US20110288109A1 - New compounds - Google Patents

New compounds Download PDF

Info

Publication number
US20110288109A1
US20110288109A1 US13/130,069 US200913130069A US2011288109A1 US 20110288109 A1 US20110288109 A1 US 20110288109A1 US 200913130069 A US200913130069 A US 200913130069A US 2011288109 A1 US2011288109 A1 US 2011288109A1
Authority
US
United States
Prior art keywords
membered
group
aryl
alkyl
compound according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/130,069
Other languages
English (en)
Inventor
Heinz Stadtmueller
Bodo Betzemeier
Ioannis Sapountzis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim International GmbH
Original Assignee
Boehringer Ingelheim International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim International GmbH filed Critical Boehringer Ingelheim International GmbH
Assigned to BOEHRINGER INGELHEIM INTERNATIONAL GMBH reassignment BOEHRINGER INGELHEIM INTERNATIONAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BETZEMEIER, BODO, SAPOUNTZIS, IOANNIS, STADTMUELLER, HEINZ
Publication of US20110288109A1 publication Critical patent/US20110288109A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/47One nitrogen atom and one oxygen or sulfur atom, e.g. cytosine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • the present invention relates to new pyrimidines of general formula (I)
  • Tumour cells that acquire the properties for invasion and metastasisation require specific survival signals. These signals allow them to overcome special apoptosis mechanisms (anoikis) which are triggered, inter alia, by the loss of cell adhesion.
  • focal adhesion kinase FAK/PTK2
  • FTK/PTK2 focal adhesion kinase
  • FTK/PTK2 focal adhesion kinase
  • FTK2 focal adhesion kinase
  • focal adhesion kinase has major significance for the growth, migration and survival of tumour-associated endothelial cells. An anti-angiogenic activity may therefore also be achieved by inhibiting PTK2.
  • Pyrimidines are generally known as inhibitors of kinases.
  • pyrimidines are described as Aurora Kinase inhibitors, these pyrimidines having an oxymethylpiperidine group in the 4-position and fluorine in the 5-position as substituents.
  • the aim of the present invention is to indicate new active substances which can be used for the prevention and/or treatment of diseases characterised by excessive or abnormal cell proliferation.
  • compounds of general formula (1) wherein the groups A, X, R 1 and R 2 have the meanings given below, act as inhibitors of specific tyrosine-kinases.
  • the compounds according to the invention may be used for example for treating diseases connected with the activity of specific tyrosine-kinases and characterised by excessive or abnormal cell proliferation.
  • the present invention relates to compounds of general formula (1)
  • A denotes a group, optionally substituted by one or more, identical or different R 1 , selected from among C 6-15 aryl and 5-12 membered heteroaryl;
  • X denotes O, S or CH 2 ;
  • R 1 denotes hydrogen or a group selected from among R a , R b and R a substituted by one or more, identical or different R c and/or R b
  • R 2 denotes a group selected from among R a and R a substituted by one or more, identical or different R b and/or R c ;
  • each R a is selected independently of one another from among C 1-6 alkyl, C 3-10 cycloalkyl, C 4-16 cycloalkylalkyl, C 6 -C 10 aryl, C 7-16 arylalkyl, 2-6 membered heteroalkyl, 3-8 membered heterocycloalkyl, 4-14 membered heterocycloalkylalkyl, 5-12 membered heteroaryl
  • the invention relates to compounds of general formula (1), wherein A is a group selected from among phenyl and 5-10 membered heteroaryl.
  • the invention relates to compounds of general formula (1), wherein A is phenyl.
  • the invention relates to compounds of general formula (1), wherein X denotes O.
  • the invention relates to compounds of general formula (1), wherein R 2 is a group selected from among C 1-6 alkyl, C 3-8 cycloalkyl, C 6-10 aryl, 3-8 membered heterocycloalkyl and 5-12 membered heteroaryl, optionally substituted by one or more, identical or different R b and/or R c .
  • the invention relates to compounds of general formula (1), wherein R 2 is a group selected from among C 6-10 aryl and 5-12 membered heteroaryl, optionally substituted by one or more, identical or different R b and/or R c .
  • the invention relates to compounds of general formula (1) selected from the group consisting of
  • the invention relates to compounds, or the pharmaceutically effective salts thereof, of general formula (1) for use as medicaments.
  • the invention relates to compounds, or the pharmaceutically effective salts thereof, of general formula (1) for preparing a medicament with an antiproliferative and/or pro-apoptotic activity.
  • the invention relates to pharmaceutical preparations, containing as active substance one or more compounds of general formula (1) or the physiologically acceptable salts thereof optionally in combination with conventional excipients and/or carriers.
  • the invention relates to the use of compounds of general formula (1) for preparing a pharmaceutical composition for the treatment and/or prevention of cancer, infections, inflammatory or autoimmune diseases.
  • the invention in another aspect relates to pharmaceutical preparations comprising a compound of general formula (1) and at least one further cytostatic or cytotoxic active substance, different from formula (1), optionally in the form of the tautomers, the racemates, the enantiomers, the diastereomers and the mixtures thereof; and optionally the pharmacologically acceptable acid addition salts thereof.
  • Alkyl is made up of the sub-groups saturated hydrocarbon chains and unsaturated hydrocarbon chains, while the latter may be further subdivided into hydrocarbon chains with a double bond (alkenyl) and hydrocarbon chains with a triple bond (alkynyl). Alkenyl contains at least one double bond, alkynyl contains at least one triple bond. If a hydrocarbon chain were to carry both at least one double bond and also at least one triple bond, by definition it would belong to the alkynyl sub-group. All the sub-groups mentioned above may further be divided into straight-chain (unbranched) and branched. If an alkyl is substituted, the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon atoms, independently of one another. Examples of representatives of individual sub-groups are listed below.
  • propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl etc. without any further definition are meant unsaturated hydrocarbon groups with the corresponding number of carbon atoms and a double bond, all the isomeric forms, i.e. (Z)/(E) isomers, being included where applicable.
  • butadienyl pentadienyl, hexadienyl, heptadienyl, octadienyl, nonadienyl, decadienyl etc. without any further definition are meant unsaturated hydrocarbon groups with the corresponding number of carbon atoms and two double bonds, all the isomeric forms, i.e. (Z)/(E) isomers, being included where applicable.
  • propynyl, butyryl, pentynyl, hexynyl, heptynyl, octenyl, nonynyl, decynyl etc. without any further definition are meant unsaturated hydrocarbon groups with the corresponding number of carbon atoms and a triple bond, all the isomeric forms being included.
  • heteroalkyl groups which can be derived from the alkyl as defined above in its broadest sense if, in the hydrocarbon chains, one or more of the groups —CH 3 are replaced independently of one another by the groups —OH, —SH or —NH 2 , one or more of the groups —CH 2 — are replaced independently of one another by the groups —O—, —S— or —NH—, one or more of the groups
  • one or more of the groups ⁇ CH— are replaced by the group ⁇ N—, one or more of the groups ⁇ CH 2 are replaced by the group ⁇ NH or one or more of the groups ⁇ CH are replaced by the group ⁇ N, while overall there may only be a maximum of three heteroatoms in a heteroalkyl, there must be at least one carbon atom between two oxygen atoms and between two sulphur atoms or between one oxygen and one sulphur atom and the group as a whole must be chemically stable.
  • heteroalkyl is made up of the sub-groups saturated hydrocarbon chains with heteroatom(s), heteroalkenyl and heteroalkynyl, and one further subdivision may be carried out into straight-chain (unbranched) and branched. If a heteroalkyl is substituted, the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying oxygen, sulphur, nitrogen and/or carbon atoms, independently of one another. Heteroalkyl itself may be linked to the molecule as a substituent both via a carbon atom and via a heteroatom.
  • Halogen denotes fluorine, chlorine, bromine and/or iodine atoms.
  • Haloalkyl is derived from alkyl as hereinbefore defined in its broadest sense, when one or more hydrogen atoms of the hydrocarbon chain are replaced independently of one another by halogen atoms, which may be identical or different. It is immediately apparent from the indirect definition/derivation from alkyl that haloalkyl is made up of the sub-groups saturated halohydrocarbon chains, haloalkenyl and haloalkynyl, and further subdivision may be made into straight-chain (unbranched) and branched. If a haloalkyl is substituted, the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon atoms, independently of one another.
  • Typical examples include —CF 3 ; —CHF 2 ; —CH 2 F; —CF 2 CF 3 ; —CHFCF 3 ; —CH 2 CF 3 ; —CF 2 CH 3 ; —CHFCH 3 ; —CF 2 CF 2 CF 3 ; —CF 2 CH 2 CH 3 ; —CF ⁇ CF 2 ; —CCl ⁇ CH 2 ; —CBr ⁇ CH 2 ; —CI ⁇ CH 2 ; —C ⁇ C—CF 3 ; —CHFCH 2 CH 3 ; and —CHFCH 2 CF 3 .
  • Cycloalkyl is made up of the sub-groups monocyclic hydrocarbon rings, bicyclic hydrocarbon rings and spirohydrocarbon rings, while each sub-group may be further subdivided into saturated and unsaturated (cycloalkenyl).
  • unsaturated means that in the ring system in question there is at least one double bond, but no aromatic system is formed.
  • bicyclic hydrocarbon rings two rings are linked such that they have at least two carbon atoms in common.
  • spirohydrocarbon rings one carbon atom (spiroatom) is shared by two rings.
  • the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon atoms, independently of one another. Cycloalkyl itself may be linked to the molecule as substituent via any suitable position of the ring system.
  • cycloprop-1-enyl cycloprop-2-enyl; cyclobut-1-enyl; cyclobut-2-enyl; cyclopent-1-enyl; cyclopent-2-enyl; cyclopent-3-enyl; cyclohex-1-enyl; cyclohex-2-enyl; cyclohex-3-enyl; cyclohept-1-enyl; cyclohept-2-enyl; cyclohept-3-enyl; cyclohept-4-enyl; cyclobuta-1,3-dienyl; cyclopenta-1,4-dienyl; cyclopenta-1,3-dienyl; cyclopenta-2,4-dienyl; cyclohexa-1,3-dienyl; cyclohexa-1,5-dienyl; cyclohexa-2,4-dienyl; cyclohexa-1
  • Cycloalkylalkyl denotes the combination of the above-defined groups alkyl and cycloalkyl, in each case in their broadest sense.
  • the alkyl group as substituent is directly linked to the molecule and is in turn substituted by a cycloalkyl group.
  • the alkyl and cycloalkyl may be linked in both groups via any carbon atoms suitable for this purpose.
  • the respective sub-groups of alkyl and cycloalkyl are also included in the combination of the two groups.
  • Aryl denotes mono-, bi- or tricyclic carbon rings with at least one aromatic ring. If an aryl is substituted, the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon atoms, independently of one another. Aryl itself may be linked to the molecule as substituent via any suitable position of the ring system.
  • Typical examples include phenyl, naphthyl, indanyl (2,3-dihydroindenyl), 1,2,3,4-tetrahydronaphthyl and fluorenyl.
  • Arylalkyl denotes the combination of the groups alkyl and aryl as hereinbefore defined, in each case in their broadest sense.
  • the alkyl group as substituent is directly linked to the molecule and is in turn substituted by an aryl group.
  • the alkyl and aryl may be linked in both groups via any carbon atoms suitable for this purpose.
  • the respective sub-groups of alkyl and aryl are also included in the combination of the two groups.
  • Typical examples include benzyl; 1-phenylethyl; 2-phenylethyl; phenylvinyl; phenylallyl etc.
  • Heteroaryl denotes monocyclic aromatic rings or polycyclic rings with at least one aromatic ring, which, compared with corresponding aryl or cycloalkyl, contain instead of one or more carbon atoms one or more identical or different heteroatoms, selected independently of one another from among nitrogen, sulphur and oxygen, while the resulting group must be chemically stable. If a heteroaryl is substituted, the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon and/or nitrogen atoms, independently of one another. Heteroaryl itself as substituent may be linked to the molecule via any suitable position of the ring system, both carbon and nitrogen.
  • Heteroarylalkyl denotes the combination of the alkyl and heteroaryl groups defined hereinbefore, in each case in their broadest sense.
  • the alkyl group as substituent is directly linked to the molecule and is in turn substituted by a heteroaryl group.
  • the linking of the alkyl and heteroaryl may be achieved on the alkyl side via any carbon atoms suitable for this purpose and on the heteroaryl side by any carbon or nitrogen atoms suitable for this purpose.
  • the respective sub-groups of alkyl and heteroaryl are also included in the combination of the two groups.
  • heterocycloalkyl groups which are derived from the cycloalkyl as hereinbefore defined if in the hydrocarbon rings one or more of the groups —CH 2 — are replaced independently of one another by the groups —O—, —S— or —NH— or one or more of the groups ⁇ CH— are replaced by the group ⁇ N—, while not more than five heteroatoms may be present in total, there must be at least one carbon atom between two oxygen atoms and between two sulphur atoms or between one oxygen and one sulphur atom and the group as a whole must be chemically stable.
  • Heteroatoms may simultaneously be present in all the possible oxidation stages (sulphur ⁇ sulphoxide —SO—, sulphone —SO 2 —; nitrogen ⁇ N-oxide). It is immediately apparent from the indirect definition/derivation from cycloalkyl that heterocycloalkyl is made up of the sub-groups monocyclic hetero-rings, bicyclic hetero-rings and spirohetero-rings, while each sub-group can also be further subdivided into saturated and unsaturated (heterocycloalkenyl).
  • unsaturated means that in the ring system in question there is at least one double bond, but no aromatic system is formed.
  • bicyclic hetero-rings two rings are linked such that they have at least two atoms in common.
  • one carbon atom spiroatom
  • the substitution may be mono- or polysubstitution in each case, at all the hydrogen-carrying carbon and/or nitrogen atoms, independently of one another.
  • Heterocycloalkyl itself as substituent may be linked to the molecule via any suitable position of the ring system.
  • Heterocycloalkylalkyl denotes the combination of the alkyl and heterocycloalkyl groups defined hereinbefore, in each case in their broadest sense.
  • the alkyl group as substituent is directly linked to the molecule and is in turn substituted by a heterocycloalkyl group.
  • the linking of the alkyl and heterocycloalkyl may be achieved on the alkyl side via any carbon atoms suitable for this purpose and on the heterocycloalkyl side by any carbon or nitrogen atoms suitable for this purpose.
  • the respective sub-groups of alkyl and heterocycloalkyl are also included in the combination of the two groups.
  • suitable substituent is meant a substituent that on the one hand is fitting on account of its valency and on the other hand leads to a system with chemical stability.
  • prodrug is meant an active substance in the form of its precursor metabolite.
  • the skilled man will be familiar with prodrug systems of this kind (Sloan, Kenneth B.; Wasdo, Scott C. The role of prodrugs in penetration enhancement. Percutaneous Penetration Enhancers (2nd Edition) (2006).51-64; Lloyd, Andrew W. Prodrugs. Smith and Williams' Introduction to the Principles of Drug Design and Action (4th Edition) (2006), 211-232; Neervannan, Seshadri. Strategies to impact solubility and dissolution rate during drug lead optimization: salt selection and prodrug design approaches.
  • a suitable prodrug contains for example a substance of the general formulae which is linked via an enzymatically cleavable linker (e.g. carbamate, phosphate, N-glycoside or a disulphide group to a dissolution-improving substance (e.g. tetraethyleneglycol, saccharides, amino acids).
  • Carrier-prodrug systems contain the active substance as such, bound to a masking group which can be cleaved by the simplest possible controllable mechanism.
  • the function of masking groups according to the invention in the compounds according to the invention is to neutralise the charge for improving cell uptake.
  • the compounds according to the invention may also additionally influence other pharmacological parameters, such as for example oral bioavailability, tissue distribution, pharmacokinetics and stability against non-specific phosphatases.
  • the delayed release of the active substance may also involve a sustained-release effect.
  • modified metabolisation may occur, thus resulting in a higher efficiency of the active substance or organic specificity.
  • the masking group or a linker that binds the masking group to the active substance is selected such that the prodrug is sufficiently hydrophilic to be dissolved in the blood serum, has sufficient chemical and enzymatic stability to reach the activity site and is also sufficiently hydrophilic to ensure that it is suitable for diffusion-controlled membrane transport.
  • the auxiliary components released should be non-toxic.
  • the compound without a mask or linker, and a mask may be regarded as a prodrug which first of all has to be prepared in the cell from the ingested compound by enzymatic and biochemical processes.
  • Air- and/or moisture-sensitive starting materials are stored under protective gas and corresponding reactions and manipulations using them are carried out under protective gas (nitrogen or argon).
  • Microwave reactions are carried out in an Initiator made by Biotage or an Explorer made by CEM in sealed containers (preferably 2, 5 or 20 mL), preferably with stirring.
  • silica gel is used which is made by Millipore (named: Granula Silica Si-60A 35-70 um) or C-18 RP-silica gel (RP-phase) made by Macherey Nagel (named: Polygoprep 100-50 C18).
  • the thin layer chromatography is carried out on ready-made silica gel 60 TLC plates on glass (with fluorescence indicator F-254) made by Merck.
  • the preparative high pressure chromatography is carried out using columns made by Waters (named: XTerra Prep. MS C18, 5 ⁇ M, 30 ⁇ 100 mm or XTerra Prep. MS C18, 5 ⁇ m, 50 ⁇ 100 mm OBD or Symmetrie C18, 5 ⁇ m, 19 ⁇ 100 mm or Sunfire C18 OBD, 19 ⁇ 100 mm, 5 ⁇ m or Sunfire Prep C 10 ⁇ m OBD 50 ⁇ 150 mm or X-Bridge Prep C18 5 ⁇ m OBD 19 ⁇ 50 mm), Agilent (named: Zorbax SB-C8 5 ⁇ m PrepHT 21.2 ⁇ 50 mm) and Phenomenex (named: Gemini C18 5 ⁇ m AXIA 21.2 ⁇ 50 mm or Gemini C18 10 ⁇ m 50 ⁇ 150 mm), the analytical HPLC (reaction control) is carried out with columns made by Agilent (named: Zorbax SB-C8, 5 ⁇ m,
  • the compounds according to the invention are prepared by the methods of synthesis described below, in which the substituents of the general formulae have the meanings specified hereinbefore. These methods are intended to illustrate the invention without restricting it to their content or limiting the scope of the compounds claimed to these Examples. Where the preparation of the starting compounds is not described, they are commercially obtainable or may be prepared analogously to known compounds or methods described herein. Substances described in the literature are prepared according to the published methods of synthesis.
  • Example compounds of type (1) are prepared from 2,4-dichloro-5-trifluoromethylpyrimidine A-1 by nucleophilic aromatic substitution of the chlorine in position 2 of the pyrimidine using an amine A-NH 2 and subsequent exchange of the second chlorine with an alcohol OR 2 or a sulphide SR 2 or by coupling benzyl metal halides HalMetR 2 .
  • a and R 2 are both suitable groups for arriving at the example compounds.
  • the nucleophilic aromatic substitutions at A-1 and A-2 are carried out using methods known from the literature in common solvents, such as for example THF, DCM, NMP, toluene, DMSO or DMF using a base, such as for example DIPEA, LiOH, Cs 2 CO 3 , or KOtBu , an acid such as HCl or a Lewis acid such as ZnCl 2 .
  • a base such as for example DIPEA, LiOH, Cs 2 CO 3 , or KOtBu
  • an acid such as HCl or a Lewis acid such as ZnCl 2 .
  • the amines A-NH 2 , the alcohols OR 2 , the sulphides SR 2 and the organometallic compounds used are commercially obtainable or may be synthesised using methods known from the literature.
  • the 2-amino-4-oxo-5-trifluoromethylpyrimidines or the thio- or carbo-analogous compounds of type (1) which may be obtained directly by these reaction methods may be further modified in A and R 2 at a suitable point in a manner known from the literature or in a manner analogous thereto to form other derivatives of type (1).
  • the groups A and R 2 of directly accessible 2-amino-4-oxo-5-trifluoromethylpyrimidines or 2-amino-4-thio-5-trifluoromethylpyrimidines of type (1) which consist of a carboxylic acid, sulphonic acid, halo- or amino-substituted aryl or heteroaryl, may be converted by reactions of substitution (at the heteroaryl itself), alkylation, acylation, amination or addition.
  • This test uses active PTK2 enzyme (Invitrogen Code PV3832) and poly-Glu-Tyr (4:1, Sigma P-0275) as the kinase substrate.
  • the kinase activity is detected by means of the phosphorylation of the substrate in a DELFIATM assay.
  • the phosphorylated substrate is detected with the Europium-labelled phosphotyrosine antibody PY20 (Perkin Elmer, No.: AD0038).
  • the compounds are serially diluted in 10% DMSO/H 2 O and 10 ⁇ L of each dilution are dispensed per well in a 96-well microtitre plate (clear U-shaped base plate, Greiner No. 650101) (the inhibitors are tested in duplicates) and mixed with 10 ⁇ L/well of PTK2 kinase (0.01 ⁇ g/well).
  • PTK2 kinase is diluted accordingly beforehand with kinase dilution buffer (20 mM TRIS/HCl pH 7.5, 0.1 mM EDTA, 0.1 mM EGTA, 0.286 mM sodium orthovanadate, 10% glycerol with the addition of freshly prepared BSA (fraction V 1 mg/mL) and DTT (1 mM)).
  • the test compound and the PTK2 kinase are pre-incubated for 1 h at RT and shaken at 500 rpm.
  • the reaction is started by the addition of 10 ⁇ L/well of poly (Glu,Tyr) substrate (25 ⁇ g/well poly (Glu, Tyr), 0.05 ⁇ g/well biotinylated poly (Glu,Tyr) dissolved in 250 mM TRIS/HCl pH 7.5, 9 mM DTT)—the final concentration of DMSO is 2%. After 1 h kinase reaction (the plates are shaken at 500 rpm), the reaction is stopped by the addition of 12 ⁇ L/well of 100 mM EDTA, pH 8. and shaken for a further 5 min at RT (500 U/min).
  • reaction mixture 55 ⁇ L of the reaction mixture are transferred into a streptavidin plate (Strepta Well High Bind (transparent, 96-well) made by Roche, No.: 11989685001) and incubated for 1 h at RT (shaking at 500 rpm). Then the microtitre plate is washed three times with 200 ⁇ L/well D-PBS (Invitrogen, No.: 14190).
  • the time-delayed Europium fluorescence is then measured in a microtitre plate reader (Victor, Perkin Elmer).
  • the positive control consists of wells that contain solvent (2% DMSO in test buffer) and display uninhibited kinase activity. Wells that contain test buffer instead of enzyme act as a control for the background kinase activity.
  • the IC 50 values are determined from concentration-activity analyses by iterative calculation using a sigmoidal curve analysis algorithm (FIFTY, based on GraphPAD Prism Version 3.03) with a variable Hill coefficient.
  • FIFTY sigmoidal curve analysis algorithm
  • PC-3 cells (ATCC CRL-1435) are grown in cell culture flasks (175 cm 2 ) with F12 Kaighn's Medium (Gibco, No.: 21127) which has been supplemented with 10% foetal calf serum (Invitrogen, No.: 16000-044). The cultures are incubated in the incubator at 37° C. and 5% CO 2 and are run twice a week.
  • the test I carried out in microtitre plates (Greiner, No.: 655 185) and consists of a lower layer made up of 90 ⁇ L of medium with 1.2% agarose (Invitrogen, 4% agarose gel 1 ⁇ liquid 40 mL, No.: 18300-012), followed by a cell layer in 60 ⁇ L medium and 0.3% agarose and finally a top layer comprising 30 ⁇ L medium which contains the test compounds (without the addition of agarose). To prepare the lower layer, 4% agarose are decocted with 10 ⁇ D-PBS (Gibco, No.: 14200) and H 2 O and thus prediluted on 3% agarose in 1 ⁇ D-PBS.
  • 10 ⁇ D-PBS Gibco, No.: 14200
  • the concentration of the test compounds usually covers a test range of between 10 ⁇ M and 0.3 nM.
  • the compounds (stock solution: 10 mM in 100% DMSO) are prediluted in F12 Kaighn's Medium+6% DMSO, to obtain a final concentration of 1% DMSO.
  • the cells are incubated at 37° C. and 5% CO 2 in a steam-saturated atmosphere for 14 days.
  • the metabolic activity of living cells is then demonstrated with the dye Alamar Blue (AbD Serotec, No.: BUF012B). To do this, 18 ⁇ L/well of an Alamar Blue suspension are added and the whole is incubated for approx. 8 h in the incubator at 37° C.
  • the positive control consists of empty wells that are filled with a mixture of 18 ⁇ L of Alamar Blue reduced by autoclaving and 180 ⁇ L of F12 Kaighn's Medium (10% FCS).
  • the fluorescence intensity is determined by means of a fluorescence spectrometer (SpectraMAX GeminiXS, Molecular Devices).
  • the excitation wavelength is 530 nm
  • the emission wavelength is 590 nm.
  • the EC 50 values are determined from concentrations-activity analyses by iterative calculation using a sigmoidal curve analysis algorithm (FIFTY, based on GraphPAD Prism Version 3.03) with a variable Hill coefficient.
  • FIFTY sigmoidal curve analysis algorithm
  • This cellular test is used to determine the influence of PTK2-inhibitors on the state of the PTK2-phosphorylation at tyrosine 397 (pY397).
  • PC-3 cells prostate carcinoma, ATCC CRL-1435
  • F12 Kaighn's Medium Gabco, No.: 21127
  • 10% foetal calf serum Invitrogen, No.: 16000-044
  • test compounds 2 ⁇ 10 4 cells pro well/904 medium are plated out in 96-well microtitre plates (Costar, No.: 3598) and incubated overnight in the incubator at 37° C. and 5% CO 2 .
  • the test compounds (10 ⁇ L from serial dilution) are added the next day.
  • the concentration of the test compounds usually covers a range of 50 ⁇ M and 0.8 nM.
  • the test compounds (stock solution: 10 mM in 100% DMSO) are diluted in medium/medium 10% DMSO such that the final concentration is 1% DMSO.
  • the cells are then incubated in the incubator at 37° C. and 5% CO 2 for 2 h.
  • the culture supernatant is removed and the cells are fixed with 150 ⁇ L 4% formaldehyde in D-PBS for 20 min at RT.
  • the cell lawn is washed five times with 200 ⁇ L 0.1% Triton X-100 in D-PBS for 5 min in each case and then incubated for 90 min with blocking buffer (5% skimmed milk powder (Maresi Fixmilch) in TBST (25 mM Tris/HCl, pH 8.0, 150 mM NaCl, 0.05% Tween 20).
  • the blocking buffer is replaced by 50 ⁇ L of the first antibody anti-phospho PTK2 [pY397] rabbit monoclonal (Invitrogen/Biosource, No.: 44-625G), which is diluted 1:200 in blocking buffer.
  • a PTK2 [total] antibody (clone 4.47 mouse monoclonal, Upstate, No.: 05-537), diluted 1:400 in blocking buffer is used. This incubation is carried out at 4° C. overnight. Then the cell lawn is washed five times with 100 ⁇ L of 0.1% Tween in D-PBS for 5 min in each case and 50 ⁇ L/well of second antibody are added.
  • a goat-anti-rabbit antibody is used which is coupled with horseradish peroxidase (Dako, No.: P0448; 1:500 dilution in blocking buffer).
  • a rabbit-anti-mouse antibody is used, which is also coupled with horseradish peroxidase (Dako, No.: PO161; 1:1000 dilution in blocking buffer). This incubation is carried out for 1 h at RT with gentle shaking. The cell lawn is then again washed five times with 100 ⁇ L of 0.1% Tween in D-PBS for 5 min in each case.
  • Peroxidase staining is carried out by adding 100 ⁇ L staining solution (1:1 mixture of TMB peroxidase substrate (KPL, No.: 50-76-02) and peroxidase solution B (H 2 O 2 ) (KPL, No.: 50-65-02). The development of the stain takes place for 10-30 min in the dark. The reaction is stopped by the addition of 100 ⁇ L/well of a 1 M phosphoric acid solution. The absorption is determined photometrically at 450 nm with an absorption measuring device (VICTOR 3 PerkinElmer). The inhibition of the anti-phospho PTK2 [pY397] immune staining is used to determine EC 50 values.
  • the staining with anti-PTK2 [total]-antibodies is for control purposes and should remain constant under the influence of inhibitor.
  • the EC 50 values are determined from concentration-activity analyses by iterative calculation with the aid of a sigmoidal curve analysis algorithm (FIFTY, based on GraphPAD Prism Version 3.03) with a variable Hill coefficient.
  • FIFTY sigmoidal curve analysis algorithm
  • the substances of the present invention are PTK2-kinase inhibitors.
  • the new compounds of general formula (1), the isomers thereof and the physiologically acceptable salts thereof are suitable for the treatment of diseases characterised by excessive or abnormal cell proliferation.
  • Such diseases include for example: viral infections (e.g. HIV and Kaposi's sarcoma); inflammatory and autoimmune diseases (e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and wound healing); bacterial, fungal and/or parasitic infections; leukaemias, lymphomas and solid tumours (e.g. carcinomas and sarcomas), skin diseases (e.g. psoriasis); diseases based on hyperplasia which are characterised by an increase in the number of cells (e.g. fibroblasts, hepatocytes, bones and bone marrow cells, cartilage or smooth muscle cells or epithelial cells (e.g. endometrial hyperplasia)); bone diseases and cardiovascular diseases (e.g. restenosis and hypertrophy).
  • viral infections e.g. HIV and Kaposi's sarcoma
  • inflammatory and autoimmune diseases e.g. colitis, arthritis, Alzheimer's disease, glomerulonephritis and
  • cancers may be treated with compounds according to the invention, without being restricted thereto:
  • brain tumours such as for example acoustic neurinoma, astrocytomas such as fibrillary, protoplasmic, gemistocytary, anaplastic, pilocytic astrocytomas, glioblastoma, gliosarcoma, pleomorphic xanthoastrocytoma, subependymal large-cell giant cell astrocytoma and desmoplastic infantile astrocytoma; brain lymphomas, brain metastases, hypophyseal tumour such as prolactinoma, hypophyseal incidentaloma, HGH (human growth hormone) producing adenoma and corticotrophic adenoma, craniopharyngiomas, medulloblastoma, meningeoma and oligodendroglioma; nerve tumours such as for example tumours of the vegetative nervous system such as neuroblastoma, ganglioneuroma, paraganglioma (phe
  • the new compounds may be used for the prevention, short-term or long-term treatment of the above-mentioned diseases, optionally also in combination with radiotherapy or other “state-of-the-art” compounds, such as e.g. cytostatic or cytotoxic substances, cell proliferation inhibitors, anti-angiogenic substances, steroids or antibodies.
  • radiotherapy or other “state-of-the-art” compounds, such as e.g. cytostatic or cytotoxic substances, cell proliferation inhibitors, anti-angiogenic substances, steroids or antibodies.
  • the compounds of general formula (1) may be used on their own or in combination with other active substances according to the invention, optionally also in combination with other pharmacologically active substances.
  • Chemotherapeutic agents which may be administered in combination with the compounds according to the invention include, without being restricted thereto, hormones, hormone analogues and antihormones (e.g. tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, fludrocortisone, fluoxymesterone, medroxyprogesterone, octreotide), aromatase inhibitors (e.g., tamoxifen, toremifene, raloxifene, fulvestrant, megestrol acetate, flutamide, nilutamide, bicalutamide, aminoglutethimide, cyproterone acetate, finasteride, buserelin acetate, flu
  • anastrozole anastrozole, letrozole, liarozole, vorozole, exemestane, atamestane
  • LHRH agonists and antagonists e.g. goserelin acetate, luprolide
  • inhibitors of growth factors growth factors such as for example “platelet derived growth factor” and “hepatocyte growth factor”, inhibitors are for example “growth factor” antibodies, “growth factor receptor” antibodies and tyrosinekinase inhibitors, such as for example gefitinib, lapatinib and trastuzumab
  • signal transduction inhibitors e.g. imatinib and sorafenib
  • antimetabolites e.g.
  • antifolates such as methotrexate, premetrexed and raltitrexed, pyrimidine analogues such as 5-fluorouracil, capecitabin and gemcitabin, purine and adenosine analogues such as mercaptopurine, thioguanine, cladribine and pentostatin, cytarabine, fludarabine); antitumour antibiotics (e.g. anthracyclins such as doxorubicin, daunorubicin, epirubicin and idarubicin, mitomycin-C, bleomycin, dactinomycin, plicamycin, streptozocin); platinum derivatives (e.g.
  • cisplatin, oxaliplatin, carboplatin alkylation agents (e.g. estramustin, meclorethamine, melphalan, chlorambucil, busulphan, dacarbazin, cyclophosphamide, ifosfamide, temozolomide, nitrosoureas such as for example carmustin and lomustin, thiotepa); antimitotic agents (e.g. Vinca alkaloids such as for example vinblastine, vindesin, vinorelbin and vincristine; and taxanes such as paclitaxel, docetaxel); topoisomerase inhibitors (e.g.
  • epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantron) and various chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon alpha, leucovorin, rituximab, procarbazine, levamisole, mesna, mitotane, pamidronate and porfimer.
  • epipodophyllotoxins such as for example etoposide and etopophos, teniposide, amsacrin, topotecan, irinotecan, mitoxantron
  • chemotherapeutic agents such as amifostin, anagrelid, clodronat, filgrastin, interferon alpha, leucovorin, rituximab, procarbazine, levamisole, me
  • Suitable preparations include for example tablets, capsules, suppositories, solutions, —particularly solutions for injection (s.c., i.v., i.m.) and infusion—elixirs, emulsions or dispersible powders.
  • the content of the pharmaceutically active compound(s) should be in the range from 0.1 to 90 wt.-%, preferably 0.5 to 50 wt.-% of the composition as a whole, i.e. in amounts which are sufficient to achieve the dosage range specified below.
  • the doses specified may, if necessary, be given several times a day.
  • Suitable tablets may be obtained, for example, by mixing the active substance(s) with known excipients, for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert diluents such as calcium carbonate, calcium phosphate or lactose, disintegrants such as corn starch or alginic acid, binders such as starch or gelatine, lubricants such as magnesium stearate or talc and/or agents for delaying release, such as carboxymethyl cellulose, cellulose acetate phthalate, or polyvinyl acetate.
  • excipients for example inert dilu
  • Coated tablets may be prepared accordingly by coating cores produced analogously to the tablets with substances normally used for tablet coatings, for example collidone or shellac, gum arabic, talc, titanium dioxide or sugar.
  • the core may also consist of a number of layers.
  • the tablet coating may consist of a number of layers to achieve delayed release, possibly using the excipients mentioned above for the tablets.
  • Syrups or elixirs containing the active substances or combinations thereof according to the invention may additionally contain a sweetener such as saccharine, cyclamate, glycerol or sugar and a flavour enhancer, e.g. a flavouring such as vanillin or orange extract. They may also contain suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • a sweetener such as saccharine, cyclamate, glycerol or sugar
  • a flavour enhancer e.g. a flavouring such as vanillin or orange extract.
  • suspension adjuvants or thickeners such as sodium carboxymethyl cellulose, wetting agents such as, for example, condensation products of fatty alcohols with ethylene oxide, or preservatives such as p-hydroxybenzoates.
  • Solutions for injection and infusion are prepared in the usual way, e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aids, and transferred into injection vials or ampoules or infusion bottles.
  • isotonic agents e.g. with the addition of isotonic agents, preservatives such as p-hydroxybenzoates, or stabilisers such as alkali metal salts of ethylenediamine tetraacetic acid, optionally using emulsifiers and/or dispersants, whilst if water is used as the diluent, for example, organic solvents may optionally be used as solvating agents or dissolving aid
  • Capsules containing one or more active substances or combinations of active substances may for example be prepared by mixing the active substances with inert carriers such as lactose or sorbitol and packing them into gelatine capsules.
  • Suitable suppositories may be made for example by mixing with carriers provided for this purpose, such as neutral fats or polyethyleneglycol or the derivatives thereof.
  • Excipients which may be used include, for example, water, pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly dispersed silicic acid and silicates), sugars (e.g. cane sugar, lactose and glucose) emulsifiers (e.g.
  • pharmaceutically acceptable organic solvents such as paraffins (e.g. petroleum fractions), vegetable oils (e.g. groundnut or sesame oil), mono- or polyfunctional alcohols (e.g. ethanol or glycerol), carriers such as e.g. natural mineral powders (e.g. kaolins, clays, talc, chalk), synthetic mineral powders (e.g. highly disper
  • lignin e.g. lignin, spent sulphite liquors, methylcellulose, starch and polyvinylpyrrolidone
  • lubricants e.g. magnesium stearate, talc, stearic acid and sodium lauryl sulphate.
  • the preparations are administered by the usual methods, preferably by oral or transdermal route, most preferably by oral route.
  • the tablets may, of course contain, apart from the abovementioned carriers, additives such as sodium citrate, calcium carbonate and dicalcium phosphate together with various additives such as starch, preferably potato starch, gelatine and the like.
  • lubricants such as magnesium stearate, sodium lauryl sulphate and talc may be used at the same time for the tabletting process.
  • the active substances may be combined with various flavour enhancers or colourings in addition to the excipients mentioned above.
  • solutions of the active substances with suitable liquid carriers may be used.
  • the dosage for intravenous use is from 1-1000 mg per hour, preferably between 5 and 500 mg per hour.
  • the finely ground active substance, lactose and some of the corn starch are mixed together.
  • the mixture is screened, then moistened with a solution of polyvinylpyrrolidone in water, kneaded, wet-granulated and dried.
  • the granules, the remaining corn starch and the magnesium stearate are screened and mixed together.
  • the mixture is compressed to produce tablets of suitable shape and size.
  • the finely ground active substance, some of the corn starch, lactose, microcrystalline cellulose and polyvinylpyrrolidone are mixed together, the mixture is screened and worked with the remaining corn starch and water to form a granulate which is dried and screened.
  • the sodiumcarboxymethyl starch and the magnesium stearate are added and mixed in and the mixture is compressed to form tablets of a suitable size.
  • the active substance is dissolved in water at its own pH or optionally at pH 5.5 to 6.5 and sodium chloride is added to make it isotonic.
  • the solution obtained is filtered free from pyrogens and the filtrate is transferred under aseptic conditions into ampoules which are then sterilised and sealed by fusion.
  • the ampoules contain 5 mg, 25 mg and 50 mg of active substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Transplantation (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US13/130,069 2008-11-24 2009-11-24 New compounds Abandoned US20110288109A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08169805 2008-11-24
EP08169805.2 2008-11-24
PCT/EP2009/065762 WO2010058030A1 (en) 2008-11-24 2009-11-24 New compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/065762 A-371-Of-International WO2010058030A1 (en) 2008-11-24 2009-11-24 New compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/049,575 Continuation US8785464B2 (en) 2008-11-24 2013-10-09 Pyrimidine derivatives that inhibit FAK/PTK2

Publications (1)

Publication Number Publication Date
US20110288109A1 true US20110288109A1 (en) 2011-11-24

Family

ID=40427570

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/130,069 Abandoned US20110288109A1 (en) 2008-11-24 2009-11-24 New compounds
US14/049,575 Expired - Fee Related US8785464B2 (en) 2008-11-24 2013-10-09 Pyrimidine derivatives that inhibit FAK/PTK2

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/049,575 Expired - Fee Related US8785464B2 (en) 2008-11-24 2013-10-09 Pyrimidine derivatives that inhibit FAK/PTK2

Country Status (6)

Country Link
US (2) US20110288109A1 (zh)
EP (1) EP2367799B1 (zh)
AR (1) AR074209A1 (zh)
ES (1) ES2690341T3 (zh)
TW (1) TW201024281A (zh)
WO (1) WO2010058030A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110237598A1 (en) * 2009-10-02 2011-09-29 Boehringer Ingelheim International Gmbh New compounds
US8785464B2 (en) 2008-11-24 2014-07-22 Boehringer Ingelheim International Gmbh Pyrimidine derivatives that inhibit FAK/PTK2
US8846689B2 (en) 2008-11-24 2014-09-30 Boehringer Ingelheim International Gmbh Substituted pyrimidines for the treatment of diseases such as cancer
US11578061B2 (en) 2021-03-23 2023-02-14 Halia Therapeutics, Inc. Inhibitors of LRRK2 kinase

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8933227B2 (en) 2009-08-14 2015-01-13 Boehringer Ingelheim International Gmbh Selective synthesis of functionalized pyrimidines
WO2011018517A1 (en) 2009-08-14 2011-02-17 Boehringer Ingelheim International Gmbh Regioselective preparation of 2-amino-5-trifluoromethylpyrimidine derivatives
CA2797947C (en) * 2010-06-04 2019-07-09 Charles Baker-Glenn Aminopyrimidine derivatives as lrrk2 modulators
DE102010034699A1 (de) * 2010-08-18 2012-02-23 Merck Patent Gmbh Pyrimidinderivate
US20120244141A1 (en) 2010-09-28 2012-09-27 Boehringer Ingelheim International Gmbh Stratification of cancer patients for susceptibility to therapy with PTK2 inhibitors
UY33817A (es) * 2010-12-21 2012-07-31 Boehringer Ingelheim Int ?nuevas oxindolpirimidinas bencílicas?.
EP2675793B1 (en) 2011-02-17 2018-08-08 Cancer Therapeutics Crc Pty Limited Fak inhibitors
CN103534240B (zh) 2011-02-17 2015-12-09 癌症疗法Crc私人有限公司 选择性fak抑制剂
AR089182A1 (es) * 2011-11-29 2014-08-06 Hoffmann La Roche Derivados de aminopirimidina como moduladores de lrrk2
CN104093426B (zh) * 2011-11-30 2019-06-28 健泰科生物技术公司 用于lrrk2的正电子发射体层摄影(pet)成像的氟-18和碳-11标记的放射性配体
WO2013113716A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113773A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113788A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113776A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113782A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
IN2014DN07220A (zh) 2012-02-03 2015-04-24 Basf Se
WO2013113781A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds i
WO2013113719A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds ii
JP2015508752A (ja) 2012-02-03 2015-03-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 殺菌性ピリミジン化合物
US9783524B2 (en) 2013-07-11 2017-10-10 Betta Pharmaceuticals Co., Ltd. Protein tyrosine kinase modulators and methods of use
US9656970B2 (en) * 2014-05-08 2017-05-23 Tosoh F-Tech, Inc. 5-(trifluoromethyl)pyrimidine derivatives and method for producing same
JP6431294B2 (ja) * 2014-06-16 2018-11-28 東ソー・ファインケム株式会社 5−(トリフルオロメチル)ピリミジン誘導体及びその製造法
JP6466107B2 (ja) * 2014-09-04 2019-02-06 東ソー・ファインケム株式会社 4−フェニルチオ−5−(トリフルオロメチル)ピリミジン誘導体及びその製造方法
JP6479486B2 (ja) * 2015-01-16 2019-03-06 東ソー・ファインケム株式会社 4−アルコキシ−5−(トリフルオロメチル)ピリミジン誘導体及びその製造方法
WO2020051571A1 (en) * 2018-09-07 2020-03-12 H. Lee Moffitt Cancer Center And Research Institute, Inc. Brd4-jak2 inhibitors
AU2020284245B2 (en) 2019-05-31 2023-10-05 Viacyte, Inc. A biocompatible membrane composite
CN111732548B (zh) * 2020-06-11 2022-06-17 浙江大学 N2-氨甲酰芳环-2-氨基嘧啶类衍生物及其医药用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173028B2 (en) * 2001-10-17 2007-02-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
WO2009115583A1 (en) * 2008-03-20 2009-09-24 Boehringer Ingelheim International Gmbh Regioselective preparation of substituted pyrimidines
US20120094999A1 (en) * 2009-05-05 2012-04-19 Dana-Farber Cancer Institute, Inc. Egfr inhibitors and methods of treating disorders

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9705361D0 (en) 1997-03-14 1997-04-30 Celltech Therapeutics Ltd Chemical compounds
ES2274634T3 (es) 1998-08-29 2007-05-16 Astrazeneca Ab Compuestos de pirimidina.
US6906067B2 (en) 1999-12-28 2005-06-14 Bristol-Myers Squibb Company N-heterocyclic inhibitors of TNF-α expression
GB0004886D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004890D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0004888D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
GB0016877D0 (en) 2000-07-11 2000-08-30 Astrazeneca Ab Chemical compounds
JP2006508997A (ja) * 2002-11-28 2006-03-16 シエーリング アクチエンゲゼルシャフト Chk−、Pdk−およびAkt−阻害性ピリミジン、それらの製造および薬剤としての使用
ES2325440T3 (es) 2003-02-20 2009-09-04 Smithkline Beecham Corporation Compuestos de pirimidina.
CL2004000303A1 (es) 2003-02-20 2005-04-08 Tibotec Pharm Ltd Compuestos derivados de pirimidinas y triazinas; proceso de preparacion; composicion farmaceutica; y su uso para inhibir la replicacion del vih.
GB0305929D0 (en) 2003-03-14 2003-04-23 Novartis Ag Organic compounds
US7504396B2 (en) 2003-06-24 2009-03-17 Amgen Inc. Substituted heterocyclic compounds and methods of use
PT2287156E (pt) 2003-08-15 2013-08-26 Novartis Ag 2,4-di(fenilamino)-pirimidinas úteis no tratamento de doenças neoplásicas, desordens inflamatórias e do sistema imunitário
EP1598343A1 (de) * 2004-05-19 2005-11-23 Boehringer Ingelheim International GmbH 2-Arylaminopyrimidine als PLK Inhibitoren
US7521457B2 (en) 2004-08-20 2009-04-21 Boehringer Ingelheim International Gmbh Pyrimidines as PLK inhibitors
GB0419160D0 (en) 2004-08-27 2004-09-29 Novartis Ag Organic compounds
TW200626560A (en) 2004-09-30 2006-08-01 Tibotec Pharm Ltd HIV inhibiting 5-carbo-or heterocyclic substituted pyrimidines
AU2006204752A1 (en) * 2005-01-14 2006-07-20 Neurogen Corporation Heteroaryl substituted quinolin-4-ylamine analogues
US20070032514A1 (en) * 2005-07-01 2007-02-08 Zahn Stephan K 2,4-diamino-pyrimidines as aurora inhibitors
US20090149467A1 (en) 2005-09-15 2009-06-11 Merck & Co., Inc. Tyrosine Kinase Inhibitors
JP2009520038A (ja) 2005-12-19 2009-05-21 ジェネンテック・インコーポレーテッド ピリミジンキナーゼインヒビター
FR2896503B1 (fr) 2006-01-23 2012-07-13 Aventis Pharma Sa Nouveaux derives soufres d'uree cyclique, leur preparation et leur utilisation pharmaceutique comme inhibiteurs de kinases
TW200804364A (en) 2006-02-22 2008-01-16 Boehringer Ingelheim Int New compounds
NZ571691A (en) 2006-03-31 2011-07-29 Janssen Pharmaceutica Nv Benzoimidazol-2-yl pyrimidines and pyrazines as modulators of the histamine H4 receptor
GB0619343D0 (en) 2006-09-30 2006-11-08 Vernalis R&D Ltd New chemical compounds
WO2008040951A1 (en) 2006-10-03 2008-04-10 Astrazeneca Ab Compounds
BRPI0720436A2 (pt) 2006-12-13 2014-01-07 Hoffmann La Roche Inibidores de transcriptase reversa de não-nucleosídeo
WO2008079719A1 (en) 2006-12-19 2008-07-03 Genentech, Inc. Pyrimidine kinase inhibitors
CA2702647C (en) 2007-01-31 2016-03-22 Ym Biosciences Australia Pty Ltd Thiopyrimidine-based compounds and uses thereof
DK2154967T5 (en) 2007-04-16 2014-11-17 Hutchison Medipharma Entpr Ltd Pyriminderivater
KR101892989B1 (ko) 2008-06-27 2018-08-30 셀젠 카르 엘엘씨 헤테로아릴 화합물 및 이의 용도
TW201024281A (en) 2008-11-24 2010-07-01 Boehringer Ingelheim Int New compounds
AR074210A1 (es) 2008-11-24 2010-12-29 Boehringer Ingelheim Int Derivados de pirimidina como inhibidores de ptk2-quinasa

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173028B2 (en) * 2001-10-17 2007-02-06 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pyrimidine derivatives
WO2009115583A1 (en) * 2008-03-20 2009-09-24 Boehringer Ingelheim International Gmbh Regioselective preparation of substituted pyrimidines
US20120094999A1 (en) * 2009-05-05 2012-04-19 Dana-Farber Cancer Institute, Inc. Egfr inhibitors and methods of treating disorders

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Gura et al., Systems for identifying new drugs are often faulty, Science, 278:1041-1042, 1997. *
Johnson et al., Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials, British Journal of Cancer, 84(10):1424-1431,2001. *
Linz et al., CAPLUS Abstract 151:381395 (2009). *
Pearce et al., Failure modes in anticancer drug discovery and development, Cancer Drug Design and Discovery Edited by Stephen Neidle, Chapter 18, pp. 424-435 (2008). *
Simone, Oncology: Introduction, Cecil Textbook of Medicine, 20th Edition, Vol. 1, pp. 1004-101 O, 1996. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785464B2 (en) 2008-11-24 2014-07-22 Boehringer Ingelheim International Gmbh Pyrimidine derivatives that inhibit FAK/PTK2
US8846689B2 (en) 2008-11-24 2014-09-30 Boehringer Ingelheim International Gmbh Substituted pyrimidines for the treatment of diseases such as cancer
US9676762B2 (en) 2008-11-24 2017-06-13 Boehringer Ingelheim International Gmbh Pyrimidine compounds containing seven-membered fused ring systems
US20110237598A1 (en) * 2009-10-02 2011-09-29 Boehringer Ingelheim International Gmbh New compounds
US8466155B2 (en) 2009-10-02 2013-06-18 Boehringer Ingelheim International Gmbh Pyrimidines
US11578061B2 (en) 2021-03-23 2023-02-14 Halia Therapeutics, Inc. Inhibitors of LRRK2 kinase
US11866423B2 (en) 2021-03-23 2024-01-09 Halia Therapeutics, Inc. Inhibitors of LRRK2 kinase

Also Published As

Publication number Publication date
EP2367799B1 (en) 2018-08-01
ES2690341T3 (es) 2018-11-20
TW201024281A (en) 2010-07-01
EP2367799A1 (en) 2011-09-28
US20140038993A1 (en) 2014-02-06
WO2010058030A1 (en) 2010-05-27
AR074209A1 (es) 2010-12-29
US8785464B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
US9676762B2 (en) Pyrimidine compounds containing seven-membered fused ring systems
US8785464B2 (en) Pyrimidine derivatives that inhibit FAK/PTK2
US8461147B2 (en) Diaminopyridines for the treatment of diseases which are characterised by excessive or anomal cell proliferation
US8377943B2 (en) 2,4-diaminopyrimidine derivates as PTK2-inhibitors for the treatment of abnormal cell growth
US8410126B2 (en) Pyrimidine inhibitors of PKTK2
US20100240657A1 (en) Chemical compounds
WO2010106097A1 (en) Substituted pyrimidines for the treatment of cancer
US20110263565A1 (en) Compounds
US8404674B2 (en) Substituted 9H-purin-2-YL compounds, compositions thereof and uses thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STADTMUELLER, HEINZ;BETZEMEIER, BODO;SAPOUNTZIS, IOANNIS;SIGNING DATES FROM 20110628 TO 20110630;REEL/FRAME:026620/0495

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION