US20040161608A1 - Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same - Google Patents

Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same Download PDF

Info

Publication number
US20040161608A1
US20040161608A1 US10/780,626 US78062604A US2004161608A1 US 20040161608 A1 US20040161608 A1 US 20040161608A1 US 78062604 A US78062604 A US 78062604A US 2004161608 A1 US2004161608 A1 US 2004161608A1
Authority
US
United States
Prior art keywords
inorganic powder
powders
alcohol
powder
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/780,626
Inventor
Jae-Young Choi
Jong-heun Lee
Seong-Hyeon Hong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, JAE-YOUNG, HONG, SEONG-HYEON, LEE, JONG-HEUN
Publication of US20040161608A1 publication Critical patent/US20040161608A1/en
Priority to US11/319,450 priority Critical patent/US7745002B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/006Coating of the granules without description of the process or the device by which the granules are obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a method of coating the surface of an inorganic powder and a coated inorganic powder manufactured by this method, more particularly, it is related to a method of depositing a uniform metal oxide coating on the surface of an inorganic powder which can be used in the manufacture of Multi Layer Ceramic Capacitor or as an active material in lithium batteries.
  • Multi Layer Ceramic Capacitor (hereinafter ‘MLCC’) consists of multi-layers of capacitors in which a dielectric ceramic layer of BaTiO 3 is inserted between thin-layer metal electrodes like Nickel or Copper. MLCC is widely used in computers, mobile communication equipments, and other small electronic equipments due to its small volume but large capacity.
  • Ag—Pd alloys that have been used as the metal electrode have the advantage of being able to be sintered in air, but it has the drawback of high manufacturing cost. Therefore, in the late 1990s in order to reduce the manufacturing cost, Ag—Pd alloys were replaced by Ni, and a Ni-MLCC technology of firing Ni was introduced in a reducing atmosphere to prevent oxidation of Ni.
  • FIG. 1 is a plan view illustrating schematically BaTiO 3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 formed during the manufacturing process of the Ni-MLCC.
  • BaTiO 3 powder dielectric layer 100 is formed by coating a surface, such as a PET film, with BaTiO 3 powder dispersion. Afterwards, the Ni powder dispersion is screen-printed on the BaTiO 3 powder dielectric layer to form a plurality of Ni powder electrode layer pattern 200 . By repeating the processes of forming BaTiO3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 , multi-layers of BaTiO3 powder layer 100 and Ni powder electrode layer pattern 200 are formed.
  • This multilayer is then cut along the cutting line 300 and sintered to transform BaTiO 3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 into BaTiO 3 mono-layer dielectric layer and Ni mono-layer electrode layer pattern, respectively. This completes the manufacturing of Ni-MLCC.
  • the Ni powder electrode layer pattern 200 contains a large amount of organic vehicle prior to the sintering process, which causes the Ni powder to have a relatively low packing density. Therefore, when sintering, the Ni powder electrode layer pattern 200 shows greater shrinkage than the BaTiO 3 powder dielectric layer 100 .
  • the sintering temperature of Ni powder is about 600° C. and that of BaTiO 3 is about 1250 ⁇ 1300° C.
  • Ni powder starts to shrink significantly around 400 ⁇ 500° C.
  • BaTiO 3 powder starts to shrink beyond about 1100° C. Therefore, in the sintering process, the Ni powder electrode layer pattern 200 starts to shrink at a temperature range of 400 ⁇ 500° C. but the BaTiO 3 powder dielectric layer 100 shows no actual shrinkage in this temperature range.
  • Ni powder electrode layer pattern 200 Another solution used to reduce heat-shrinkage rate of the Ni powder electrode layer is to form the Ni powder electrode layer pattern 200 by using Ni powder coated with a metal oxide, whose shrinkage starting temperature is close to that of BaTiO 3 .
  • Metal oxides that can be used for coating the Ni powder are MgO, SiO 2 , TiO 2 , BaTiO 3 and rare-earth metal oxides. These metal oxides can coat the surface of Ni powders using spray thermal decomposition or sol-gel coating process disclosed in U.S. Pat. No. 6,268,054, for example.
  • Spray thermal decomposition is a method of forming Ni powder in which a solution containing both thermally decomposable compounds and Ni powders are sprayed to a heating tube, and the thermally decomposable compounds are thermally decomposed, thereby producing Ni powders coated with metal oxide.
  • metal oxide is formed not only on the surface of the Ni powders but also within the Ni powders. This results in waste of the raw materials and also high processing costs.
  • Ni powders are added in the solution and through the sol-gel reaction, the surface of the Ni powders are coated with the coating materials physically/chemically.
  • the coated Ni powders are filtered, dried, and heat-treated, to thereby crystallize the coated layer.
  • This method provides the Ni powders with a strong metal oxide coating layer, and allows mass production of coated Ni powders economically.
  • FIG. 2 is a flow chart illustrating the manufacture of Ni powders coated with titanium oxide by the sol-gel process.
  • an aqueous Ni slurry ( 1 ) i.e., Ni powder dispersed in water, is mixed with a TiCl 4 aqueous solution and an NH 4 OH aqueous solution under stirring.
  • TiCl 4 precipitates as titanium hydroxides, Ti(OH)x, after undergoing reaction with hydroxide ions produced by the acid-base reaction formula illustrated below:
  • the resulting titanium hydroxide is deposited and coated on the surface of the Ni powders ( 3 ).
  • the Ni powders coated with titanium hydroxide are then washed with alcohol ( 5 ). Washing with alcohol removes impurities and transforms the hydroxide ions of Ti(OH)x on the surface of the coated layer to an alkoxy group in order to reduce agglomeration of the Ni powders which may occur by condensation reaction among the hydroxide ions during the drying process.
  • the coated Ni powders are dried ( 7 ). When drying is completed, the Ni powders are heat treated ( 9 ) at a temperature of 400 ⁇ 500° C. in an oxidative atmosphere. In this heat treatment process, titanium hydroxide is transformed into titanium oxide TiO 2 . Thus, the manufacture of Ni powders coated with TiO 2 is completed.
  • the conventional sol-gel coating method has a few drawbacks as summarized below because the method uses water as the coating medium. That is,
  • a portion of titanium oxide may exist not on the surface of the Ni powders but as clusters between the spaces of the Ni powders and remain there, not coating the surface of the Ni powders. Further, a portion of the surface of Ni powders may remain uncoated and exposed. This is due to the usage of a large amount of water as the coating medium in which a large number of hydroxide ions are produced according to the acid-base reaction in a short period of time, and the hydroxide ions react with TiCl 4 at a short period of time and produce large amount of titanium hydroxide precipitations. In this case, some of the titanium hydroxide precipitates are stabilized in the water medium and remain as a cluster before contacting the Ni powders to coat the surface of the Ni powders. Accordingly, some portions of the Ni powders remain uncoated with titanium oxide.
  • FIG. 3 is a SEM photograph of Ni powders that have been obtained by the conventional sol-gel coating method as illustrated by the flow chart in FIG. 2.
  • agglomerates of titanium hydroxide are seen between the coated spherical Ni powders, and a portion of the Ni powders is exposed without being coated with titanium hydroxide. These titanium hydroxide agglomerates are maintained during the heat treatment for crystallizing the coated layer and the agglomeration strength increases as the crystallization proceeds.
  • Ni electrode layer prepared by using the agglomerated Ni powders has a surface with increased roughness, increasing non-uniformity in the thickness of the Ni electrode layer.
  • the electrode layer produced using the Ni powders produced by the conventional sol-gel coating method degrades quality of MLCC and increases failure rate. Therefore, there is a need to develop a method of coating the surface of Ni powders with metal oxide without substantially forming agglomerates and with uniform thickness to improve of the quality of MLCC.
  • a development of a method of coating inorganic powders without substantially forming agglomerates is also important in producing high capacity lithium batteries.
  • the present invention provides an improved method of coating the surface of inorganic powders without substantially having agglomeration of the coated inorganic powders and without substantially having a clustering of metal oxide coating materials.
  • the present invention provides also improved inorganic powders having a metal oxide coating with uniform thickness without substantially having an agglomeration of the coated inorganic powders and without substantially having a clustering of metal oxide coating materials.
  • the method according to an aspect of the present invention further comprises drying the inorganic powder and thermally-treating the inorganic powder at a temperature range of 300 ⁇ 500° C. under an oxidative atmosphere so as to convert the metal hydroxide coating into metal oxides coating.
  • a inorganic powder coated with a metal oxide wherein each of the inorganic powder exist independently without substantially being agglomerated, and wherein the metal oxide coating is deposited only on the surface of the inorganic powder with uniform thickness without being substantially clustered in the space between the inorganic powders.
  • the inorganic powder of the present invention is interpreted in a broad sense and includes metal oxides, and other ceramic powders as well as metal powders.
  • the inorganic powders coated with metal oxide manufactured according to the present invention exist independently without substantial agglomeration, and the metal oxide coating is deposited substantially only on the surface of the inorganic powders with uniform thickness without substantial clustering among the inorganic powders. Consequently, when a Ni electrode layer is prepared using the titanium oxide coated Ni powders manufactured according to the present invention, not only quality but also yield of MLCC can be improved.
  • FIG. 1 is a plan view illustrating schematically BaTiO 3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 formed during the manufacturing process of Ni-MLCC.
  • FIG. 2 is a flow chart illustrating the manufacture of Ni powders coated with titanium oxide by the sol-gel coating method .
  • FIG. 3 is a SEM photograph of Ni powders that have been obtained by the conventional sol-gel coating method as illustrated by the flow chart in FIG. 2.
  • FIG. 4 is a flow chart explaining the manufacture of an inorganic powder coated with metal oxide according to an aspect of the present invention.
  • FIG. 5 is a SEM photograph of Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders, manufactured in Example 1 according to the present investment.
  • FIG. 6 is a SEM photograph of Ni powders coated with TiO 2 , which are obtained by heat-treating the Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders at 300° C. in air.
  • FIG. 4 is a flow chart explaining the manufacture of an inorganic powder coated with metal oxide according to an aspect of the present invention.
  • the inorganic powder to be coated may be used in a slurry form, dispersed in alcohol, or used as powder itself.
  • the inorganic powder of the present invention may be at least one metal powder selected from the group consisting of Ni, Cu, Pd and Ag; or at least one metal oxide powder selected from the group consisting of TiO 2 , ZrO 2 , TiZrO 4 , Al 2 O 3 , SiO 2 , Y 2 O 3 , MgO, Mn 3 O 4 , MnO 2 , NiO and ZnO, but not limited thereto.
  • An alcohol slurry of an inorganic powder is mixed under stirring with an alcohol solution of an alcohol-soluble metal salt, a small amount of water and an alcohol solution of an amine compound. Any water existing in this system is water that comes from the alcohol solution of an alcohol-soluble metal salt or that is added to the system.
  • the alcohol-soluble metal salt react with the hydroxide ions produced according to the following reaction formula, and precipitates as metal hydroxide.
  • the metal hydroxide is deposited and coated on the surface of the inorganic powder ( 3 ).
  • alcohol is used as a dispersion medium/solvent for inorganic powder, metal salt and amine compound instead of water, the formation of hydroxide ions on the surface of the inorganic powder to be coated is suppressed more than the case with using water. This reduced number of hydroxide ions enables the suppression of agglomeration of the inorganic powder coated in the following drying process.
  • the alcohol compounds There is no specific limitation in the selection of the alcohol compounds for this purpose, but alcohol compound that has 1 to 5 OH groups and is in liquid phase at room temperature is preferable.
  • C1 ⁇ C7 aliphatic mono-ol compounds C6 ⁇ C9 aromatic mono-ol compounds, C4 ⁇ C7 alicyclic mono-ol compounds, C3 ⁇ C7 heterocyclic mono-ol compounds, C2 ⁇ C7 aliphatic di-ol compounds or C2 ⁇ C7 aliphatic tri-ol compounds can be used for this purpose.
  • Amine compounds that can be used for the present invention do not need to distinguish between primary amines (RNH 2 ), secondary amines (R 2 NH) or tertiary amines (R 3 N); mono amine compounds or diamine compounds; or aliphatic amine compounds or aromatic amine compounds.
  • Particular examples include: methyl amine, di-methyl amine, tri-methyl amine, ethyl amine, di-ethyl amine, tri-ethyl amine, n-propyl amine, iso- propyl amine, n-butyl amine, sec-butyl amine, iso-butylamine, tert-butylamine, cyclohexylamine, benzylamine, ⁇ -phenylethylamine, ⁇ -phenylethylamine, ethylenediamine, tetramethylenediamine, hexamethylenediamine, aniline, methylaniline, dimethylaniline, diphenylamine, triphenylamine, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, p-anisidine, o-chloroaniline, m-chloroaniline, p-chloro
  • Alcohol-soluble metal salts that can be used for the present invention are chlorides, sulphates, nitrates, acetates, and alkoxides of Ti, Zr, Si, V, Cr, Mn, Fe, Co, Zn or Pb and mixtures thereof. These alcohol-soluble metal salts are converted to metal hydroxides in the solution and form a coating layer on the surface of the particle of inorganic powder through heterogeneous nucleation. Hydroxides of, for example, Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof are coated on the surface of the inorganic powdesr.
  • inorganic powder for the method of coating inorganic powder according to an embodiment of the present invention, it is desirable to use 0.1 ⁇ 1.5M of the inorganic powders, 0.1 ⁇ 1.5M of the alcohol-soluble metal salt, 0.2 ⁇ 3.0M of the amine compound and 0.05 ⁇ 0.3M of water based on alcohol content.
  • the content of the inorganic powder is less than 0.1M, manufacturing cost increases, but if it exceeds 1.5M, agglomeration problem may occur among the particles.
  • the content of the alcohol-soluble metal oxide is less than 0.1 M, the manufacturing cost increases, but if it exceeds 1.5M, agglomeration problem may occur among particles.
  • the content of the amine compound is less than 0.2M, it does not produce sufficient hydroxide ions to supply for the reaction, but if it exceeds 3.0M, washing of excessive amine is difficult.
  • the water content is less than 0.05M, the formation of hydroxides is so slow that the reaction takes a long time or the production of OH ⁇ groups for hydration is insufficient. If it exceeds 0.3M, coating may proceed not by the heterogeneous nucleation but by homogenous nucleation.
  • stirring time 12 to 72 hours after mixing the above components.
  • the stirring time is between 24 to 48 hours. If the stirring time is less than 12 hours, the reaction does not take place sufficiently, while, if it exceeds 72 hours, the processing cost increases.
  • the inorganic powder coated with metal hydroxide is washed with alcohol so as to remove impurities and to convert the hydroxy group on the surface of the metal hydroxide to alkoxy group, which does not undergo condensation reaction. It is desirable to use alcohols for this washing purpose that have a lower aliphatic alcohol compound with 1 ⁇ 5 carbon atoms such as methanol, ethanol, and iso-propanol etc.
  • the next step is the drying process.
  • the above inorganic powder coated with metal hydroxide is dried at about 80 ⁇ 150° C. for about 1 ⁇ 5 hours in an oven. If the drying temperature is lower than 80° C., the solvent used for the reaction does not evaporate completely or evaporation takes a long time. If the drying temperature exceeds 150° C., unnecessary energy is wasted.
  • the above inorganic powder coated with metal hydroxide is treated at a temperature range of 300 ⁇ 500° C. under an oxidative atmosphere, preferably at 300 ⁇ 450° C., more preferably at 300 ⁇ 400° C., for about 1 ⁇ 4 hours.
  • the temperature range for heat treatment may vary depending on the materials to be coated.
  • metal hydroxide coated on the surface of the inorganic powder is transformed into metal oxide.
  • the manufacturing of inorganic powder being coated with metal oxide is completed. If the temperature for heat treatment is lower than 300° C., crystallization of metal oxide coating does not take place, which results in moisture release or large shrinkage in the sintering process of MLCC manufacturing process. If it is higher than 500° C., energy consumption is increased without gain in efficiency.
  • the inorganic powder manufactured according to the present invention is an inorganic powder coated with a metal oxide, wherein each of the inorganic powder exist independently without substantially being agglomerated, and wherein the metal oxide coating is deposited only on the surface of the inorganic powder with uniform thickness without being substantially clustered in the space between the inorganic powders.
  • Metal powders or metal oxide powders may be used as the inorganic powder of the present invention but are not limited thereto.
  • examples include Ni, Cu, Pd or Ag powder but are not limited thereto.
  • metal oxide powders there are also no specific limits but examples include TiO 2 , ZrO 2 , TiZrO 4 , Al 2 O 3 , SiO 2 , Y 2 O 3 , MgO, Mn 3 O 4 , MnO 2 , NiO, ZnO thereof.
  • the above metal oxides for coating include, for example, oxides of Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof
  • the average diameter of the inorganic powder in the core portion is preferably about 10 nm 100 ⁇ m. If the average diameter of inorganic powder is less than about 10 nm, the agglomeration of the inorganic powders is so excessive that it is not coated uniformly on the surface of the respective particles. If it exceeds about 100 ⁇ m, it could be precipitated in the solution during the coating process because the weight of the inorganic powder increases too much.
  • the thickness of metal oxide coating on the surface portion is about 0.1 ⁇ 500 nm.
  • the thickness of the metal oxide coating is less than about 0.1 nm, it causes uneven coating thickness , while if it exceeds about 500 nm, it becomes merely a mixture of inorganic powder and metal oxides that does not achieve the purpose of the present invention.
  • the Ni powders were washed with ethanol and dried for about 24 hours in an oven at about 60° C.
  • SEM analysis was performed. The investigation revealed that coated Ni powders exist independently without agglomeration and that titanium hydroxides were deposited substantially only on the surface of the Ni powders and did not exist independently outside of the surface of the Ni powder.
  • FIG. 5 is a SEM photograph of Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders, manufactured in Example 1 according to the present investment.
  • the coated Ni powders exist independently without agglomeration, and also the above titanium hydroxide coating occurs substantially only on the surface of the Ni powder with a uniform thickness and that no clustering occurred between the Ni powders.
  • FIG. 6 is a SEM photograph of Ni powders coated with TiO 2 , which are obtained by heat-treating the Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders at 300° C. in the air.
  • the coated Ni powders exist independently without agglomeration, and also that the above titanium oxide coating occurs substantially only on the surface of the Ni powders with a uniform thickness and that no clustering occurs between the Ni powders.
  • Example 2 The same procedures as described in Example 1 were followed. A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that the concentration of the diethylamine butanol solution was changed from 0.2M to 0.4M and that of TiCl 4 butanol solution was changed from 0.1M to 0.2M.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that the concentration of the diethylamine butanol solution was changed from 0.2M to 0.8M and that of TiCl 4 butanol solution was changed from 0.1M to 0.4M.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that cyclohexylamine was used as a precipitating agent instead of diethylamine.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that propylamine was used as a precipitating agent instead of diethylamine.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that butylamine was used as a precipitating agent instead of diethylamine.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that propanol was used as a dispersion medium/solvent instead of butanol.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that ethanol was used as a dispersion medium/solvent instead of butanol.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • Ni powders coated with TiO 2 were manufactured using the same method as in Example 1, except that methanol was used as a dispersion medium/solvent instead of butanol.
  • a SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO 2 was found to exist independently between the Ni powders.
  • FIG. 3 is a SEM photograph of the Ni powders coated with 19 wt % of titanium hydroxide based on the weight of the Ni powders in accordance with the present comparative example. Referring to FIG. 3, agglomerates of titanium hydroxide are seen between the coated spherical Ni powders, and a portion of the Ni powders is exposed without being coated with titanium hydroxide. These titanium hydroxide agglomerates are maintained during the heat treatment for crystallizing the coated layer and the agglomeration strength increases as the crystallization proceeds.

Abstract

The present invention provides a method of coating the surface of an inorganic powder comprising; (a) providing an alcohol solution of an alcohol-soluble metal salt and an alcohol solution of an amine compound; and (b) mixing and stirring the two alcohol solutions with an inorganic powder and water, thereby coating the surface of the inorganic powder with a metal hydroxide produced from the alcohol-soluble metal salt. The inorganic powders coated with metal oxide manufactured according to the present invention exist independently without substantial agglomeration, and the metal oxide coating is deposited substantially only on the surface of the inorganic powder with uniform thickness without substantial clustering among the inorganic powders. Consequently, when a Ni electrode layer is prepared using the titanium oxide coated Ni powders manufactured according to the present invention, not only quality but also yield of MLCC can be improved.

Description

  • This application claims priority from Korean Patent Application No. 2003-10415 filed on 19 Feb. 2003 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention [0002]
  • The present invention relates to a method of coating the surface of an inorganic powder and a coated inorganic powder manufactured by this method, more particularly, it is related to a method of depositing a uniform metal oxide coating on the surface of an inorganic powder which can be used in the manufacture of Multi Layer Ceramic Capacitor or as an active material in lithium batteries. [0003]
  • 2. Description of the Related Art [0004]
  • Multi Layer Ceramic Capacitor (hereinafter ‘MLCC’) consists of multi-layers of capacitors in which a dielectric ceramic layer of BaTiO[0005] 3 is inserted between thin-layer metal electrodes like Nickel or Copper. MLCC is widely used in computers, mobile communication equipments, and other small electronic equipments due to its small volume but large capacity.
  • Ag—Pd alloys that have been used as the metal electrode have the advantage of being able to be sintered in air, but it has the drawback of high manufacturing cost. Therefore, in the late 1990s in order to reduce the manufacturing cost, Ag—Pd alloys were replaced by Ni, and a Ni-MLCC technology of firing Ni was introduced in a reducing atmosphere to prevent oxidation of Ni. [0006]
  • FIG. 1 is a plan view illustrating schematically BaTiO[0007] 3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 formed during the manufacturing process of the Ni-MLCC.
  • The conventional manufacturing process of Ni-MLCC is described while referring to FIG. 1. First, BaTiO[0008] 3 powder dielectric layer 100 is formed by coating a surface, such as a PET film, with BaTiO3 powder dispersion. Afterwards, the Ni powder dispersion is screen-printed on the BaTiO3 powder dielectric layer to form a plurality of Ni powder electrode layer pattern 200. By repeating the processes of forming BaTiO3 powder dielectric layer 100 and Ni powder electrode layer pattern 200, multi-layers of BaTiO3 powder layer 100 and Ni powder electrode layer pattern 200 are formed. This multilayer is then cut along the cutting line 300 and sintered to transform BaTiO3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 into BaTiO3 mono-layer dielectric layer and Ni mono-layer electrode layer pattern, respectively. This completes the manufacturing of Ni-MLCC.
  • The Ni powder [0009] electrode layer pattern 200 contains a large amount of organic vehicle prior to the sintering process, which causes the Ni powder to have a relatively low packing density. Therefore, when sintering, the Ni powder electrode layer pattern 200 shows greater shrinkage than the BaTiO3 powder dielectric layer 100.
  • In addition, the sintering temperature of Ni powder is about 600° C. and that of BaTiO[0010] 3 is about 1250˜1300° C. Ni powder starts to shrink significantly around 400˜500° C., while, BaTiO3 powder starts to shrink beyond about 1100° C. Therefore, in the sintering process, the Ni powder electrode layer pattern 200 starts to shrink at a temperature range of 400˜500° C. but the BaTiO3 powder dielectric layer 100 shows no actual shrinkage in this temperature range.
  • Due to the difference in the shrinkage rate and in the temperature range of shrinkage between the BaTiO[0011] 3 powder dielectric layer 100 and the Ni powder electrode layer pattern 200, there is a strong contraction stress between the above two layers. From time to time, this contraction stress causes severe problems like poor contact ability between electrodes or the delamination of layers between the Ni electrode layer and the BaTiO3 dielectric layer.
  • Accordingly, several solutions have been proposed to solve the poor contact between electrodes or the above delamination of layers between the Ni electrode and the BaTiO[0012] 3 dielectric layer. One solution to these problems, was to fill the pores among the Ni powders with BaTiO3 powder to reduce shrinkage of the Ni powder electrode layer pattern 200. However, this solution was not successful because the difference in shrinkage rate during sintering could not be decreased significantly since the entire surface of the Ni powders were not covered with the dielectric powders on purpose in order to secure contact between the Ni powders.
  • Another solution used to reduce heat-shrinkage rate of the Ni powder electrode layer is to form the Ni powder [0013] electrode layer pattern 200 by using Ni powder coated with a metal oxide, whose shrinkage starting temperature is close to that of BaTiO3. Metal oxides that can be used for coating the Ni powder are MgO, SiO2, TiO2, BaTiO3 and rare-earth metal oxides. These metal oxides can coat the surface of Ni powders using spray thermal decomposition or sol-gel coating process disclosed in U.S. Pat. No. 6,268,054, for example.
  • Spray thermal decomposition is a method of forming Ni powder in which a solution containing both thermally decomposable compounds and Ni powders are sprayed to a heating tube, and the thermally decomposable compounds are thermally decomposed, thereby producing Ni powders coated with metal oxide. However, using this method metal oxide is formed not only on the surface of the Ni powders but also within the Ni powders. This results in waste of the raw materials and also high processing costs. [0014]
  • In the sol-gel coating method, after dissolving coating materials in water, Ni powders are added in the solution and through the sol-gel reaction, the surface of the Ni powders are coated with the coating materials physically/chemically. The coated Ni powders are filtered, dried, and heat-treated, to thereby crystallize the coated layer. This method provides the Ni powders with a strong metal oxide coating layer, and allows mass production of coated Ni powders economically. [0015]
  • FIG. 2 is a flow chart illustrating the manufacture of Ni powders coated with titanium oxide by the sol-gel process. Referring to FIG. 2, an aqueous Ni slurry ([0016] 1), i.e., Ni powder dispersed in water, is mixed with a TiCl4 aqueous solution and an NH4OH aqueous solution under stirring. TiCl4 precipitates as titanium hydroxides, Ti(OH)x, after undergoing reaction with hydroxide ions produced by the acid-base reaction formula illustrated below:
  • NH4OH→NH4 ++OH.
  • The resulting titanium hydroxide is deposited and coated on the surface of the Ni powders ([0017] 3). The Ni powders coated with titanium hydroxide are then washed with alcohol (5). Washing with alcohol removes impurities and transforms the hydroxide ions of Ti(OH)x on the surface of the coated layer to an alkoxy group in order to reduce agglomeration of the Ni powders which may occur by condensation reaction among the hydroxide ions during the drying process. Afterwards, the coated Ni powders are dried (7). When drying is completed, the Ni powders are heat treated (9) at a temperature of 400˜500° C. in an oxidative atmosphere. In this heat treatment process, titanium hydroxide is transformed into titanium oxide TiO2. Thus, the manufacture of Ni powders coated with TiO2 is completed.
  • However, the conventional sol-gel coating method has a few drawbacks as summarized below because the method uses water as the coating medium. That is, [0018]
  • (1) Some of the coated Ni powders tend to become agglomerated. This is because of the formation of Ti—O—Ti bonding after condensation reaction between hydroxide ions of titanium hydroxide coated on the surface of a Ni powder and other hydroxide ions of titanium hydroxide coated on the surface of other Ni powders. [0019]
  • (2) A portion of titanium oxide may exist not on the surface of the Ni powders but as clusters between the spaces of the Ni powders and remain there, not coating the surface of the Ni powders. Further, a portion of the surface of Ni powders may remain uncoated and exposed. This is due to the usage of a large amount of water as the coating medium in which a large number of hydroxide ions are produced according to the acid-base reaction in a short period of time, and the hydroxide ions react with TiCl[0020] 4 at a short period of time and produce large amount of titanium hydroxide precipitations. In this case, some of the titanium hydroxide precipitates are stabilized in the water medium and remain as a cluster before contacting the Ni powders to coat the surface of the Ni powders. Accordingly, some portions of the Ni powders remain uncoated with titanium oxide.
  • FIG. 3 is a SEM photograph of Ni powders that have been obtained by the conventional sol-gel coating method as illustrated by the flow chart in FIG. 2. Referring to FIG. 3, agglomerates of titanium hydroxide are seen between the coated spherical Ni powders, and a portion of the Ni powders is exposed without being coated with titanium hydroxide. These titanium hydroxide agglomerates are maintained during the heat treatment for crystallizing the coated layer and the agglomeration strength increases as the crystallization proceeds. [0021]
  • In the manufacturing of MLCC, forming a Ni electrode layer employing the Ni powders produced by the conventional sol-gel coating method causes following problems; [0022]
  • (1) When sintering, disconnection of Ni electrode increases. This is because Ni electrode layer, prepared by using the agglomerated Ni powders has a surface with increased roughness, increasing non-uniformity in the thickness of the Ni electrode layer. [0023]
  • (2) Delamination increases between the dielectric layer and the Ni electrode layer due to the large difference in the shrinkage temperature between the coated Ni powders and BaTiO[0024] 3. The difference arises from the fact that the Ni powders are not coated uniformly and a portion of the surface remains uncoated and exposed.
  • For the above stated reason, the electrode layer produced using the Ni powders produced by the conventional sol-gel coating method degrades quality of MLCC and increases failure rate. Therefore, there is a need to develop a method of coating the surface of Ni powders with metal oxide without substantially forming agglomerates and with uniform thickness to improve of the quality of MLCC. A development of a method of coating inorganic powders without substantially forming agglomerates is also important in producing high capacity lithium batteries. [0025]
  • SUMMARY OF THE INVENTION
  • The present invention provides an improved method of coating the surface of inorganic powders without substantially having agglomeration of the coated inorganic powders and without substantially having a clustering of metal oxide coating materials. [0026]
  • The present invention provides also improved inorganic powders having a metal oxide coating with uniform thickness without substantially having an agglomeration of the coated inorganic powders and without substantially having a clustering of metal oxide coating materials. [0027]
  • According to an aspect of the present invention, there is provided a method of coating the surface of an inorganic powder comprising; [0028]
  • providing an alcohol solution of an alcohol-soluble metal salt and an alcohol solution of an amine compound; and [0029]
  • mixing and stirring the two alcohol solutions with an inorganic powder and water, thereby coating the surface of the inorganic powder with a metal hydroxide produced from the alcohol-soluble metal salt. [0030]
  • The method according to an aspect of the present invention further comprises drying the inorganic powder and thermally-treating the inorganic powder at a temperature range of 300˜500° C. under an oxidative atmosphere so as to convert the metal hydroxide coating into metal oxides coating. [0031]
  • According to an another aspect of the present invention, there is provided a inorganic powder coated with a metal oxide, wherein each of the inorganic powder exist independently without substantially being agglomerated, and wherein the metal oxide coating is deposited only on the surface of the inorganic powder with uniform thickness without being substantially clustered in the space between the inorganic powders. [0032]
  • Meanwhile, the inorganic powder of the present invention is interpreted in a broad sense and includes metal oxides, and other ceramic powders as well as metal powders. [0033]
  • The inorganic powders coated with metal oxide manufactured according to the present invention exist independently without substantial agglomeration, and the metal oxide coating is deposited substantially only on the surface of the inorganic powders with uniform thickness without substantial clustering among the inorganic powders. Consequently, when a Ni electrode layer is prepared using the titanium oxide coated Ni powders manufactured according to the present invention, not only quality but also yield of MLCC can be improved. [0034]
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a plan view illustrating schematically BaTiO[0035] 3 powder dielectric layer 100 and Ni powder electrode layer pattern 200 formed during the manufacturing process of Ni-MLCC.
  • FIG. 2 is a flow chart illustrating the manufacture of Ni powders coated with titanium oxide by the sol-gel coating method . [0036]
  • FIG. 3 is a SEM photograph of Ni powders that have been obtained by the conventional sol-gel coating method as illustrated by the flow chart in FIG. 2. [0037]
  • FIG. 4 is a flow chart explaining the manufacture of an inorganic powder coated with metal oxide according to an aspect of the present invention. [0038]
  • FIG. 5 is a SEM photograph of Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders, manufactured in Example 1 according to the present investment. [0039]
  • FIG. 6 is a SEM photograph of Ni powders coated with TiO[0040] 2, which are obtained by heat-treating the Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders at 300° C. in air.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, the method of coating the surface of an inorganic powder and the coated inorganic powder manufactured according to the present invention will be given in detail, while referring to FIG. 4. [0041]
  • FIG. 4 is a flow chart explaining the manufacture of an inorganic powder coated with metal oxide according to an aspect of the present invention. [0042]
  • (1) Preparation of Inorganic Powder Slurry ([0043] 1)
  • For preparation of inorganic powder slurry in a conventional sol-gel coating method, water is used as a dispersion medium, but for the present invention, alcohol is used as the dispersion medium. According to an embodiment of the present invention, the inorganic powder to be coated may be used in a slurry form, dispersed in alcohol, or used as powder itself. The inorganic powder of the present invention, may be at least one metal powder selected from the group consisting of Ni, Cu, Pd and Ag; or at least one metal oxide powder selected from the group consisting of TiO[0044] 2, ZrO2, TiZrO4, Al2O3, SiO2, Y2O3, MgO, Mn3O4, MnO2, NiO and ZnO, but not limited thereto.
  • (2) Method of Manufacturing of Coated Inorganic Powder ([0045] 3)
  • An alcohol slurry of an inorganic powder is mixed under stirring with an alcohol solution of an alcohol-soluble metal salt, a small amount of water and an alcohol solution of an amine compound. Any water existing in this system is water that comes from the alcohol solution of an alcohol-soluble metal salt or that is added to the system. The alcohol-soluble metal salt react with the hydroxide ions produced according to the following reaction formula, and precipitates as metal hydroxide.[0046]
  • Amine compound+H2O⇄Amine compound —H++OH
  • The metal hydroxide is deposited and coated on the surface of the inorganic powder ([0047] 3). When alcohol is used as a dispersion medium/solvent for inorganic powder, metal salt and amine compound instead of water, the formation of hydroxide ions on the surface of the inorganic powder to be coated is suppressed more than the case with using water. This reduced number of hydroxide ions enables the suppression of agglomeration of the inorganic powder coated in the following drying process. There is no specific limitation in the selection of the alcohol compounds for this purpose, but alcohol compound that has 1 to 5 OH groups and is in liquid phase at room temperature is preferable. For example, C1˜C7 aliphatic mono-ol compounds, C6˜C9 aromatic mono-ol compounds, C4˜C7 alicyclic mono-ol compounds, C3˜C7 heterocyclic mono-ol compounds, C2˜C7 aliphatic di-ol compounds or C2˜C7 aliphatic tri-ol compounds can be used for this purpose.
  • In the present invention, as the pH value in the alcohol solution increases, a slow precipitation of metal hydroxide is formed from the alcohol-soluble metal salt. Precipitation occurs fundamentally by homogeneous nucleation and heterogeneous nucleation. When the pH value in the solution increases fast, homogeneous nucleation tends to take place. In this case, nucleation of coating material tends to take place in the solution instead of on the surface of the targeted inorganic powder. Consequently, coating material develops into large particle in the solution, leaving the inorganic powder uncoated. [0048]
  • On the other hand, when the pH value increases slowly, heterogeneous nucleation tends to take place. In this case, nucleation of the coating material tends to occur on the surface of the inorganic powder to be coated. Therefore, the surface of the inorganic powder is coated. In the mean time, amine compound produces hydroxide group (OH—) slowly due to the acid-base reaction with water in the alcohol dispersion medium/solvent, as shown above reaction formula. Accordingly, with a slow rise of the pH value in the solution, the nucleation of coating material through heterogeneous nucleation occurs mainly on the surface of the inorganic powder, and hence the inorganic powder is coated. [0049]
  • Amine compounds that can be used for the present invention do not need to distinguish between primary amines (RNH[0050] 2), secondary amines (R2NH) or tertiary amines (R3N); mono amine compounds or diamine compounds; or aliphatic amine compounds or aromatic amine compounds. Particular examples include: methyl amine, di-methyl amine, tri-methyl amine, ethyl amine, di-ethyl amine, tri-ethyl amine, n-propyl amine, iso- propyl amine, n-butyl amine, sec-butyl amine, iso-butylamine, tert-butylamine, cyclohexylamine, benzylamine, α-phenylethylamine, β-phenylethylamine, ethylenediamine, tetramethylenediamine, hexamethylenediamine, aniline, methylaniline, dimethylaniline, diphenylamine, triphenylamine, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, p-anisidine, o-chloroaniline, m-chloroaniline, p-chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, m-nitroaniline, p-nitroaniline, 2,4,5-trinitroaniline, 2,4,6-trinitroaniline, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, benzidine, p-aminobenzoic acid or sulfanilic acid.
  • Alcohol-soluble metal salts that can be used for the present invention are chlorides, sulphates, nitrates, acetates, and alkoxides of Ti, Zr, Si, V, Cr, Mn, Fe, Co, Zn or Pb and mixtures thereof. These alcohol-soluble metal salts are converted to metal hydroxides in the solution and form a coating layer on the surface of the particle of inorganic powder through heterogeneous nucleation. Hydroxides of, for example, Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof are coated on the surface of the inorganic powdesr. [0051]
  • For the method of coating inorganic powder according to an embodiment of the present invention, it is desirable to use 0.1˜1.5M of the inorganic powders, 0.1˜1.5M of the alcohol-soluble metal salt, 0.2˜3.0M of the amine compound and 0.05˜0.3M of water based on alcohol content. [0052]
  • If the content of the inorganic powder is less than 0.1M, manufacturing cost increases, but if it exceeds 1.5M, agglomeration problem may occur among the particles. [0053]
  • If the content of the alcohol-soluble metal oxide is less than 0.1 M, the manufacturing cost increases, but if it exceeds 1.5M, agglomeration problem may occur among particles. [0054]
  • If the content of the amine compound is less than 0.2M, it does not produce sufficient hydroxide ions to supply for the reaction, but if it exceeds 3.0M, washing of excessive amine is difficult. [0055]
  • If the water content is less than 0.05M, the formation of hydroxides is so slow that the reaction takes a long time or the production of OH[0056] groups for hydration is insufficient. If it exceeds 0.3M, coating may proceed not by the heterogeneous nucleation but by homogenous nucleation.
  • It is desirable to have a stirring time of 12 to 72 hours after mixing the above components. Preferably, the stirring time is between 24 to 48 hours. If the stirring time is less than 12 hours, the reaction does not take place sufficiently, while, if it exceeds 72 hours, the processing cost increases. [0057]
  • (3) Washing with Alcohol Process ([0058] 5)
  • In the next step, the inorganic powder coated with metal hydroxide is washed with alcohol so as to remove impurities and to convert the hydroxy group on the surface of the metal hydroxide to alkoxy group, which does not undergo condensation reaction. It is desirable to use alcohols for this washing purpose that have a lower aliphatic alcohol compound with 1˜5 carbon atoms such as methanol, ethanol, and iso-propanol etc. [0059]
  • (4) Drying Process ([0060] 7)
  • The next step is the drying process. The above inorganic powder coated with metal hydroxide is dried at about 80˜150° C. for about 1˜5 hours in an oven. If the drying temperature is lower than 80° C., the solvent used for the reaction does not evaporate completely or evaporation takes a long time. If the drying temperature exceeds 150° C., unnecessary energy is wasted. [0061]
  • (5) Heat Treatment Process ([0062] 9)
  • Finally, after the completion of the drying process, the above inorganic powder coated with metal hydroxide is treated at a temperature range of 300˜500° C. under an oxidative atmosphere, preferably at 300˜450° C., more preferably at 300˜400° C., for about 1˜4 hours. The temperature range for heat treatment may vary depending on the materials to be coated. In this heat treatment process, metal hydroxide coated on the surface of the inorganic powder is transformed into metal oxide. Then the manufacturing of inorganic powder being coated with metal oxide is completed. If the temperature for heat treatment is lower than 300° C., crystallization of metal oxide coating does not take place, which results in moisture release or large shrinkage in the sintering process of MLCC manufacturing process. If it is higher than 500° C., energy consumption is increased without gain in efficiency. [0063]
  • Hereinafter, the inorganic powder coated with metal oxide manufactured according to the above-described method will be described in detail. [0064]
  • The inorganic powder manufactured according to the present invention is an inorganic powder coated with a metal oxide, wherein each of the inorganic powder exist independently without substantially being agglomerated, and wherein the metal oxide coating is deposited only on the surface of the inorganic powder with uniform thickness without being substantially clustered in the space between the inorganic powders. [0065]
  • Metal powders or metal oxide powders may be used as the inorganic powder of the present invention but are not limited thereto. In case of metal powders, examples include Ni, Cu, Pd or Ag powder but are not limited thereto. In case of metal oxide powders, there are also no specific limits but examples include TiO[0066] 2, ZrO2, TiZrO4, Al2O3, SiO2, Y2O3, MgO, Mn3O4, MnO2, NiO, ZnO thereof. For the present invention, the above metal oxides for coating include, for example, oxides of Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof
  • In the present invention, the average diameter of the inorganic powder in the core portion is preferably about 10 [0067] nm 100 μm. If the average diameter of inorganic powder is less than about 10 nm, the agglomeration of the inorganic powders is so excessive that it is not coated uniformly on the surface of the respective particles. If it exceeds about 100 μm, it could be precipitated in the solution during the coating process because the weight of the inorganic powder increases too much. Preferably, the thickness of metal oxide coating on the surface portion is about 0.1˜500 nm. If the thickness of the metal oxide coating is less than about 0.1 nm, it causes uneven coating thickness , while if it exceeds about 500 nm, it becomes merely a mixture of inorganic powder and metal oxides that does not achieve the purpose of the present invention.
  • While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the sprit and scope of the invention as defined by the appended claims. Following embodiments and comparisons are all relating to the TiO[0068] 2 coating method on the surface of Ni powders.
  • EXAMPLE 1
  • In order to make alcohol solution of Ti, 5.41M TiCl[0069] 4 aqueous solution was mixed with butanol to make 108 ml of 0.1M TiCl4 alcohol solution. In order to make amine solution as a precipitation agent, diethylamine was mixed with butanol to prepare 576.2 ml of 0.2M diethylamine butanol solution.
  • 6.857 g of Ni powders with an average diameter of 350 nm were added to the 0.2M diethylamine butanol solution. After stirring and dispersing the powder in the solution, the above 0.1M TiCl[0070] 4 butanol solution was added and stirring continued for about 24 hours while the coating reaction was proceeding.
  • After the coating reaction was completed, the Ni powders were washed with ethanol and dried for about 24 hours in an oven at about 60° C. In order to observe the coating states and the agglomeration states of the coated Ni powders after drying, SEM analysis was performed. The investigation revealed that coated Ni powders exist independently without agglomeration and that titanium hydroxides were deposited substantially only on the surface of the Ni powders and did not exist independently outside of the surface of the Ni powder. [0071]
  • FIG. 5 is a SEM photograph of Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders, manufactured in Example 1 according to the present investment. [0072]
  • Referring to FIG. 5, the coated Ni powders exist independently without agglomeration, and also the above titanium hydroxide coating occurs substantially only on the surface of the Ni powder with a uniform thickness and that no clustering occurred between the Ni powders. [0073]
  • The above dried Ni powders were treated at about 300° C. in the air to convert the titanium hydroxide on the surface of the Ni powders to crystalline TiO[0074] 2.
  • FIG. 6 is a SEM photograph of Ni powders coated with TiO[0075] 2, which are obtained by heat-treating the Ni powders coated with about 19 wt % of titanium hydroxide based on the weight of the Ni powders at 300° C. in the air. Referring to FIG. 6, it is clearly seen that the coated Ni powders exist independently without agglomeration, and also that the above titanium oxide coating occurs substantially only on the surface of the Ni powders with a uniform thickness and that no clustering occurs between the Ni powders.
  • EXAMPLE 2
  • 6.857 g of Ni powders with an average diameter of 350 nm was added to 576.2 ml of butanol solution of 0.2M diethylamine. The Ni powders were stirred and dispersed in the solution. Then, 108 ml of butanol solution of 0.1M TiCl[0076] 4 is added to this solution. Afterwards, 1.4 g water was added to the resulting solution so as to produce hydroxide groups according to following reaction formula:
  • (C2H5)2NH+H2O⇄(C2H5)2NH2 ++OH—
  • The same procedures as described in Example 1 were followed. A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0077] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 3
  • Ni powders coated with TiO[0078] 2 were manufactured using the same method as in Example 1, except that the concentration of the diethylamine butanol solution was changed from 0.2M to 0.4M and that of TiCl4 butanol solution was changed from 0.1M to 0.2M.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0079] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 4
  • Ni powders coated with TiO[0080] 2 were manufactured using the same method as in Example 1, except that the concentration of the diethylamine butanol solution was changed from 0.2M to 0.8M and that of TiCl4 butanol solution was changed from 0.1M to 0.4M.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0081] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 5
  • Ni powders coated with TiO[0082] 2 were manufactured using the same method as in Example 1, except that cyclohexylamine was used as a precipitating agent instead of diethylamine.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0083] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 6
  • Ni powders coated with TiO[0084] 2 were manufactured using the same method as in Example 1, except that propylamine was used as a precipitating agent instead of diethylamine.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0085] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 7
  • Ni powders coated with TiO[0086] 2 were manufactured using the same method as in Example 1, except that butylamine was used as a precipitating agent instead of diethylamine.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0087] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 8
  • Ni powders coated with TiO[0088] 2 were manufactured using the same method as in Example 1, except that propanol was used as a dispersion medium/solvent instead of butanol.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0089] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 9
  • Ni powders coated with TiO[0090] 2 were manufactured using the same method as in Example 1, except that ethanol was used as a dispersion medium/solvent instead of butanol.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0091] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • EXAMPLE 10
  • Ni powders coated with TiO[0092] 2 were manufactured using the same method as in Example 1, except that methanol was used as a dispersion medium/solvent instead of butanol.
  • A SEM photograph observation showed that the coated Ni powders exist independently without substantial agglomeration among the particles. Moreover, the observation revealed that crystalline TiO[0093] 2 produced as a result of heat treatment at about 300° C. deposited substantially only on the surface of the Ni powders, and that practically no TiO2 was found to exist independently between the Ni powders.
  • COMPARATIVE EXAMPLE 1
  • In order to make an aqueous solution of Ti, 5.41M TiCl[0094] 4 aqueous solution was diluted to make 108 ml of 0.1M TiCl4 aqueous solution. A 29 wt % aqueous solution of ammonia was prepared as a precipitating agent.
  • 6.857 g of Ni powders with an average diameter of about 350 nm was mixed and dispersed in 576.2 ml of water. While stirring the solution, 108 ml of 0.1M TiCl[0095] 4 aqueous solution was added by a burette. In order to maintain the pH value of the solution at about 10 when the 0.1M TiCl4 aqueous solution was added, a 29 wt % aqueous solution of ammonia was added by a burette to the aqueous solution of Ni powders.
  • After this addition, stirring continued for about 1 hour to produce titanium hydroxide coating on the surface of the Ni powders. The coated powders thus obtained were washed with ethanol and dried in an oven at about 60° C. for about 24 hours. [0096]
  • In order to observe the coating states and the agglomeration states of the coated Ni powders after drying, SEM analysis was performed. The investigation revealed that coated Ni powders did not exist independently but agglomerated, and the titanium hydroxides were deposited not only on the surface of the Ni powder but also existed as particles outside of the surface of the Ni powders. [0097]
  • The above dried Ni powder was treated at about 300° C. in the air so as to convert the titanium hydroxide coated on the surface of the Ni powders to crystalline TiO[0098] 2. FIG. 3 is a SEM photograph of the Ni powders coated with 19 wt % of titanium hydroxide based on the weight of the Ni powders in accordance with the present comparative example. Referring to FIG. 3, agglomerates of titanium hydroxide are seen between the coated spherical Ni powders, and a portion of the Ni powders is exposed without being coated with titanium hydroxide. These titanium hydroxide agglomerates are maintained during the heat treatment for crystallizing the coated layer and the agglomeration strength increases as the crystallization proceeds.

Claims (18)

What is claimed is:
1. A method of coating the surface of an inorganic powder comprising;
(a) providing an alcohol solution of an alcohol-soluble metal salt and an alcohol solution of an amine compound; and
(b) mixing and stirring the two alcohol solutions with an inorganic powder and water, thereby coating the surface of the inorganic powder with a metal hydroxide produced from the alcohol-soluble metal salt.
2. The method of claim 1, further comprising drying the inorganic powder and heat-treating the inorganic powder at a temperature range of 300˜500° C. under an oxidative atmosphere so as to convert the metal hydroxide coating into a metal oxide coating.
3. The method of claim 2, further comprising the step of washing the inorganic powder coated with the metal hydroxide using a lower aliphatic alcohol with 1 to 4 carbon atoms between the drying step and the heat-treating step.
4. The method of claim 1, wherein 0.1˜1.5M of the inorganic powder, 0.1˜1.5M of the alcohol-soluble metal salt, 0.2˜3.0M of the amine compound and 0.05˜0.3M of water is stirred for 12˜72 hours.
5. The method of claim 1, wherein the inorganic powder is mixed in a slurry state dispersed in alcohol or in powder state itself.
6. The method of claim 1, wherein the alcohol is an alcohol compounds having 1˜5 OH groups and is in liquid phase at room temperature.
7. The method of claim 6, wherein the alcohol is C1˜C7 aliphatic mono-ol compound, C6˜C9 aromatic mono-ol compound, C4˜C7 alicyclic mono-ol compound, C3˜C7 heterocyclic mono-ol compound, C2˜C7 aliphatic di-ol cmpound or C2˜C7 aliphatic tri-ol compound.
8. The method of claim 1, wherein the inorganic powder is at least one metal powder selected from the group consisting of Ni, Cu, Pd and Ag.
9. The method of claim 1, wherein the inorganic powder is at least one metal oxide powder selected from the group consisting of TiO2, ZrO2, TiZrO4, Al2O3, SiO2, Y2O3, MgO, Mn3O4, MnO2, NiO and ZnO.
10. The method of claim 1, wherein the amine compound is at least one selected from the group consisting of methyl amine, di-methyl amine, tri-methyl amine, ethyl amine, di-ethyl amine, tri-ethyl amine, n-propyl amine, iso- propyl amine, n-butyl amine, sec-butyl amine, iso-butylamine, tert-butylamine, cyclohexylamine, benzylamine, α-phenylethylamine, β-phenylethylamine, ethylenediamine, tetramethylenediamine, hexamethylenediamine, aniline, methylaniline, dimethylaniline, diphenylamine, triphenylamine, o-toluidine, m-toluidine, p-toluidine, o-anisidine, m-anisidine, p-anisidine, o-chloroaniline, m-chloroaniline, p-chloroaniline, o-bromoaniline, m-bromoaniline, p-bromoaniline, o-nitroaniline, m-nitroaniline, p-nitroaniline, 2,4,5-trinitroaniline, 2,4,6-trinitroaniline, o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, benzidine, p-aminobenzoic acid and sulfanilic acid.
11. The method of claim 1, wherein the alcohol-soluble metal salt includes chlorides, sulfates, nitrates, acetates or alkoxides of Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof.
12. The method of claim 2, wherein the metal hydroxide includes metal hydroxide of Ti, Zr, Hf, Si, V, Cr, Mn, Fe, Co, Zn, Pb or mixtures thereof.
13. An inorganic powder coated with metal oxide on the surface of the powder prepared by the method according to any one of claims 1 to 12.
14. An inorganic powder coated with a metal oxide, wherein each of the inorganic powder exist independently without substantially being agglomerated, and wherein the metal oxide coating is deposited only on the surface of the inorganic powder with uniform thickness without being substantially clustered in the space between the inorganic powders.
15. The inorganic powder of claim 14, wherein the inorganic powder at least one metal powder is selected from the group consisting of Ni, Cu, Pd and Ag.
16. The inorganic powder of claim 14, wherein the inorganic powder is at least one metal oxide powder selected from the group consisting of TiO2, ZrO2, TiZrO4, Al2O3, SiO2, Y2O3, MgO, Mn3O4, MnO2, NiO and ZnO.
17. The inorganic powder of claim 14, wherein the metal oxide coated on the inorganic powder is TiO2, MgO, SiO2, BaTiO3, or a rare-earth metal oxide.
18. The inorganic powder of claim 14, wherein the average diameter of the inorganic powder is about 10 nm˜100 μm, and the thickness of the metal oxide coated on the inorganic powder is about 0.1˜500 nm.
US10/780,626 2003-02-19 2004-02-19 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same Abandoned US20040161608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/319,450 US7745002B2 (en) 2003-02-19 2005-12-29 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2003-0010415A KR100528330B1 (en) 2003-02-19 2003-02-19 Method for coating surface of inorganic powder and coated inorganic powder manufactured using the same
KR2003-10415 2003-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/319,450 Division US7745002B2 (en) 2003-02-19 2005-12-29 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same

Publications (1)

Publication Number Publication Date
US20040161608A1 true US20040161608A1 (en) 2004-08-19

Family

ID=36316665

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/780,626 Abandoned US20040161608A1 (en) 2003-02-19 2004-02-19 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same
US11/319,450 Expired - Fee Related US7745002B2 (en) 2003-02-19 2005-12-29 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/319,450 Expired - Fee Related US7745002B2 (en) 2003-02-19 2005-12-29 Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same

Country Status (5)

Country Link
US (2) US20040161608A1 (en)
JP (1) JP2004250793A (en)
KR (1) KR100528330B1 (en)
DE (1) DE102004008875B4 (en)
TW (1) TWI272318B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218259A1 (en) * 2006-03-16 2007-09-20 Kyocera Corporation Laminate, method for manufacturing the laminate and method for manufacturing wiring board
US20090098005A1 (en) * 2007-10-11 2009-04-16 Hyundai Motor Company Method of manufacture Ni-doped TiO2 nanotube-shaped powder and sheet film comprising the same
US20130160843A1 (en) * 2010-05-11 2013-06-27 Bangor University Ultra-low temperature sintering of dye-sensitesed solar cells
JP2014029013A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Composite nickel particles
US20140141156A1 (en) * 2012-11-22 2014-05-22 Samsung Electronics Co., Ltd. Method of forming electric wiring using inkjet printing
US9574271B2 (en) 2009-09-02 2017-02-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for forming metal oxide film, metal oxide film and apparatus for forming metal oxide film
US20180233289A1 (en) * 2017-01-25 2018-08-16 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
CN108906061A (en) * 2018-07-25 2018-11-30 吉林大学 A kind of nickel-base catalyst and its application in production space bulky amine tert-butylamine base oxethyl ethyl alcohol
US10777359B2 (en) 2017-01-25 2020-09-15 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
US11478848B2 (en) * 2018-02-14 2022-10-25 H.C. Starck Tungsten Gmbh Powder comprising coated hard material particles

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288820A3 (en) * 2001-07-19 2003-03-12 Sega Corporation Betting method for race game
JP2006193796A (en) * 2005-01-14 2006-07-27 Ishifuku Metal Ind Co Ltd Noble metal powder for electrically conductive paste and its production method
KR100665122B1 (en) * 2005-04-22 2007-01-09 삼성전기주식회사 Method for Stabilizing Ceramic Powder and Slurry by Introducing Chemical Functional Group
US20070080967A1 (en) * 2005-10-11 2007-04-12 Animetrics Inc. Generation of normalized 2D imagery and ID systems via 2D to 3D lifting of multifeatured objects
JP5440647B2 (en) * 2006-09-11 2014-03-12 住友金属鉱山株式会社 Oxide coated nickel fine particles
JP4957465B2 (en) * 2006-09-11 2012-06-20 住友金属鉱山株式会社 Oxide-coated copper fine particles and method for producing the same
JP5034796B2 (en) * 2006-09-11 2012-09-26 住友金属鉱山株式会社 Oxide-coated nickel fine particles and method for producing the same
KR100830871B1 (en) * 2006-10-11 2008-05-21 삼성전기주식회사 Method for surface modification of nondispersible metal nanoparticles and modified metal nanoparticles for inkjet by the same method
KR100781503B1 (en) * 2006-12-07 2007-11-30 재단법인서울대학교산학협력재단 Nickel catalyst supported on silica-zirconia complex metal oxide, production method thereof and production method of hydrogen by steam reforming of liquefied natural gas using said catalyst
DE102007027971A1 (en) * 2007-06-19 2008-12-24 Robert Bosch Gmbh Method for manufacturing stabilized particles, involves sheathing core with layer of ceramic precursor compound, where ceramic precursor compound is converted into ceramic layer
JP4807347B2 (en) * 2007-10-29 2011-11-02 住友金属鉱山株式会社 Method for producing oxide-coated copper fine particles
JP4952680B2 (en) * 2008-08-05 2012-06-13 ソニー株式会社 Lithium ion secondary battery and negative electrode for lithium ion secondary battery
KR101365144B1 (en) 2012-10-30 2014-02-25 한국생산기술연구원 A preparation method of active electrode paste for dye sensitized solar cell with improvement of efficiency by binding metal nanoparticles
KR101365143B1 (en) 2012-10-30 2014-02-25 한국생산기술연구원 A preparation method of active electrode paste for dye sensitized solar cell using organic-inorganic hybrid technique
US9162245B1 (en) 2012-03-29 2015-10-20 BTD Wood Powder Coating, Inc. Powder coating conveyor support
CN103834044B (en) * 2014-03-17 2016-05-04 山东润峰集团新能源科技有限公司 A kind of quick dissolving is applied to the method for sodium carboxymethylcellulose in cell size
CN110586933B (en) * 2019-10-31 2021-08-31 福州大学 High-temperature-resistant modification method of zirconium dioxide coated FeCo absorbent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266536A (en) * 1990-07-30 1993-11-30 Tioxide Group Services Limited Ceramic green bodies
US6187438B1 (en) * 1996-07-08 2001-02-13 Rhodia Chimie Titanium dioxide particles, method for their preparation and their use in cosmetics, varnish and surface coating
US6207280B1 (en) * 1996-06-10 2001-03-27 Nittetsu Mining Co., Ltd. Multilayer-coated powder and process for producing the same
US6268054B1 (en) * 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69703573T2 (en) * 1996-09-25 2001-05-31 Shoei Chemical Ind Co Process for the production of metal powder by decomposition
KR20000001996A (en) 1998-06-16 2000-01-15 이형도 Coating method of dielectric ceramic powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5266536A (en) * 1990-07-30 1993-11-30 Tioxide Group Services Limited Ceramic green bodies
US6207280B1 (en) * 1996-06-10 2001-03-27 Nittetsu Mining Co., Ltd. Multilayer-coated powder and process for producing the same
US6187438B1 (en) * 1996-07-08 2001-02-13 Rhodia Chimie Titanium dioxide particles, method for their preparation and their use in cosmetics, varnish and surface coating
US6268054B1 (en) * 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070218259A1 (en) * 2006-03-16 2007-09-20 Kyocera Corporation Laminate, method for manufacturing the laminate and method for manufacturing wiring board
US20090098005A1 (en) * 2007-10-11 2009-04-16 Hyundai Motor Company Method of manufacture Ni-doped TiO2 nanotube-shaped powder and sheet film comprising the same
US7867437B2 (en) * 2007-10-11 2011-01-11 Hyundai Motor Company Method of manufacture Ni-doped TiO2 nanotube-shaped powder and sheet film comprising the same
US9574271B2 (en) 2009-09-02 2017-02-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Method for forming metal oxide film, metal oxide film and apparatus for forming metal oxide film
US20130160843A1 (en) * 2010-05-11 2013-06-27 Bangor University Ultra-low temperature sintering of dye-sensitesed solar cells
JP2014029013A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Composite nickel particles
US9386708B2 (en) * 2012-11-22 2016-07-05 Samsung Electronics Co., Ltd. Method of forming electric wiring using inkjet printing
US20140141156A1 (en) * 2012-11-22 2014-05-22 Samsung Electronics Co., Ltd. Method of forming electric wiring using inkjet printing
US20180233289A1 (en) * 2017-01-25 2018-08-16 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
US10217568B2 (en) * 2017-01-25 2019-02-26 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
US10593481B2 (en) * 2017-01-25 2020-03-17 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
US10777359B2 (en) 2017-01-25 2020-09-15 Holy Stone Enterprise Co., Ltd. Multilayer ceramic capacitor
US11478848B2 (en) * 2018-02-14 2022-10-25 H.C. Starck Tungsten Gmbh Powder comprising coated hard material particles
CN108906061A (en) * 2018-07-25 2018-11-30 吉林大学 A kind of nickel-base catalyst and its application in production space bulky amine tert-butylamine base oxethyl ethyl alcohol

Also Published As

Publication number Publication date
DE102004008875B4 (en) 2006-06-08
DE102004008875A1 (en) 2004-09-09
US20060099409A1 (en) 2006-05-11
JP2004250793A (en) 2004-09-09
TW200426243A (en) 2004-12-01
TWI272318B (en) 2007-02-01
US7745002B2 (en) 2010-06-29
KR100528330B1 (en) 2005-11-16
KR20040074512A (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US7745002B2 (en) Method of coating the surface of an inorganic powder and a coated inorganic powder manufactured using the same
JP4661726B2 (en) Fine nickel powder and method for producing the same
US6808697B2 (en) Spherical tetragonal barium titanate particles and process for producing the same
JP4839854B2 (en) Method for producing nickel fine particles
EP1777198A1 (en) Fine barium titanate particles
CN111017977A (en) Preparation method of nano dysprosium oxide for dielectric ceramic capacitor
JP2007091549A (en) Shell component-containing perovskite composite oxide powder and its manufacturing method
US20040248724A1 (en) Silicate-based sintering aid and method
US20090110630A1 (en) Method of manufacturing vanadium oxide nanoparticles
CN115246653A (en) Nanometer dysprosium oxide and preparation method and application thereof
GB2534069A (en) Method for producing barium titanate powder
JP3306614B2 (en) Method for producing ceramic material powder
CN113348150B (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
JPH0580427B2 (en)
JPH09129028A (en) Manufacture of metal powder having inorganic film, and metal powder
JP3376468B2 (en) Manufacturing method of ceramic material powder
JPH06336601A (en) Production of nickel powder
JP2004339601A (en) Method for manufacturing nickel powder
JP2001107103A (en) Spherical nickel powder and its manufacture
JPH06321630A (en) Composition for ceramic dielectric
KR100572741B1 (en) Methods of Preparation of Fine Nickel Powders
KR20040094096A (en) Preparation of spherical ultrafine nickel powders by wet reduction process

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOI, JAE-YOUNG;LEE, JONG-HEUN;HONG, SEONG-HYEON;REEL/FRAME:015009/0379

Effective date: 20040217

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION