腐食を生じ易い。 このため欠 損した電極材料がごみとなって、 被処理材表面や装置内部を汚染する虞があり、 特に被処理材がシリコンウェハの場合には、 F e等の金属汚染が問題となる。 ま た、 これらの電極材料は、 消耗品であるから定期的に交換する必要が生じ、 ラン ニングコストが増えて最終的にコス トが高くなる。 Furthermore, instead of providing a large number of air holes in the upper electrode 3, it is convenient to use a porous plate to make the gas distribution uniform, but if a carbon material or a SUS-based material is used, 0 2 reacts with CF 4 or the like of the gas cause oxidation or corrosion prone. For this reason, the missing electrode material may become dust and contaminate the surface of the material to be processed and the inside of the device. Particularly when the material to be processed is a silicon wafer, metal contamination such as Fe becomes a problem. In addition, since these electrode materials are consumables, they need to be replaced periodically, which increases the running cost and ultimately the cost.
また、 図 1 3に示す従来の表面処理装置の場合、 真空での放電と異なり大気圧 付近の圧力下では、 放電発生部の幅を一定にしても、 電極の長手方向に沿って均 —に放電させることが困難である。 また、 放電させる出力には異常放電の問題か ら限界があり、 放電発生部の幅に依存する放電面積によって放電領域が一定範囲 に固定されるから、 処理条件に応じて放電領域を拡大したり、 処理能力を調整 - 向上させることができない。 このため、 特に大面積を処理する場合には、 均一な 処理が困難であると共に、 高速処理が望めない。  Also, in the case of the conventional surface treatment apparatus shown in FIG. 13, unlike a vacuum discharge, under a pressure near the atmospheric pressure, even if the width of the discharge generating portion is constant, it is uniform along the longitudinal direction of the electrode. It is difficult to discharge. In addition, the output to be discharged has a limit due to the problem of abnormal discharge, and the discharge area is fixed to a certain range by the discharge area depending on the width of the discharge generating part. Adjust the processing capacity-can not be improved. Therefore, especially when processing large areas, uniform processing is difficult and high-speed processing cannot be expected.
また、 中間チャンバ 1 7は、 限られた数のガス導入口 2 0から供給されるガス の圧力を電極の長手方向に均一化して、 ガス噴出口 1 9の全長からガスを均一に 噴出させるためのものである。 ところが、 ガス噴出口 1 9及びガス導入口 2 0が 中間チャンバ 1 7の中央に同一直線上に配置されているため、 ガス導入口 2 0か ら導入した前記ガスの多くの部分が、 その直下にあるガス噴出口 1 9に直接その まま流れ込む。 このため、 電極の長手方向に沿って噴出するガスの分布が不均一 になり、 均一に表面処理できなくなる虞があり、 処理能力の向上が図れない。 更に、 この従来装置では、 ガス噴出口 1 9から放電領域に供給されたガスが、 被処理材の移動方向に関して電極の前後から、 容易に大気中に拡散して排気され る。 前記ガスには、 放電を安定化させるために比較的高価なヘリウムを反応ガス に混合する。 しかし、 前記ガスの拡散に対応してヘリウムの流量を増やしていく と、 処理コス トが大幅に高くなるという問題がある。 また、 前記ガスが拡散する 際に放電領域に大気が混入して、 放電を不安定にし、 または一旦除去した有機物 質等が大気中の不純物と反応して被処理材表面に再付着する虞がある。 これを有 効に予防して放電を安定化させるために、 放電領域における大気不純物のガス濃 度を低くするべく、 適当な排気機構を設ける必要がある。 更に、 環境保全の観点 から、 プラズマ放電によって発生するオゾン等を含む排気を適切に処理する必要 がある。 In addition, the intermediate chamber 17 is used to make the pressure of the gas supplied from the limited number of gas inlets 20 uniform in the longitudinal direction of the electrode and to uniformly eject the gas from the entire length of the gas outlet 19. belongs to. However, gas outlet 19 and gas inlet 20 Since it is arranged on the same straight line in the center of the intermediate chamber 17, a large part of the gas introduced from the gas inlet 20 directly flows into the gas outlet 19 directly below the gas as it is. For this reason, the distribution of the gas ejected along the longitudinal direction of the electrode becomes non-uniform, and there is a possibility that the surface treatment may not be performed uniformly. Furthermore, in this conventional apparatus, the gas supplied to the discharge region from the gas ejection port 19 is easily diffused into the atmosphere from the front and rear of the electrode with respect to the moving direction of the material to be processed, and is exhausted. The gas is mixed with helium, which is relatively expensive, in order to stabilize the discharge. However, when the flow rate of helium is increased in response to the diffusion of the gas, there is a problem that the processing cost is significantly increased. Also, when the gas is diffused, the air may enter the discharge region to make the discharge unstable, or the organic substances or the like once removed may react with impurities in the air and reattach to the surface of the material to be processed. is there. In order to effectively prevent this and stabilize the discharge, it is necessary to provide an appropriate exhaust mechanism to reduce the gas concentration of atmospheric impurities in the discharge region. Furthermore, from the viewpoint of environmental protection, it is necessary to appropriately treat exhaust gas containing ozone and the like generated by plasma discharge.
また、 この種の表面処理装置では、 電極構造によらず、 電極を保護する誘電体 を設けた場合でも、 電極に印加する電源の出力を上げていくと、 アーク放電等の 異常放電を発生して、 被処理材やそれを載せるステージを損傷する虞がある。 こ のため、 出力が制限されて処理能力を十分に高めることができず、 高速処理ゃコ ス 卜の低減を図れないという問題がある。  In addition, in this type of surface treatment equipment, abnormal discharge such as arc discharge occurs when the output of the power supply applied to the electrodes is increased even if a dielectric is provided to protect the electrodes, regardless of the electrode structure. Therefore, there is a possibility that the material to be processed and the stage on which it is mounted may be damaged. For this reason, there is a problem that the output is limited and the processing capacity cannot be sufficiently increased, and the cost of high-speed processing cannot be reduced.
そこで、 本発明は、 上述した従来技術の問題点に鑑みてなされたものであり、 その目的は、 大気圧付近の圧力下で発生させたプラズマを用いて表面処理するた めに、 放電領域に供給されるガスが平板状の電極を通過するようにした所謂面夕 ィプの表面処理装置において、 放電領域におけるガスの分布を均一化させること によってプラズマを均一に発生させ、 それにより大面積を均一に処理することが でき、 処理能力の向上及びコス トの低減を図ることができる表面処理装置を提供 することにある。 これに加え、 特に本発明は、 多孔質体を前記平板状電極の放電 を発生させる側の面に配置した表面処理装置において、 電極に印加される電源の 出力を高く した場合でも、 多孔質体に破損等を生じることなく常にガスの均一な 分布を図り、 それにより表面処理の高速化、 処理能力の向上を図ることを目的と する。 Accordingly, the present invention has been made in view of the above-described problems of the conventional technology, and has as its object to perform surface treatment using plasma generated under a pressure near atmospheric pressure, so that the discharge region In a so-called surface-type surface treatment apparatus in which the supplied gas passes through a flat electrode, the plasma is uniformly generated by making the distribution of gas uniform in the discharge region, thereby increasing the large area. An object of the present invention is to provide a surface treatment apparatus capable of performing uniform treatment, improving treatment capacity and reducing cost. In addition, in particular, the present invention relates to a surface treatment apparatus in which a porous body is arranged on the surface of the flat electrode on the side where the discharge is generated, even when the output of a power supply applied to the electrode is increased. The gas is always uniform without any damage The purpose is to achieve distribution and thereby speed up the surface treatment and improve the processing capacity.
更に、 本発明の目的は、 このように放電領域に供給されるガスが電極を通過す るようにした表面処理装置に使用され、 放電領域におけるガス分布の均一化を図 ることができ、 かつ耐久性が高く、 使用するガス種によって酸化、 腐食等するこ とにより被処理材を汚染する虞がなく、 ランニングコス トを低減させることがで きる多孔質体の電極を提供することにある。  Further, an object of the present invention is to be used in a surface treatment apparatus in which a gas supplied to a discharge region passes through an electrode as described above, thereby achieving uniform gas distribution in the discharge region, and An object of the present invention is to provide a porous electrode which has high durability, has no risk of contaminating a material to be treated by being oxidized, corroded, or the like depending on the type of gas used, and can reduce running costs.
また、 本発明の別の目的は、 直線状に延長する細長い電極を、 その長手方向に 直交する向きに相対移動する被処理材に対して走査させながら、 大気圧付近の圧 力下で発生させたプラズマを用いて表面処理する所謂ライン夕イブの表面処理装 置において、 電極の長手方向に沿ってその放電面積を調整することができ、 それ により処理条件に対応して電極の各部分の処理速度を調整することができ、 また はその全長に亘つて処理能力を向上させて、 大面積の高速処理を可能にする表面 処理装置を提供することにある。  Another object of the present invention is to generate an elongated electrode extending linearly under a pressure near atmospheric pressure while scanning a workpiece relatively moving in a direction orthogonal to its longitudinal direction. In a surface treatment apparatus of a so-called line type, in which surface treatment is performed using plasma, the discharge area can be adjusted along the longitudinal direction of the electrode, thereby treating each part of the electrode in accordance with the treatment conditions. It is an object of the present invention to provide a surface treatment apparatus capable of adjusting the speed or improving the processing capacity over the entire length thereof, and enabling high-speed processing of a large area.
また、 本発明は、 同じくライン夕イブの表面処理装置において、 電極の全長に 豆って供給されるガスの分布を均一化することができ、 それによりプラズマを均 一にして処理能力を向上させ、 より大きな面積を処理できるようにすることを目 的とする。  Further, the present invention also provides a surface treatment apparatus of a line type, in which the distribution of gas supplied along the entire length of the electrode can be made uniform, thereby making the plasma uniform and improving the processing capacity. The goal is to be able to handle larger areas.
本発明の更に別の目的は、 同じくラインタイプの表面処理装置において、 放電 領域に供給されたガスの排気経路を制限することによって、 ガスの大気中への拡 散を抑制し、 放電領域への大気の混入を防止して、 プラズマ放電及びそれによる 表面処理の安定化を図り、 処理能力を向上させかつ処理コストを低減させること ができる効率的でコンパク 卜な排気機構を提供することにある。  Yet another object of the present invention is to provide a line-type surface treatment apparatus, which restricts the exhaust path of the gas supplied to the discharge region, thereby suppressing the diffusion of the gas into the atmosphere, and It is an object of the present invention to provide an efficient and compact exhaust mechanism capable of preventing air from being mixed in, stabilizing plasma discharge and surface treatment by the plasma discharge, and improving processing capacity and reducing processing cost.
更に、 本発明の目的は、 上述した電極構造の如何に拘わらず、 放電条件により 電極と被処理材またはステージとの間にアーク放電等の異常放電が発生する虞を 解消し、 高出力化を図ることによって処理能力を向上させることができる、 大気 圧付近の圧力下でのプラズマを用いた表面処理装置を提供することにある。  Furthermore, an object of the present invention is to eliminate the possibility that an abnormal discharge such as an arc discharge occurs between an electrode and a workpiece or a stage depending on a discharge condition, regardless of the above-described electrode structure, and to increase the output. It is an object of the present invention to provide a surface treatment apparatus using plasma under a pressure close to the atmospheric pressure, which can improve the processing capacity.
[発明の開示] 本発明は、 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電 を発生させ、 前記放電により励起された活性種を被処理材に曝露させて、 前記被 処理材の表面を処理する表面処理装置であって、 [Disclosure of the Invention] In the present invention, a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be treated, and the surface of the material to be treated is exposed. A surface treatment device for treating,
前記所定のガスを通過させる孔を有し、 前記放電を発生させるための電極と、 前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 前記多孔質誘電体の外周縁部を支持する支持面を有し、 前記支持面上にて、 前 記放電による昇温に伴う前記誘電体の熱膨張変形を許容する支持部材と、 を有することを特徴とする。  An electrode for generating the discharge, having a hole through which the predetermined gas passes, a porous dielectric in which the electrode is arranged adjacent to an electrode surface facing the discharge region, and a porous dielectric And a support member on the support surface that allows thermal expansion and deformation of the dielectric due to the temperature rise due to the discharge.
本発明によれば、 放電による昇温により多孔質誘電体が熱膨張しても、 この多 孔質誘電体の外周縁部を支持する支持部材の支持面上で、 多孔質体誘電体の熱膨 張変形が許容される。 このため、 熱応力による多孔質誘電体体の破損、 反りが有 効に防止される。 従って、 多孔質誘電体による電極の保護機能が確保されると共 に、 ガスの均一な拡散機能も確保される。  According to the present invention, even if the porous dielectric thermally expands due to a rise in temperature due to electric discharge, the heat of the porous dielectric is maintained on the support surface of the support member that supports the outer peripheral edge of the porous dielectric. Expansion deformation is allowed. For this reason, damage and warpage of the porous dielectric due to thermal stress are effectively prevented. Therefore, the function of protecting the electrode by the porous dielectric is ensured, and the function of uniformly diffusing the gas is also ensured.
ここで、 前記電極及び前記多孔質誘電体が水平に配置される場合、 前記支持部 材の前記支持面が上向きの傾斜面からなり、 前記多孔質誘電体の前記外周縁部に 、 前記支持面に摺接する下向きの傾斜面が形成されることが好ましい。  Here, when the electrode and the porous dielectric are disposed horizontally, the support surface of the support member is formed by an upwardly inclined surface, and the support surface is provided on the outer peripheral edge of the porous dielectric. It is preferable that a downwardly inclined surface that slides on is formed.
こうすると、 多孔質誘電体が熱膨張変形する際に、 多孔質誘電体の外周縁部は 支持部材の上向き傾斜面に沿ってその膨張変形が許容される。  Thus, when the porous dielectric is thermally expanded and deformed, the outer peripheral edge of the porous dielectric is allowed to expand and deform along the upwardly inclined surface of the support member.
この場合、 前記支持部材を、 前記多孔質誘電体の熱膨張変形に伴い、 垂直方向 に移動自在とすることもできる。  In this case, the support member may be movable in the vertical direction along with the thermal expansion deformation of the porous dielectric.
こうすると、 多孔質誘電体の外周縁部が熱膨張変形する際に、 その外周縁部に 形成された下向きの傾斜面により、 支持部材の上向きの傾斜面が垂直下方に押し 下げられる。 このため、 多孔質誘電体の水平位置は変化せず、 多孔質誘電体と被 処理材との間のギヤップを一定に維持できる。  Thus, when the outer peripheral edge of the porous dielectric material undergoes thermal expansion deformation, the upwardly inclined surface of the support member is pushed down vertically downward by the downwardly inclined surface formed on the outer peripheral edge. Therefore, the horizontal position of the porous dielectric does not change, and the gap between the porous dielectric and the material to be processed can be kept constant.
前記電極及び前記多孔質誘電体が水平に配置される場合、 前記支持部材の前記 支持面を、 前記多孔質誘電体の前記外周縁部の下面に摺接する水平面とすること もできる。  When the electrode and the porous dielectric are horizontally arranged, the support surface of the support member may be a horizontal surface that is in sliding contact with the lower surface of the outer peripheral edge of the porous dielectric.
この場合にも、 水平な支持面上にて、 多孔質誘電体の熱膨張変形が許容され、 しかも、 多孔質誘電体の水平位置は変化しない。 本発明の他の態様によれば、 大気圧又はその近傍の圧力下の放電領域に、 所定 のガスにより放電を発生させ、 前記放電により励起される活性種を被処理材に曝 露させて、 前記被処理材の表面を処理する表面処理装置であって、 Also in this case, the thermal expansion deformation of the porous dielectric is allowed on the horizontal support surface, and the horizontal position of the porous dielectric does not change. According to another aspect of the present invention, a discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to a material to be processed. A surface treatment apparatus for treating the surface of the material to be treated,
前記放電を発生させるための電極と、  An electrode for generating the discharge;
前記電極を覆い、 かつ、 前記放電領域に臨んで配置される誘電体と、 前記誘電体を支持する支持部材と、  A dielectric covering the electrode, and disposed facing the discharge region; and a support member supporting the dielectric,
を有し、  Has,
前記支持部材は、 前記放電による昇温に伴い前記誘電体が熱膨張変形する方向 にて自由度をもって、 前記誘電体を支持していることを特徴とする。  The support member supports the dielectric with a degree of freedom in a direction in which the dielectric thermally expands and deforms as the temperature rises due to the discharge.
この発明でも、 放電による昇温に起因した誘電体の熱膨張変形が許容されるの で、 その破損が防止され、 それにより電極の保護機能を維持できる。  Also in the present invention, since the thermal expansion deformation of the dielectric caused by the temperature rise due to the discharge is allowed, the damage is prevented, and the protection function of the electrode can be maintained.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下の放電領域に 、 所定のガスにより放電を発生させ、 前記放電により励起される活性種を被処理 材に曝露させて、 前記被処理材の表面を処理する表面処理装置であって、 前記所定のガスを通過させる孔を有し、 前記放電を発生させるための電極と、 前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 前記多孔質誘電体と前記被処理材との間の前記放電領域の周囲に、 それそれ独 立して流量調整可能な複数のガス排気口を配設したことを特徴とする。  According to still another aspect of the present invention, a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed. A surface treatment apparatus for treating a surface of the material to be treated, comprising: a hole through which the predetermined gas passes; and an electrode for generating the discharge; and an electrode adjacent to an electrode surface where the electrode faces the discharge region. And a plurality of gas exhaust ports capable of independently adjusting the flow rate are arranged around the discharge region between the porous dielectric and the material to be processed. It is characterized by having done.
この発明によれば、 各ガス排気口の流量を適当に調整することによって、 多孔 質誘電体と被処理材とのギヤップが一定でなくても、 その間から周囲に排気され るガスの流れを一様にすることができる。 このため、 放電領域におけるガスの分 布をより均一にし、 それにより放電領域全体に亘つて放電状態及び処理の程度を 均一化することができる。  According to the present invention, by appropriately adjusting the flow rate of each gas exhaust port, even if the gap between the porous dielectric and the material to be processed is not constant, the flow of the gas exhausted to the surroundings from the gap can be reduced. It can be like. For this reason, the distribution of gas in the discharge region can be made more uniform, whereby the discharge state and the degree of treatment can be made uniform over the entire discharge region.
ここで、 前記複数のガス排気口が、 前記放電領域の周囲の周方向に沿って等間 隔で配置されていることが好ましい。  Here, it is preferable that the plurality of gas exhaust ports are arranged at equal intervals along a circumferential direction around the discharge region.
こうすると、 排気されるガスの流れを一様にし易くすることができる。  This makes it easier to make the flow of the exhausted gas uniform.
さらには、 前記ガス排気口は、 前記放電領域が形成される高さ位置とは異なる 高さ位置に開設されていることが好ましい。  Further, it is preferable that the gas exhaust port is opened at a height position different from a height position where the discharge region is formed.
放電領域と排気口の高さを上下にずらすことによって、 排気されるガスの流れ の方向が途中で変化され、 放電領域の全周での排気速度を等しく し易くなる。 こ のため、 放電領域におけるガス濃度の分布をより均一にすることができる。 さらに、 前記多孔質誘電体と前記被処理材との間のギヤップより狭幅の排気通 路を、 前記ガス排気口の上流側に設けることもできる。 Exhaust gas flow by shifting the height of the discharge area and exhaust port up and down Is changed on the way, and it becomes easy to make the pumping speed equal over the entire circumference of the discharge region. Therefore, the distribution of gas concentration in the discharge region can be made more uniform. Furthermore, an exhaust passage narrower than the gap between the porous dielectric and the material to be processed may be provided on the upstream side of the gas exhaust port.
こうすると、 幅狭の排気通路のコンダクタンスを利用して、 放電領域の全周に てガスの流れをより均一にすることができる。  This makes it possible to use the conductance of the narrow exhaust passage to make the gas flow more uniform over the entire circumference of the discharge region.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下の放電領域に 、 所定のガスにより放電を発生させ、 前記放電により励起される活性種を被処理 材に曝露させて、 前記被処理材の表面を処理する表面処理装置であって、 ガス排気孔を有し、 前記放電を発生させるための電極と、  According to still another aspect of the present invention, a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed. A surface treatment apparatus for treating a surface of the material to be treated, comprising a gas exhaust hole, an electrode for generating the discharge,
前記電極が前記放電領域に臨む第 1の電極面と隣接して配置される多孔質誘電 体と、  A porous dielectric in which the electrode is disposed adjacent to a first electrode surface facing the discharge region;
前記所定のガスを、 前記多孔質誘電体と前記被処理材との間の前記放電領域に 向けて、 前記放電領域の周囲から導入する複数のガス導入口と、  A plurality of gas inlets for introducing the predetermined gas toward the discharge region between the porous dielectric and the material to be processed, from around the discharge region;
を有し、  Has,
前記被処理材に暴露されたガスを、 前記多孔質誘電体及び前記電極を通過させ て排気させることを特徴とする。  The gas exposed to the material to be processed is exhausted by passing through the porous dielectric and the electrode.
この発明によれば、 多孔質誘電体と被処理材との間に、 その周囲の複数方向よ りガスを供給することによって、 放電領域におけるガスの分布を均一化できる。 さらには、 多孔質誘電体及び電極を介して排気することで、 ガスの分布に影響を 与えることなく排気できる。 しかも、 排気ガスが電極を通過した後には、 一個所 にて集中的に排気することができる。  According to the present invention, by supplying gas from a plurality of directions around the porous dielectric and the material to be processed, the distribution of gas in the discharge region can be made uniform. Furthermore, by exhausting the gas through the porous dielectric and the electrode, the gas can be exhausted without affecting the gas distribution. Moreover, after the exhaust gas has passed through the electrode, it can be exhausted intensively at one location.
前記複数のガス導入口は、 それそれ独立して流量調整可能な流量調整手段を有 することができる。 こうすると、 放電領域に供給されるガスの分布を一様にする ことができる。 さらには、 前記複数のガス導入口が、 前記放電領域の周囲の周方 向に沿って等間隔で配置されることが好ましい。 各ガス導入口から供給されるガ ス流量を適当に調整することによって、 放電領域におけるガスの分布を容易に制 御することができる。  Each of the plurality of gas inlets may have a flow rate adjusting means capable of independently adjusting the flow rate. In this case, the distribution of the gas supplied to the discharge region can be made uniform. Further, it is preferable that the plurality of gas inlets are arranged at equal intervals along a circumferential direction around the discharge region. By appropriately adjusting the gas flow supplied from each gas inlet, the distribution of gas in the discharge region can be easily controlled.
ここで、 前記電極の前記第 1の電極面とは反対側の第 2の電極面に隣接して、 排気処理用触媒を配設することができる。 Here, adjacent to a second electrode surface of the electrode opposite to the first electrode surface, An exhaust treatment catalyst can be provided.
こうすると、 排気と同時に、 放電により生成されたオゾンの除去等の排気処理 を一個所で集中して行うことができる。 これにより、 装置及び大気の汚染を有効 に防止することができる。  In this way, exhaust processing such as removal of ozone generated by electric discharge can be performed at one place at the same time as exhaust. Thereby, pollution of the apparatus and the air can be effectively prevented.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下の放電領域に 、 所定のガスにより放電を発生させ、 前記放電により励起される活性種を被処理 材に曝露させて、 前記被処理材の表面を処理する表面処理装置であって、 前記放電を発生させるための電極と、  According to still another aspect of the present invention, a discharge is generated by a predetermined gas in a discharge region under an atmospheric pressure or a pressure close to the atmospheric pressure, and an active species excited by the discharge is exposed to a material to be processed. A surface treatment apparatus for treating a surface of the material to be treated, and an electrode for generating the discharge,
前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 を有し、  A porous dielectric, wherein the electrode is disposed adjacent to an electrode surface facing the discharge region,
前記電極が、 前記所定のガスを通過させるアルミニウム多孔質材料から成るこ とを特徴とする。  The electrode is made of an aluminum porous material through which the predetermined gas passes.
この発明によれば、 放電領域に導入されるガスの分布をより簡単に均一化でき ると共に、 アルミニウムはフッ素系ガスとの反応が少ないので、 導入される所定 のガスがフッ素系ガスの中の反応性の高いガスであっても、 これに電極が反応し て腐食等を生じ、 欠損した部分により被処理材ゃ装置等を汚染する虞がない。 この場合、 前記多孔質誘電体を、 アルミナ多孔質材料にて形成することが好ま しい。  According to the present invention, the distribution of the gas introduced into the discharge region can be more easily made uniform, and aluminum reacts less with the fluorine-based gas. Even if the gas is highly reactive, the electrode reacts with the gas to cause corrosion and the like, and there is no possibility that the material to be treated or the device is contaminated by the missing portion. In this case, it is preferable that the porous dielectric is formed of an alumina porous material.
こうすると、 02、 C F 4等のガスが導入されても、 このガスと電極、 多孔質誘 電体が反応して酸化 ·腐食等を生ずることを防止でき、 被処理材ゃ装置等を汚染 する虞を低減できる。  In this way, even if a gas such as 02 or CF 4 is introduced, it is possible to prevent the gas from reacting with the electrode and the porous conductor to cause oxidation and corrosion, thereby contaminating the material to be treated and the equipment. The fear can be reduced.
本発明に係る表面処理装置のさらに他の態様によれば、 被処理材が載置される 第 1電極と、  According to still another aspect of the surface treatment apparatus according to the present invention, a first electrode on which a material to be treated is placed,
前記第 1の電極と対向して配置される第 2の電極と、  A second electrode disposed opposite to the first electrode;
前記第 1の電極に載置された前記被処理材の周囲にて、 前記第 2の電極に向け て、 前記被処理材よりも突出する補助電極と、  An auxiliary electrode protruding from the processing target material toward the second electrode around the processing target material placed on the first electrode;
を有し、  Has,
前記第 1の電極と前記第 2の電極との間と、 前記第 2の電極と前記補助電極と の間にて、 大気圧又はその近傍の圧力下でそれそれ放電を発生させ、 前記第 1の 電極と前記第 2の電極との間の前記放電により励起される活性種を前記被処理材 に曝露させて、 前記被処理材の表面を処理することを特徴とする。 A discharge is generated between the first electrode and the second electrode and between the second electrode and the auxiliary electrode under atmospheric pressure or a pressure near the atmospheric pressure. of An active species excited by the discharge between the electrode and the second electrode is exposed to the material to be treated, and the surface of the material to be treated is treated.
この発明によれば、 電極に印加される電源出力を高く した場合にも、 異常放電 は先ず補助電極との間に発生するから、 異常放電に起因した被処理材ゃ第 1の電 極等の破壊や損傷を未然に防止することができる。  According to the present invention, even when the power output applied to the electrodes is increased, the abnormal discharge occurs first between the auxiliary electrode and the material to be processed due to the abnormal discharge, such as the first electrode or the like. Destruction and damage can be prevented beforehand.
この場合、 前記補助電極の突出高さが調節可能であることが好ましい。  In this case, it is preferable that the protrusion height of the auxiliary electrode is adjustable.
こうすると、 被処理材の表面状態等の処理条件に応じて、 異常放電の発生限界 を調整することができる。  In this case, the occurrence limit of abnormal discharge can be adjusted according to processing conditions such as the surface condition of the material to be processed.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下にて生成され る放電領域に対して、 被処理材を移動させながら、 前記放電領域にて励起される 活性種を、 前記被処理材に曝露させて、 前記被処理材の表面を処理する表面処理 装置であって、  According to still another aspect of the present invention, an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向に沿った第 1の幅を有し、 前記移動方向と直交する 方向を長手方向として延在形成され、 前記第 1の電極との間に前記放電領域を生 成する第 2の電極と、  The first electrode has a first width along a moving direction of the first electrode, is formed to extend in a direction orthogonal to the moving direction as a longitudinal direction, and generates the discharge region between the first electrode and the first electrode. A second electrode,
前記第 2の電極に着脱可能に取り付けられ、 前記第 1の電極の前記移動方向に 沿った第 2の幅を有する補助電極部分と、  An auxiliary electrode portion detachably attached to the second electrode and having a second width along the moving direction of the first electrode;
を有し、  Has,
前記第 2の電極の着脱により、 前記放電領域の範囲が調整可能であることを特 徴とする。  It is characterized in that the range of the discharge region can be adjusted by attaching and detaching the second electrode.
この発明によれば、 補助電極部分を選択的に取り付けることによって、 電極の 幅を調整することができ、 被処理材ゃ処理条件の変更に応じて、 放電領域の範囲 即ち処理面積を調整することができる。  According to the present invention, the width of the electrode can be adjusted by selectively attaching the auxiliary electrode portion, and the range of the discharge region, that is, the processing area can be adjusted according to the change of the material to be processed and the processing conditions. Can be.
この場合、 前記補助電極部分を、 前記第 2の電極の前記長手方向にて部分的に 取り付けることができる。  In this case, the auxiliary electrode portion can be partially attached in the longitudinal direction of the second electrode.
こうすると、 電極の長手方向に沿って各領域毎に処理速度を最適に設定するこ とができる。  This makes it possible to optimally set the processing speed for each region along the longitudinal direction of the electrode.
特に、 前記補助電極部分を、 前記第 2の電極の前記長手方向の両端部分に取り 付けると、 処理速度の遅い前記両端部分での処理速度を向上させることができる < あるいは、 前記補助電極部分を、 前記第 2の電極の前記長手方向の全長に亘っ て取り付けることもできる。 In particular, the auxiliary electrode portion is provided at both ends in the longitudinal direction of the second electrode. When attached, the processing speed at the both ends where the processing speed is slow can be improved. <Alternatively, the auxiliary electrode portion can be attached over the entire length of the second electrode in the longitudinal direction.
こうすると、 電極全体の処理面積を拡大させることができる。  This can increase the processing area of the entire electrode.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下にて生成され る放電領域に対して、 被処理材を移動させながら、 前記放電領域にて励起される 活性種を、 前記被処理材に曝露させて、 前記被処理材の表面を処理する表面処理 装置であって、  According to still another aspect of the present invention, an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向と直交する方向を長手方向として延在形成され、 前 記第 1の電極との間に前記放電領域を生成する第 2の電極と、  A second electrode that is formed to extend in a direction perpendicular to the direction of movement of the first electrode as a longitudinal direction, and that generates the discharge region between the first electrode and the second electrode;
を有し、  Has,
前記第 2の電極は、  The second electrode is
前記放電領域に供給されるガスが導入される、 前記長手方向に沿って形成され る中間チャンバ一と、  An intermediate chamber formed along the longitudinal direction, into which gas supplied to the discharge region is introduced;
前記中間チャンバ一に前記ガスを導入する少なくとも一つのガス導入口と、 前記中間チャンバ一内の前記ガスを前記放電領域に向けて噴出する、 前記長手 方向に沿ってスリッ ト状に形成されたガス噴出口と、  At least one gas inlet for introducing the gas into the intermediate chamber, and a gas formed in a slit shape along the longitudinal direction, which jets the gas in the intermediate chamber toward the discharge region. Spout,
を有し、  Has,
前記少なく とも一つのガス導入口は、 前記ガス噴出口の延長線上から外れた位 置に開口していることを特徴とする。  The at least one gas inlet is open at a position off the extension of the gas outlet.
この発明によれば、 少なくとも一つのガス導入口から中間チャンバ内に導入さ れたガスは、 そのまま直接ガス噴出口に流れる量が少なくなる。 すなわち、 中間 チャンバ内で一旦ガスの流れの向きが変えられることによって、 電極の長手方向 に沿ってガス圧を均一化した後にガス噴出口に流れるので、 放電領域におけるガ スの分布を均一化することができる。  According to the present invention, the amount of the gas introduced into the intermediate chamber from at least one gas inlet directly decreases to the gas outlet. In other words, once the gas flow direction is changed in the intermediate chamber, the gas pressure is made uniform along the longitudinal direction of the electrode, and then the gas flows to the gas ejection port, so that the gas distribution in the discharge region is made uniform. be able to.
ここで、 前記中間チャンバ一は、 相対向する 2つの側壁と、 前記ガス噴出口が 開口する底壁とを有し、 前記少なくとも一つのガス導入口を、 一方の前記側壁に 開口させることができる。 一 こうすると、 一方の側壁のガス導入口より導入されたガスは、 他方の側壁にて ガスの流れの向きが変えられ、 中間チャンバ一内に拡散した後にガス噴出口に導 かれる。 Here, the intermediate chamber has two opposing side walls, and a bottom wall on which the gas outlet is opened, and the at least one gas inlet can be opened on one of the side walls. . In this way, the gas introduced from the gas inlet on one side wall is changed in the direction of the gas flow on the other side wall, and is diffused into the intermediate chamber and guided to the gas ejection port.
この場合にも、 前記第 2の電極が前記放電領域に臨む電極面を覆う誘電体をさ らに設けらることができる。 この場合、 前記中間チャンバ一は、 前記第 2の電極 と前記誘電体との間に形成され、 前記ガス噴出口は、 前記誘電体に形成される。 こうすると、 誘電体の存在により異常放電の発生が低減され、 第 2の電極を保 護することができる。  Also in this case, a dielectric that covers the electrode surface of the second electrode facing the discharge region can be further provided. In this case, the intermediate chamber is formed between the second electrode and the dielectric, and the gas outlet is formed in the dielectric. In this case, the occurrence of abnormal discharge is reduced due to the presence of the dielectric, and the second electrode can be protected.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下にて生成され る放電領域に対して、 被処理材を移動させながら、 前記放電領域にて励起される 活性種を、 前記被処理材に曝露させて、 前記被処理材の表面を処理する表面処理 装置であって、  According to still another aspect of the present invention, an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向と直交する方向を長手方向として延在形成され、 前 記長手方向に沿ってガスを噴出するガス噴出口を有し、 前記第 1の電極との間に 前記放電領域を生成する第 2の電極と、  A gas ejection port that is formed to extend in a direction perpendicular to the direction of movement of the first electrode and that ejects gas along the longitudinal direction, wherein the discharge is performed between the first electrode and the first electrode; A second electrode for creating a region;
前記第 2の電極よりも前記移動方向の上流側に設けられ、 前記第 2電極と前記 被処理材との間のギヤップと実質的に同等のギヤップを形成する第 1の延長部材 と、  A first extension member that is provided upstream of the second electrode in the movement direction and forms a gap substantially equal to a gap between the second electrode and the workpiece;
を有することを特徴とする。  It is characterized by having.
この発明によれば、 被処理材の移動方向とは逆流するガスが > 第 1の延長部材 により制限されて大気中に拡散せずに被処理材の表面に沿って流れるので、 前記 ガスに含ませるヘリウム等の放電用ガスの流量を従来より相当少なく しても、 放 電を安定させることができる。 しかも、 被処理材から除去された有機物質等が、 放電領域から離れた位置で再付着しても、 電極と被処理材とが相対的に移動し続 けるので、 その下流側において、 被処理材の表面に沿って流れるガスに含まれる 活性種によって再度処理することができる。  According to the present invention, the gas flowing in the direction opposite to the moving direction of the material to be processed is restricted by the first extension member and flows along the surface of the material to be processed without diffusing into the atmosphere. The discharge can be stabilized even if the flow rate of the discharge gas such as helium to be used is considerably reduced. Moreover, even if the organic substance removed from the material to be treated reattaches at a position away from the discharge region, the electrode and the material to be treated continue to move relative to each other. It can be treated again with active species contained in the gas flowing along the surface of the material.
ここで、 前記第 2の電極よりも前記移動方向の下流側に、 前記第 2電極と前記 被処理材との間のギヤップと実質的に同等のギヤップを形成する第 2の延長部材 をさらに設けることが好ましい。 Here, a second extension member that forms a gap substantially equal to the gap between the second electrode and the material to be processed, downstream of the second electrode in the movement direction. Is preferably further provided.
こうすると、 電極の上流及び下流側において、 ガスの拡散をより効果的に制限 することができる。  This makes it possible to more effectively restrict gas diffusion on the upstream and downstream sides of the electrode.
本発明のさらに他の態様によ'れば、 大気圧又はその近傍の圧力下にて生成され る放電領域に対して、 被処理材を移動させながら、 前記放電領域にて励起される 活性種を、 前記被処理材に曝露させて、 前記被処理材の表面を処理する表面処理 装置であって、  According to still another aspect of the present invention, an active species excited in the discharge region while moving the material to be processed with respect to the discharge region generated at or near atmospheric pressure. A surface treatment apparatus that exposes the material to be treated to treat the surface of the material to be treated,
前記被処理材を載置して水平移動する第 1の電極と、  A first electrode on which the workpiece is placed and horizontally moved;
前記第 1の電極の移動方向と直交する水平方向を長手方向として延在形成され、 前記長手方向に沿ってガスを噴出するガス噴出口を有し、 前記第 1の電極との間 に前記放電領域を生成する第 2の電極と、  A longitudinal direction extending in a horizontal direction orthogonal to a moving direction of the first electrode, a gas ejection port for ejecting gas along the longitudinal direction, and the discharge between the first electrode and the first electrode; A second electrode for creating a region;
前記第 2の電極に対して前記移動方向の下流側及び上流側にそれそれ配置され、 前記第 2の電極との間に間隙を介して垂直に配置される 2つの第 1の仕切り壁と、 を有し、  Two first partition walls which are respectively arranged on the downstream side and the upstream side in the movement direction with respect to the second electrode, and are vertically arranged with a gap between the second electrode and the second electrode; Has,
前記被処理材に暴露されたガスを、 2つの前記第 1の仕切り壁と前記第 2の電 極との間の前記間隙を介して排気することを特徴とする。  The gas exposed to the material to be processed is exhausted through the gap between the two first partition walls and the second electrode.
この発明においては、 ガス噴出口より放電領域に供給されたガスは、 大気に直 ちに拡散されることなく、 第 2の電極の両側に配置された 2つの第 1の仕切り壁 の内側を迪つて排気される。 従って、 放電領域への大気の混入が低減され、 放電 を安定して維持できる。  According to the present invention, the gas supplied from the gas ejection port to the discharge region is not immediately diffused into the atmosphere but passes through the inside of the two first partition walls disposed on both sides of the second electrode. Exhausted. Therefore, mixing of the atmosphere into the discharge region is reduced, and the discharge can be stably maintained.
ここで、 2つの前記第 1の仕切り壁の外側に、 該第 1の仕切り壁と平行に 2つ の第 2の仕切り壁をさらに設けることができる。 そして、 相対向する第 1、 第 2 の仕切り壁間にガスを導入することで、 その導入ガスにより、 前記放電領域を挟 んだ両側に、 前記放電領域を大気と仕切るガスカーテンを形成することができる: これにより、 放電領域への大気の混入がさらに低減する。  Here, two second partition walls can be further provided outside the two first partition walls in parallel with the first partition walls. By introducing a gas between the first and second partition walls facing each other, the introduced gas forms gas curtains that partition the discharge region from the atmosphere on both sides of the discharge region. This can further reduce the incorporation of air into the discharge area.
本発明のさらに他の態様によれば、 大気圧又はその近傍の圧力下にて生成され る放電領域に対して、 被処理材を移動させながら、 前記放電領域にて励起される 活性種を、 前記被処理材に曝露させて、 前記被処理材の表面を処理する表面処理 装置であって、 前記被処理材を載置して水平移動する第 1の電極と、 According to still another aspect of the present invention, an active species that is excited in the discharge region while moving the material to be processed with respect to a discharge region generated under atmospheric pressure or a pressure near the atmospheric pressure, Exposure to the material to be treated, a surface treatment apparatus for treating the surface of the material to be treated, A first electrode on which the workpiece is placed and horizontally moved;
前記第 1の電極の移動経路と対向する位置に垂直に配置され、 前記第 1の電極 との間に前記放電領域を生成する第 2の電極と、  A second electrode that is vertically arranged at a position facing a movement path of the first electrode and generates the discharge region between the first electrode and the second electrode;
前記第 2の電極に対して前記移動方向の上流側にて垂直に配置され、 前記第 2 の電極との間に、 前記放電領域にガス導入する空間を形成する第 1の仕切り壁と、 前記第 2の電極に対して前記移動方向の下流側にて垂直に配置され、 前記第 2 の電極との間に、 前記放電領域からのガスを排気する空間を形成する第 2の仕切 り壁と、  A first partition wall vertically arranged on the upstream side in the movement direction with respect to the second electrode, and a first partition wall forming a space for introducing gas into the discharge region between the second electrode and the second electrode; A second partition wall vertically arranged on the downstream side of the moving direction with respect to the second electrode and forming a space for exhausting gas from the discharge region between the second electrode and the second partition wall; ,
を有することを特徴とする。  It is characterized by having.
この発明によれば、 被処理材の移動方向にて第 2の電極よりも下流側から放電 領域にガスが供給され、 電極よりも上流側にて排気される。 このようにして、 放 電領域への大気の混入を防止でき、 放電を安定化させることができる。 しかも、 万一放電領域の上流側にて被処理材表面に不純物が再付着しても、 被処理材が移 動することで再付着物は放電領域にて除去することができる。 また、 放電処理に 使用したガスを放電領域の近傍から排気することができるので、 排気を大気中に 放出させることなく効率的に処理することができ、 かつ排気構造を小型化するこ とができる。  According to this invention, the gas is supplied to the discharge region from the downstream side of the second electrode in the moving direction of the material to be processed, and is exhausted upstream of the electrode. In this way, the intrusion of the atmosphere into the discharge region can be prevented, and the discharge can be stabilized. In addition, even if impurities are re-adhered to the surface of the material to be processed on the upstream side of the discharge region, the re-adhered matter can be removed in the discharge region by moving the material to be processed. In addition, since the gas used in the discharge process can be exhausted from the vicinity of the discharge region, the exhaust gas can be efficiently treated without being discharged to the atmosphere, and the exhaust structure can be downsized. .
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明による第 1実施例の面対向型の表面処理装置を示す断面図であ る  FIG. 1 is a cross-sectional view showing a surface facing type surface treatment apparatus of a first embodiment according to the present invention.
図 2 A〜図 2 Cは、 それそれ異なる多孔質誘電体の取付構造を示す部分拡大図 tある。  2A to 2C are partially enlarged views t showing different types of porous dielectric mounting structures.
図 3は、 本発明による第 2実施例の表面処理装置を概略的に示す断面図である c 図 4は、 本発明による第 3実施例の表面処理装置を部分的に示す図である。 図 5は、 本発明による第 4実施例のライン型の表面処理装置を示す部分断面斜 視図である。 3, c 4 the surface treatment apparatus of the second embodiment according to the present invention is a cross-sectional view schematically showing is a diagram showing a surface treatment apparatus of the third embodiment according to the present invention partially. FIG. 5 is a partial sectional perspective view showing a line type surface treatment apparatus according to a fourth embodiment of the present invention.
図 6 A及び図 6 Bは、 それそれ図 5の表面処理装置に使用する電極の異なる実 施例を示す底面図である。 図 7 Aは、 図 5の表面処理装置の拡大部分断面図、 図 7 Bは、 図 5の表面処理 装置の縦断面図である。 6A and 6B are bottom views each showing a different embodiment of the electrodes used in the surface treatment apparatus of FIG. 7A is an enlarged partial cross-sectional view of the surface treatment device of FIG. 5, and FIG. 7B is a longitudinal sectional view of the surface treatment device of FIG.
図 8は、 本発明による第 5実施例の表面処理装置の排気構造を示す断面図であ る o  FIG. 8 is a cross-sectional view showing an exhaust structure of a surface treatment apparatus of a fifth embodiment according to the present invention.
図 9は、 本発明による第 6実施例の表面処理装置の排気構造を示す断面図であ る ο  FIG. 9 is a sectional view showing an exhaust structure of a surface treatment apparatus according to a sixth embodiment of the present invention.
図 1 0は、 図 9に示す排気構造の変形例を示す断面図である。  FIG. 10 is a sectional view showing a modification of the exhaust structure shown in FIG.
図 1 1は、 図 9に示す排気構造の別の変形例を示す断面図である。  FIG. 11 is a sectional view showing another modified example of the exhaust structure shown in FIG.
図 1 2は、 従来の面対向型の表面処理装置を示す断面図である。  FIG. 12 is a cross-sectional view showing a conventional surface-facing type surface treatment apparatus.
図 1 3は、 従来のライン型の表面処理装置を示す断面図である。  FIG. 13 is a cross-sectional view showing a conventional line type surface treatment apparatus.
図 1 4は、 図 2 A〜図 2 Cとは異なる誘電体の支持構造を示す概略断面図であ 0  FIG. 14 is a schematic cross-sectional view showing a dielectric support structure different from FIGS. 2A to 2C.
図 1 5は、 図 7 Aとは異なるガス導入構造を示す概略断面図である。  FIG. 15 is a schematic sectional view showing a gas introduction structure different from FIG. 7A.
図 1 6は、 図 1のワークを載置する電極の変形例を示す概略断面図である。  FIG. 16 is a schematic cross-sectional view showing a modification of the electrode on which the work of FIG. 1 is placed.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明を図面に示す実施例に従って詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
(第 1実施例)  (First embodiment)
図 1には、 本発明による面対向型の表面処理装置の好適な実施例が示されてい る。 表面処理装置 3 0は、 円形ハウジング 3 1の内部に水平に配置された円板状 の電極 3 2を有する。 電極 3 2は、 例えばアルミニウム材料からなる多孔質体で あり、 交流電源 3 3に接続されている。 電極 3 2の上部に画成されるチャンバ 3 4は、 ガス導入口 3 5を介して外部のガス供給源 3 6に接続されている。 電極 3 2の下面には、 セラミック材料等の多孔質材料、 例えばアルミナ (A 1 203) 等 からなる円板状の誘電体 3 7が配置されている。  FIG. 1 shows a preferred embodiment of a surface facing type surface treatment apparatus according to the present invention. The surface treatment device 30 has a disk-shaped electrode 32 horizontally disposed inside a circular housing 31. The electrode 32 is a porous body made of, for example, an aluminum material, and is connected to an AC power supply 33. The chamber 34 defined above the electrode 32 is connected to an external gas supply source 36 via a gas inlet 35. On the lower surface of the electrode 32, a disk-shaped dielectric material 37 made of a porous material such as a ceramic material, for example, alumina (A1203) is arranged.
誘電体 3 7の下方には、 円形のステージ 3 8上に被処理材即ち表面処理しょう とするウェハ等のワーク 3 9が、 誘電体 3 7との間に 1〜 2 mm程度の一定のギヤ ップ cを有するように載置されている。 ステージ 3 8には、 ワーク 3 9の下側に 接地電極 3 8 Aが配置され、 また必要に応じてステージとワークとの間に誘電体 を設けることができる。 ステージ 3 8の周囲には、 ハウジング 3 1内周面との間 に、 ギャップ cより狭い隙間 bを設けて排気通路 4 0が形成され、 かつ多数のガ ス排出口 4 1が、 ハウジング 3 1の下端に周方向に等間隔で、 かつ誘電体 3 7と ワーク 3 9との間の中心高さより相当高さ aだけ下方へずらした位置に配設され ている。 各ガス排出口 4 1には、 例えばニードルバルブからなる流量制御手段 4 2が設けられている。 Below the dielectric 37, a workpiece 39 such as a wafer to be treated, that is, a wafer to be surface-treated, is placed on a circular stage 38 with a constant gear of about 1 to 2 mm between the dielectric 37 and the dielectric 37. It is placed so as to have a top c. The stage 38 has a ground electrode 38 A below the work 39, and a dielectric between the stage and the work if necessary. Can be provided. Around the stage 38, an exhaust passage 40 is formed between the inner peripheral surface of the housing 31 and a gap b smaller than the gap c, and a large number of gas outlets 41 are formed in the housing 31. Are arranged at equal intervals in the circumferential direction at the lower end of the member and shifted downward by a considerable height a from the center height between the dielectric 37 and the work 39. Each gas outlet 41 is provided with a flow control means 42 composed of, for example, a needle valve.
図 2 Aには、 誘電体 3 7の取付構造が示されている。 誘電体 3 7の外周縁には、 その全周に豆って下向きの傾斜面 4 3が形成されている。 電極 3 2とハウジング 3 1 との間に配設されたセラミ ック等の誘電体からなる取付部 4 4の下面には、 同じくセラミック等の誘電体からなる薄いリング状の支持部材 4 5が、 皿子ねじ 4 6等の取付具によつて固定されている。 支持部材 4 5の内周縁には、 その全周 に豆って上向きの傾斜面からなる支持面 4 7が形成されている。 支持面 4 7は、 誘電体 3 7の傾斜面 4 3と同じ傾斜角度をもって、 かつ該傾斜面 4 3よりもさら に斜め上方に延びて形成されている。 誘電体 3 7は、 図示されるように、 その傾 斜面 4 3を支持部材 4 5の支持面 4 7に摺接させて、 該支持面に沿って半径方向 に相対変位可能に支持されている。 このような支持により、 誘電体 3 7の位置を 心出し -9 る ¾ める。  FIG. 2A shows the mounting structure of the dielectric 37. On the outer periphery of the dielectric 37, a downwardly inclined surface 43 is formed around the entire periphery. A thin ring-shaped support member 45 also made of a dielectric material such as ceramic is provided on the lower surface of a mounting portion 44 made of a dielectric material such as ceramics disposed between the electrode 32 and the housing 31. It is fixed by mounting tools such as countersunk screws 46. On the inner peripheral edge of the support member 45, a support surface 47 is formed around the entire periphery and is formed of an upwardly inclined surface. The support surface 47 is formed to have the same inclination angle as the inclined surface 43 of the dielectric 37 and to extend further obliquely upward than the inclined surface 43. As shown in the figure, the dielectric material 37 has its inclined surface 43 slidably in contact with the support surface 47 of the support member 45, and is supported so as to be relatively displaceable in the radial direction along the support surface. . With such support, the position of the dielectric 37 is centered-9.
図 2 B及び図 2 Cには、 誘電体 3 7の取付構造の別の実施例がそれそれ示され ている。 図 2 Bの取付構造は、 誘電体 3 7外周縁に下向きの段部 4 8を形成し、 他方、 支持部材 4 5の内周縁には、 その全周に亘つて誘電体 3 7の外周より大き い上向きの段部 4 9を設け、 その肩部を水平な支持面として、 その上に誘電体 3 7の段部 4 8に載せて支持している。 図 2 Cの実施例では、 支持部材 4 5の内周 端部が取付部 4 4より内方へ張り出して肩部 5 0を形成し、 これを水平な支持面 とし、 その上に誘電体 3 7の外周縁が、 取付部 4 4の内周面との間に或程度の隙 間を有するように支持されている。 このように図 2 B及び図 2 Cのいずれの実施 例も、 図 2 Aの取付構造と同様に、 誘電体 3 7の外周縁が支持部材 4 5の支持面 に沿って半径方向に相対変位可能に支持されている。  2B and 2C show different embodiments of the mounting structure of the dielectric 37. FIG. The mounting structure of FIG. 2B has a downward step 48 formed on the outer peripheral edge of the dielectric 37, while the inner peripheral edge of the support member 45 extends from the outer periphery of the dielectric 37 over the entire circumference. A large upward step 49 is provided, and its shoulder is used as a horizontal support surface, on which a step 48 of the dielectric 37 is placed and supported. In the embodiment of FIG. 2C, the inner peripheral end of the support member 45 projects inward from the mounting portion 44 to form a shoulder 50, which is used as a horizontal support surface, on which a dielectric material 3 is placed. The outer peripheral edge of 7 is supported so as to have a certain gap between the outer peripheral edge and the inner peripheral surface of the mounting portion 44. 2B and 2C, the outer periphery of the dielectric 37 is relatively displaced in the radial direction along the support surface of the support member 45, similarly to the mounting structure of FIG. 2A. Supported as possible.
ワーク 3 9を表面処理するために、 所定の放電ガスをガス供給源 3 6からガス 導入口 3 5を介して供給して、 チャンバ 3 4内を該放電ガスで置換する。 前記放 電ガスは、 実施しょうとする表面処理に応じて適当に選択され、 かつ放電の開始 を容易にしかつ安定させるためにヘリウムを混合すると好都合である。 前記放電 ガスはチャンバ 3 4内に連続的に供給され、 多孔質体の電極 3 2及び誘電体 3 7 を通過することによって、 誘電体 3 7とワーク 3 9との間の放電領域 5 1に略均 一に供給される。 同時に電源 3 3から電極 3 2に所定の電圧を印加すると、 電極 3 2と前記接地電極 3 8 Aとの間で放電が発生する。 誘電体 3 7とワーク 3 9と の間の放電領域 5 1内には、 プラズマによる前記放電ガスの解離、 電離、 励起等 によって前記ガスの励起種、 イオン等の活性種が生成される。 これらの励起活性 種がワーク 3 9に曝露されることによって、 ワーク 3 9表面は、 前記放電ガスの 種類に応じた所望の処理が行われる。 上述したように、 電極 3 2がアルミニウム 多孔質体で形成され、 かつアルミニウム材料は、 良く知られているようにフッ素 との反応が少なく、 前記放電ガスに 02や C F 4等のガスを用いた場合でも、 酸化 や腐食等により欠損してワーク表面や装置内部を汚染する虞が無いので有利であ る。 同様に、 誘電体 3 7をアルミナ (A 1 203) にて形成しているので、 誘電体 3 7が酸化や腐蝕することもない。 In order to surface-treat the work 39, a predetermined discharge gas is supplied from a gas supply source 36 through a gas inlet 35 to replace the inside of the chamber 34 with the discharge gas. Said release The electrical gas is suitably selected according to the surface treatment to be performed, and it is advantageous to mix helium to facilitate and stabilize the start of the discharge. The discharge gas is continuously supplied into the chamber 34, and passes through the porous electrode 32 and the dielectric 37 to form a discharge region 51 between the dielectric 37 and the work 39. They are supplied almost uniformly. At the same time, when a predetermined voltage is applied from the power supply 33 to the electrode 32, a discharge occurs between the electrode 32 and the ground electrode 38A. Active species such as excited species and ions of the gas are generated in the discharge region 51 between the dielectric 37 and the work 39 by dissociation, ionization, excitation, and the like of the discharge gas by plasma. By exposing these excited active species to the work 39, a desired treatment corresponding to the type of the discharge gas is performed on the surface of the work 39. As described above, the electrode 32 is formed of an aluminum porous body, and the aluminum material has a low reaction with fluorine as well known, and a gas such as 02 or CF 4 is used as the discharge gas. Even in such a case, there is no possibility that the surface of the work or the inside of the device may be contaminated due to loss due to oxidation or corrosion. Similarly, since the dielectric 37 is formed of alumina (A1203), the dielectric 37 is not oxidized or corroded.
放電領域 5 1内に供給された前記放電ガスは、 その周囲に放射方向外向きに流 れ、 ハウジング 3 1の内周面に沿って下向きに方向を変え、 排気通路 4 0を通過 して各ガス排出口 4 1から外部に排出される。 各ガス排出口 4 1は、 図示される ように放電領域 5 1の中心位置から距離 aだけ低い位置に開設されているので、 排気ガスの流れが一定の方向に集中することを防止できる。 更に、 排気通路 4 0 の幅 bが、 c > bの関係に設けられているので、 そのコンダクタンスを利用して 前記ガスを放電領域 5 1の周囲からより均一に排気することができる。 また、 表 面処理装置 3 0の組付誤差等により誘電体 3 7とワーク 3 9との間に一定のギヤ ップが確保されず、 排気ガスの流れが一定の方向にかたよる場合には、 流量調整 手段 4 2により各ガス排出口 4 1の流量を制御することによって、 前記ガスの流 れを均一にすることができる。  The discharge gas supplied into the discharge region 51 flows radially outward around the discharge region 51, changes its direction downward along the inner peripheral surface of the housing 31, and passes through the exhaust passage 40 to The gas is exhausted from the gas outlet 41. Since each gas outlet 41 is opened at a position lower by a distance a from the center of the discharge region 51 as shown in the figure, it is possible to prevent the flow of exhaust gas from being concentrated in a certain direction. Further, since the width b of the exhaust passage 40 is provided in a relationship of c> b, the gas can be more uniformly exhausted from around the discharge region 51 by using the conductance. In addition, when a certain gap is not secured between the dielectric 37 and the work 39 due to an assembling error of the surface treatment device 30, etc., and the flow of the exhaust gas depends on a certain direction, By controlling the flow rate of each gas outlet 41 by the flow rate adjusting means 42, the flow of the gas can be made uniform.
また、 第 1実施例によれば、 誘電体 3 7は、 前記放電による昇温により半径方 向に熱膨張するが、 上述したように別個の支持部材 4 5により、 その外周縁にお いて相対変位可能に取り付けられているので、 支持面 4 7に沿って半径方向外向 - 1 o ~ きに、 例えば図 2 Aに想像線 5 2で示される位置に移動する。 従って、 誘電体 3 7は、 従来のように取付具により拘束されて、 熱応力により割れを生じたりする 虞がない。 このため、 電極 3 2への出力を相当程度高くすることができ、 それに よってプラズマがより高密度に生成され、 処理速度が高くすることができる。 なお、 支持部材 4 5は、 必ずしも取付部 4 4に固定されるものに限らない。 例 えば、 図 1 4に示すように、 フランジ 1 0 1を有する軸部 1 0 0に沿って垂直に 移動自在とすることもできる。 このとき、 支持部材 4 5の下面とフランジ 1 0 1 との間にスプリング 1 0 3を配置し、 支持部材 4 5の上面と取付部 4 4の下面と の間に 0リングなどの気密シール材 1 0 4を配置するのが好ましい。 Further, according to the first embodiment, the dielectric 37 thermally expands in the radial direction due to the temperature rise due to the discharge. However, as described above, the dielectric 37 is relatively expanded at its outer peripheral edge by the separate support member 45. Displaceably mounted, radially outward along the support surface 47 -At 1 o ~, for example, move to the position shown by the imaginary line 52 in FIG. 2A. Therefore, there is no possibility that the dielectric 37 is restrained by the fixture as in the related art, and is cracked by thermal stress. For this reason, the output to the electrode 32 can be considerably increased, whereby plasma can be generated at a higher density and the processing speed can be increased. In addition, the support member 45 is not necessarily limited to the one fixed to the mounting portion 44. For example, as shown in FIG. 14, it can be vertically movable along a shaft portion 100 having a flange 101. At this time, a spring 103 is disposed between the lower surface of the support member 45 and the flange 101, and an air-tight sealing material such as an O-ring is provided between the upper surface of the support member 45 and the lower surface of the mounting portion 44. It is preferable to arrange 104.
図 1 4にて、 誘電体 3 7が図示の鎖線の通り熱膨張変形すると、 誘電体 3 7の 傾斜面 4 3が、 支持部材 4 5の傾斜面 4 7を押し下げる。 支持部材 4 5はスブリ ングの付勢力に抗して図示の鎖線の通り垂直下方に移動する。 これにより、 誘電 体 3 7の熱膨張変形が許容される。  In FIG. 14, when the dielectric 37 is thermally expanded and deformed as indicated by the dashed line, the inclined surface 43 of the dielectric 37 pushes down the inclined surface 47 of the support member 45. The support member 45 moves vertically downward as indicated by a chain line in the drawing against the urging force of the swing. Thereby, thermal expansion deformation of the dielectric 37 is allowed.
図 1 4の実施例では、 誘電体 3 7が熱膨張しても、 図 2 Aのように誘電体 3 7 の水平高さが変化することはない。 この点は、 図 2 B、 図 2 Cの実施例も同様で ある。 従って、 図 2 B、 図 2 C及び図 1 4の実施例では、 誘電体 3 7と被処理材 3 9との間のギャップを一定に維持できる点で優れている。 さらに、 図 1 4の実 施例では、 誘電体 3 7の芯出しができる効果もある。  In the embodiment of FIG. 14, even if the dielectric 37 thermally expands, the horizontal height of the dielectric 37 does not change as shown in FIG. 2A. This point is the same in the embodiments of FIGS. 2B and 2C. Therefore, the embodiments of FIGS. 2B, 2C and 14 are excellent in that the gap between the dielectric 37 and the material to be processed 39 can be kept constant. Further, in the embodiment of FIG. 14, there is an effect that the dielectric 37 can be centered.
(第 2実施例)  (Second embodiment)
図 3は、 本発明による面タイプの表面処理装置の第 2実施例を示している。 本 実施例の表面処理装置 5 2は、 図 1の表面処理装置 3 0と略同様の構成を有する が、 ハウジング 3 1に多数のガス導入口 5 3が、 誘電体 3 7とワーク 3 9間の 1 〜 2 mm程度のギャップの放電領域 5 1にその周囲から、 多方向から放電ガスを均 等に供給するように、 周方向に等間隔で開設されている。 各ガス導入口 5 3には、 それそれ流量調整手段 5 4が設けられている。 これによつて、 表面処理装置 5 2 の組付誤差等のために誘電体 3 7とワーク 3 9との間にギヤップが均一に形成さ れない場合でも、 放電領域 5 1にガスの分布を均一に調整して供給することがで きる。 更に電極 3 2の上部には、 オゾン吸収用の触媒 5 5が配置されている。 各ガス供給口 5 3から放電ガスを供給して、 ハウジング 3 1内部を該放電ガスで 置換する。 同時に、 電極 3 2に所定の電圧を印加して、 該電極と接地電極との間 で放電を発生させる。 前記放電ガスは、 放電領域 5 1に連続的に供給され、 誘電 体 3 7、 電極 3 2及び触媒 5 5を通過してチャンバ 3 4内に入り、 ガス排出口 5 6を介して外部に排出される。 ワーク 3 9の表面は、 放電領域 5 1中に生成され る前記ガスの励起活性種によって処理される。 この放電時に生成されたオゾン及 びアツシング等においてワーク 3 9表面から除去された有機物質等は、 電極 3 2 側から排気される際に触媒 5 5によって除去されるので、 オゾンが大気を汚染し たり、 有機物質がワーク 3 9や装置内部に再付着する虞がなく有利である。 この ように第 2実施例によれば、 排気と同時に排気処理を行うことができるので、 別 個に排気処理装置を設ける必要がなく、 装置全体の構成を簡単にし、 小型化及び 低コスト化を図ることができる。 FIG. 3 shows a second embodiment of the surface type surface treatment apparatus according to the present invention. The surface treatment device 52 of the present embodiment has substantially the same configuration as the surface treatment device 30 of FIG. 1, but a large number of gas inlets 53 are provided in the housing 31 between the dielectric 37 and the work 39. The discharge region 51 having a gap of about 1 to 2 mm is provided at equal intervals in the circumferential direction so as to uniformly supply the discharge gas from multiple directions from the periphery. Each gas inlet 53 is provided with a flow rate adjusting means 54. As a result, even if a gap is not formed uniformly between the dielectric 37 and the work 39 due to an assembling error of the surface treatment device 52, etc., the gas distribution in the discharge region 51 is maintained. It can be supplied with uniform adjustment. Further, a catalyst 55 for absorbing ozone is disposed above the electrode 32. A discharge gas is supplied from each gas supply port 53, and the inside of the housing 31 is filled with the discharge gas. Replace. At the same time, a predetermined voltage is applied to the electrode 32 to generate a discharge between the electrode and the ground electrode. The discharge gas is continuously supplied to the discharge region 51, passes through the dielectric 37, the electrode 32, and the catalyst 55, enters the chamber 34, and is discharged to the outside through the gas discharge port 56. Is done. The surface of the work 39 is treated with the excited active species of the gas generated in the discharge region 51. Ozone generated during this discharge and organic substances removed from the surface of the work 39 by asshing or the like are removed by the catalyst 55 when exhausted from the electrode 32 side, so that the ozone pollutes the atmosphere. This is advantageous because there is no risk of organic substances being re-adhered to the work 39 or the inside of the apparatus. As described above, according to the second embodiment, since the exhaust treatment can be performed simultaneously with the exhaust, it is not necessary to provide a separate exhaust treatment device, simplifying the configuration of the entire device, reducing the size and cost. Can be planned.
(第 3実施例)  (Third embodiment)
図 4は、 本発明による面対向型の表面処理装置の第 3実施例を示している。 本 実施例では、 異常放電処理用の補助接地電極 5 7がステージ (第 1の電極) 3 8 の上面に、 ステージ 3 8のワーク 3 9より外側かつ電極 3 2の下側の位置に突設 されている。 補助接地電極 5 7は、 ステージ 3 8からの突出量をねじ等により変 化させて、 その先端と電極 (第 2の電極) 3 2とのギャップを適当に調整するこ とができる。 即ち、 前記ギャップを、 表面処理するワークの異常放電発生限界の ブラズマインビーダンスより、 電極 3 2と補助接地電極 5 7との対向間のィンピ 一ダンスが局所的に低インビ一ダンスになるように調整する。 これによつて、 そ の表面に突起や金属部分が形成されて異常放電を発生し易いワークの場合でも、 アーク放電等がワーク表面に対してではなく補助接地電極 5 7に対して発生する c このため、 補助接地電極 5 7は、 異常放電により容易に溶融しないように、 高融 点金属で形成すると好都—合である。 このように第 3実施例によれば、 ワーク表面 やステージへの異常放電を回避できるので、 放電の出力をワークの異常放電発生 限界より高くすることができ、 処理速度を高めると共に、 異常放電によるワーク やステージの破壊又は損傷を有効に防止することができる。 FIG. 4 shows a third embodiment of the surface treatment apparatus of the present invention. In this embodiment, an auxiliary ground electrode 57 for abnormal discharge treatment protrudes from the upper surface of the stage (first electrode) 38 at a position outside the work 39 of the stage 38 and below the electrode 32. Have been. The auxiliary grounding electrode 57 can change the amount of projection from the stage 38 with a screw or the like, and can appropriately adjust the gap between the tip and the electrode (second electrode) 32. That is, the gap is set so that the impedance between the opposing electrode 32 and the auxiliary grounding electrode 57 is locally low due to the plasma impedance of the abnormal discharge occurrence limit of the workpiece to be surface-treated. Adjust to As a result, even in the case of a work in which projections or metal parts are formed on the surface and abnormal discharge is likely to occur, arc discharge or the like is generated not on the work surface but on the auxiliary ground electrode 57. For this reason, the auxiliary ground electrode 57 is advantageously formed of a high melting point metal so as not to be easily melted by abnormal discharge. As described above, according to the third embodiment, abnormal discharge to the work surface and the stage can be avoided, so that the discharge output can be higher than the abnormal discharge occurrence limit of the work. Destruction or damage of the work or stage can be effectively prevented.
(第 4実施例)  (Fourth embodiment)
図 5は、 本発明によるライン夕イブの表面処理装置の実施例を示している。 表 面処理装置 6 0は、 矢印 Aで示すワークの移動方向に関して直交する向きに細長 い概ね直方体の電極 6 1を有する。 なお、 図 5ではワークを載置して移動させる 第 1の電極は図示していない。 電極 6 1の下面には、 その長手方向に沿って同一 寸法 '形状の 2本の放電発生部 (第 2の電極) 6 2、 6 3が、 一定の離隔距離を もって平行に全長に豆って下向きに突設されている。 図 6 Aに示すように、 両放 電発生部 6 2、 6 3の長手方向の両端部には、 その外側にそれそれ補助電極 6 4、 6 5がボルト 6 6によって一体的に固定されている。 この補助電極 6 4、 6 5に よって、 電極 6 1の放電発生部 6 2、 6 3は、 その幅が長手方向の両端部におい てそれそれ外側に拡大されている。 また、 別の実施例では、 図 6 Bに示すように、 放電発生部 6 2、 6 3の全長に亘つて補助電極 6 7、 6 8をボルト 6 9で一体的 に取り付け、 その幅を全長に亘つて拡大することができる。 FIG. 5 shows an embodiment of a surface treatment apparatus for a line-type eve according to the present invention. table The surface processing device 60 has a substantially rectangular parallelepiped electrode 61 elongated in a direction orthogonal to the moving direction of the work indicated by the arrow A. FIG. 5 does not show the first electrode on which the workpiece is placed and moved. On the lower surface of the electrode 61, two discharge generating portions (second electrodes) 62, 63 of the same size are formed along the longitudinal direction thereof. Protruding downward. As shown in FIG. 6A, auxiliary electrodes 64, 65 are integrally fixed by bolts 66 to the outer ends of both discharge generating parts 62, 63, respectively, at both ends in the longitudinal direction. I have. By the auxiliary electrodes 64 and 65, the width of the discharge generating portions 62 and 63 of the electrode 61 is expanded outward at both ends in the longitudinal direction. In another embodiment, as shown in FIG. 6B, the auxiliary electrodes 67, 68 are integrally attached with the bolts 69 over the entire length of the discharge generating portions 62, 63, and the width thereof is set to the full length. Can be expanded.
図 5及び図 7 Aに示すように、 電極 6 1の下部には、 放電発生部 6 2、 6 3を 完全に包み込むように誘電体 7 0が装着されている。 両放電発生部 6 2、 6 3の 間には、 電極 6 1の長手方向に沿って延長する中間チャンバ 7 1が画成される。 誘電体 7 0の中央には、 中間チャンバ 7 1に連通するガス噴出口 7 2が、 電極 6 1の長手方向に沿って直線状にワーク 7 3表面に向けて下向きに開口している。 電極 6 1の上面には、 3個のガス導入口 7 4が等間隔で開設され、 それそれ中間 チャンバ 7 1に連通している。 図 7 Aに良く示されるように、 ガス噴出口 7 2が 中間チャンバ 7 1の中央位置に接続しているのに対して、 ガス導入口 7 4は、 中 間チャンパ 7 1の端部に接続されている。 換言すれば、 ガス噴出口 Ί 2の延長線 上から外れた位置に、 3個のガス導入口 7 2が配置されている。 このため、 3個 のガス導入口 7 4から導入された放電ガスは、 中間チャンバ 7 1内で流れの向き を変えてガス噴出口 7 2に向かう。 即ち、 図 7 Bに示すように、 前記放電ガスは、 中間チヤンバ内で長手方 に沿ってガス圧が略均一化され、 ガス噴出口 7 2の全 長に豆って概ね均一に噴出する。  As shown in FIG. 5 and FIG. 7A, a dielectric 70 is attached to the lower part of the electrode 61 so as to completely surround the discharge generating parts 62 and 63. An intermediate chamber 71 extending along the longitudinal direction of the electrode 61 is defined between the two discharge generating portions 62 and 63. At the center of the dielectric 70, a gas outlet 72 communicating with the intermediate chamber 71 opens straight downward along the longitudinal direction of the electrode 61 toward the surface of the workpiece 73. On the upper surface of the electrode 61, three gas inlets 74 are opened at equal intervals, each communicating with the intermediate chamber 71. As best shown in FIG. 7A, the gas outlet 72 is connected to the center of the intermediate chamber 71, while the gas inlet 74 is connected to the end of the intermediate chamber 71. Have been. In other words, three gas inlets 72 are arranged at positions off the extension of the gas outlet # 2. For this reason, the discharge gas introduced from the three gas inlets 74 changes its flow direction in the intermediate chamber 71 and heads for the gas outlet 72. That is, as shown in FIG. 7B, the discharge gas has a substantially uniform gas pressure along the longitudinal direction in the intermediate chamber, and is ejected almost uniformly along the entire length of the gas ejection port 72.
また、 別の実施例では、 図 1 5に示すように、 中間チャンバ 7 1を形成する相 対向する 2つの側壁 6 1 a、 6 1 bの一方の側壁 6 1 aに、 ガス導入口 7 4が開 口している。 この場合、 ガス導入口 7 4から導入された放電ガスは、 他方の側壁 6 1 bにてその流れの向きが変えられ、 中間チヤンバー 7 1内にて拡散される。 この拡散後にガス噴出口 7 2より放電ガスが噴出されるので、 図 7 Aの場合と同 様に、 横方向から放電ガスを導入することができ、 ガス噴出口 7 2の全長に亘っ て概ね均一にガスを噴出させることができる。 In another embodiment, as shown in FIG. 15, one of the two side walls 61 a and 61 b forming the intermediate chamber 71 is provided with a gas inlet port 7 4 Is open. In this case, the direction of the flow of the discharge gas introduced from the gas inlet 74 is changed on the other side wall 61b, and is diffused in the intermediate chamber 71. After this diffusion, the discharge gas is ejected from the gas ejection port 72, so that the discharge gas can be introduced from the lateral direction as in the case of FIG. The gas can be ejected uniformly.
更に別の実施例では、 中間チャンバ 7 1内にガス噴出口 7 2の上に多孔質体を 配設することができる。 これによつて、 放電ガスをガス噴出口 7 2の全長に亘っ てより均一に分布させることができる。  In still another embodiment, a porous body can be disposed on the gas outlet 72 in the intermediate chamber 71. Thus, the discharge gas can be more uniformly distributed over the entire length of the gas outlet 72.
このようにして所定の放電ガスをガス噴出口 7 2からワーク表面に向けて噴出 させつつ、 電極 6 1に所定の電圧を印加すると、 ガス噴出口 7 2の両側で各放電 発生部 6 2、 6 3と、 図示しない第 1の電極上に載置されて移動するワーク 7 3 との間で放電が発生する。 ガス噴出口 7 2から噴出された前記放電ガスは、 放電 領域 7 5、 7 6においてプラズマによる励起活性種を生成し、 それによつてヮ一 ク 7 3の表面が処理される。  When a predetermined voltage is applied to the electrode 61 while a predetermined discharge gas is jetted from the gas jet 72 toward the work surface in this manner, each of the discharge generating portions 62, Discharge occurs between the work 63 and the work 73 placed and moved on the first electrode (not shown). The discharge gas ejected from the gas outlet 72 generates plasma-excited active species in the discharge regions 75 and 76, whereby the surface of the peak 73 is treated.
この第 4実施例によれば、 両放電発生部 6 2、 6 3の両端部に補助電極 6 4、 6 5を取り付けてその幅を拡大したことによって、 図 6 Aに示すように、 符号 7 7で示す従来の楕円形状の放電領域が、 その長手方向の両端部において符号 7 8 で示す領域に拡大される。 従って、 電極 6 1の長手方向の両端部における処理能 力を中央部と同程度に向上させ、 より大型のワークを処理することができる。 ま た、 図 6 Bに示すように放電発生部 6 2、 6 3の幅を全長に亘つて拡大した場合 には、 放電領域全体が拡大される。  According to the fourth embodiment, auxiliary electrodes 64, 65 are attached to both ends of both discharge generating portions 62, 63, and the width thereof is enlarged, so that, as shown in FIG. The conventional elliptical discharge region indicated by 7 is enlarged to the region indicated by reference numeral 78 at both ends in the longitudinal direction. Therefore, the processing capability at both ends in the longitudinal direction of the electrode 61 can be improved to the same extent as the central portion, and a larger work can be processed. In addition, as shown in FIG. 6B, when the width of the discharge generating portions 62 and 63 is increased over the entire length, the entire discharge region is expanded.
(第 5実施例)  (Fifth embodiment)
図 8には、 図 5に示すラインタイプの表面処理装置の変形例が示されている。 この第 5実施例では、 図示しない第 1の電極上に載置されたワーク 7 3の移動方 向 Aに沿って、 その移動方向にて電極 (第 2の電極) 6 1の上流側に第 1の延長 部材 8 0が、 下流側に第 2の延長部材 7 9が、 電極 6 1に一体的にそれそれ取り 付けられている。 延長部材 7 9、 8 0によって、 誘電体 7 0とワーク 7 3表面と のギャップと同程度の狭い排気通路が、 各放電領域 7 5、 7 6から電極 6 1の上 流、 下流側に形成される。 従って、 放電ガスは、 放電領域 7 5、 7 6から前記排 気通路を通過した後に大気中に排出される。  FIG. 8 shows a modification of the line type surface treatment apparatus shown in FIG. In the fifth embodiment, the work 73 placed on the first electrode (not shown) is moved along the moving direction A, and the work 73 is moved upstream of the electrode (second electrode) 61 in the moving direction. One extension member 80 and a second extension member 79 on the downstream side are integrally attached to the electrode 61. With the extension members 79 and 80, a narrow exhaust passage similar to the gap between the dielectric 70 and the surface of the work 73 is formed upstream and downstream of the electrode 61 from each discharge area 75 and 76. Is done. Accordingly, the discharge gas is discharged from the discharge regions 75 and 76 to the atmosphere after passing through the discharge passage.
このように、 放電ガスをすぐに大気中に拡散させることなく、 電極とワークと し の間により長い時間閉じこめることによって、 前記放電ガスに含まれるヘリゥム の流量を従来の毎分 2 0リ ッ トル程度から毎分 5 リッ トル程度まで大幅に低減さ せても、 安定した放電を得ることができた。 また、 前記延長部材によって放電領 域 7 5、 7 6への大気の巻き込みが防止されるので、 ワークから一旦除去した有 機物等の再付着を防止することができた。 特に、 電極 6 1よりも上流側では、 排 気ガスがワークの移動方向に対して逆流するため、 乱流になりやすく大気を巻き 込み易いが、 ここでの大気の巻き込みを防止することができる。 In this way, the electrode and the workpiece can be connected without immediately diffusing the discharge gas into the atmosphere. By closing the discharge gas for a longer period of time, stable discharge can be achieved even if the flow rate of the helium contained in the discharge gas is significantly reduced from the conventional level of about 20 liters per minute to about 5 liters per minute. I got it. Further, the extension member prevents the air from getting into the discharge areas 75 and 76, so that the reattachment of the organic matter once removed from the work can be prevented. In particular, on the upstream side of the electrode 61, the exhaust gas flows backward in the moving direction of the work, so that the exhaust gas easily becomes turbulent and the air is easily entrained, but it is possible to prevent the entrainment of the air here. .
なお、 別の実施例では、 電極 6 1の上流、 下流に延長部材を設ける代わりに、 表面処理されるワークを電極 6 1の下方へ案内する通路を、 同様に狭いトンネル 状に形成することによつても、 同様の作用効果を得ることができる。  In another embodiment, instead of providing extension members upstream and downstream of the electrode 61, a passage for guiding a workpiece to be surface-treated below the electrode 61 is similarly formed in a narrow tunnel shape. Accordingly, the same operation and effect can be obtained.
(第 6実施例)  (Sixth embodiment)
図 9には、 本発明によるラインタイブの表面処理装置のための排気機構の別の 実施例が示されている。 この実施例では、 図示しない第 1の電極に載置されたヮ ーク 7 3の移動方向 Aに沿って電極 (第 2の電極) 6 1の下流及び上流側に、 ヮ ークとある間隔をもって垂直な 2枚の第 1の仕切壁 8 1、 8 2が、 その間にそれ それ全長に豆って上向きの排気通路を画成するように配置されている。 両仕切壁 8 1、 8 2は、 その下端とワーク Ί 3表面との間が、 誘電体 7 0とワーク表面と のギヤップより狭く形成されている。 従って、 放電領域 7 5、 7 6から出た排気 が大気中に流出することなく前記排気通路内に案内されると共に、 外部から大気 が侵入し難いようになっている。 このように放電領域の近傍から排気するように 構成することによって、 排気機構を小型化できると共に、 放電により生成される オゾンが大気中に放出されることを防止することができ、 かつ放電領域への大気 の混入を防止して、 放電の安定性を高めることができる。 また、 図 9の構造にお いて、 仕切壁 8 1、 8 2の下端とワーク Ί 3表面との間隙から生じる大気の巻き 込みが実質的に無ければ、 放電ガスの吸気 ·排気の方向を逆にすることもできる 図 1 0は、 図 9に示す排気機構の変形例を示している。 この実施例では、 2枚 の第 1の仕切壁 8 1、 8 2の外側に更に、 2枚の第 2の仕切壁 8 3、 8 4が、 一 定の距離をもって離隔して配置されている。 第 1の仕切壁 8 1、 8 2と隣接する 第 2の仕切壁 8 3、 8 4との間には、 上方からワーク表面に向けてヘリウムを含 一 O 一 むガスが供給されるようになっている。 このように電極 6 1の上流、 下流の両側 に、 排気通路と、 その外側での例えばヘリウムガスによるガスカーテンとを設け ることによって、 放電領域 7 5、 7 6への大気の混入をより確実に防止すること ができる。 FIG. 9 shows another embodiment of an exhaust mechanism for a line-type surface treatment apparatus according to the present invention. In this embodiment, along the moving direction A of the mark 73 placed on the first electrode (not shown), the electrode (second electrode) 61 is located downstream and upstream of the electrode 61 at a certain distance from the mark. Two first partition walls 8 1, 8 2, which are perpendicular to each other, are arranged so as to define an upwardly-directed exhaust passage in between each of them. The gap between the lower end of each of the partition walls 81 and 82 and the surface of the workpiece 3 is formed to be narrower than the gap between the dielectric 70 and the surface of the workpiece. Therefore, the exhaust gas discharged from the discharge regions 75 and 76 is guided into the exhaust passage without flowing out into the atmosphere, and the air does not easily enter from the outside. By evacuating from the vicinity of the discharge region in this way, the exhaust mechanism can be reduced in size, and ozone generated by the discharge can be prevented from being released into the atmosphere. Can be prevented from entering the atmosphere, and the stability of discharge can be improved. In addition, in the structure of FIG. 9, if there is substantially no entrainment of the air generated from the gap between the lower ends of the partition walls 81 and 82 and the surface of the work 3, the discharge gas intake and exhaust directions are reversed. FIG. 10 shows a modification of the exhaust mechanism shown in FIG. In this embodiment, two second partition walls 8 3, 8 4 are further disposed outside the two first partition walls 8 1, 8 2 at a fixed distance. . Helium is contained between the first partition walls 81, 82 and the adjacent second partition walls 83, 84 from above toward the work surface. One gas is supplied. By providing the exhaust passage and the gas curtain of, for example, helium gas outside the exhaust passage on both the upstream and downstream sides of the electrode 61 in this way, it is possible to more surely mix the air into the discharge regions 75, 76. Can be prevented.
図 9及び図 1 0に関連して説明した排気機構は、 図 1 1のように相対的に移動 する電極 8 5とワーク 7 3表面との間で直接放電させることにより表面処理する 場合にも、 適用することができる。 この場合には、 ワーク 7 3の移動方向 Αに沿 つて電極 8 5の上流、 下流側に仕切壁 8 6、 8 7が、 それそれガス供給通路及び ガス排気通路を画成するように、 かつその下端とワーク表面との間が電極 8 5と ワーク 7 3とのギャップより狭くなるように配置されている。 このとき、 ワーク 7 3の移動方向 Aに関して下流側がガス供給通路となり、 かつ上流側がガス排気 通路となる。 即ち、 放電ガスは、 前記下流側から放電領域 8 8に供給され、 上流 側から排出される。 従って、 放電領域 8 8より上流側のワーク 7 3表面には、 ガ ス排気通路の仕切壁 8 7との隙間から大気が混入し、 一旦除去された有機物等が 再付着する虞があるが、 再付着した有機物 8 9は、 ワーク 7 3が移動して放電領 域 8 8を通過する際に再度処理される。 また、 本実施例において、 電極 8 5の下 方をワーク 7 3を往復させて表面処理する場合には、 その移動方向によって前記 放電ガスを供給する向きを変更すればよい。  The exhaust mechanism described with reference to FIGS. 9 and 10 can also be used for surface treatment by directly discharging between the relatively moving electrode 85 and the surface of the workpiece 73 as shown in FIG. , Can be applied. In this case, the partition walls 86, 87 on the upstream and downstream sides of the electrode 85 along the moving direction ワ ー ク of the workpiece 73, respectively, define a gas supply passage and a gas exhaust passage, and The gap between the lower end and the workpiece surface is arranged to be narrower than the gap between the electrode 85 and the workpiece 73. At this time, the downstream side with respect to the moving direction A of the workpiece 73 is a gas supply passage, and the upstream side is a gas exhaust passage. That is, the discharge gas is supplied to the discharge region 88 from the downstream side and is discharged from the upstream side. Therefore, air may enter the surface of the workpiece 73 upstream of the discharge region 88 from a gap between the partition wall 87 and the gas exhaust passage, and the organic matter and the like that has been once removed may adhere again. The re-adhered organic substances 89 are processed again when the workpiece 73 moves and passes through the discharge area 88. Further, in the present embodiment, when the workpiece 73 is reciprocated below the electrode 85 to perform the surface treatment, the direction in which the discharge gas is supplied may be changed depending on the moving direction.
以上、 本発明の好適な実施例について添付図面を参照しつつ詳細に説明したが、 当業者に明らかなように、 本発明はその技術的範囲内において上記実施例に様々 な変形 ·変更を加えて実施することができる。 例えば、 図 4に示す異常放電によ るワーク等の損傷を防止するための補助接地電極構造は、 面対向タイプの表面処 理装置だけでなく、 図 5に示すラインタイプの表面処理装置や他の電極構造を有 する様々な表面処理装置についても同様に適用することができる。  The preferred embodiment of the present invention has been described above in detail with reference to the accompanying drawings. As will be apparent to those skilled in the art, the present invention includes various modifications and changes to the above embodiment within the technical scope thereof. Can be implemented. For example, the auxiliary grounding electrode structure shown in Fig. 4 for preventing damage to a workpiece or the like due to abnormal discharge is not only a surface-facing type surface treatment device, but also a line type surface treatment device shown in Fig. The present invention can be similarly applied to various surface treatment apparatuses having the above electrode structure.
また、 図 1に示すワーク 3 9の載置電極部を、 図 1 6に示す構成とすることも できる。 図 1 6において、 接地電極 1 1 0上には誘電体 1 1 1が配置される。 こ の誘電体 1 1 1には、 ワーク 3 9を収容できる凹部 1 1 2が形成されている。 こ の凹部 1 1 2によって、 誘電体 1 1 1の表面からワーク 3 9の表面に至る段差距 離 dを、 ワーク 3 9の板厚よりも小さくできる。 こうすると、 ワーク 3 9の外縁部に生じやすい異常放電を低減することができ た。 なお、 凹部 1 1 2の深さを、 ワーク 3 9の板厚とほほ同じとし、 上記の段差 距離 dをほぼゼロにしても良い。 Further, the mounting electrode portion of the work 39 shown in FIG. 1 may be configured as shown in FIG. In FIG. 16, a dielectric 111 is arranged on the ground electrode 110. The dielectric 111 has a recess 112 that can accommodate the work 39. By this concave portion 112, the step distance d from the surface of the dielectric 111 to the surface of the work 39 can be made smaller than the plate thickness of the work 39. In this way, abnormal discharge, which is likely to occur at the outer edge of the work 39, could be reduced. Note that the depth of the recesses 1 1 and 2 may be made substantially the same as the thickness of the work 39, and the above-mentioned step distance d may be made substantially zero.

Claims

請 求 の 範 囲 The scope of the claims
1 . 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電を発 生させ、 前記放電により励起された活性種を被処理材に曝露させて、 前記被処理 材の表面を処理する表面処理装置であって、  1. A discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and the active species excited by the discharge is exposed to the material to be treated, thereby treating the surface of the material to be treated. Surface treatment equipment,
前記所定のガスを通過させる孔を有し、 前記放電を発生させるための電極と、 前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 前記多孔質誘電体の外周縁部を支持する支持面を有し、 前記支持面上にて、 前 記放電による昇温に伴う前記誘電体の熱膨張変形を許容する支持部材と、 を有することを特徴とする表面処理装置。  An electrode for generating the discharge, having a hole through which the predetermined gas passes, a porous dielectric in which the electrode is arranged adjacent to an electrode surface facing the discharge region, and a porous dielectric A support member for supporting the outer peripheral edge of the support member, and a support member on the support surface for permitting thermal expansion and deformation of the dielectric due to the temperature rise by the discharge. Processing equipment.
2 . 前記電極及び前記多孔質誘電体は水平に配置され、  2. The electrode and the porous dielectric are arranged horizontally,
前記支持部材の前記支持面が上向きの傾斜面からなり、  The support surface of the support member comprises an upwardly inclined surface,
前記多孔質誘電体の前記外周縁部に、 前記支持面に摺接する下向きの傾斜面が 形成されていることを特徴とする請求項 1記載の表面処理装置。  2. The surface treatment apparatus according to claim 1, wherein a downward inclined surface that slides on the support surface is formed on the outer peripheral edge of the porous dielectric.
3 . 前記支持部材は、 前記多孔質誘電体の熱膨張変形に伴い、 垂直方向に移 動自在であることを特徴とする請求項 2に記載の表面処理装置。  3. The surface treatment apparatus according to claim 2, wherein the support member is movable in a vertical direction in accordance with thermal expansion deformation of the porous dielectric.
4 . 前記電極及び前記多孔質誘電体は水平に配置され、  4. The electrode and the porous dielectric are arranged horizontally,
前記支持部材の前記支持面が、 前記多孔質誘電体の前記外周縁部の下面に摺接 する水平面からなることを特徴とする請求項 1記載の表面処理装置。  2. The surface treatment apparatus according to claim 1, wherein the support surface of the support member is a horizontal surface that slides on a lower surface of the outer peripheral edge of the porous dielectric.
5 . 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電を発 生させ、 前記放電により励起される活性種を被処理材に曝露させて、 前記被処理 材の表面を処理する表面処理装置であって、  5. A discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be treated, thereby treating the surface of the material to be treated. Surface treatment equipment,
前記放電を発生させるための電極と、  An electrode for generating the discharge;
前記電極を覆い、 かつ、 前記放電領域に臨んで配置される誘電体と、 前記誘電体を支持する支持部材と、  A dielectric covering the electrode, and disposed facing the discharge region; and a support member supporting the dielectric,
を有し、  Has,
前記支持部材は、 前記放電による昇温に伴い前記誘電体が熱膨張変形する方向 にて自由度をもって、 前記誘電体を支持していることを特徴とする表面処理装置 The surface treatment apparatus, wherein the support member supports the dielectric with a degree of freedom in a direction in which the dielectric thermally expands and deforms as the temperature rises due to the discharge.
6 . 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電を発 生させ、 前記放電により励起される活性種を被処理材に曝露させて、 前記被処理 - lb - 材の表面を処理する表面処理装置であって、 6. A discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be processed, and the material to be processed is processed. -lb-surface treatment equipment for treating the surface of material,
前記所定のガスを通過させる孔を有し、 前記放電を発生させるための電極と、 前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 前記多孔質誘電体と前記被処理材との間の前記放電領域の周囲に、 それそれ独 立して流量調整可能な複数のガス排気口を配設したことを特徴とする表面処理装  An electrode for generating the discharge, having a hole through which the predetermined gas passes, a porous dielectric in which the electrode is arranged adjacent to an electrode surface facing the discharge region, and a porous dielectric A plurality of gas exhaust ports each independently capable of adjusting a flow rate disposed around the discharge region between the discharge region and the material to be processed.
7 . 前記複数のガス排気口が、 前記放電領域の周囲の周方向に沿って等間隔 で配置されていることを特徴とする請求項 6記載の表面処理装置。 7. The surface treatment apparatus according to claim 6, wherein the plurality of gas exhaust ports are arranged at equal intervals along a circumferential direction around the discharge region.
8 . 前記ガス排気口は、 前記放電領域が形成される高さ位置とは異なる高さ 位置に開設されていることを特徴とする請求項 6又は 7記載の表面処理装置。  8. The surface treatment apparatus according to claim 6, wherein the gas exhaust port is opened at a height different from a height where the discharge region is formed.
9 . 前記多孔質誘電体と前記被処理材との間のギヤップより狭幅の排気通路 を、 前記ガス排気口の上流側に設けたことを特徴とする請求項 6乃至 8のいずれ か記載の表面処理装置。  9. The exhaust passage having a width narrower than a gap between the porous dielectric and the material to be processed is provided upstream of the gas exhaust port, according to any one of claims 6 to 8. Surface treatment equipment.
1 0 . 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電を 発生させ、 前記放電により励起される活性種を被処理材に曝露させて、 前記被処 理材の表面を処理する表面処理装置であって、  10. A discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be treated, so that the surface of the material to be treated is exposed. A surface treatment device for treating,
ガス排気孔を有し、 前記放電を発生させるための電極と、  An electrode having a gas exhaust hole, for generating the discharge,
前記電極が前記放電領域に臨む第 1の電極面と隣接して配置される多孔質誘電 体と、  A porous dielectric in which the electrode is disposed adjacent to a first electrode surface facing the discharge region;
前記所定のガスを、 前記多孔質誘電体と前記被処理材との間の前記放電領域に 向けて、 前記放電領域の周囲から導入する複数のガス導入口と、  A plurality of gas inlets for introducing the predetermined gas toward the discharge region between the porous dielectric and the material to be processed, from around the discharge region;
を有し、  Has,
前記被処理材に暴露されたガスを、 前記多孔質誘電体及び前記電極を通過させ て排気させることを特徴とする表面処理装置。  A surface treatment apparatus, wherein a gas exposed to the material to be treated is exhausted by passing through the porous dielectric and the electrode.
1 1 . 前記複数のガス導入口は、 それそれ独立して流量調整可能な流量調整 手段を有することを特徴とする表面処理装置。  11. The surface treatment apparatus according to claim 1, wherein each of the plurality of gas inlets has a flow rate adjusting means capable of independently adjusting a flow rate.
1 2 . 前記複数のガス導入口が、 前記放電領域の周囲の周方向に沿って等間 隔で配置されていることを特徴とする請求項 1 0又は 1 1記載の表面処理装置。  12. The surface treatment apparatus according to claim 10, wherein the plurality of gas introduction ports are arranged at equal intervals along a circumferential direction around the discharge region.
1 3 . 前記電極の前記第 1の電極面とは反対側の第 2の電極面に隣接して、 排気処理用触媒を配設したことを特徴とする請求項 1 0乃至 1 2のいずれか記載 の表面処理装置。 1 3. Adjacent to a second electrode surface of the electrode opposite to the first electrode surface, The surface treatment apparatus according to any one of claims 10 to 12, further comprising an exhaust treatment catalyst.
1 4 . 大気圧又はその近傍の圧力下の放電領域に、 所定のガスにより放電を 発生させ、 前記放電により励起される活性種を被処理材に曝露させて、 前記被処 理材の表面を処理する表面処理装置であって、  14. A discharge is generated by a predetermined gas in a discharge region under atmospheric pressure or a pressure close to the atmospheric pressure, and active species excited by the discharge are exposed to the material to be treated, so that the surface of the material to be treated is exposed. A surface treatment device for treating,
前記放電を発生させるための電極と、  An electrode for generating the discharge;
前記電極が前記放電領域に臨む電極面と隣接して配置される多孔質誘電体と、 を有し、  A porous dielectric, wherein the electrode is disposed adjacent to an electrode surface facing the discharge region,
前記電極が、 前記所定のガスを通過させるアルミニウム多孔質材料から成るこ とを特徴とする表面処理装置。  The surface treatment device, wherein the electrode is made of an aluminum porous material through which the predetermined gas passes.
1 5 . 前記多孔質誘電体が、 アルミナ多孔質材料から成ることを特徴とする 請求項 1 4記載の表面処理装置。  15. The surface treatment apparatus according to claim 14, wherein the porous dielectric is made of an alumina porous material.
1 6 . 被処理材が載置される第 1の電極と、  1 6. A first electrode on which a material to be treated is placed,
前記第 1の電極と対向して配置される第 2の電極と、  A second electrode disposed opposite to the first electrode;
前記第 1の電極に載置された前記被処理材の周囲にて、 前記第 2の電極に向け て、 前記被処理材よりも突出する補助電極と、  An auxiliary electrode protruding from the processing target material toward the second electrode around the processing target material placed on the first electrode;
を有し、  Has,
前記第 1の電極と前記第 2の電極との間と、 前記第 2の電極と前記補助電極と の間にて、 大気圧又はその近傍の圧力下でそれそれ放電を発生させ、 前記第 1の 電極と前記第 2の電極との間の前記放電により励起される活性種を前記被処理材 に曝露させて、 前記被処理材の表面を処理することを特徴とする表面処理装置。  A discharge is generated between the first electrode and the second electrode and between the second electrode and the auxiliary electrode under atmospheric pressure or a pressure near the atmospheric pressure. A surface treatment apparatus, comprising: exposing an active species excited by the discharge between the electrode and the second electrode to the material to be treated to treat the surface of the material to be treated.
1 7 . 前記補助電極の突出高さが調節可能であることを特徴とする請求項 1 6記載の表面処理装置。  17. The surface treatment apparatus according to claim 16, wherein a projection height of the auxiliary electrode is adjustable.
1 8 . 大気圧又はその近傍の圧力下にて生成される放電領域に対して、 被処 理材を移動させながら、 前記放電領域にて励起される活性種を、 前記被処理材に 曝露させて、 前記被処理材の表面を処理する表面処理装置であって、  18. The active material excited in the discharge region is exposed to the material to be processed while moving the material to be processed with respect to the discharge region generated at or near atmospheric pressure. A surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向に沿った第 1の幅を有し、 前記移動方向と直交する 方向を長手方向として延在形成され、 前記第 1の電極との間に前記放電領域を生 成する第 2の電極と、 The first electrode has a first width along a moving direction of the first electrode, is formed to extend in a direction orthogonal to the moving direction as a longitudinal direction, and generates the discharge region between the first electrode and the first electrode. A second electrode to be formed;
前記第 2の電極に着脱可能に取り付けられ、 前記第 1の電極の前記移動方向に 沿った第 2の幅を有する補助電極部分と、  An auxiliary electrode portion detachably attached to the second electrode and having a second width along the moving direction of the first electrode;
を有し、  Has,
前記補助電極部分の着脱により、 前記放電領域の範囲が調整可能であることを 特徴とする表面処理装置。  The surface treatment apparatus according to claim 1, wherein a range of the discharge region is adjustable by attaching and detaching the auxiliary electrode portion.
1 9 . 前記補助電極部分が、 前記第 2の電極の前記長手方向にて部分的に取 り付けられることを特徴とする請求項 1 8記載の表面処理装置。  19. The surface treatment apparatus according to claim 18, wherein the auxiliary electrode portion is partially attached in the longitudinal direction of the second electrode.
2 0 . 前記補助電極部分が、 前記第 2の電極の前記長手方向の両端部に取り 付けられることを特徴とする請求項 1 9記載の表面処理装置。  20. The surface treatment apparatus according to claim 19, wherein the auxiliary electrode portion is attached to both ends in the longitudinal direction of the second electrode.
2 1 . 前記補助電極部分が、 前記第 2の電極の前記長手方向の全長に豆って 取り付けられることを特徴とする請求項 1 8記載の表面処理装置。  21. The surface treatment apparatus according to claim 18, wherein the auxiliary electrode portion is attached to the entire length of the second electrode in the longitudinal direction.
2 2 . 大気圧又はその近傍の圧力下にて生成される放電領域に対して、 被処 理材を移動させながら、 前記放電領域にて励起される活性種を、 前記被処理材に 曝露させて、 前記被処理材の表面を処理する表面処理装置であって、  22. The active species excited in the discharge region is exposed to the material to be treated while moving the material to be treated with respect to the discharge region generated under the atmospheric pressure or a pressure close thereto. A surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向と直交する方向を長手方向として延在形成され、 前 記第 1の電極との間に前記放電領域を生成する第 2の電極と、  A second electrode that is formed to extend in a direction perpendicular to the direction of movement of the first electrode as a longitudinal direction, and that generates the discharge region between the first electrode and the second electrode;
を有し、  Has,
前記第 2の電極は、  The second electrode is
前記放電領域に供給されるガスが導入される、 前記長手方向に沿って形成され る中間チャンバ一と、  An intermediate chamber formed along the longitudinal direction, into which gas supplied to the discharge region is introduced;
前記中間チャンバ一に前記ガスを導入する少なくとも一つのガス導入口と、 前記中間チャンパ一内の前記ガスを前記放電領域に向けて噴出する、 前記長手 方向に沿ってスリッ ト状に形成されたガス噴出口と、  At least one gas inlet for introducing the gas into the intermediate chamber, and a gas formed in a slit shape along the longitudinal direction, which jets the gas in the intermediate champer toward the discharge region. Spout,
を有し、  Has,
前記少なくとも一つのガス導入口は、 前記ガス噴出口の延長線上から外れた位 置に開口していることを特徴とする表面処理装置。  The surface treatment apparatus according to claim 1, wherein the at least one gas inlet is open at a position off an extension of the gas outlet.
2 3 . 前記中間チャンバ一は、 相対向する 2つの側壁と、 前記ガス噴出口が  23. The intermediate chamber has two opposing side walls and the gas ejection port.
訂正された用紙 (規則 91) 開口する底壁とを有し、 Corrected form (Rule 91) Having an open bottom wall,
前記少なく とも一つのガス導入口は、 一方の前記側壁に開口していることを特 徴とする請求項 2 2記載の表面処理装置。  23. The surface treatment apparatus according to claim 22, wherein the at least one gas introduction port is open to one of the side walls.
2 4 . 前記第 2の電極が前記放電領域に臨む電極面を覆う誘電体がさらに設 けられ、  24. A dielectric covering the electrode surface where the second electrode faces the discharge region is further provided.
前記中間チャンバ一は、 前記第 2の電極と前記誘電体との間に形成され、 前記ガス噴出口は、 前記誘電体に形成されていることを特徴とする請求項 2 2 又は 2 3記載の表面処理装置。  The intermediate chamber according to claim 22, wherein the intermediate chamber is formed between the second electrode and the dielectric, and the gas outlet is formed in the dielectric. Surface treatment equipment.
2 5 . 大気圧又はその近傍の圧力下にて生成される放電領域に対して、 被処 理材を移動させながら、 前記放電領域にて励起される活性種を、 前記被処理材に 曝露させて、 前記被処理材の表面を処理する表面処理装置であって、  25. The active material excited in the discharge region is exposed to the material to be processed while moving the material to be processed with respect to the discharge region generated under atmospheric pressure or a pressure close thereto. A surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して移動する第 1の電極と、  A first electrode on which the workpiece is placed and moved;
前記第 1の電極の移動方向と直交する方向を長手方向として延在形成され、 前 記長手方向に沿ってガスを噴出するガス噴出口を有し、 前記第 1の電極との間に 前記放電領域を生成する第 2の電極と、  A gas ejection port that is formed to extend in a direction perpendicular to the direction of movement of the first electrode and that ejects gas along the longitudinal direction, wherein the discharge is performed between the first electrode and the first electrode; A second electrode for creating a region;
前記第 2の電極よりも前記移動方向の上流側に設けられ、 前記第 2電極と前記 被処理材との間のギヤッブと実質的に同等のギヤッブを形成する第 1の延長部材 と、  A first extension member that is provided upstream of the second electrode in the movement direction and forms a gear that is substantially equivalent to a gear between the second electrode and the workpiece;
を有することを特徴とする表面処理装置。  A surface treatment apparatus comprising:
2 6 . 前記第 2の電極よりも前記移動方向の下流側に、 前記第 2電極と前記被 処理材との間のギヤッブと実質的に同等のギヤップを形成する第 2の延長部材を さらに設けたことを特徴とする請求項 2 5に記載の表面処理装置。  26. A second extension member is further provided downstream of the second electrode in the movement direction to form a gap substantially equivalent to a gear between the second electrode and the workpiece. 26. The surface treatment apparatus according to claim 25, wherein:
2 7 . 大気圧又はその近傍の圧力下にて生成される放電領域に対して、 被処 理材を移動させながら、 記放電領域にて励起される活性種を、 前記被処理材に 曝露させて、 前記被処理材の表面を処理する表面処理装置であって、  27. The active species excited in the discharge region is exposed to the material to be treated while moving the material to be treated with respect to the discharge region generated at or near atmospheric pressure. A surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して水平移動する第 1の電極と、  A first electrode on which the workpiece is placed and horizontally moved;
前記第 1の電極の移動方向と直交する水平方向を長手方向として延在形成され、 前記長手方向に沿ってガスを噴出するガス噴出口を有し、 前記第 1の電極との間 に前記放電領域を生成する第 2の電極と、 一 ϋ U 一 前記第 2の電極に対して前記移動方向の下流側及び上流側にそれそれ配置され、 前記第 2の電極との間に間隙を介して垂直に配置される 2つの第 1の仕切り壁と、 を有し、 A longitudinal direction extending in a horizontal direction orthogonal to a moving direction of the first electrode, a gas ejection port for ejecting gas along the longitudinal direction, and the discharge between the first electrode and the first electrode; A second electrode for creating a region; Ϋ U 1 Two first electrodes which are respectively arranged on the downstream side and the upstream side in the movement direction with respect to the second electrode, and which are vertically arranged with a gap between the second electrode and the second electrode. Having a partition wall and
前記被処理材に暴露されたガスを、 2つの前記第 1の仕切り壁と前記第 2の電 極との間の前記間隙を介して排気することを特徴とする表面処理装置。  A surface treatment apparatus, wherein a gas exposed to the material to be treated is exhausted through the gap between the two first partition walls and the second electrode.
2 8 . 2つの前記第 1の仕切り壁の外側に、 該第 1の仕切り壁と平行に 2つの 第 2の仕切り壁をさらに設け、 相対向する第 1、 第 2の仕切り壁間にガスを導入 し、 その導入ガスにより、 前記放電領域を挟んだ両側に、 前記放電領域を大気と 仕切るガスカーテンを形成したことを特徴とする請求項 2 7に記載の表面処理装  28. Outside the two first partition walls, two second partition walls are further provided in parallel with the first partition walls, and gas is supplied between the opposed first and second partition walls. 28. The surface treatment device according to claim 27, wherein a gas curtain that partitions the discharge region from the atmosphere is formed on both sides of the discharge region with the introduced gas.
2 9 . 大気圧又はその近傍の圧力下にて生成される放電領域に対して、 被処 理材を移動させながら、 前記放電領域にて励起される活性種を、 前記被処理材に 曝露させて、 前記被処理材の表面を処理する表面処理装置であって、 29. The active species excited in the discharge region is exposed to the material to be processed while moving the material to be processed with respect to the discharge region generated at or near atmospheric pressure. A surface treatment apparatus for treating the surface of the material to be treated,
前記被処理材を載置して水平移動する第 1の電極と、  A first electrode on which the workpiece is placed and horizontally moved;
前記第 1の電極の移動経路と対向する位置に垂直に配置され、 前記第 1の電極 との間に前記放電領域を生成する第 2の電極と、  A second electrode that is vertically arranged at a position facing a movement path of the first electrode and generates the discharge region between the first electrode and the second electrode;
前記第 2の電極に対して前記移動方向の上流側にて垂直に配置され、 前記第 2 の電極との間に、 前記放電領域にガス導入する空間を形成する第 1の仕切り壁と、 前記第 2の電極に対して前記移動方向の下流側にて垂直に配置され、 前記第 2 の電極との間に、 前記放電領域からのガスを排気する空間を形成する第 2の仕切 り壁と、  A first partition wall vertically arranged on the upstream side in the movement direction with respect to the second electrode, and a first partition wall forming a space for introducing gas into the discharge region between the second electrode and the second electrode; A second partition wall vertically arranged on the downstream side of the moving direction with respect to the second electrode and forming a space for exhausting gas from the discharge region between the second electrode and the second partition wall; ,
を有することを特徴とする表面処理装置。  A surface treatment apparatus comprising:
PCT/JP1996/000935 1995-04-07 1996-04-05 Surface treatment apparatus WO1996031997A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52616196A JP3959745B2 (en) 1995-04-07 1996-04-05 Surface treatment equipment
US08/750,397 US6086710A (en) 1995-04-07 1996-04-05 Surface treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10710795 1995-04-07
JP7/107107 1995-04-07

Publications (1)

Publication Number Publication Date
WO1996031997A1 true WO1996031997A1 (en) 1996-10-10

Family

ID=14450651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000935 WO1996031997A1 (en) 1995-04-07 1996-04-05 Surface treatment apparatus

Country Status (4)

Country Link
US (1) US6086710A (en)
JP (1) JP3959745B2 (en)
TW (1) TW360925B (en)
WO (1) WO1996031997A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1155599A1 (en) * 1999-02-01 2001-11-21 Sigma Technologies International, Inc. Atmospheric steady-state glow-discharge plasma
JP2003257648A (en) * 2002-03-05 2003-09-12 Seiko Epson Corp Surface treating device, organic el device manufacturing apparatus, organic el device, and electronic apparatus
JP2003272837A (en) * 2002-03-13 2003-09-26 Seiko Epson Corp Surface treatment apparatus, manufacturing method and manufacturing device of organic el device, organic el device, and electronic device
JP2004238641A (en) * 2003-02-03 2004-08-26 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2004241407A (en) * 2003-02-03 2004-08-26 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2004259484A (en) * 2003-02-24 2004-09-16 Sharp Corp Plasma processing unit
JP2005019150A (en) * 2003-06-25 2005-01-20 Sekisui Chem Co Ltd Atmospheric pressure plasma processing device
JP2005166895A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Method and device for plasma treatment
JP2006032821A (en) * 2004-07-21 2006-02-02 Sekisui Chem Co Ltd Plasma processor
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device
JP2006048941A (en) * 2004-07-30 2006-02-16 Uinzu:Kk Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method
WO2006035628A1 (en) * 2004-09-29 2006-04-06 Sekisui Chemical Co., Ltd. Plasma processing system
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma treatment apparatus
JP2006287152A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Plasma processing device
JP2006313669A (en) * 2005-05-06 2006-11-16 Sekisui Chem Co Ltd Plasma treatment method and plasma treatment device
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus
JP2007035294A (en) * 2005-07-22 2007-02-08 Sekisui Chem Co Ltd Normal pressure plasma processing device for water repelling treatment or the like
JP2008153065A (en) * 2006-12-18 2008-07-03 Sekisui Chem Co Ltd Plasma treatment device
JP2008535203A (en) * 2005-04-05 2008-08-28 松下電器産業株式会社 Gas shower plate for plasma processing equipment
JP2009218517A (en) * 2008-03-12 2009-09-24 Tohoku Univ Manufacturing method of shower plate, shower plate and plasma processing apparatus
KR100935144B1 (en) * 2006-12-20 2010-01-06 세이코 엡슨 가부시키가이샤 Plasma processing apparatus
JPWO2008132901A1 (en) * 2007-04-19 2010-07-22 積水化学工業株式会社 Plasma processing equipment
JP2014001693A (en) * 2012-06-19 2014-01-09 Toshiba Corp Axial flow turbine

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1326718B2 (en) * 2000-10-04 2007-09-05 Dow Corning Ireland Limited Method and apparatus for forming a coating
US7074720B2 (en) * 2001-06-25 2006-07-11 Matsushita Electric Industrial Co., Ltd. Plasma treating apparatus, plasma treating method and method of manufacturing semiconductor device
US6890386B2 (en) * 2001-07-13 2005-05-10 Aviza Technology, Inc. Modular injector and exhaust assembly
TW200409669A (en) * 2002-04-10 2004-06-16 Dow Corning Ireland Ltd Protective coating composition
TW200308187A (en) * 2002-04-10 2003-12-16 Dow Corning Ireland Ltd An atmospheric pressure plasma assembly
GB0208261D0 (en) * 2002-04-10 2002-05-22 Dow Corning An atmospheric pressure plasma assembly
WO2004021748A1 (en) * 2002-08-30 2004-03-11 Sekisui Chemical Co., Ltd. Plasma processing system
CA2471987C (en) * 2002-10-07 2008-09-02 Sekisui Chemical Co., Ltd. Plasma surface processing apparatus
JP4283520B2 (en) * 2002-10-07 2009-06-24 積水化学工業株式会社 Plasma deposition system
KR100779814B1 (en) * 2003-03-06 2007-11-28 세키스이가가쿠 고교가부시키가이샤 Plasma processing apparatus and method
US7296534B2 (en) * 2003-04-30 2007-11-20 Tokyo Electron Limited Hybrid ball-lock attachment apparatus
GB0323295D0 (en) * 2003-10-04 2003-11-05 Dow Corning Deposition of thin films
US20050220568A1 (en) * 2004-03-31 2005-10-06 Tokyo Electron Limited Method and system for fastening components used in plasma processing
JP2008519411A (en) * 2004-11-05 2008-06-05 ダウ・コーニング・アイルランド・リミテッド Plasma system
GB0509648D0 (en) * 2005-05-12 2005-06-15 Dow Corning Ireland Ltd Plasma system to deposit adhesion primer layers
JP4915985B2 (en) * 2006-02-06 2012-04-11 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
US20100009098A1 (en) * 2006-10-03 2010-01-14 Hua Bai Atmospheric pressure plasma electrode
BRPI0622083A2 (en) * 2006-10-27 2014-06-10 Oerlikon Trading Ag METHOD AND APPARATUS FOR THE MANUFACTURE OF PURIFIED SUBSTRATES OR PURE SUBSTRATES WHICH ARE ADDITIONAL PROCESSED.
US8206506B2 (en) * 2008-07-07 2012-06-26 Lam Research Corporation Showerhead electrode
US8221582B2 (en) 2008-07-07 2012-07-17 Lam Research Corporation Clamped monolithic showerhead electrode
US8161906B2 (en) 2008-07-07 2012-04-24 Lam Research Corporation Clamped showerhead electrode assembly
US8402918B2 (en) * 2009-04-07 2013-03-26 Lam Research Corporation Showerhead electrode with centering feature
US8272346B2 (en) 2009-04-10 2012-09-25 Lam Research Corporation Gasket with positioning feature for clamped monolithic showerhead electrode
JP5064445B2 (en) * 2009-06-25 2012-10-31 日本碍子株式会社 Plasma reactor
US8419959B2 (en) * 2009-09-18 2013-04-16 Lam Research Corporation Clamped monolithic showerhead electrode
JP3160877U (en) * 2009-10-13 2010-07-15 ラム リサーチ コーポレーションLam Research Corporation End-clamping and machine-fixed inner electrode of showerhead electrode assembly
JP5809396B2 (en) * 2010-06-24 2015-11-10 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
US8573152B2 (en) 2010-09-03 2013-11-05 Lam Research Corporation Showerhead electrode
US8470127B2 (en) 2011-01-06 2013-06-25 Lam Research Corporation Cam-locked showerhead electrode and assembly
US9738976B2 (en) * 2013-02-27 2017-08-22 Ioxus, Inc. Energy storage device assembly
JP6375163B2 (en) * 2014-07-11 2018-08-15 東京エレクトロン株式会社 Plasma processing apparatus and upper electrode assembly
MX2014013233A (en) * 2014-10-30 2016-05-02 Ct Investig Materiales Avanzados Sc Injection nozzle for aerosols and their method of use to deposit different coatings via vapor chemical deposition assisted by aerosol.
WO2018026025A1 (en) * 2016-08-02 2018-02-08 주식회사 피글 Plasma treatment device
US20190048467A1 (en) * 2017-08-10 2019-02-14 Applied Materials, Inc. Showerhead and process chamber incorporating same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127866A (en) * 1984-11-27 1986-06-16 Anelva Corp Plasma cvd device
JPH04186619A (en) * 1990-11-19 1992-07-03 Oki Electric Ind Co Ltd Manufacture of semiconductor
JPH062149A (en) * 1992-06-19 1994-01-11 Matsushita Electric Works Ltd Method and apparatus for plasma treatment

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2082505A5 (en) * 1970-03-18 1971-12-10 Radiotechnique Compelec
US3762941A (en) * 1971-05-12 1973-10-02 Celanese Corp Modification of carbon fiber surface characteristics
US4012307A (en) * 1975-12-05 1977-03-15 General Dynamics Corporation Method for conditioning drilled holes in multilayer wiring boards
JPS6056431B2 (en) * 1980-10-09 1985-12-10 三菱電機株式会社 plasma etching equipment
US4380488A (en) * 1980-10-14 1983-04-19 Branson International Plasma Corporation Process and gas mixture for etching aluminum
FR2538987A1 (en) * 1983-01-05 1984-07-06 Commissariat Energie Atomique ENCLOSURE FOR THE TREATMENT AND PARTICULARLY THE ETCHING OF SUBSTRATES BY THE REACTIVE PLASMA METHOD
JPS59158525A (en) * 1983-02-28 1984-09-08 Mitsubishi Electric Corp Method for forming aluminum alloy film pattern
JPS601862A (en) * 1983-06-20 1985-01-08 Seiko Epson Corp Manufacture of semiconductor device
GB8516984D0 (en) * 1985-07-04 1985-08-07 British Telecomm Etching method
US4749440A (en) * 1985-08-28 1988-06-07 Fsi Corporation Gaseous process and apparatus for removing films from substrates
US4708766A (en) * 1986-11-07 1987-11-24 Texas Instruments Incorporated Hydrogen iodide etch of tin oxide
GB8713986D0 (en) * 1987-06-16 1987-07-22 Shell Int Research Apparatus for plasma surface treating
US4857382A (en) * 1988-04-26 1989-08-15 General Electric Company Apparatus and method for photoetching of polyimides, polycarbonates and polyetherimides
DE68922244T2 (en) * 1988-06-06 1995-09-14 Japan Res Dev Corp Process for performing a plasma reaction at atmospheric pressure.
US5178682A (en) * 1988-06-21 1993-01-12 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin layer on a semiconductor substrate and apparatus therefor
GB8827933D0 (en) * 1988-11-30 1989-01-05 Plessey Co Plc Improvements relating to soldering processes
US4921157A (en) * 1989-03-15 1990-05-01 Microelectronics Center Of North Carolina Fluxless soldering process
JP2749630B2 (en) * 1989-04-24 1998-05-13 住友電気工業株式会社 Plasma surface treatment method
JP2861119B2 (en) * 1989-10-13 1999-02-24 富士ゼロックス株式会社 Image sensor manufacturing method
JP2589599B2 (en) * 1989-11-30 1997-03-12 住友精密工業株式会社 Blow-out type surface treatment device
JPH03174972A (en) * 1989-12-04 1991-07-30 Matsushita Electric Ind Co Ltd Method for soldering substrate
JP2517771B2 (en) * 1990-02-13 1996-07-24 幸子 岡崎 Atmospheric pressure plasma surface treatment method
JP2897055B2 (en) * 1990-03-14 1999-05-31 株式会社ブリヂストン Method for producing rubber-based composite material
US5045166A (en) * 1990-05-21 1991-09-03 Mcnc Magnetron method and apparatus for producing high density ionic gas discharge
US5147520A (en) * 1991-02-15 1992-09-15 Mcnc Apparatus and method for controlling processing uniformity in a magnetron
DE4109619C1 (en) * 1991-03-23 1992-08-06 Leybold Ag, 6450 Hanau, De
JP3206095B2 (en) * 1991-04-12 2001-09-04 株式会社ブリヂストン Surface treatment method and apparatus
JPH04329640A (en) * 1991-05-01 1992-11-18 Mitsubishi Electric Corp Method of dry etching for wiring layer
JP3283889B2 (en) * 1991-07-24 2002-05-20 株式会社きもと Rust prevention method
US5391855A (en) * 1991-08-01 1995-02-21 Komoto Tech, Inc. Apparatus for atmospheric plasma treatment of a sheet-like structure
GB2259185B (en) * 1991-08-20 1995-08-16 Bridgestone Corp Method and apparatus for surface treatment
JP3151014B2 (en) * 1991-09-20 2001-04-03 住友精密工業株式会社 Wafer end face etching method and apparatus
US5201995A (en) * 1992-03-16 1993-04-13 Mcnc Alternating cyclic pressure modulation process for selective area deposition
US5368685A (en) * 1992-03-24 1994-11-29 Hitachi, Ltd. Dry etching apparatus and method
US5292370A (en) * 1992-08-14 1994-03-08 Martin Marietta Energy Systems, Inc. Coupled microwave ECR and radio-frequency plasma source for plasma processing
JP2572924B2 (en) * 1992-09-04 1997-01-16 醇 西脇 Surface treatment method of metal by atmospheric pressure plasma
KR960000190B1 (en) * 1992-11-09 1996-01-03 엘지전자주식회사 Semiconductor manufacturing method and apparatus thereof
JPH06190269A (en) * 1992-12-25 1994-07-12 Seiko Epson Corp Dry washing method and device therefor
JPH06224154A (en) * 1993-01-25 1994-08-12 Mitsubishi Electric Corp Plasma processing apparatus
US5413671A (en) * 1993-08-09 1995-05-09 Advanced Micro Devices, Inc. Apparatus and method for removing deposits from an APCVD system
JP2638443B2 (en) * 1993-08-31 1997-08-06 日本電気株式会社 Dry etching method and dry etching apparatus
US5449432A (en) * 1993-10-25 1995-09-12 Applied Materials, Inc. Method of treating a workpiece with a plasma and processing reactor having plasma igniter and inductive coupler for semiconductor fabrication
US5499754A (en) * 1993-11-19 1996-03-19 Mcnc Fluxless soldering sample pretreating system
US5407121A (en) * 1993-11-19 1995-04-18 Mcnc Fluxless soldering of copper
US5522934A (en) * 1994-04-26 1996-06-04 Tokyo Electron Limited Plasma processing apparatus using vertical gas inlets one on top of another
US5567255A (en) * 1994-10-13 1996-10-22 Integrated Process Equipment Corp. Solid annular gas discharge electrode
US5609290A (en) * 1995-04-20 1997-03-11 The University Of North Carolina At Charlotte Fluxless soldering method
US5728224A (en) * 1995-09-13 1998-03-17 Tetra Laval Holdings & Finance S.A. Apparatus and method for manufacturing a packaging material using gaseous phase atmospheric photo chemical vapor deposition to apply a barrier layer to a moving web substrate
US5597438A (en) * 1995-09-14 1997-01-28 Siemens Aktiengesellschaft Etch chamber having three independently controlled electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127866A (en) * 1984-11-27 1986-06-16 Anelva Corp Plasma cvd device
JPH04186619A (en) * 1990-11-19 1992-07-03 Oki Electric Ind Co Ltd Manufacture of semiconductor
JPH062149A (en) * 1992-06-19 1994-01-11 Matsushita Electric Works Ltd Method and apparatus for plasma treatment

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1155599A1 (en) * 1999-02-01 2001-11-21 Sigma Technologies International, Inc. Atmospheric steady-state glow-discharge plasma
EP1155599A4 (en) * 1999-02-01 2007-03-28 Sigma Technologies Internation Atmospheric steady-state glow-discharge plasma
US7138034B2 (en) 2001-06-25 2006-11-21 Matsushita Electric Industrial Co., Ltd. Electrode member used in a plasma treating apparatus
JP2003257648A (en) * 2002-03-05 2003-09-12 Seiko Epson Corp Surface treating device, organic el device manufacturing apparatus, organic el device, and electronic apparatus
JP2003272837A (en) * 2002-03-13 2003-09-26 Seiko Epson Corp Surface treatment apparatus, manufacturing method and manufacturing device of organic el device, organic el device, and electronic device
JP2004238641A (en) * 2003-02-03 2004-08-26 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2004241407A (en) * 2003-02-03 2004-08-26 Seiko Epson Corp Surface treatment apparatus and surface treatment method
JP2004259484A (en) * 2003-02-24 2004-09-16 Sharp Corp Plasma processing unit
JP2005019150A (en) * 2003-06-25 2005-01-20 Sekisui Chem Co Ltd Atmospheric pressure plasma processing device
JP4507575B2 (en) * 2003-12-02 2010-07-21 パナソニック株式会社 Plasma processing method and apparatus
JP2005166895A (en) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd Method and device for plasma treatment
JP2006032821A (en) * 2004-07-21 2006-02-02 Sekisui Chem Co Ltd Plasma processor
JP4604591B2 (en) * 2004-07-28 2011-01-05 パナソニック株式会社 Plasma processing method
JP2006040743A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Plasma processing method and plasma processing device
JP2006048941A (en) * 2004-07-30 2006-02-16 Uinzu:Kk Atmospheric pressure plasma treatment device and atmospheric pressure plasma treatment method
JP4570134B2 (en) * 2004-07-30 2010-10-27 株式会社ウインズ Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method
WO2006035628A1 (en) * 2004-09-29 2006-04-06 Sekisui Chemical Co., Ltd. Plasma processing system
US7886689B2 (en) 2004-09-29 2011-02-15 Sekisui Chemical Co., Ltd. Plasma processing apparatus
US7886688B2 (en) 2004-09-29 2011-02-15 Sekisui Chemical Co., Ltd. Plasma processing apparatus
JP4576983B2 (en) * 2004-11-09 2010-11-10 セイコーエプソン株式会社 Plasma processing equipment
JP2006134828A (en) * 2004-11-09 2006-05-25 Seiko Epson Corp Plasma treatment apparatus
KR101198428B1 (en) * 2005-04-05 2012-11-06 파나소닉 주식회사 Gas shower plate for plasma processing apparatus
JP4654738B2 (en) * 2005-04-05 2011-03-23 パナソニック株式会社 Plasma processing equipment
JP4746620B2 (en) * 2005-04-05 2011-08-10 パナソニック株式会社 Gas shower plate for plasma processing equipment
US8757090B2 (en) 2005-04-05 2014-06-24 Panasonic Corporation Gas shower plate for plasma processing apparatus
JP2008535203A (en) * 2005-04-05 2008-08-28 松下電器産業株式会社 Gas shower plate for plasma processing equipment
JP2006287152A (en) * 2005-04-05 2006-10-19 Matsushita Electric Ind Co Ltd Plasma processing device
JP4733421B2 (en) * 2005-05-06 2011-07-27 積水化学工業株式会社 Plasma processing method and plasma processing apparatus
JP2006313669A (en) * 2005-05-06 2006-11-16 Sekisui Chem Co Ltd Plasma treatment method and plasma treatment device
JP4551290B2 (en) * 2005-07-22 2010-09-22 積水化学工業株式会社 Normal pressure plasma treatment equipment for water repellency
JP2007035294A (en) * 2005-07-22 2007-02-08 Sekisui Chem Co Ltd Normal pressure plasma processing device for water repelling treatment or the like
JP2008153065A (en) * 2006-12-18 2008-07-03 Sekisui Chem Co Ltd Plasma treatment device
KR100935144B1 (en) * 2006-12-20 2010-01-06 세이코 엡슨 가부시키가이샤 Plasma processing apparatus
JP4647705B2 (en) * 2007-04-19 2011-03-09 積水化学工業株式会社 Plasma processing equipment
JPWO2008132901A1 (en) * 2007-04-19 2010-07-22 積水化学工業株式会社 Plasma processing equipment
JP4590597B2 (en) * 2008-03-12 2010-12-01 国立大学法人東北大学 Shower plate manufacturing method
JP2009218517A (en) * 2008-03-12 2009-09-24 Tohoku Univ Manufacturing method of shower plate, shower plate and plasma processing apparatus
JP2014001693A (en) * 2012-06-19 2014-01-09 Toshiba Corp Axial flow turbine

Also Published As

Publication number Publication date
US6086710A (en) 2000-07-11
JP3959745B2 (en) 2007-08-15
TW360925B (en) 1999-06-11

Similar Documents

Publication Publication Date Title
WO1996031997A1 (en) Surface treatment apparatus
KR101258287B1 (en) Gas distribution plate assembly for plasma reactors
KR100587629B1 (en) Gas distribution plate assembly for providing laminar gas flow across the surface of a substrate
CN112447474B (en) Plasma processor with movable ring
JPH05190506A (en) Method and device for dry etching
JP4025196B2 (en) Equipment that achieves operations that require control of the entire environment in the chamber
TW202001984A (en) Active gas generating apparatus and film forming apparatus
JP2008262781A (en) Atmosphere control device
US7713378B2 (en) Ozone processing device
JP4254872B2 (en) Surface treatment equipment
US20210257193A1 (en) Method and apparatus for parts cleaning
KR100940403B1 (en) Dome temperature control system and plasma etching system thereof
JP4563760B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
KR101268644B1 (en) Plasma processing device
JPH11243079A (en) Plasma treatment equipment
EP0602506A1 (en) Plasma pressure control assembly
JP7286847B1 (en) Film forming apparatus and film-coated wafer manufacturing method
JP2008078094A (en) Plasma treatment apparatus
JP2004253647A (en) Plasma processor
JP7358576B1 (en) Film deposition equipment and method for manufacturing film-coated wafers
JP7286848B1 (en) Film forming apparatus and film-coated wafer manufacturing method
JP2007317699A (en) Surface-treating apparatus and method
CN113748497B (en) Valve module and substrate processing apparatus including the same
JP2007317700A (en) Surface-treating apparatus and surface treatment method
JP2008153148A (en) Plasma treatment device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 08750397

Country of ref document: US