JP2006313669A - Plasma treatment method and plasma treatment device - Google Patents

Plasma treatment method and plasma treatment device Download PDF

Info

Publication number
JP2006313669A
JP2006313669A JP2005135348A JP2005135348A JP2006313669A JP 2006313669 A JP2006313669 A JP 2006313669A JP 2005135348 A JP2005135348 A JP 2005135348A JP 2005135348 A JP2005135348 A JP 2005135348A JP 2006313669 A JP2006313669 A JP 2006313669A
Authority
JP
Japan
Prior art keywords
gas
plasma
processing gas
processing
electrode pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005135348A
Other languages
Japanese (ja)
Other versions
JP4733421B2 (en
Inventor
Kazuyoshi Iwane
和良 岩根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005135348A priority Critical patent/JP4733421B2/en
Publication of JP2006313669A publication Critical patent/JP2006313669A/en
Application granted granted Critical
Publication of JP4733421B2 publication Critical patent/JP4733421B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment method and a plasma treatment device capable of carrying out a plasma treatment of stable quality. <P>SOLUTION: The plasma treatment method is provided with (a) a first step in which a treated gas 8 is supplied between a pair of electrodes 14, (b) a second step in which discharge is generated by applying voltage to the electrodes 12, 13 and the treated gas 8 passing between the pair of the electrodes 14 is plasmatized, and (c) a third step in which only the treated gas 8 after substitution of a gas 6 remaining between the pair of the electrodes 14 out of the plasmatized treated gas 8 which has passed between the pair of the electrodes 14 is made to be contacted with a treated material 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プラズマ処理方法及びプラズマ処理装置に関し、特に略常圧でプラズマ処理を行う場合に好適なプラズマ処理方法及びプラズマ処理装置に関する。   The present invention relates to a plasma processing method and a plasma processing apparatus, and more particularly to a plasma processing method and a plasma processing apparatus suitable for performing plasma processing at substantially normal pressure.

従来、大気圧近傍の圧力下で発生させたプラズマを被処理物に吹き付け、被処理物の表面を処理する常圧プラズマ処理方法が種々提案されている。   Conventionally, various atmospheric pressure plasma processing methods have been proposed in which plasma generated under a pressure near atmospheric pressure is sprayed on an object to be processed to treat the surface of the object to be processed.

このような方法を特定のガス雰囲気下で行うには、外気が遮断された密閉容器内で処理を行う必要がある。これに対し、例えばグロー放電を利用することにより、開放系、あるいは、気体の自由な流出を防ぐ程度の低気密系での処理が提案されている(例えば、特許文献1参照)。
特開2002−155370号公報
In order to perform such a method under a specific gas atmosphere, it is necessary to perform the treatment in a sealed container in which the outside air is blocked. On the other hand, for example, processing using an open system or a low airtight system that prevents free outflow of gas by using glow discharge has been proposed (for example, see Patent Document 1).
JP 2002-155370 A

しかし、開放系、あるいは低気密系の常圧プロセスでは、周囲に酸素や窒素を含む空気があるため、プラズマ処理開始前には、図1(a)及び図2(a)に示すように、電極対80,90の空間84,94には、周囲の空気を含む気体87,97が存在する。この状態からプラズマ処理を開始し、電極対80,90に電圧を印加して放電を発生させるとともに、図1(b)及び図2(b)において矢印86,96で示すように処理ガス88,98を電極対80,90の空間84,94に供給すると、しばらくの間、電極対80,90の開口85,95からは、処理ガス88,98により空間84,94から押し出された気体87,97や、この気体87,97を含む処理ガスが流れ出し、図1(b)において矢印83で示すように搬送装置81により搬送された被処理部材82や、図2(b)に示すように電極対90の開口95に隣接して配置された被処理部材91の穴内面92に接触する。空気87,97は被処理部材82,91に対しては所望のプラズマ処理を行うことができないため、被処理部材82、91には、プラズマ処理されていない部分や、プラズマ処理が不十分な部分など、処理ムラが生じ、処理不良の発生の原因となる。   However, in the open pressure or low airtight atmospheric pressure process, there is air containing oxygen and nitrogen in the surroundings, so before starting the plasma treatment, as shown in FIGS. 1 (a) and 2 (a), Gases 87 and 97 containing ambient air exist in the spaces 84 and 94 of the electrode pairs 80 and 90. In this state, plasma processing is started, and a voltage is applied to the electrode pairs 80 and 90 to generate a discharge. Also, as shown by arrows 86 and 96 in FIG. 1B and FIG. When 98 is supplied to the spaces 84, 94 of the electrode pairs 80, 90, the gas 87, pushed out from the spaces 84, 94 by the processing gases 88, 98 from the openings 85, 95 of the electrode pairs 80, 90 for a while. 97, a processing gas containing the gas 87, 97 flows out, and the member 82 to be processed conveyed by the conveying device 81 as shown by an arrow 83 in FIG. 1B, or the electrode as shown in FIG. It contacts the hole inner surface 92 of the member 91 to be processed disposed adjacent to the opening 95 of the pair 90. Since the air 87 and 97 cannot perform the desired plasma processing on the members 82 and 91, the members 82 and 91 are not subjected to the plasma processing or the portions where the plasma processing is insufficient. For example, processing unevenness may occur and cause processing failure.

本発明は、かかる実情に鑑み、品質が安定したプラズマ処理を行うことができる、プラズマ処理方法及びプラズマ処理装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a plasma processing method and a plasma processing apparatus capable of performing plasma processing with stable quality.

本発明は、上記課題を解決するために、以下のように構成したプラズマ処理方法を提供する。   In order to solve the above-described problems, the present invention provides a plasma processing method configured as follows.

プラズマ処理方法は、対向する電極に電圧を印加し、該電極の間の空間(以下、「電極対間」という。)で放電を発生させ、該電極対間を通過させてプラズマ化させた処理ガスを被処理物に接触させて該被処理物を処理するタイプの方法である。プラズマ処理方法は、第1ないし第3のステップを備える。前記第1のステップにおいて、前記電極対間に前記処理ガスを供給する。前記第2のステップにおいて、前記電極に電圧を印加して放電を発生させ、前記電極対間を通過する前記処理ガスをプラズマ化させる。前記第3のステップにおいて、前記電極対間を通過してプラズマ化された前記処理ガスのうち、前記電極対間に残留している気体を置換した後の前記処理ガスのみを前記被処理物に接触させる。   In the plasma processing method, a voltage is applied to opposing electrodes, discharge is generated in a space between the electrodes (hereinafter referred to as “between electrode pairs”), and plasma is generated by passing between the electrode pairs. This is a type of method in which a gas is brought into contact with an object to be processed and the object to be processed is processed. The plasma processing method includes first to third steps. In the first step, the processing gas is supplied between the electrode pairs. In the second step, a voltage is applied to the electrodes to generate a discharge, and the processing gas passing between the electrode pairs is turned into plasma. In the third step, only the processing gas after the gas remaining between the electrode pairs is replaced with the object to be processed among the processing gas that has been converted into plasma by passing between the electrode pairs. Make contact.

上記第1のステップにおいて、処理ガスは、プラズマ処理の目的に応じて選択すればよい。例えば、酸化処理には、窒素と酸素の混合ガスを用いる。還元処理には、窒素と水素を用いる。撥水化やエッチングには、フルオロカーボンを用いる。希釈ガスとして、窒素、アルゴン等の不活性ガスを用いてもよい。   In the first step, the processing gas may be selected according to the purpose of the plasma processing. For example, a mixed gas of nitrogen and oxygen is used for the oxidation treatment. Nitrogen and hydrogen are used for the reduction treatment. Fluorocarbon is used for water repellency and etching. An inert gas such as nitrogen or argon may be used as the dilution gas.

上記第2のステップにおいて、電極に例えば交流電圧やパルス電圧を印加することにより放電を発生させる。放電の形態は、グロー放電が均一処理のために好ましいが、コロナ放電や誘電体バリア放電や沿面放電であってもよい。   In the second step, a discharge is generated by applying, for example, an AC voltage or a pulse voltage to the electrodes. As the form of discharge, glow discharge is preferable for uniform treatment, but corona discharge, dielectric barrier discharge, and creeping discharge may be used.

上記第3のステップにおいて、放電を発生させた電極対間を通過する際にプラズマ化された処理ガス(現にプラズマ化している処理ガスであっても、プラズマを経て活性化した処理ガスであってもよい。)を被処理物に接触させることにより、放電よるプラズマ(活性種、イオンなど)を用いて被処理物の表面改質、アッシング、洗浄などのプラズマ処理を行う。   In the third step, the processing gas converted into plasma when passing between the pair of electrodes that generated the discharge (even if the processing gas is actually plasma, the processing gas is activated through the plasma. May be brought into contact with the object to be processed, and plasma processing such as surface modification, ashing, and cleaning of the object to be processed is performed using plasma (active species, ions, etc.) caused by discharge.

上記方法によれば、電極対間を処理ガスで置換した後にプラズマ化された処理ガスのみを被処理物に接触させ、電極対間に残留していた気体を含みプラズマ化が不十分な処理ガスが被処理物に接触することを防ぐことができる。したがって、十分にプラズマ化された処理ガスのみを被処理物に接触させることにより、プラズマ処理の品質の安定化を図ることができる。   According to the above method, only the processing gas that has been converted to plasma after replacing the electrode pair with the processing gas is brought into contact with the object to be processed, and the processing gas that includes the gas remaining between the electrode pair and is insufficiently plasmad Can be prevented from contacting the workpiece. Therefore, it is possible to stabilize the quality of the plasma processing by bringing only the processing gas that has been made sufficiently plasma into contact with the object to be processed.

好ましくは、前記電極対間に残留している気体等の気体が前記処理ガスで置換されたことを検出する、検出ステップを備える。前記3のステップにおいて、前記検出ステップにより、前記電極対間に残留している気体が前記処理ガスで置換されたことを検出した後に、前記電極対間を通過してプラズマ化された前記処理ガスを前記被処理物に接触させる。   Preferably, the method includes a detection step of detecting that a gas such as a gas remaining between the electrode pairs is replaced with the processing gas. In the third step, the processing gas which has been converted into plasma by passing between the electrode pairs after detecting that the gas remaining between the electrode pairs has been replaced by the processing gas in the detection step. Is brought into contact with the workpiece.

上記方法によれば、電極対間の空間に残留していた空気が処理ガスで置換される時間を予測して予め定めた時間の経過にしたがって制御する場合などよりも、精度よく、かつ効率よく制御することができる。   According to the above method, the time when the air remaining in the space between the electrode pair is replaced with the processing gas is predicted and controlled more accurately and more efficiently than when control is performed according to the passage of a predetermined time. Can be controlled.

好ましくは、前記検出ステップは、前記電極に電圧を印加したときに流れる電流の電流値を検出することにより、前記電極対間に残留している気体が前記処理ガスで置換されたことを検出する。   Preferably, the detecting step detects that a gas remaining between the electrode pair is replaced with the processing gas by detecting a current value of a current flowing when a voltage is applied to the electrode. .

上記方法によれば、電極に電圧を印加しながら、電極対間における処理ガスの置換を検出することができる。電極対間から流出する気体のガス濃度を検出する場合や、電極対間の放電のスペクトルを分析したりする場合などよりも、簡単かつ容易に、電極対間における処理ガスの置換を検出することができる。   According to the above method, it is possible to detect the replacement of the processing gas between the electrode pair while applying a voltage to the electrode. Detecting process gas substitution between electrode pairs more easily and easily than when detecting the gas concentration of gas flowing out between electrode pairs or analyzing the discharge spectrum between electrode pairs Can do.

また、本発明は上記課題を解決するために、以下のように構成したプラズマ処理装置を提供する。   In order to solve the above-mentioned problems, the present invention provides a plasma processing apparatus configured as follows.

プラズマ処理装置は、a)対向する電極と、b)前記電極に電圧を印加して、前記電極の間の空間(以下、「電極対間」という。)に放電を発生させる電源と、c)前記電極対間に処理ガスを供給するガス供給部と、d)前記電極対間を通過してプラズマ化された前記処理ガスのうち、前記電極対間に残留している気体を置換した後の前記処理ガスのみを前記被処理物に接触させるように、前記電源及び前記ガス供給部を制御する制御部とを備える。   The plasma processing apparatus includes: a) opposing electrodes; b) a power source that applies a voltage to the electrodes to generate a discharge in a space between the electrodes (hereinafter referred to as “between electrode pairs”); c) A gas supply unit for supplying a processing gas between the electrode pairs; and d) after replacing the gas remaining between the electrode pairs among the processing gases that have been converted into plasma through the electrode pairs. A control unit that controls the power supply and the gas supply unit so that only the processing gas is brought into contact with the object to be processed.

上記構成において、電極に例えば交流電圧やパルス電圧を印加することにより放電を発生させる。放電の形態は、グロー放電が均一処理のために好ましいが、コロナ放電や誘電体バリア放電や沿面放電であってもよい。放電を発生させた電極対間を通過する際にプラズマ化された処理ガス(現にプラズマ化している処理ガスであっても、プラズマを経て活性化した処理ガスであってもよい。)を被処理物に接触させることにより、放電よるプラズマ(活性種、イオンなど)を用いて被処理物の表面改質、アッシング、洗浄などのプラズマ処理を行う。処理ガスは、プラズマ処理の目的に応じて選択すればよい。例えば、酸化処理には、窒素と酸素の混合ガスを用いる。還元処理には、窒素と水素を用いる。撥水化やエッチングには、フルオロカーボンを用いる。希釈ガスとして、窒素、アルゴン等の不活性ガスを用いてもよい。   In the above configuration, discharge is generated by applying, for example, an AC voltage or a pulse voltage to the electrodes. As the form of discharge, glow discharge is preferable for uniform treatment, but corona discharge, dielectric barrier discharge, and creeping discharge may be used. A processing gas that is converted into plasma when passing between a pair of electrodes that have generated electric discharge (which may be a processing gas that is actually converted into plasma or a processing gas that is activated through plasma) may be processed. By contacting with an object, plasma processing such as surface modification, ashing, and cleaning of the object to be processed is performed using plasma (active species, ions, etc.) by discharge. The processing gas may be selected according to the purpose of the plasma processing. For example, a mixed gas of nitrogen and oxygen is used for the oxidation treatment. Nitrogen and hydrogen are used for the reduction treatment. Fluorocarbon is used for water repellency and etching. An inert gas such as nitrogen or argon may be used as the dilution gas.

上記構成によれば、電極対間を処理ガスで置換した後にプラズマ化された処理ガスのみを被処理物に接触させ、電極対間に残留していた気体を含みプラズマ化が不十分な処理ガスが被処理物に接触することを防ぐことができる。したがって、十分にプラズマ化された処理ガスのみを被処理物に接触させることにより、プラズマ処理の品質の安定化を図ることができる。   According to the above configuration, only the processing gas that has been made plasma after replacing the electrode pair with the processing gas is brought into contact with the object to be processed, and the processing gas that includes the gas remaining between the electrode pairs and is insufficiently plasmatized Can be prevented from contacting the workpiece. Therefore, it is possible to stabilize the quality of the plasma processing by bringing only the processing gas that has been made sufficiently plasma into contact with the object to be processed.

好ましくは、前記電極対間に残留している前記気体が前記処理ガスで置換されたことを検出するための検出部をさらに備える。前記制御部は、前記電極対間に残留している前記気体が前記処理ガスで置換されたことを前記検出部により検出した後に、前記電極対間を通過してプラズマ化された前記処理ガスを前記被処理物に接触させるように、前記電源及び前記ガス供給部を制御する。   Preferably, a detection unit for detecting that the gas remaining between the electrode pair is replaced with the processing gas is further provided. The control unit detects that the gas remaining between the electrode pairs has been replaced with the processing gas by the detection unit, and then passes the processing gas converted into plasma through the electrode pairs. The power supply and the gas supply unit are controlled so as to come into contact with the object to be processed.

上記構成によれば、電極対間の空間に残留していた空気等の気体が処理ガスで置換される時間を予測して予め定めた時間の経過にしたがって制御する場合などよりも、精度よく、かつ効率よく制御することができる。   According to the above configuration, it is more accurate than the case where the time when the gas such as air remaining in the space between the electrode pairs is replaced with the processing gas is predicted and controlled according to the passage of a predetermined time, And can be controlled efficiently.

好ましくは、前記検出部は、前記電源が前記電極に電圧を印加したときに流れる電流の電流値を検出する。前記制御部は、前記電源が前記電極に電圧を印加するときに前記電流検出部が検出する前記電流値の変化に基づいて、前記電極対間に残留している前記気体が前記処理ガスで置換されたか否かを判断する。   Preferably, the detection unit detects a current value of a current that flows when the power source applies a voltage to the electrode. The control unit replaces the gas remaining between the electrode pair with the processing gas based on a change in the current value detected by the current detection unit when the power source applies a voltage to the electrode. It is judged whether it was done.

上記構成によれば、電極に電圧を印加しながら、電極対間における処理ガスの置換を検出することができる。電極対間から流出する気体のガス濃度を検出する場合や、電極対間の放電のスペクトルを分析したりする場合などよりも、簡単かつ容易に、電極対間における処理ガスの置換を検出することができる。   According to the above configuration, the replacement of the processing gas between the electrode pair can be detected while applying a voltage to the electrodes. Detecting process gas substitution between electrode pairs more easily and easily than when detecting the gas concentration of gas flowing out between electrode pairs or analyzing the discharge spectrum between electrode pairs Can do.

なお、本発明のプラズマ処理方法及びプラズマ処理装置は、1Pa以上、特に略常圧(大気圧近傍)の開放系、あるいは低気密系の場合に特に好適であるが、これに限るものではない。本発明において、略常圧とは、1.013×10〜50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡略化を考慮すると、1.333×10〜10.664×10Paが好ましく、9.331×10〜10.397×10Paがより好ましい。 The plasma processing method and plasma processing apparatus of the present invention are particularly suitable for an open system of 1 Pa or more, particularly a substantially normal pressure (near atmospheric pressure), or a low airtight system, but is not limited thereto. In the present invention, “substantially normal pressure” refers to a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4. ˜10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.397 × 10 4 Pa is more preferable.

本発明のプラズマ処理方法及びプラズマ処理装置は、品質が安定したプラズマ処理を行うことができる。   The plasma processing method and the plasma processing apparatus of the present invention can perform plasma processing with stable quality.

以下、本発明の実施の形態として実施例について図3〜図7を参照しながら説明する。   Hereinafter, examples of the present invention will be described with reference to FIGS.

(実施例1) 実施例1のプラズマ処理装置10について、図3〜図6を参照しながら説明する。   (Example 1) The plasma processing apparatus 10 of Example 1 is demonstrated, referring FIGS. 3-6.

図3の構成図に模式的に示すように、プラズマ処理装置10は、間隔を設けて配置された一対の電極12,13と、電極12,13間に電圧を印加する電源18と、電流値を検出する電流センサ19と、搬送装置20とを備える。   As schematically shown in the configuration diagram of FIG. 3, the plasma processing apparatus 10 includes a pair of electrodes 12 and 13 arranged at intervals, a power source 18 that applies a voltage between the electrodes 12 and 13, and a current value. A current sensor 19 that detects the above and a transfer device 20.

プラズマ処理装置10は、1Pa以上、特に略常圧(大気圧近傍)の開放系、あるいは低気密系に配置され、プラズマ処理を開始する前には、周囲の空気が装置内部に侵入し、電極12,13の間の空間14(以下、「電極対間14」という。)には、図3(a)に示したように、空気6が存在する。   The plasma processing apparatus 10 is disposed in an open system or a low airtight system of 1 Pa or more, particularly substantially normal pressure (near atmospheric pressure), and before the plasma processing is started, ambient air enters the apparatus, and the electrode As shown in FIG. 3A, air 6 exists in a space 14 between 12 and 13 (hereinafter referred to as “electrode pair 14”).

電源18は、電極12,13間に、例えば交流電圧やパルス電圧を印加することにより、放電を発生させる。放電の形態は、グロー放電が均一処理のために好ましいが、コロナ放電や誘電体バリア放電や沿面放電であってもよい。電極対間14の一端15からは、図3(b)において矢印38で示すように、後述するガス供給装置32(図5参照)により処理ガス8が供給され、電極対間14の他端の開口16から、放電を発生させた電極対間14を通過する際にプラズマ化された処理ガス8(プラズマ空間を通ることにより活性化された処理ガス8)が流れ出る。被処理部材2は、搬送装置20によって矢印22で示すように搬送され、処理ガス8が流れ出る開口16に対向する領域を横断する。   The power source 18 generates discharge by applying an AC voltage or a pulse voltage between the electrodes 12 and 13, for example. As the form of discharge, glow discharge is preferable for uniform treatment, but corona discharge, dielectric barrier discharge, and creeping discharge may be used. As shown by an arrow 38 in FIG. 3B, the processing gas 8 is supplied from one end 15 of the electrode pair 14 by a gas supply device 32 (see FIG. 5) described later. From the opening 16, the processing gas 8 that has been converted to plasma (the processing gas 8 that has been activated by passing through the plasma space) flows out when passing through the electrode pair 14 that has generated discharge. The member 2 to be processed is transported by the transport device 20 as indicated by an arrow 22 and traverses a region facing the opening 16 from which the processing gas 8 flows out.

プラズマ化された処理ガス8(現にプラズマ化している処理ガス8であっても、プラズマを経て活性化した処理ガス8であってもよい。)を、被処理部材2に接触させることにより、放電よるプラズマ(活性種、イオンなど)を用いて、被処理部材2の表面改質、アッシング、洗浄などのプラズマ処理を行う。処理ガス8は、プラズマ処理の目的に応じて選択すればよい。例えば、酸化処理には、窒素と酸素の混合ガスを用いる。還元処理には、窒素と水素を用いる。撥水化やエッチングには、フルオロカーボンを用いる。希釈ガスとして、窒素、アルゴン等の不活性ガスを用いてもよい。   By bringing the processing gas 8 that has been made into plasma (either the processing gas 8 that is actually converted into plasma or the processing gas 8 that has been activated through plasma) into contact with the member 2 to be processed, discharge is performed. Plasma processing such as surface modification, ashing, and cleaning of the member to be processed 2 is performed using the plasma (active species, ions, and the like). The processing gas 8 may be selected according to the purpose of the plasma processing. For example, a mixed gas of nitrogen and oxygen is used for the oxidation treatment. Nitrogen and hydrogen are used for the reduction treatment. Fluorocarbon is used for water repellency and etching. An inert gas such as nitrogen or argon may be used as the dilution gas.

図4のブロック図に示すように、プラズマ装置10は、プラズマ装置10全体の制御を統括する制御部30に、電源18と、電流センサ19と、搬送装置20と、処理ガス8を供給するガス供給装置32とが接続されている。   As shown in the block diagram of FIG. 4, the plasma device 10 is a gas that supplies a power source 18, a current sensor 19, a transfer device 20, and a processing gas 8 to a control unit 30 that controls the entire plasma device 10. A supply device 32 is connected.

電流センサ19は、電源18が電極12,13間に電圧を印加したときに流れる電流の電流値(放電電流値)を検出する。電流センサ19により、電極対間14に残留している空気6が処理ガス8で置換された程度を検出することができる。   The current sensor 19 detects a current value (discharge current value) of a current that flows when the power source 18 applies a voltage between the electrodes 12 and 13. The current sensor 19 can detect the degree to which the air 6 remaining in the electrode pair 14 is replaced with the processing gas 8.

例えば図5に示すように、電極対間14に窒素ガスのみが存在する場合と、電極対間14に空気6のみが存在する場合とでは、放電電流値の大きさが異なる。処理ガス8として窒素ガスを供給し、電極対間14に残留している空気6を処理ガス8(窒素ガス)で置換していくと、例えば図6に示すように、放電電流値は時間の経過とともに変化し、やがて一定となる。したがって、放電電流値の大きさから、電極対間14の空気6が処理ガス8で置換された程度を検出することができる。   For example, as shown in FIG. 5, the magnitude of the discharge current value differs between the case where only the nitrogen gas is present between the electrode pairs 14 and the case where only the air 6 is present between the electrode pairs 14. When nitrogen gas is supplied as the processing gas 8 and the air 6 remaining between the electrode pairs 14 is replaced with the processing gas 8 (nitrogen gas), for example, as shown in FIG. It changes over time and becomes constant over time. Therefore, it is possible to detect the degree of replacement of the air 6 between the electrode pairs 14 with the processing gas 8 from the magnitude of the discharge current value.

なお、放電電流値以外の方法によっても、電極対間14に残留している空気6が処理ガス8で置換された程度を検出することができる。例えば、開口16付近に酸素濃度センサを配置すれば、酸素を含む空気6が処理ガス8で置換された程度を検出することができる。あるいは、電極対間14での放電光を検出し、そのスペクトル解析から、ガス成分を分析してもよい。   Note that the degree of replacement of the air 6 remaining in the electrode pair 14 with the processing gas 8 can be detected by a method other than the discharge current value. For example, if an oxygen concentration sensor is disposed in the vicinity of the opening 16, it is possible to detect the degree to which the oxygen-containing air 6 has been replaced with the processing gas 8. Alternatively, the discharge light between the electrode pairs 14 may be detected, and the gas component may be analyzed from the spectrum analysis.

次に、プラズマ処理装置10の動作について説明する。   Next, the operation of the plasma processing apparatus 10 will be described.

まず、ガス供給装置32が作動して処理ガス8を電極対間14に供給する。電極対間14に処理ガス8がある程度供給されたタイミングで、電源18は電極12,13間に電圧を印加することを開始し、このときに流れる電流の電流値(放電電流値)を電流センサ19で検出する。制御部30は、電流センサ19で検出した放電電流値を監視する。   First, the gas supply device 32 is operated to supply the processing gas 8 to the electrode pair 14. The power source 18 starts applying a voltage between the electrodes 12 and 13 at a timing when the processing gas 8 is supplied to the electrode pair 14 to some extent, and the current value (discharge current value) of the current flowing at this time is measured as a current sensor. 19 to detect. The control unit 30 monitors the discharge current value detected by the current sensor 19.

制御部30は、電流センサ19で検出した放電電流値により、電極対間14に残留している空気6を処理ガス8で所定レベルまで置換したと判断したら、搬送装置20による被処理部材2の搬送を開始させる。例えば、処理ガス8に窒素を用いる場合、図6に示したように放電電流値が時間とともに変化するので、放電電流値が所定のしきい値より小さくなったとき、あるいは、放電電流値の変化率が所定のしきい値より小さくなったとき、電極対間14に残留している空気6を処理ガス8で所定レベルまで置換したと判断する。   When the control unit 30 determines that the air 6 remaining in the electrode pair 14 has been replaced with the processing gas 8 to a predetermined level based on the discharge current value detected by the current sensor 19, Start conveyance. For example, when nitrogen is used as the processing gas 8, the discharge current value changes with time as shown in FIG. 6, so that the discharge current value becomes smaller than a predetermined threshold value or the change in the discharge current value. When the rate becomes smaller than a predetermined threshold value, it is determined that the air 6 remaining in the electrode pair 14 is replaced with the processing gas 8 to a predetermined level.

制御部30は、搬送装置20で搬送された被処理部材2が、適切なタイミングで開口16に対向する位置に到達するようにする。すなわち、図3(b)に示すように、電極対間14に残留している気体6を置換した処理ガス8が、電極対間14の放電によってプラズマ化され、開口16に対向する位置に到達した被処理部材2に接触するようにする。換言すれば、電極対間14に残留していた気体6や、この気体6を含む処理ガス8が被処理部材2に接触しないように、処理ガス8の供給開始後しばらく時間が経過してから、被処理部材2が開口16に対向する位置に到達するようにする。   The control unit 30 causes the processing target member 2 conveyed by the conveying device 20 to reach a position facing the opening 16 at an appropriate timing. That is, as shown in FIG. 3B, the processing gas 8 replacing the gas 6 remaining between the electrode pairs 14 is turned into plasma by the discharge between the electrode pairs 14 and reaches a position facing the opening 16. The processed member 2 is brought into contact. In other words, the gas 6 remaining between the electrode pairs 14 and the processing gas 8 containing the gas 6 do not come into contact with the member 2 to be processed after a certain time has elapsed after the supply of the processing gas 8 is started. The member 2 to be processed is made to reach a position facing the opening 16.

このとき、電極対間14に残留している気体6を所定レベルまで置換した処理ガス8がプラズマ化され、その処理ガス8の先頭が、丁度、開口16に対向する位置に到達した被処理部材2に接触するように制御することによって、時間的な無駄をなくし、効率よくプラズマ処理を行うようにすることができる。   At this time, the processing gas 8 in which the gas 6 remaining between the electrode pairs 14 is replaced to a predetermined level is turned into plasma, and the processing object 8 reaches the position where the head of the processing gas 8 just faces the opening 16. By controlling to contact 2, it is possible to eliminate time waste and perform plasma processing efficiently.

品質の安定化を考慮すれば、電極対間14の空気6を処理ガス8で必要十分に置換するまで、処理ガス8が被処理部材2に接触しないようにする。被処理部材2に接触する処理ガス8は、電極対間14の空気6を必要十分に置換した処理ガス8が、電極対間14に発生させた放電によりプラズマ化されたもののみにする。   If stabilization of quality is taken into consideration, the processing gas 8 is prevented from coming into contact with the processing target member 2 until the air 6 between the electrode pairs 14 is sufficiently replaced with the processing gas 8. The processing gas 8 in contact with the member to be processed 2 is limited to a gas that has been converted into plasma by the discharge generated between the electrode pairs 14 by sufficiently replacing the air 6 between the electrode pairs 14.

この場合、電極対間14に残留している空気6が処理ガス8に置換したことを検知して制御する代わりに、電極対間14の空気6が処理ガス8で必要十分に置換される時間を、供給する処理ガス8の量、電極間13などの処理ガス8が流れる流路の容量、被処理部材2の搬送速度などから計算しておき、あるいは実験的に求めておき、プラズマ装置10の各部が動作する経過時間を予め設定しておくことができる。これにより、処理ガス8の置換を検出するための電流センサ19などが不要となり、装置構成を簡単にすることができる。   In this case, instead of detecting and controlling that the air 6 remaining in the electrode pair 14 is replaced with the processing gas 8, the time required to sufficiently and sufficiently replace the air 6 between the electrode pairs 14 with the processing gas 8. Is calculated from the amount of the processing gas 8 to be supplied, the capacity of the flow path through which the processing gas 8 flows between the electrodes 13 and the like, the conveyance speed of the member 2 to be processed, or the like, or obtained experimentally. The elapsed time during which each unit operates can be set in advance. Thereby, the current sensor 19 for detecting the replacement of the processing gas 8 is not necessary, and the apparatus configuration can be simplified.

(実施例2) 実施例2のプラズマ処理装置10aについて、図7を参照しながら説明する。プラズマ処理装置10aは、実施例1と略同様に構成される。図7において、実施例1と同様の構成部分には同じ符号を用いている。   (Example 2) The plasma processing apparatus 10a of Example 2 is demonstrated referring FIG. The plasma processing apparatus 10a is configured in substantially the same manner as in the first embodiment. In FIG. 7, the same reference numerals are used for the same components as in the first embodiment.

図7の構成図に模式的に示すように、プラズマ処理装置10aは、実施例1と略同様に、間隔を設けて配置された一対の電極12,13と、電極12,13間に電圧を印加する電源18とを備える。プラズマ処理装置10aは、実施例1と同様に、1Pa以上、特に略常圧(大気圧近傍)の開放系、あるいは低気密系に配置され、プラズマ処理を開始する前には、周囲の空気が装置内部に侵入し、電極対間14に空気が存在する。   As schematically shown in the configuration diagram of FIG. 7, the plasma processing apparatus 10 a is configured to apply a voltage between a pair of electrodes 12, 13 arranged at an interval and the electrodes 12, 13 in substantially the same manner as in the first embodiment. And a power supply 18 to be applied. As in the first embodiment, the plasma processing apparatus 10a is disposed in an open system or a low airtight system of 1 Pa or more, particularly substantially normal pressure (near atmospheric pressure), and before starting the plasma processing, ambient air is Air enters the apparatus and air exists between the electrode pairs 14.

実施例1と異なり、被処理部材4は、電極対間14の開口16に被処理部材4の穴内面5が連通するように、電極12,13に隣接して配置される。   Unlike Example 1, the member to be processed 4 is disposed adjacent to the electrodes 12 and 13 so that the hole inner surface 5 of the member to be processed 4 communicates with the opening 16 between the electrode pairs 14.

次に、実施例2のプラズマ処理装置10aの動作について説明する。プラズマ処理装置10aは、予め設定された経過時間に基づいて、動作する。   Next, the operation of the plasma processing apparatus 10a according to the second embodiment will be described. The plasma processing apparatus 10a operates based on a preset elapsed time.

まず、プラズマ処理装置10aは、矢印38で示すように、電極対間14の一端15から処理ガス8を供給し、電極対間14に残留している空気を系から完全に除去し、空間14から被処理部材4の電極12、13とは反対側の端部4aまで、処理ガス8で置き換える。このとき、被処理部材4の穴内面5は、プラズマ化されていない処理ガス5に接している。   First, as shown by the arrow 38, the plasma processing apparatus 10a supplies the processing gas 8 from one end 15 of the electrode pair 14 and completely removes the air remaining in the electrode pair 14 from the system. To the end 4a of the member to be processed 4 opposite to the electrodes 12 and 13 is replaced with the processing gas 8. At this time, the hole inner surface 5 of the member 4 to be processed is in contact with the processing gas 5 that has not been converted to plasma.

次いで、処理ガス8を供給しながら電極12,13間に電圧を印加する。これによって、プラズマ化された処理ガス8(現にプラズマ化している処理ガス8であっても、プラズマを経て活性化した処理ガス8であってもよい。)が被処理部材4の穴内面5に沿って流れ、被処理部材4の穴内面5に接触し、被処理部材4の穴内面5をプラズマ処理する。   Next, a voltage is applied between the electrodes 12 and 13 while supplying the processing gas 8. As a result, the plasma-treated processing gas 8 (whether the processing gas 8 is actually plasma or the processing gas 8 activated through plasma) may be applied to the hole inner surface 5 of the member 4 to be processed. It flows along, contacts the hole inner surface 5 of the member 4 to be processed, and plasma processing is performed on the hole inner surface 5 of the member 4 to be processed.

被処理部材4の穴内面5は、処理ガス8で置換された後にプラズマ化された処理ガス8が流れるので、電極対間14に残留していた空気を含みプラズマ化が不十分な処理ガスに接触することはない。したがって、被処理部材4の穴内面5に処理ムラが発生せず、プラズマ処理の品質が安定する。   Since the processing gas 8 that has been plasmatized after being replaced with the processing gas 8 flows through the hole inner surface 5 of the member to be processed 4, the processing gas 8 including the air remaining between the electrode pairs 14 is insufficiently plasmatized. There is no contact. Therefore, processing unevenness does not occur on the hole inner surface 5 of the member 4 to be processed, and the quality of the plasma processing is stabilized.

(まとめ) 以上のように、プラズマ処理装置10,10aは、電極対間14などの処理ガス8が流れる系を処理ガス8で必要十分に置換することにより、これまで常圧プロセスでは防ぐことができなかった空気の混入による処理ムラを、解消することができる。   (Summary) As described above, the plasma processing apparatuses 10 and 10a can prevent the conventional atmospheric pressure process by replacing the system in which the processing gas 8 such as the electrode pair 14 flows with the processing gas 8 as necessary and sufficiently. Processing unevenness due to air contamination that could not be achieved can be eliminated.

なお、本発明は、上記した実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。例えば、電極の形状は任意であり、電極の互いに対向する面が曲面であってもよい。電極の互いに対向する面を被覆する誘電体を備えてもよい。   The present invention is not limited to the above-described embodiment, and can be implemented with various modifications. For example, the shape of the electrodes is arbitrary, and the surfaces of the electrodes facing each other may be curved surfaces. You may provide the dielectric material which coat | covers the mutually opposing surface of an electrode.

プラズマ処理装置の構成図である。It is a block diagram of a plasma processing apparatus. プラズマ処理装置の構成図である。It is a block diagram of a plasma processing apparatus. プラズマ処理装置の構成図である。(実施例1)It is a block diagram of a plasma processing apparatus. Example 1 プラズマ処理装置のブロック図である。(実施例1)It is a block diagram of a plasma processing apparatus. Example 1 放電電流値のグラフである。It is a graph of a discharge current value. 放電電流値の変化を示すグラフである。It is a graph which shows the change of a discharge current value. プラズマ処理装置の構成図である。(実施例2)It is a block diagram of a plasma processing apparatus. (Example 2)

符号の説明Explanation of symbols

2,4 被処理部材(被処理物)
6 空気(気体)
8 処理ガス
10,10a プラズマ処理装置
12,13 電極
14 空間(電極対間)
18 電源
19 電流センサ(検出部)
20 搬送装置
30 制御部
32 ガス供給装置(ガス供給部)
2,4 Material to be processed (object to be processed)
6 Air (gas)
8 Processing gas 10, 10a Plasma processing device 12, 13 Electrode 14 Space (between electrode pair)
18 Power supply 19 Current sensor (detection unit)
20 Conveying device 30 Control unit 32 Gas supply device (gas supply unit)

Claims (6)

対向する電極に電圧を印加し、該電極の間の空間(以下、「電極対間」という。)で放電を発生させ、該電極対間を通過させてプラズマ化させた処理ガスを被処理物に接触させて該被処理物を処理する、プラズマ処理方法であって、
前記電極対間に前記処理ガスを供給する、第1のステップと、
前記電極に電圧を印加して放電を発生させ、前記電極対間を通過する前記処理ガスをプラズマ化させる、第2のステップと、
前記電極対間を通過してプラズマ化された前記処理ガスのうち、前記電極対間に残留している気体を置換した後の前記処理ガスのみを前記被処理物に接触させる、第3のステップとを備えたことを特徴とする、プラズマ表面処理方法。
A voltage is applied to the opposing electrodes, discharge is generated in the space between the electrodes (hereinafter referred to as “between electrode pairs”), and the processing gas that has been converted into plasma through the electrode pairs is processed. A plasma processing method of processing the object to be processed in contact with
Supplying the processing gas between the pair of electrodes;
A second step of applying a voltage to the electrodes to generate a discharge and converting the processing gas passing between the electrode pairs into plasma;
A third step of bringing only the processing gas after replacing the gas remaining between the electrode pairs out of the processing gas converted into plasma through the electrode pairs into contact with the object to be processed. And a plasma surface treatment method.
前記電極対間に残留している気体が前記処理ガスで置換されたことを検出する、検出ステップを備え、
前記3のステップにおいて、前記検出ステップにより、前記電極対間に残留している気体が前記処理ガスで置換されたことを検出した後に、前記電極対間を通過してプラズマ化された前記処理ガスを前記被処理物に接触させることを特徴とする、請求項1に記載のプラズマ処理方法。
Detecting that the gas remaining between the electrode pair is replaced with the processing gas,
In the third step, the processing gas which has been converted into plasma by passing between the electrode pairs after detecting that the gas remaining between the electrode pairs has been replaced by the processing gas in the detection step. The plasma processing method according to claim 1, wherein the substrate is brought into contact with the object to be processed.
前記検出ステップは、前記電極に電圧を印加したときに流れる電流の電流値を検出することにより、前記電極対間に残留している気体が前記処理ガスで置換されたことを検出することを特徴とする、請求項2に記載のプラズマ表面処理方法。   The detecting step detects that a gas remaining between the electrode pair is replaced with the processing gas by detecting a current value of a current that flows when a voltage is applied to the electrode. The plasma surface treatment method according to claim 2. 対向する電極と、
前記電極に電圧を印加して、前記電極の間の空間(以下、「電極対間」という。)に放電を発生させる電源と、
前記電極対間に処理ガスを供給するガス供給部と、
前記電極対間を通過してプラズマ化された前記処理ガスのうち、前記電極対間に残留している気体を置換した後の前記処理ガスのみを前記被処理物に接触させるように、前記電源及び前記ガス供給部を制御する制御部とを備えたことを特徴とする、プラズマ表面処理装置。
Opposing electrodes;
A power source that applies a voltage to the electrodes to generate a discharge in a space between the electrodes (hereinafter referred to as “between electrode pairs”);
A gas supply unit for supplying a processing gas between the electrode pair;
The power supply so that only the processing gas after replacing the gas remaining between the electrode pairs out of the processing gas converted into plasma by passing between the electrode pairs is brought into contact with the object to be processed. And a plasma surface treatment apparatus comprising a control unit for controlling the gas supply unit.
前記電極対間に残留している前記気体が前記処理ガスで置換されたことを検出するための検出部をさらに備え、
前記制御部は、前記電極対間に残留している前記気体が前記処理ガスで置換されたことを前記検出部により検出した後に、前記電極対間を通過してプラズマ化された前記処理ガスを前記被処理物に接触させるように、前記電源及び前記ガス供給部を制御することを特徴とする、請求項4に記載のプラズマ表面処理装置。
A detector for detecting that the gas remaining between the electrode pair is replaced with the processing gas;
The control unit detects that the gas remaining between the electrode pairs has been replaced with the processing gas by the detection unit, and then passes the processing gas converted into plasma through the electrode pairs. The plasma surface treatment apparatus according to claim 4, wherein the power source and the gas supply unit are controlled so as to be in contact with the object to be processed.
前記検出部は、前記電源が前記電極に電圧を印加したときに流れる電流の電流値を検出し、
前記制御部は、
前記電源が前記電極に電圧を印加するときに前記電流検出部が検出する前記電流値の変化に基づいて、前記電極対間に残留している前記気体が前記処理ガスで置換されたか否かを判断することを特徴とする、請求項5に記載のプラズマ表面処理装置。
The detection unit detects a current value of a current that flows when the power source applies a voltage to the electrode,
The controller is
Based on the change in the current value detected by the current detector when the power source applies a voltage to the electrode, it is determined whether the gas remaining between the electrode pair has been replaced with the processing gas. The plasma surface treatment apparatus according to claim 5, wherein the determination is made.
JP2005135348A 2005-05-06 2005-05-06 Plasma processing method and plasma processing apparatus Expired - Fee Related JP4733421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005135348A JP4733421B2 (en) 2005-05-06 2005-05-06 Plasma processing method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005135348A JP4733421B2 (en) 2005-05-06 2005-05-06 Plasma processing method and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2006313669A true JP2006313669A (en) 2006-11-16
JP4733421B2 JP4733421B2 (en) 2011-07-27

Family

ID=37535071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005135348A Expired - Fee Related JP4733421B2 (en) 2005-05-06 2005-05-06 Plasma processing method and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP4733421B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130503A (en) * 2006-11-24 2008-06-05 Toyota Gakuen Atmospheric pressure plasma jet apparatus
JP2013193355A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Image recording device, and image recording method
JP2013193353A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Image recording device, and image recording method
WO2018037468A1 (en) * 2016-08-22 2018-03-01 富士機械製造株式会社 Plasma irradiation device and plasma irradiation method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370698A (en) * 1991-06-20 1992-12-24 Fujitsu Ltd Microwave matching method
JPH0696718A (en) * 1992-08-07 1994-04-08 Ii C Kagaku Kk Electrode for atmospheric pressure glow-discharge plasma
JPH07111195A (en) * 1992-05-11 1995-04-25 Ii C Kagaku Kk Electrode for atmospheric pressure plasma
WO1996031997A1 (en) * 1995-04-07 1996-10-10 Seiko Epson Corporation Surface treatment apparatus
JPH10147881A (en) * 1996-11-19 1998-06-02 Mines:Kk Atmospheric pressure discharge method and device therefor
JP2001007089A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Plasma treatment method and apparatus
JP2003027210A (en) * 1994-07-04 2003-01-29 Seiko Epson Corp Surface treatment method and method for manufacturing display device
JP2003046359A (en) * 2001-08-02 2003-02-14 Adtec Plasma Technology Co Ltd Impedance matching device with load effective power measurement function
JP2003201570A (en) * 2001-11-01 2003-07-18 Konica Corp Apparatus and method for atmospheric plasma treatment, and long film manufactured thereby
JP2004207708A (en) * 2002-12-10 2004-07-22 Semiconductor Energy Lab Co Ltd Plasma treatment apparatus and plasma treatment method, and manufacturing method for thin film transistor
JP2005002352A (en) * 1997-04-24 2005-01-06 Konica Minolta Holdings Inc Surface treatment unit for base material
JP2005109183A (en) * 2003-09-30 2005-04-21 Daihen Corp Method for controlling output power of high-frequency power supply and high-frequency power unit
JP2006019067A (en) * 2004-06-30 2006-01-19 Sharp Corp Plasma treatment device and plasma treatment method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370698A (en) * 1991-06-20 1992-12-24 Fujitsu Ltd Microwave matching method
JPH07111195A (en) * 1992-05-11 1995-04-25 Ii C Kagaku Kk Electrode for atmospheric pressure plasma
JPH0696718A (en) * 1992-08-07 1994-04-08 Ii C Kagaku Kk Electrode for atmospheric pressure glow-discharge plasma
JP2003027210A (en) * 1994-07-04 2003-01-29 Seiko Epson Corp Surface treatment method and method for manufacturing display device
WO1996031997A1 (en) * 1995-04-07 1996-10-10 Seiko Epson Corporation Surface treatment apparatus
JPH10147881A (en) * 1996-11-19 1998-06-02 Mines:Kk Atmospheric pressure discharge method and device therefor
JP2005002352A (en) * 1997-04-24 2005-01-06 Konica Minolta Holdings Inc Surface treatment unit for base material
JP2001007089A (en) * 1999-06-25 2001-01-12 Matsushita Electric Ind Co Ltd Plasma treatment method and apparatus
JP2003046359A (en) * 2001-08-02 2003-02-14 Adtec Plasma Technology Co Ltd Impedance matching device with load effective power measurement function
JP2003201570A (en) * 2001-11-01 2003-07-18 Konica Corp Apparatus and method for atmospheric plasma treatment, and long film manufactured thereby
JP2004207708A (en) * 2002-12-10 2004-07-22 Semiconductor Energy Lab Co Ltd Plasma treatment apparatus and plasma treatment method, and manufacturing method for thin film transistor
JP2005109183A (en) * 2003-09-30 2005-04-21 Daihen Corp Method for controlling output power of high-frequency power supply and high-frequency power unit
JP2006019067A (en) * 2004-06-30 2006-01-19 Sharp Corp Plasma treatment device and plasma treatment method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130503A (en) * 2006-11-24 2008-06-05 Toyota Gakuen Atmospheric pressure plasma jet apparatus
JP2013193355A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Image recording device, and image recording method
JP2013193353A (en) * 2012-03-21 2013-09-30 Seiko Epson Corp Image recording device, and image recording method
WO2018037468A1 (en) * 2016-08-22 2018-03-01 富士機械製造株式会社 Plasma irradiation device and plasma irradiation method
JPWO2018037468A1 (en) * 2016-08-22 2019-06-20 株式会社Fuji Plasma irradiation apparatus and plasma irradiation method

Also Published As

Publication number Publication date
JP4733421B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
EP1796154A1 (en) Plasma treatment apparatus and method of plasma treatment
JP4733421B2 (en) Plasma processing method and plasma processing apparatus
JP5950855B2 (en) Ion implantation apparatus and cleaning method of ion implantation apparatus
US9618493B2 (en) Substrate processing apparatus and method for detecting an abnormality of an ozone gas concentration
JP6359011B2 (en) Atmospheric pressure plasma generator and plasma generation method
JP6644911B2 (en) Plasma generator
JP2005174879A (en) Plasma processing method and plasma processing apparatus
JP2020520551A (en) Equipment for treating the surface of an object
JP6417103B2 (en) Surface treatment apparatus and surface treatment method
JP4733615B2 (en) Plasma processing method and processing apparatus
JP2004146837A (en) Plasma processing method and plasma processing apparatus
JP2009099361A (en) Plasma processing device and plasma processing method
JP4908852B2 (en) X-ray inspection equipment
JP2006278719A (en) Plasma processing apparatus and plasma processing method
JPH065505A (en) Equipment for treatment before application of photoresist
US20180228014A1 (en) Control of power supplied to a plasma torch to compensate for changes at an electrode
JP2005332783A (en) Plasma treatment device and plasma treatment method
JP2005072263A (en) Fault supervisory system of plasma processing apparatus
JP2007115616A (en) Substrate ground-direct treatment method
JP4153765B2 (en) ITO glass surface cleaning method and ITO glass surface cleaning apparatus
JP4359220B2 (en) Tube processing method and processing apparatus
JP2005336659A (en) Method for treating with plasma and device for the same
JP2006313672A (en) Plasma treatment method and plasma treatment device
JP2006313670A (en) Plasma treatment method and plasma treatment device
JP2012216582A (en) Etching method for silicon-containing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees