TWI597725B - 用於雙端點記憶體的選擇器裝置 - Google Patents

用於雙端點記憶體的選擇器裝置 Download PDF

Info

Publication number
TWI597725B
TWI597725B TW104107381A TW104107381A TWI597725B TW I597725 B TWI597725 B TW I597725B TW 104107381 A TW104107381 A TW 104107381A TW 104107381 A TW104107381 A TW 104107381A TW I597725 B TWI597725 B TW I597725B
Authority
TW
Taiwan
Prior art keywords
selector
layer
memory
voltage
response
Prior art date
Application number
TW104107381A
Other languages
English (en)
Other versions
TW201546806A (zh
Inventor
周承賢
Original Assignee
橫杆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 橫杆股份有限公司 filed Critical 橫杆股份有限公司
Publication of TW201546806A publication Critical patent/TW201546806A/zh
Application granted granted Critical
Publication of TWI597725B publication Critical patent/TWI597725B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • H10B63/22Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes of the metal-insulator-metal type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0097Erasing, e.g. resetting, circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/003Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0061Timing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/55Structure including two electrodes, a memory active layer and at least two other layers which can be a passive or source or reservoir layer or a less doped memory active layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/76Array using an access device for each cell which being not a transistor and not a diode
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/77Array wherein the memory element being directly connected to the bit lines and word lines without any access device being used

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Description

用於雙端點記憶體的選擇器裝置 有關本申請的交互參考
本申請案主張第61/951,454號美國臨時專利申請案的優先權,其名稱為SELECTOR DEVICE FOR TWO TERMINAL DEVICE,並提交於2014年3月11日,以及主張第62/021,660號美國臨時專利申請案的優先權,其名稱為FAST Applications並提交於2014年7月7日,於此將其各自分別完整內容併入本文且於各方面做為參考。
本發明一般有關於電子記憶體,例如,本發明描述一種用於記憶體裝置的經配製以提供非線性電流-電壓響應的選擇器裝置。
積體電路技術的領域中近期的創新為電阻式記憶體(resistive memory)。在多數電阻式記憶體技術開發階段期間,各種用於電阻式記憶體的技術概念已被本發明的受讓人所驗證,並且其在證實的一或多個階段以證明或反駁相關的理論。即便如此,電阻式記憶體技術被寄望在半導體電子工業的技術競爭中擁有巨大的優勢。
電阻式隨機存取記憶體(Resistive random access memory;RRAM)是電阻式記憶體的一種。本發明的發明人相信RRAM具有潛力以作為高密度非易失性訊息儲存技術。一般而言,RRAM是在有區別的阻態(resistive state)之間透過可控地切換儲存訊息。單一的電阻式記憶體能夠儲存單一位元的訊息或多個位元,以及能夠被配置作為一次性可程式化單元(one-time programmable cell)、或可程式化和可抹除的裝置,以作為由該受讓人提供的各種經驗證的記憶模型。
發明人已提出各種理論以解釋電阻式切換的現象。於一個此類理論中,電阻式切換是導電結構形成於相反電氣絕緣介質中的結果。該導電結構可以由離子、可在適當環境下(如適合的電場)被離子化的原子,或其他攜帶電荷的機制形成。在其他此類理論中,可以出現原子的電場輔助擴散(field-assisted diffusion)以響應到施加於電阻式記憶單元的適合的電位。在由發明人提出的其他理論中,可以出現該導絲(conductive filament)的形成以響應到二元氧化物(binary oxide)(如,NiO、TiO2、或類似物)中的焦耳熱和電化學過程,或透過離子的導體包括氧化物、硫族化物、聚合物等的氧化還原過程。
發明人期待基於電極、絕緣體、電極模型的電阻式裝置展現出良好的持久力和生命週期。而且,發明人預期此類裝置具有高晶片上(on-chip)密度。因此,電阻式元件可以做為使用於數位訊息儲存的金氧半導體(MOS)電晶體的其他可行的選擇。例如,本專利申請案的 發明人相信電阻-切換記憶體裝置的模型提供一些潛在技術優勢優於非易失性快閃MOS裝置。
根據上述,發明人試圖對記憶體技術以及電阻式記憶體做出進一步改善。
以下提出本說明書的簡化的概述以為了提供有關本說明書一些方面的基本瞭解。此概述並非本說明書延伸的概觀。其並不是意圖標示本發明的重要或關鍵元件也不是意圖描述任何本發明的具體實施例的範圍或申請專利範圍書的任何範圍。其目的是為了以簡化的形式提出本發明的一些概念以作為對本揭露中的更詳細描述的前序。
本發明的各種具體實施例中,提供有一個用於固態記憶體應用的選擇器裝置。於各種具體實施例中,該選擇器裝置可用以具有非線性電流-電壓(I-V)關係。再者,該選擇器裝置可以,孤立地,為易失性裝置,該易失性裝置具有響應第一電氣條件的第一電氣狀態以及缺乏該第一電氣條件的第二電氣狀態。
於一或多個具體實施例中揭露整體的固態建構與非易失性記憶體裝置串聯形成。該整體的固態建構可以是選擇器裝置,如於此所提供者。而且,該選擇器裝置可提供本質上為非線性I-V響應,其適合用於該非易失性記憶體裝置以減輕漏電流。因此,在至少一些具體實施例中,該整體的固態建構和該非易失性記憶體裝置的串聯 組合可以充當1-電晶體、多-電阻(1T-nR)電阻式記憶體單元陣列的記憶體單元組之一(例如,該記憶體單元為1-選擇器、1-電阻(1S-1R)的配置)。
又於另外的具體實施例中揭露一種用以展現非線性I-V關係至不同極性訊號的選擇器裝置。例如,該選擇器裝置可展現第一非線性I-V關係以響應第一極性的訊號,以及第二非線性I-V關係以響應第二極性的第二訊號。於一些具體實施例中,該第一非線性I-V關係和該第二非線性I-V關係可以具有相似或相同的曲度,然而於其他具體實施例中該第一非線性I-V關係和該第二非線性I-V關係可以具有不同曲度。於更多的具體實施例中,該選擇器裝置可被提供為與雙極性記憶體裝置串聯。於這些具體實施例中,該選擇器裝置可以提供非線性響應用於第一極性的讀和寫的操作,以及第二極性的抹除操作。
於更多具體實施例中,提供一種用於形成用於兩端點記憶體裝置的選擇器裝置的方法。該方法可包括提供包括第一金屬材料的第一層狀結構以及提供接觸該第一層狀結構的選擇器材料的層。再者,該方法可以包括提供包括第二金屬材料並接觸該選擇器材料的該層的第二層狀結構。於各種具體實施例中,該第一金屬材料或該第二金屬材料可用以提供導電離子至該選擇器材料,以分別響應第一極性或第二極性的電壓,該電壓被施加跨過該第一層狀結構和該第二層狀結構,以及該選擇器材料用以允許該導電離子滲透入該選擇器材料的層,以響應該施加跨 過該第一層狀結構和第二層狀結構的電壓。於其他替代或另外的具體實施例中,該第一層狀結構、該選擇器材料的層、以及該第二層狀結構形成該選擇器裝置,並且該選擇器裝置與該兩端點記憶體裝置電氣串聯。
由其他被揭露的具體實施例中,本發明主旨揭露提供一種用於兩端點記憶體的選擇器裝置。該選擇器裝置可包括第一層狀結構以及接觸該第一層狀結構的選擇器材料的層,且該第一層狀結構包括第一金屬材料。而且,該選擇器裝置可包括接觸該選擇器材料的層並包括第二金屬材料的第二層狀結構。於一些具體實施例中,該第一金屬材料或該第二金屬材料可分別用以提供導電離子至該選擇器材料,以響應第一極性或第二極性的閾電壓,該閾電壓被施加跨過該第一層狀結構和該第二層狀結構。於其他具體實施例,該選擇器材料用以允許該導電離子滲透入該選擇器材料的層,以響應該施加跨過該第一層狀結構和第二層狀結構的閾電壓。根據又其他的具體實施例,該選擇器裝置與該兩端點記憶體裝置電氣串聯。
較上述更進一步,本發明提供一種操作交叉記憶體陣列的方法,該交叉記憶體陣列包括多個兩端點記憶體裝置和多個選擇器裝置,其中,該多個兩端點記憶體裝置各自與該多個選擇器裝置的一個選擇器裝置串聯,其中,各選擇器裝置關聯第一電氣特性以響應小於閾電壓的施加電壓,以及關聯第二電氣特性以響應大於或等於該閾電壓的施加電壓。該方法可包括施加大於該閾電壓的第 一電壓至包括串聯第一選擇器裝置的第一兩端點記憶體裝置的第一記憶體結構。該方法可額外包括施加該第一電壓的同時,施加小於該閾電壓的第二電壓至包括串聯第二選擇器裝置的第二兩端點記憶體裝置的第二記憶體結構。而且,該方法可以包括決定電流以響應施加該第一電壓同時施加該第二電壓。於至少一具體實施例中,該電流包括關聯該第一選擇器裝置的第一電流和關聯該第二選擇器裝置的第二電流。於一或多個另外的具體實施例中,該第一電流和該第二電流的電流比落於選自由約1,000至約10,000、約10,000至約100,000、約100,000至約1,000,000、以及約1,000,000至約10,000,000的比例範圍所組成的群組。根據本揭露,超出10,000,000的電流比為想像的。
以下敍述和附圖展示本發明特定作為說明的方面。這些方面為象徵性的,然而,但本發明的原則可被使用於該各種方法中的一些。自以下詳盡的描述考慮與該附圖協力將使本發明的其他優點和新穎性特徵變得明白。
100‧‧‧選擇器裝置
102‧‧‧頂部電極
104‧‧‧選擇器層
106‧‧‧底部電極
200‧‧‧選擇器裝置
202‧‧‧頂部電極
202A‧‧‧第一訊號
202B‧‧‧第二訊號
204‧‧‧選擇器層
206‧‧‧底部電極
300‧‧‧選擇器裝置
302‧‧‧頂部電極
302A‧‧‧第一訊號
302B‧‧‧第二訊號
304‧‧‧選擇器層
306‧‧‧底部電極
400‧‧‧固態切換裝置
402‧‧‧頂部電極
404‧‧‧離子導體層
406‧‧‧選擇器層
408‧‧‧離子導體層
410‧‧‧底部電極
500‧‧‧電氣響應
502‧‧‧電流
504‧‧‧電流
506‧‧‧電流符合位準
600‧‧‧電氣響應
602‧‧‧電流
604‧‧‧電流
606‧‧‧電流符合位準
700‧‧‧記憶體裝置
702‧‧‧兩端點記憶體部件
702A‧‧‧第一端點
702B‧‧‧第二端點
706‧‧‧選擇器裝置
708‧‧‧頂部電極
710‧‧‧第一離子導體
712‧‧‧選擇器層
714‧‧‧第二離子導體
716‧‧‧底部電極
800‧‧‧記憶體裝置
802‧‧‧基板
804‧‧‧電子裝置
806‧‧‧選擇電晶體
807‧‧‧絕緣層
808‧‧‧通孔
810‧‧‧位元線
812‧‧‧記憶體單元
814‧‧‧選擇器部件
816‧‧‧記憶體部件
818‧‧‧字元線
820‧‧‧位元線
822‧‧‧第二層通道
824‧‧‧第三層通道
900‧‧‧陣列
902‧‧‧位元線
902A‧‧‧位元線
902B‧‧‧位元線
902C‧‧‧位元線
904‧‧‧字元線
904A‧‧‧字元線
904B‧‧‧字元線
904C‧‧‧字元線
906‧‧‧所選擇的單元
908‧‧‧未選中的單元
910‧‧‧信號程式
912‧‧‧程式化潛行通道
914‧‧‧位元線潛行通道
916‧‧‧選擇器部件
918‧‧‧記憶體部件
1000‧‧‧方法
1002、1004、1006‧‧‧步驟
1100‧‧‧方法
1102、1104、1106、1108‧‧‧步驟
1110、1112、1114、1116‧‧‧步驟
1200‧‧‧方法
1202、1204、1206‧‧‧步驟
1300‧‧‧操作和控制環境
1302‧‧‧記憶體單元陣列
1304‧‧‧行控制器
1306‧‧‧列控制器
1308‧‧‧時脈源
1310‧‧‧位址暫存器
1312‧‧‧輸出/輸入緩衝器
1314‧‧‧命令介面
1316‧‧‧狀態機
1400‧‧‧操作環境
1402‧‧‧電腦
1404‧‧‧處理單元
1406‧‧‧系統記憶體
1408‧‧‧系統匯流排
1410‧‧‧易失性記憶體
1412‧‧‧非易失性記憶體
1414‧‧‧磁碟記憶體
1416‧‧‧介面
1418‧‧‧作業系統
1420‧‧‧應用程式
1424‧‧‧程式化模組
1426‧‧‧程式化數據
1428‧‧‧輸入裝置
1430‧‧‧介面埠
1434‧‧‧輸出轉接器
1435‧‧‧編解碼器
1436‧‧‧輸出裝置
1438‧‧‧遠端電腦
1440‧‧‧記憶體儲存裝置
1442‧‧‧網絡介面
1444‧‧‧通信連接器
本發明的各方面或特徵是參考附圖以描述,其中相似參考符號始終用來指相似元件。本說明書中,多數具體的細節被描述以為了提供對本揭露全面性的瞭解。然而,應注意的是,缺乏這些具體細節,或以其他方法、組成、材料等,本主題揭露的某些方面仍可被實行。於其他實例中,眾所皆知的結構和裝置以方塊圖形式顯示 以幫助描述揭露本發明主旨;第1圖圖是根據各種揭露的具體實施例描繪一個例示的配備有固態選擇器裝置的整體結構的方塊圖;第2圖繪製一個作為範例的響應第一極性的電氣特性的選擇器裝置行為的方塊圖;第3圖描繪一個作為範例的響應第二極性的電氣特性的選擇器裝置行為的方塊圖;第4圖是根據本揭露其他選擇或另外的方面繪製一個作為範例的選擇器裝置方塊圖;第5圖繪製於一些具體實施例中,作為範例的選擇器裝置的電流-電壓(I-V)響應的圖形;第6圖繪製於其他被揭露的具體實施例中,作為範例的選擇器裝置的I-V響應的圖形;第7圖是根據具體實施例繪製一個例示的提供以與記憶體裝置結合的選擇器裝置的方塊圖;第8圖描繪一個例示的包括與兩端點記憶體串聯的個別的選擇器裝置的記憶體單元的排列的方塊圖;第9圖繪製一個作為範例的交叉記憶體結構圖,說明漏電流的影響和非線性I-V響應的好處;第10圖是根據各種經揭露的具體實施例,描繪一個作為範例的用於製造選擇器裝置的方法流程圖;第11圖繪製一個例示的用於製造與兩端點 記憶體裝置串聯的固態選擇器裝置的方法流程圖;第12圖是根據更多經揭露的具體實施例描繪一個例示的用於操作記憶體單元陣列的方法流程圖;第13圖是根據各種經揭露的具體實施例繪製一個用於記憶體裝置的範例操作和控制環境的方塊圖;第14圖描繪一個例示的計算環境的方塊圖,其可以與各種具體實施例結合實行。
本揭露關於一種用於兩端點記憶體單元的選擇器裝置,運用於數位訊息儲存。在一些實施例中,該兩端點記憶體單元可包括電阻式技術,例如電阻式切換兩端點記憶體單元。電阻式切換兩端點記憶體單元(也稱作為電阻式切換記憶體單元或電阻式切換記憶體),如本文所使用,包括具有主動區域於兩個導電觸點之間的導電觸點的電路部件。該兩端點記憶體裝置的該主動區域,在電阻式切換記憶體的配置中,顯示多個穩定或半穩定電阻式狀態,每個電阻式狀態具有不同的電阻。此外,該多個狀態中的各自一個可成形或啟動以響應於施加在該兩個導電觸點的合適的電子訊號。該適合的電子訊號可為電壓值、電流值、電壓或電流極性等等,或是上述項目的適當結合。儘管並不詳盡,電阻式切換兩端點記憶體裝置的範例可包括電阻式隨機存取記憶體(RRAM)、相變化隨機存取記憶體(PCRAM)以及磁性隨機存取記憶體(MRAM)。
本案揭露的實施例可提供一種能夠與非易 失性記憶體單元整合的易失性選擇器裝置。在各種實施例中,該易失性選擇器裝置或該非易失性記憶體單元可為絲狀為基礎(filamentary-based)的裝置。絲狀為基礎的裝置的一種範例可包括:導電層例如金屬、p型摻雜(或n型)矽(Si)承載層(例如p型或n型多晶矽、p型或n型多晶SiGe等等)、電阻式切換層(RSL)以及能夠離子化的主動金屬層。在合適的條件下,該主動金屬層可提供絲狀形成離子至該RSL。在這樣的實施例,導絲(conductive filament)(例如由該離子所形成)可有利於通過至少一部分的該RSL的電氣導電性,並且該絲狀為基礎的裝置的電阻可由介於該絲狀以及該導電層之間的穿隧(tunneling)電阻來決定。
在本發明的記憶體單元的各種實施例中,p型或n型矽承載層可包括p型或n型多晶矽、p型或n型多晶SiGe等等。RSL(在本技術領域中也可稱作為電阻式切換介質(RSM))可包括,例如未摻雜的非晶矽層、具有固有特性的半導體層、矽亞氧化物(例如SiOx,其中x值介於0.1到2之間)、以及等等。適合用於該RSL的材料的其他範例可包括SiXGeYOZ(其中X、Y以及Z各自為適合的正整數)、矽氧化物(例如SiON,其中N為適合的正整數)、非晶矽(a-Si)、非晶SiGe(a-SiGe)、TaOB(其中B為適合的正整數)、HfOC(其中C為適合的正整數)、TiOD(其中D為適合的數)、Al2OE(其中E為適合的正整數)以及等等,或是上述項目的適當結合。在各種實施例中,該RSL包括數個空隙或缺陷。
用於絲狀為基礎的記憶體單元的主動金屬層可包括:銀(Ag)、金(Au)、鈦(Ti)、氮化鈦(TiN)或其他適合的鈦化合物、鎳(Ni)、銅(Cu)、鋁(Al)、鉻(Cr)、鉭(Ta)、鐵(Fe)、錳(Mn)、鎢(W)、釩(V)、鈷(Co)、鉑(Pt)、鉿(Hf)、以及鈀(Pd)等等。其他適合的導電材料,以及化合物、合金、或上述的結合或是類似材料,可被運用於該主動金屬層在本案揭露的某些樣態中。關於本案揭露的實施例的某些細節類似前述範例可於以下授權給本申請專利的受讓人的美國專利申請中發現:申請號11/875,541申請於2007年10月19日以及申請號12/575,921申請於2009年10月8日,藉由引用於本文中併入其各自的全部內容並為了所有目的。
在各種所揭露的具體實施例中,揭露了絲狀為基礎的切換裝置並且描述其運作方式。在某些具體實施例中,絲狀為基礎的切換裝置可為易失性切換裝置,其顯現第一可測量獨特狀態在缺乏合適的外部刺激下,並且顯示第二可測量獨特狀態以響應該適合的外部刺激。本文中該易失性切換裝置通常稱作為選擇器裝置或是選擇裝置、絲狀選擇器裝置、絲狀為基礎的選擇器裝置等等;雖然這樣的裝置,其組成或應用不應被限制於此術語。在其他的具體實施例,絲狀為基礎的切換裝置可為非易失性切換裝置,其顯現第一可測量獨特狀態直到施加合適的第一外部刺激以轉換該非易失性切換裝置至第二可測量獨特狀態。接著,該非易失性切換裝置顯現該第二可測量獨特狀 態直到施加合適的第二外部刺激。非易失性絲狀為基礎的切換裝置可具有多於兩種可測量獨特狀態,導致多層級單元功能,雖然本揭露一般表示該二進制情況。本文中非易失性絲狀為基礎的切換裝置一般表示為記憶體單元、電阻式記憶體單元、絲狀為基礎的記憶體單元等等,但同樣這類裝置的組成、功能或應用不應被限制於此術語。
絲狀選擇器裝置可顯現第一狀態(例如,第一電阻、或其他合適的可測量特性)在缺乏適合的外部刺激下。該刺激可具有當施加該刺激時,誘導該絲狀選擇器裝置從第一狀態轉換至第二狀態的閾值或這類數值的範圍。該絲狀選擇器裝置回到該第一狀態,以響應小於該閾值(或是數值的閾值範圍)的該刺激。在某些所揭露的具體實施例中,絲狀為基礎的選擇器裝置可運作在雙極性方式,以不同的行為響應不同的極性(或方向、能量流、能量源方向等等)的外部刺激。如說明性的範例,響應超出第一閾電壓(或電壓組)的第一極性刺激,該絲狀選擇器裝置可從該第一狀態轉換至該第二狀態。更進一步,響應超出第二閾值電壓的第二極性刺激,該絲狀選擇器裝置可從該第一狀態轉換至第三狀態。在某些具體實施例中,該第三狀態可實質上與該第一狀態相同,具有相同或相似的可測量獨特特性(例如,導電性等等)、具有相同或相似的閾值刺激的量值(雖然相反的極性或方向)等等。在其他的具體實施例中,該第三狀態可與該第二狀態不同,無論是在該可測量特性的項目(例如,不同導電性數值以響應當相對於之前極性為反轉 的極性)或是關聯該第一狀態的轉換的閾值刺激的項目(例如,所需要以轉換至該第二狀態的正電壓的不同量值,相對於所需要以轉換至該第三狀態的負電壓的量值)。
在某些具體實施例中,並藉由舉例的方式,所揭露的絲狀為基礎的選擇器裝置可成形導電路徑或通過相對高電阻部分的細絲以響應合適的外部刺激。該外部刺激可引起主動金屬層之內的金屬粒子遷移(或離子化)在該絲狀選擇器裝置的RSL層之內。進一步來說,該RSL可經選擇以具有相對少的物理缺陷位置對於該易失性絲狀切換裝置,以利於該金屬粒子的相對良好的遷移率於該RSL之內。因此,在關聯的閾值刺激(或閾值數值的狹窄範圍)以下,該金屬粒子可消散在該RSL之內,以防止形成足夠的導電性路徑通過該RSL以降低關聯該第一狀態的高電阻。在該閾值之上,該外部刺激維持該金屬粒子於足夠成形以提供該導電性路徑,導致該第二狀態的相對低電阻。類似的機制可控制該第三狀態的運作於該雙極性方面。
對於非易失性絲狀為基礎的電阻式切換記憶體單元,RSL可經選擇以具有足夠物理缺陷位置於其中,從而於缺少合適的外部刺激下捕獲粒子到適當之處,減輕粒子的遷移率以及消散。這,響應施加跨過該記憶體單元的合適的程式化電壓,導電性路徑或細絲形成通過該RSL。詳而言之,依據程式化偏壓電壓的應用,金屬離子從該主動金屬層產生並且遷移進入該RSL層。更進一步來說,金屬離子遷移至該RSL層之內的該空隙或缺陷位置。 於一些實施例中,當該偏壓電壓移除時,該金屬離子變為中性金屬粒子且仍被困在該RSL層的空隙或缺陷位置。當足夠的離子變為被捕獲時,細絲是成形並且該記憶體單元從相對高電阻狀態切換至相對低電阻狀態。更詳而言之,該被捕獲的金屬粒子提供通過該RSL層的導電性路徑或細絲,並且典型上由通過該RSL層的穿隧電阻來決定電阻。在某些電阻式切換裝置中,可實施抹除程序以解形成(deform)該導電性細絲,於至少一部分,導致該記憶體單元從該低電阻狀態回到該高電阻狀態。更詳而言之,依據抹除偏壓電壓的應用,被捕獲在該RSL的空隙或缺陷中的金屬粒子變為移動的並且遷移回朝向該主動金屬層。此狀態的改變,在記憶體的背景下,可關聯於二進制位元的個別狀態。對於多個記憶體單元的陣列,記憶體單元的字、字節、頁面、塊等等,可被程式化或抹除以表示二進制訊息的零或一,並且藉由隨時間保持這些狀態以具有儲存該二進制訊息的效果。在各種具體實施例中,多層級訊息(例如多個位元)可被儲存在這類的記憶體單元中。
應理解到本文的各種具體實施例可運用各種記憶體單元技術,具有不同的物理特性。舉例來說,不同的電阻式切換記憶體單元技術可具有不同的離散可程式化電阻、不同的關聯程式化/抹除電壓,以及其他差異特性。舉例來說,本案揭露的各種具體實施例可運用雙極性切換裝置,其顯現第一切換響應(例如,程式化為程式化狀態組之一)至第一極性的電訊號,以及第二切換響應(例 如,抹除至抹除狀態)至具有第二極性的該電訊號。舉例來說,該雙極性切換裝置與單極性裝置為對比,該單極性裝置同時顯現該第一切換響應(例如程式化)以及該第二切換響應(例如抹除)以響應具有相同極性以及不同量值的電訊號。
對於本文的各種樣態與具體實施例,其中並未指定特定的記憶體單元技術或程式化/抹除電壓,意指這類樣態與具體實施例採用任何合適的記憶體單元技術並且由合適於該技術的程式化/抹除電壓來運作,如本領域的技術人士所習知或本領域的技術人士藉由本文所提供內容而得知。應進一步理解到,其中以不同的記憶體單元技術替代將需要由本領域的技術人士所知的電路修改,或變換至由本領域的技術人士所知的操作信息層級,包括替代的記憶體單元技術或信息層級變換的具體實施例被認為是在本發明的範圍之內。
本發明的發明人熟悉除了電阻式記憶體之外的額外的非易失性、兩端點記憶體結構。舉例來說,鐵電隨機存取記憶體(RAM)為一範例。其他一些包括磁-電阻式RAM、有機RAM、相變RAM以及導電橋RAM等等。兩端點記憶體技術具有不同的優點以及缺點,並且常見於在優點以及缺點之間取捨。雖然在本文中許多的具體實施例中稱作電阻式切換記憶體技術,其他兩端點記憶體技術可運用於某些所揭露的具體實施例,其中適合於本領域之技術之一。
高密度集積的記憶體通常運用陣列結構,其中多個單元沿著集成晶片的導電線連接,例如位元線、字元線、數據線、源線等等。然而,本發明的發明人相信,儘管連接多個單元至一般導電線可增強記憶體密度,這樣的配置也可能導致電氣問題例如漏電流(例如,參閱下文第8圖)、減低感應幅度(sensing margin)、多餘的電力耗損等等。這對於程式化至低電阻狀態的記憶體單元可能特別明顯。如說明性的範例,一操作電壓施加至所選擇的導電線,其一般連接至目標記憶體單元以及數個非目標記憶體單元,可能導致明顯的電流於非目標記憶體單元在低電阻狀態下。其中大量數目的非目標記憶體單元被連接至該所選擇的導電線(例如,為了達成高記憶體密度),顯著的電力被由此電流耗損。此外,由該操作電壓所引起的在附近導電線的電容電壓,可導致漏電流從該附近的導電線至該所選擇的導電線。除了耗損額外的電力以外,此漏電流降低了感應幅度對於執行在該目標記憶體單元上的記憶體操作。
為了減少多餘的電力耗損以及漏電流於記憶體陣列中,一電晶體可連接至每個記憶體單元,有時稱作為1電晶體-1記憶體單元(1 transistor-1 memory cell)架構。該電晶體可關閉以切斷通過該記憶體單元的電流,最小化於該記憶體單元的漏電流。然而,額外的電晶體對於每一個記憶體單元,可能顯著的增加該記憶體單元的尺寸(並且減少記憶體的關聯的陣列的密度)。某些記憶體陣列 平衡了記憶體密度與漏電流,藉由實施1電晶體-n記憶體單元架構,其中n為大於1的整數。在這架構中,對每個電晶體增加記憶體單元的數目n實現了於記憶體密度與漏電流及電力耗損之間的折衷。因此,本案發明人瞭解傳統上企圖達成增加記憶體密度可能導致增加電力耗損並伴隨焦耳熱、降低感應幅度以及其他問題。
本案發明的各種具體實施例提供一種選擇器裝置(例如易失性切換裝置),其用以提供非線性電流-電壓(I-V)響響應於關聯該選擇器裝置的記憶體單元(例如非易失性切換裝置)。詳而言之,該非線性I-V響應可顯著減低於所關聯的記憶體單元中的漏電流。更進一步,該選擇器裝置可為被製造與該所伴隨的記憶體單元結合的整體的固態構造,這並不實質上增加該記憶體單元的尺寸。在電阻式記憶體單元技術的背景下,該所揭露的選擇器裝置可促成具有高記憶體密度的1電晶體-n電阻(1T-nR)架構。在某些具體實施例中,對每個電晶體的記憶體單元的該數量,n,可為512、1024、或甚至更大,在沒有顯著影響的記憶體陣列的漏電流下。因此,該所揭露的記憶體裝置可促成高記憶體密度,在低漏電流、低電力耗損以及良好感應幅度之下。
現在請參照至圖式,第1圖繪示範例選擇器裝置100的方塊圖,根據本案發明的一或多個具體實施例。選擇器裝置100可為用以響應合適的電訊號而可操作的兩端點裝置,該電訊號施加在選擇器裝置100的兩端點 的一個或多個。在各種所揭露的具體實施例中,選擇器裝置100可具有非線性I-V響應,其中選擇器裝置100顯現出在第一範圍中的電流以響應電壓量值的第一範圍,以及在第二範圍(例如相當高於該第一範圍的量值)中的電流以響應電壓量值的第二範圍(例如,參閱第5圖及第6圖,於下文)。該電壓量值的第一範圍以及電壓量值的第二範圍可為可區別的,如一範例,藉由閾電壓或電壓的閾值範圍(例如,具有介於該電壓量值的第一範圍以及電壓量值的第二範圍之間的量值)。在進一步的具體實施例中,選擇器裝置100可被製造與兩端點記憶體裝置串聯(並未描繪,但參照下文第7圖及第8圖)於整體製造製程的部分(例如光刻製程、遮罩以及蝕刻製程等等)。在這些後來的具體實施例中,選擇器裝置100可用以提供非線性I-V響響應於該兩端點記憶體裝置,減少漏電流以及降低電力耗損,而促進增加記憶體密度以對於與選擇器裝置100的個別串聯的這類記憶體單元的陣列。舉例來說,在兩端點電阻式記憶體單元的例子中,選擇器裝置100可促進具有相對高數值的n的高密度1T-nR記憶體陣列,而減輕漏電流並且減低電力耗損對於該1T-nR記憶體陣列。在各種具體實施例中,選擇器裝置100可實施為FASTTM選擇器裝置,目前由本案專利申請的當前受讓人開發當中。
繪示在第1圖的選擇器裝置100具有頂部電極102以及底部電極106。頂部電極102以及底部電極106為電導體,並且包括適合於促進電流傳導的材料。在一個 或更多個具體實施例中,頂部電極102以及底部電極106可包括提供或是促進提供移動的原子或離子以響應合適刺激的材料。合適刺激的範例可包括電場(例如程式化電壓)、焦耳熱、磁場或其他適合刺激以為了定向或部分定向的粒子運動。在至少一個具體實施例中,粒子遷移率可響應非定向或部分非定向消散或類似現象。
用於頂部電極102或是底部電極106的合適材料的範例可包括惰性金屬(例如Ag、Pd、Pt、Au等等)或部分包含惰性金屬的金屬合金(例如Ag-Al、Ag-Pd-Cu、Ag-W、Ag-Ti、Ag-TiN、Ag-TaN等等)。舉例來說,惰性金屬或是其合金可運用以促進減輕介於頂部電極102或是底部電極106以及選擇器層104之間的交互作用。作為範例,這樣減輕粒子交互作用(例如,減輕或避免頂部電極102或是底部電極106的粒子與選擇器層104的粒子的化學鏈結)可促進增強對於選擇器裝置的使用壽命以及可靠度。用於頂部電極102或是底部電極106的合適材料的另一範例可包括具有相對快速擴散粒子的材料。舉例來說,較快速的擴散可包括有能力在缺陷位置之間移動(例如,在分子材料的空隙或間隙)於固體內,在缺乏聚合力下促進該相對快速擴散粒子的消散,舉例來說。具有相對快速擴散粒子的材料可促進選擇器裝置100的快速的狀態切換(例如,從非導電狀態至導電狀態),於低偏壓數值。適合的快速擴散材料的範例可包括Ag、Cu、Au、Co、Ni、Al、Fe等等,其適合的合金或前述其適合結合。
在至少一個具體實施例中,頂部電極102可包括如底部電極106的相同材料或實質上相同材料。在其他的具體實施例中,頂部電極102以及底部電極106可為不同材料。在又一其他的具體實施例中,頂部電極102以及底部電極106可為至少部分相同材料,並且部分為不同材料。舉例來說,頂部電極102可包括適合的導電材料,並且底部電極106可至少部分包括該適合的導電材料的合金,或是適該合的導電材料與另外的適合導體的結合,如說明的範例。
除了以上所述,選擇器裝置100包括選擇器層104。與頂部電極102或是底部電極106相反,選擇器層104可為電性絕緣體或離子導體。更進一步來說,選擇器層104可為至少對於頂部電極102或是底部電極106的粒子為弱滲透的材料(例如氧化物)。在某些具體實施例中,選擇器層104可為非計量比材料(non-stoichiometric meterial)。用於選擇器層104的合適材料的範例可包括SiOX、TiOX、AlOX、WOX、TiXNYOZ、HfOx、TaOx、NbOx等等,或是其適合結合,其中x、y、z可為適合的非計量比數值。在一些具體實施例中,選擇器層104可為硫族化物(chalcogenide)或包含Ge、Sb、S、Te中的一或多個的固態電解質(solid-electrolyte)材料。在又一另外的具體實施例中,該選擇器材料可包括多個上述所提材料的迭加(例如SiOx/GeTe、TiOx/AlOx)。在本案發明的至少一個具體實施例中,選擇器層104可在製造期間摻雜金屬,以促進金屬 離子從該頂部或底部電極注入。
在操作中,適合的電子訊號可施加至頂部電極102或是底部電極106以誘導選擇器裝置100的狀態轉換。狀態轉換可為在電阻或是導電性上的轉換,舉例來說。如一說明性的範例,電壓、場、電流等等,可施加在頂部電極102或是底部電極106,具有至少關聯於誘導選擇器裝置100的該狀態轉換的閾值強度。響應這樣於該閾值強度的訊號,選擇器裝置100可從具有高電阻以及第一電流(或電流的第一範圍)的非導電狀態轉換至具有低電阻以及第二電流(或電流的第二範圍)的相對導電狀態。在各種具體實施例中,該第一電流對該第二電流的電流比例可為至少大約1,000或是更大。舉例來說,在一具體實施例中,該電流比例可選自約1,000至約10,000的電流比例的範圍。在另一具體實施例中,該電流比例可選自約10,000至約100,000的電流比例的範圍。在又另一具體實施例中,該電流比例可選自約100,000至約1,000,000的電流比例的範圍。在還有其他的具體實施例中,該電流比例可選自約1,000,000至約10,000,000或更大的電流比例的範圍。可提供對於選擇器裝置100的其他合適電流比例於各種其他適合的具體實施例中。
第2圖為根據本案發明其他的具體實施例繪示描述選擇器裝置200響應施加訊號的操作行為的方塊圖。舉例來說,選擇器裝置200包括頂部電極202、選擇器層204以及底部電極206,如圖示。在至少一些具體實 施例中,選擇器裝置200可實質上類似於第1圖的選擇器裝置100,於下文,儘管本發明並未如此限制。
於第2圖的頂部,繪示具有施加至選擇器裝置200的第一訊號202A的選擇器裝置200。第一訊號202A大於關聯選擇器裝置200的非線性I-V響應的閾值量值。在各種具體實施例中,該閾值強度可實施為閾值量值的狹窄範圍(例如,參閱下文)。應理解到,本文所稱關聯選擇器裝置的非線性I-V響應的閾值量值(例如電壓量值)可包括閾值量值的狹窄範圍(例如電壓數值的範圍),在其中I-V響應從線性(或近似線性)行為轉換至非線性行為。對於選為該選擇器裝置的組件的材料、這類材料的配置、這類材料的特性(例如,厚度、面積、導電率等等)或是其它等的不同組合,該量值的範圍可變化以適用之。
儘管第一訊號202A被描述為電壓,例如,其中頂部電極電壓VTE大於選擇器裝置200的第一閾電壓VTH1,但在其他的具體實施例中,第一訊號202A可包括誘導頂部電極202或底部電極206的粒子的粒子遷移的其他訊號,例如電場、電流、或甚至關聯於焦耳熱的溫度。除了前述以外,第一訊號202A可為第一極性(例如,至少在電性意義上)。舉例來說,第一訊號202A可具有從頂部電極202至底部電極206被施加的正梯度(例如,正電壓或電場於頂部電極202並且接地或負電壓或電場於206、電流從頂部電極202至底部電極206,以及等等)。
為響應第一訊號202A(相對底部電極206的 頂部電極202),頂部電極202(或是底部電極206)的粒子可形成導電路徑、或細絲於選擇器層204內,如圖示。在一些具體實施例中,該粒子可從頂部電極202(或是底部電極206)遷移進入選擇器層204以響應第一訊號202A。在其他的具體實施例中-以其中選擇器層204摻雜金屬粒子的例子來說-在選擇器層204內的粒子可被離子化或是對齊(例如,沿著該導電路徑空間地組織化)以響應第一訊號202A。在還有其他的具體實施例中,粒子可從頂部電極202(或是底部電極206)遷移並結合在選擇器層204內正被離子化或是對齊的現存粒子以響應第一訊號202A,以形成該導電路徑,如果該選擇器層摻雜金屬粒子。該導電路徑的形成可促進從非導電狀態轉換至導電狀態,關聯於選擇器裝置200的非線性I-V響應。更進一步來說,該適合的導電路徑成形可為響應第一訊號202A的量值符合或超過第一閾值的量值的第一訊號202A的量值。因此,該第一閾值量值與導致該導電狀態的轉換有關。
在第2圖的底部,選擇器裝置200觀察到第二訊號202B施加至頂部電極202(相對於底部電極206)。第二訊號202B可具有小於該第一閾值強度的量值(例如,VTE<VTH1,例如,VTE 0V),並且響應,選擇器裝置200可從該(高)導電狀態轉換至該(相對上)非導電狀態。再次,在各種具體實施例中,該第一閾值量值可橫跨量值的狹窄範圍。響應第一訊號202A而形成的導電路徑可消散,於至少一部分,以響應第二訊號202B,如描繪在第2圖底部的 選擇器層204內,或是響應第一訊號202A的移除。當外部力量(例如,第二訊號202B)強度不足以將該粒子保持在從頂部電極202至底部電極206通過選擇器204的導電路徑中時,由於粒子傾向遷移進入或外出選擇器層204,則可能發生消散。因此,在一具體實施例中,低於量值的狹窄範圍的最低閾值量值,該導電路徑至少一部份解形成,反之,量值的狹窄範圍的最高閾值量值或是之上,該導電路徑可形成充分足夠以導致選擇器裝置200的導電狀態。重申以上所述,在本文各種具體實施例中,應理解到所稱閾電壓可實際上是指閾電壓組(例如在電壓的狹窄範圍之內),其關聯導電路徑的形成與解形成。
如以上所述,選擇器裝置200可以易失性的方法從該非導電狀態轉換至該導電狀態,並且返回該非導電狀態。換句話說,選擇器裝置200可處於該導電狀態以響應施加在選擇器裝置200的具有該第一閾值量值的第一訊號202A。選擇器裝置200可處於該非導電狀態以響應施加在選擇器裝置200的具有小於該第一閾值強度的第二訊號202B。
在一些具體實施例中,選擇器裝置200可以電氣串聯方式與兩端點記憶體單元(例如,電阻式切換記憶體等等)結合。當被提供以串聯在一起時,選擇器裝置200可對兩端點記憶體單元提供非線性I-V特性。更進一步來說無論當該兩端點記憶體單元是在導電狀態或是非導電狀態,可提供該非線性I-V特性。舉例來說,低於該第一閾 值量值的訊號將導致選擇器裝置200處於該非導電狀態。在該非導電狀態,當該訊號低於該第一閾值時,選擇器裝置200將抵抗電流通過選擇器裝置200與該兩端點記憶體單元的串聯結合。當該訊號等於或是在該閾值量值之上時,選擇器裝置200將為導電性,並且該兩端點記憶體單元的狀態可判定“選擇器裝置200與該兩端點記憶體單元”的串聯結合的電性特徵。因此,啟動選擇器裝置200將促進該兩端點記憶體單元的操作存取。停用選擇器裝置200將抵抗該兩端點記憶體單元的操作存取(例如,藉由抵抗電流通過該串聯結合,以及藉由下降施加在跨過該串聯結合的大部分電壓,等等)。因為選擇器裝置200為易失性,並且在缺乏具有該第一閾值量值的訊號時處於該非導電狀態,該兩端點記憶體單元為不可存取並且維持訊息(例如,維持電流狀態於其中)。在另一方面,選擇器裝置200提供非線性I-V響響應於該串聯結合,抵抗漏電流並且促進記憶體陣列具有高密度。
第3圖繪示描述範例選擇器裝置300的操作行為的方塊圖,根據本案發明的進一步樣態。選擇器裝置300可實質上類似於選擇器裝置100或是選擇器裝置200,在一或多個具體實施例中。然而,本發明並未如此限制。
說明選擇器裝置300的操作行為以響應第二極性的訊號,不同於第一訊號202A以及第二訊號202B的第一極性,參考上文關於第2圖的描述。舉例來說,該第二極性可為相反或近似相反於該第一極性,於各種具體 實施例中。如說明性的範例,該第二極性可包括訊號梯度(例如,電壓梯度、電流梯度、焦耳熱梯度等等)其從底部電極306測量為較大的數值並且從頂部電極302測量為較小的數值。
在第3圖頂部,具有量值等於或大於第二閾值量值(或是閾值量值的第二範圍,如果適合的話)的第一訊號302A被施加在底部電極306相對於頂部電極302。底部電極306的粒子遷移進入並且通過選擇器層304以響應第一訊號302A。該第二閾值量值與導電路徑的合適形成有關,該導電路徑從底部電極306至頂部電極302跨過選擇器層304,以誘導選擇器裝置300的導電狀態。請注意在一些具體實施例中,該第二閾值量值(或是量值的範圍)可與該第一閾值量值(或是量值的範圍)不同(不同數值),該第一閾值量值與從頂部電極202相對於底部電極206的導電路徑的成形有關,如於上文第2圖所描述。可能發生量值上的差異,舉例來說,其中該頂部電極以及底部電極由具有不同粒子遷移率、不同離子強度、不同尺寸、不同形狀等等的不同材料所形成。換句話說,對於頂部電極302或底部電極306運用不同材料、材料的順序(例如,增加額外的層-例如障壁層-介於選擇器層304以及頂部電極302或底部電極306之間)、材料性質或特性可導致不同的閾電壓,其關聯於從頂部電極202至底部電極206的細絲形成(如第2圖所示)相比從底部電極306至頂部電極302的細絲形成(如第3圖所示)。
如第3圖所示,導電路徑的形成可包括從底部電極306遷移通過選擇器層304至頂部電極302的底部電極306的適合粒子,或在選擇器層304中預先存在的金屬粒子對齊/遷移以成形該導電路徑(例如,其中該選擇器層摻雜金屬粒子)。在第3圖的底部,具有小於該第二閾值量值(或量值的範圍)的量值的第二訊號302B被施加在底部電極306。響應該第二訊號,該導電路徑的粒子消散通過選擇器層304(或朝向/進入底部電極306),於至少一部分解形成該導電路徑。這誘導了選擇器裝置300的非導電狀態。因此,在一具體實施例中,低於量值的狹窄範圍的最低閾值量值,該導電路徑至少一部份解形成,反之,量值的該狹窄範圍的最高閾值量值或是之上,該導電路徑可形成充分足夠導致選擇器裝置300的該導電狀態。重申以上所述,在本文各種具體實施例中,應理解到所稱閾電壓可實際上是指閾電壓組(例如在電壓的狹窄範圍之內),取決於導電路徑是否形成或解形成。
在其他的具體實施例中,如果該電壓源的極性定義為正到負相對於頂部電極302及底部電極306,則低於量值的狹窄範圍的最低閾值量值時,該導電路徑可形成充分足夠導致選擇器裝置300的該導電狀態,反之,量值的該狹窄範圍的最高閾值量值或之上時,該導電路徑至少一部份解形成。此項範例將於以下說明。
在各種具體實施例中,選擇器裝置300可具有以上所述關於選擇器裝置200的特性以響應該第一極性 的訊號。因此,選擇器裝置300可形成包含響應該第一極性的訊號從頂部電極302延伸通過選擇器層304的粒子的導電路徑,並且可形成響應該第二極性的訊號從底部電極306延伸通過選擇器層304的粒子的第二導電路徑。在至少一些具體實施例中,該導電路徑可至少部分包括底部電極306的粒子(例如,接近底部電極306的邊界),以及同樣的該第二導電路徑可至少部分包括頂部電極302的粒子(例如,接近頂部電極302的邊界)。因此,選擇器裝置300可具有第一閾值量值以促進順著該第一極性轉換至第一導電狀態,以及第二閾值量值以促進順著該第二極性轉換至第二導電狀態。此操作可在與雙極性記憶體單元結合下實施,提供非線性I-V特性對於第一極性訊號以及對於第二極性訊號。在實用方面,雙向的非線性I-V特性可促進對於來自正或負極性訊號的漏電流的抵抗。因此,選擇器裝置300與兩端點記憶體單元的串聯結合可減輕由程式化訊號或讀取訊號(例如,具有第一極性)或是抹除訊號(例如,具有第二極性)所導致的漏電流。在至少一些具體實施例中,應理解到選擇器裝置300的這樣描述(以及對於第3圖的其他適合描述),可具有類似的適用性對於上文第2圖的選擇器裝置200。還有,反過來說也是對的;描述關於選擇器裝置200的說明性具體實施例可適用於選擇器裝置300於適合的具體實施例中。因此,對於第3圖及第2圖的範例具體實施例的描述應被認為是可於適合之處互換的。
在各種具體實施例中,選擇器裝置300可於操作參數組內操作。在一些具體實施例中,該操作參數組可經選擇以維持選擇器層304的易失性狀態切換(例如,藉由形成相對弱的細絲,其中至少一部分在低於閾值訊號量值之下解形成)、提供切換使用壽命、達成目標電力耗損等等,或是上述項目的合適結合。在一些實施中,通過選擇器裝置300的電流(並且,例如,選擇器裝置300與兩端點記憶體單元的串聯結合)可被限制於最大電流數值。
舉例來說,最大電流數值可限制於300微安培(μA)或以下、300μA或以下、或是另外適合的最大數值。在其他的具體實施例中,選擇器層304可具有維持在厚度的目標範圍內的厚度。舉例來說,選擇器層304的厚度可從大約0.5奈米(nm)至大約50nm。在各種具體實施例中,根據目前的實驗數據,提供根據大約1伏特的閾電壓的令人驚異的有效結果的典型厚度可為大約1到大約20nm的範圍之內,並且更詳細來說大約1nm至大約10nm。在至少一個具體實施例中,選擇器層304(或是例如,上文第2圖的選擇器層204)的厚度可經選擇以提供關聯於選擇器裝置300的狀態切換的訊號閾值量值(例如閾電壓、電流閾值、場強度閾值等等)以具有目標數值、或於目標範圍之內。如一說明性的範例,該厚度可經選擇以提供關聯於狀態切換的閾電壓為介於大約0.1伏特以及4伏特之間。維持該閾電壓於目標數值可減輕或避免非易失性細絲的形成。
在一些具體實施例中,運用於選擇器層304(或選擇器層204)的材料的計量比數值可提供於目標數值。舉例來說,用於SiOx選擇器層304(或是選擇器層204)的計量比數值“x”可介於大約0.5以及大約2之間。在至少一些具體實施例中,該計量比數值可經選擇以達成對於通過選擇器層304(或是選擇器層204)的導電路徑(例如,細絲)的目標寬度。在一些具體實施例中,增加運用於選擇器層304(或是選擇器層204)的材料的計量比數值可減少選擇器層304或204的缺陷密度(例如,懸鍵(dangling bonds)的密度、粒子空隙的密度等等),並且該計量比數值可經選擇以達成目標缺陷密度以提供對於該導電路徑的該目標寬度。在至少一個所揭露的具體實施例中,選擇器層厚度以及計量比數值可各自經選擇以達成介於最大閾電壓以及最大缺陷密度之間的目標折衷。
第4圖繪示範例固態切換裝置400的方塊圖,根據本案發明的替換性或另外的樣態。固態切換裝置400可用以操作如與兩端點記憶體裝置串聯的易失性切換裝置,在一或多個具體實施例中。在其他的具體實施例中,固態切換裝置400可用以操作如單獨固態電子部件,例如易失性開關,或是如與一個或更多個其他電子裝置結合的電子部件(例如,可操作於與製造在CMOS基板中或上的一個或更多個CMOS裝置結合)。
如圖示,固態切換裝置400可包括頂部電極402、離子導體層1 404、選擇器層406、離子導體層2 408 以及底部電極410。在各種替換性的具體實施例中,固態切換裝置400可包括離子導體層1 404或離子導體層2 408中的一個或另一個,而不是兩者。在替換性或額外的具體實施例中,頂部電極402、選擇器層406以及底部電極410可實質上類似於上文第3圖以及第2圖的該相似名稱的層,然而本案發明並未如此限制,且不同材料或特性可關聯於選擇器層406-當選擇器層406鄰近離子導體層1 404或離子導體層2 408時以適合性來選擇-於本案發明的範圍之內。
頂部電極402或是底部電極410可包括惰性金屬、部分包含惰性金屬的適合的金屬合金、快速擴散材料(例如,Cu、Al、Ti、Co、Ni、Ag等等)或是該快速擴散金屬的合適合金等等,或是前述的適合的結合。在各種具體實施例中,頂部電極402或是底部電極410可為主動金屬,而在其他的具體實施例中頂部電極402或是底部電極410可為積體電路接線金屬(例如,W、Al、Cu、TiN、TiW、TaN、WN等等)。在一些具體實施例中,頂部電極402以及底部電極410可為相同材料;在其他的具體實施例中,頂部電極402以及底部電極410可為不同材料。
對以上所述更進一步,固態切換裝置400可包括選擇器層406。選擇器層406可包括對於頂部電極402或底部電極410的離子為弱滲透的電阻材料。弱滲透性可促進可靠的解形成或導電離子的消散於選擇器層406之內,以響應低於閾值量值的訊號,如本文所述。換句話 說,弱可滲透性可促進導電路徑的易失性形成以及解形成於選擇器層406之內。
對以上所述更進一步,固態切換裝置400可包括離子導體層1 404以及離子導體層2 408。離子導體層1 404或離子導體層2 408可包括固態電解質(solid electrolyte)(例如,Ag-Ge-S、Cu-Ge-S、Ag-Ge-Te、Cu-Ge-Te、GeSb等等)、金屬-氧化物合金(例如,AgSiO2、CuAl2Ox等等)。在一些具體實施例中,固態狀態切換離子導電層1 404可至少部分取決於頂部電極402的離子的擴散性度量。在另外的具體實施例中,離子導電層2 408的存在可至少部分取決於底部電極410的離子的擴散性度量。在更進一步的具體實施例中,離子導體層1 404或離子導體層2 408可經選擇以產生更快的離子生成(從而更快的切換或更低的電壓切換)對於選擇器層406,當與頂部電極402或底部電極410相比時。
第5圖繪示用於選擇器裝置的範例電氣響應500的圖形,根據本文描述的一或多個另外的具體實施例。詳而言之,電氣響應500可關聯於本文描述的選擇器裝置的選擇器層。如圖所示,電氣響應500的垂直軸描述傳導跨過該選擇器裝置(例如從頂部電極至底部電極)的電流(以安培[A]),以及電氣響應500的水平軸描述施加跨過該選擇器裝置的電壓(以伏特[V])。請注意該水平軸的左邊為負電壓以及該水平軸的右邊為正電壓(於該頂部電極所測得,舉例來說)。
於電流數值中的尖銳的非線性反曲點發生在接近正閾電壓Vth1以及接近負閾電壓Vth2處。在一些具體實施例中,正閾電壓Vth1可具有與負閾電壓Vth2實質上相同或相同的電壓量值。然而在一些其他的具體實施例中,正閾電壓Vth1可具有與負閾電壓Vth2不同的量值。
在各種具體實施例中,標示選擇器“關閉”電流502的藍色箭頭指出電流中的該反曲點,低於此處與電壓相較下電流下降得更緩慢,而高於此處電流隨著電壓增加而增加非常快速,直到電流符合位準506(例如,其由測試者或外部輸入所設定)為止。該選擇器“開啟”電流504是於稍微高於Vth1或Vth2的電壓達到。在第5圖的範例中,介於0以及大約1.5伏特,說明該關閉狀態電流要低於大約1E-9安培。在其他的具體實施例中,已達成更低的關閉狀態電流,舉例來說,更低於1E-10安培、更低於1E-11安培等等,在具有接近1伏特的電壓反曲點的具體實施例中。
如以上所述,Vth1可與負閾電壓Vth2相似或不同。更進一步,於相反極性(例如V<0)中關聯於該反曲點的電流量可與關聯於V>0的該反曲點與電流量不同。在第5圖的範例中,該關閉狀態電流可低於大約5E-9。在其他具體實施例中,已達成更低的關閉狀態電流,舉例來說,低於1E-10安培、低於1E-11安培等等,在具有接近-0.5伏特的反曲點電壓的具體實施例中。在各種具體實施例中,電氣響應500的特徵在於,當電壓符合Vth1或超過 Vth1的更高範圍且在電流符合之前,相較於小於Vth1的更低範圍的電壓,在作為電壓的函數的電流中有一相對陡的變化,其中Vth1表示為電壓的狹窄範圍。舉例來說,電氣響應500可具有電流增加,該電流增加是量測作為每電壓十進位(decade)電流的函數(例如,電流的數量級變化),或是IDECADE/V,或是作為每十進位電流電壓的函數,V/IDECADE。在一些具體實施例中,電氣響應500可每100毫伏特(mV)增加介於大約3.5decades以及大約4decades,或是對於等於或大於Vth1的電壓的子集,增加介於大約0.035decades/mV以及大約0.04decades/mV。
可替換性地,電氣響應500的特徵在於,介於大約25以及大約29V/decade之間、介於Vth的最低數值以及Vth的最高數值之間的變化。在其他的具體實施例中,電氣響應500可具有介於大約0.030decades/mV以及大約0.04decades/mV之間的電氣響應500(例如,以響應負電壓)對於等於或小於Vth2的負電壓的子集。換句話說,電氣響應500可為介於大約25mV/decade以及大約33mV/decade之間對於在Vth2的範圍內的電壓的子集。在其他的具體實施例中,該電氣響應已被量測為大約17mV/decade(大約100mV除以6decades的Vth範圍)或是大約0.06decades/mv。在這類的具體實施例中,額定(nominal)Vth數值為在大約1伏特的量級上。在根據本案發明,在大約10mV/decade至大約100mV/decade的範圍內的電氣響應500可於現在達成。更進一步,在0.1mV/decade至大約0.01mV/ decade量級上的電氣響應於現在被認為能允許的。
對於電氣響應500的額定閾電壓量值為介於大約1.5伏特以及大約2伏特之間於量值上。在一些具體實施例中,該額定閾電壓量值可為介於1.5伏特以及大約1.8伏特於量值上。對於閾電壓的這些範圍,於第5圖中,選擇器“關閉”電流502以及選擇器“開啟”電流504於量值上的差異為大約4的數量級(例如,1×104或是10,000)對於正電壓,以及大約3又一半的數量級(例如,5×103或是5,000)對於負電壓。在具有較低閾電壓Vth1及Vth2的具體實施例中,可達成選擇器“關閉”電流502相較於選擇器“開啟”電流504於量值上的更高許多的差異。舉例來說,在其中該額定閾電壓Vth1為接近1.1伏特的具體實施例中,該電氣響應為大約16mV/decade。
在各種具體實施例中,電氣響應500可對於不同的選擇器裝置而有所變化。舉例來說,運用於選擇器裝置的材料上的變化可導致於電響氣應500上的變化,包括選擇器“關閉”電流502、選擇器“開啟”電流504以及正與負閾電壓。在另外的具體實施例中,選擇器材料層的厚度可額外影響電氣響應500。因此,目標電氣響應500可在一定程度上藉由選擇適合的頂部電極材料、選擇器層材料或厚度、或是底部電極材料來達成,對於所揭露的選擇器裝置。
第6圖繪示對於選擇器裝置的電氣響應600的圖形,根據本案發明的另外的具體實施例。電氣響應600 的垂直軸表示由該選擇器裝置傳導的電流(A),而電氣響應600的水平軸表示施加跨過該選擇器裝置的電壓(V)。繪示的選擇器“關閉”電流602具有非常尖銳的非線性響應,從大約1×10-11安培(10.0×10-12)至大約1×10-4安培(100.0×10-6)並有在大約6至大約10數量級的範圍內的開/關比例,對於選擇器“開啟”電流604,於電流符合位準606。在一個範例中,4的數量級的“開啟”電流對“關閉”電流的電流比例、或是10,000,000的比例被達成。此比例在略低於300毫伏特的額定正閾電壓,或Vth1,以及大約-200毫伏特的額定負閾電壓,或Vth2,被達成。藉由運用具有適合選擇器以及頂部電極或底部電極材料的選擇器裝置600,可達成“開啟”電流對“關閉”電流的更小比例。舉例來說,在一具體實施例中,可達成在1,000,000至大約10,000,000的範圍內的電流比例。在另外的具體實施例中,可達成在大約100,000至大約1,000,000的範圍內的電流比例。在又一另外的具體實施例中,可達成在大約10,000至大約100,000的範圍內的電流比例。在還有另外的具體實施例中,可達成在大約1,000至大約10,000的範圍內的電流比例。在至少一個所揭露的具體實施例中,可達成等於大約100,000或是更大的電流比例。在至少一個更進一步的具體實施例中,可達成如大約10.0x10-9一樣大的電流比例。
電氣響應600的特徵也在於,作為電壓的函數的電流上的增加,反之亦然。對於等於或大於Vth1的電 壓的子集,電氣響應600可具有介於大約3.5mV/decade以及大約14mV/decade之間的電氣響應600於一具體實施例中。在另外的具體實施例中,對於等於或大於Vth1的電壓的子集,電氣響應600可具有介於大約0.07decades/mV以及大約0.25decades/mV之間的電氣響應600。在進一步的具體實施例中,對於等於或小於Vth2的電壓的第二子集,電氣響應600可為介於大約7mV/decade以及大約7.5mV/decade之間。在另外的具體實施例中,對於電壓的該第二子集,電氣響應600可為介於大約0.15decades/mV以及大約0.12decades/mV之間。在至少一個另外的範例中,所揭露的選擇器裝置的電氣響應可為大約1.5mV/decade,或大約0.7decades/mV。在進一步的具體實施例中,該電氣響應可選自大約1decade/mV以及大約0.15decades/mV的範圍。
第7圖繪示範例記憶體裝置700的方塊圖,根據本案發明的進一步具體實施例。記憶體裝置700可包括兩端點記憶體部件702與選擇器裝置706電氣串聯。此外,記憶體裝置700可包括第一端點702A以及第二端點702B用於施加操作訊號跨過記憶體裝置700(例如,讀取訊號、抹除訊號、程式化訊號、重寫訊號等等)。
記憶體裝置700可為非易失性、兩端點切換元件。範例可包括電阻式記憶體,電阻式切換記憶體例如電阻式隨機存取記憶體(RRAM)、相變化記憶體(PCRAM)、磁阻式記憶體(MRAM)、鐵電記憶體(FeRAM)、有機記憶體 (ORAM)、導電橋記憶體(CBRAM)、一次性可程式化記憶體(OTP)等等。在一特定的具體實施例中,記憶體裝置700可為雙極性記憶體裝置。因此,記憶體裝置700可被程式化或寫入以響應第一極性的訊號。更進一步,記憶體裝置700可被抹除以響應第二極性的訊號。根據各種具體實施例,選擇器裝置706可用以作為雙極性切換裝置。在這類具體實施例中,選擇器裝置706可從非導電狀態切換至導電狀態以響應超出第一極性閾值量值,閾值1(例如,第一極性閾電壓Vth1等等)的該第一極性的訊號。更進一步,選擇器裝置706可從該非導電狀態切換至該導電狀態以響應超出第二極性閾值量值,閾值2(例如,第二極性閾電壓Vth1等等)的該第二極性的第二訊號。
在各種具體實施例中,在該非導電狀態下,選擇器裝置706可具有比兩端點記憶體部件702的關聯關閉狀態(例如抹除狀態)電阻還要大的電阻。同樣的,在該導電狀態下,選擇器裝置706可具有比兩端點記憶體部件702的關聯開啟狀態(例如程式化狀態)導電性還要大的導電性。因此,選擇器裝置706可作為用於記憶體裝置700的啟動/停用部件,抵抗記憶體操作於兩端點記憶體部件702當在非導電狀態下,並且致使記憶體操作於兩端點記憶體部件702當在導電狀態下。對於兩端點記憶體部件702以及選擇器裝置706為雙極性切換裝置的具體實施例,選擇器裝置706的啟動/停用功效可產生以響應第一極性的訊號(例如,讀取訊號、程式化訊號等等)以及第二極 性的訊號(例如,抹除訊號等等)。
在至少一個具體實施例中,記憶體裝置的啟動/停用的特徵可在於分壓器(voltage divider)配置。舉例來說,當在該關閉狀態下,選擇器裝置706可經選擇以具有合適地大於兩端點記憶體部件702的電阻。因此,當在該關閉狀態下,選擇器裝置706可用以降低施加介於兩端點702A以及702B之間的大部分電壓,從而使兩端點記憶部件702與適用於程式化、抹除或讀取兩端點記憶部件702的電壓隔絕。在該第一極性閾值量值之上的電壓將轉換選擇器裝置706至該開啟狀態,降低選擇器裝置706的電阻至低於兩端點記憶體部件702的電阻。這致使施加至記憶體裝置700的訊號能影響兩端點記憶體部件702。對於選擇器裝置706為雙極性裝置的具體實施例,選擇器裝置706可類似地響應於在該第二極性閾值量值之下的第二極性的訊號(使兩端點記憶部件702與這樣的訊號隔絕),或是在該第二極性閾值量值之上(曝露兩端點記憶體部件702至這樣的訊號)的第二極性的訊號,如同上文對於該第一極性訊號所述。然而在一些具體實施例中,選擇器裝置706可至少部分不同地響應於第一極性以及第二極性訊號。如一範例,選擇器706可具有不同的第一閾值量值以響應第一極性訊號,對比於第二閾值量值以響應第二極性訊號。在另一範例中,選擇器裝置706可具有不同的非線性響應對於第一極性訊號,對比於關聯非線性響應對於第二極性訊號等等,或是上述項目的適合結合。
本發明的發明人相信記憶體裝置700比其它已提出的或理論化的機制更能提供顯著的優點以為先進技術節點提供高密度的記憶體。如本文所述,選擇器裝置706能為兩端點記憶體部件702提供非線性I-V響應。該非線性響應能為具有大的n值(例如,n值為512、1024或甚至更大)的1T-nR記憶體陣列大大減少漏電流(例如,參見下文第9圖)。
另外,選擇器裝置706比起其它非線性電子部件,像是固態二極體,更提供了顯著的優點。作為一個例子,選擇器裝置706能夠在相對低的溫度下被製造出來,而固態二極體一般需要高於攝氏500度(℃)。高溫能阻止在集成電路頂部上的後端裝置製造(例如,線性處理的後端),其中,這樣的溫度超過了該積體電路的熱預算。選擇器裝置706能夠在眾多積體電路的熱預算中被製造出,而固態二極體通常不能。在一些具體實施例中,選擇器裝置706能夠在400℃以下被製造出來;在其它具體實施例中,選擇器裝置706能夠在300℃被製造出來;又其它具體實施例中,選擇器裝置706能夠在低達200℃甚至更低的溫度下被製造出來。這些溫度可使記憶體裝置700的後端製造能在許多包括預製造CMOS裝置、絕緣體上矽(SoI)裝置、或其他類似物、或前述的適合結合的積體電路上(例如,參見下文第8圖)。
除了前述之外,固態二極體可能無法在22奈米技術節點或以下被製造出或被可靠地操作。相較之 下,在一些具體實施例中,選擇器裝置706能於22奈米技術節點操作;在其它的具體實施例中選擇器裝置706能於14奈米技術節點操作;又於其他的具體實施例中,選擇器裝置706能於10奈米技術節點、7奈米技術節點或5奈米技術節點等(或小於22奈米的合適半節點(half-nodes))操作。此外,固態二極體通常不以雙極方式操作,從高電阻切換到低電阻以響應正極信號和負極信號。因此,固態二極體一般不能與雙極記憶體使用於重寫記憶體應用程式。選擇器裝置706並不如此受限,並且可為雙極記憶體提供非線性特徵,除了對第二極性的抹除信號的非線性I-V響應之外,還有利於對第一極性的程式或讀取信號的非線性I-V響應。接續上文所述,選擇器裝置706除了用在二維陣列中,還可利用在記憶體裝置700的三維陣列中,比受限於二維陣列的技術提供大得多的記憶體密度。
在本發明的一替代或另外的實施例中,選擇器裝置706可包括關聯於該第一電流的選擇器材料以響應小於與選擇器裝置706有關的閾電壓的施加電壓。而且,該選擇器材料可關聯於該第二電流以響應大於或等於閾電壓的施加電壓。在具體實施例中,該第二電流對該第一電流的比例可選自從約1,000到約10,000的比例範圍。在另外的具體實施例中,該第二電流對該第一電流的比例可選自從約10,000到約100,000的比例範圍。在又其他具體實施例中,該第二電流對該第一電流的比例可選自從約100,000到1,000,000的比例範圍。根據進一步的具體實施 例,該第二電流對該第一電流的比例可選自從約1,000,000到約10,000,000的比例範圍。
根據其它公開的具體實施例,選擇器裝置706可包括包含第一金屬的頂部電極708及包含第二金屬的底部電極716。在各種具體實施例中,該第一金屬可和第二金屬相似;而在至少一具體實施例中該第一金屬可和該第二金屬相同。在進一步的具體實施例中,該第一金屬或第二金屬能夠選自由主動金屬,W、Al、Cu、TiN、TaN、WN和TiW所組成的群組。在另外的具體實施例中,選擇器裝置706可包括第一離子導體710或第二離子導體714。在具體實施例中,第一離子導體710或第二離子導體714能選自由離子導體、電解質(例如,固態電解質)、硫族化物、金屬氧化物、和金屬氧化物合金所組成的群組中。
根據另外的具體實施例,選擇器裝置706可包括選擇器層712。選擇器層712可包括用以響應跨過頂部電極708和底部電極716的電壓而使導電離子滲透入選擇器層712的選擇器材料中。在進一步的具體實施例中,該選擇器材料可包括選自由絕緣體、非計量比氧化物、固態電解質、硫族化物、和金屬摻雜材料所組成的群組的材料。
根據另外的具體實施例,選擇器裝置706可具有第一極性的閾電壓或具有第二極性的第二閾電壓,其約為兩端點記憶體部件702的程式化電壓的一半。在此類具體實施例中,該兩端點記憶體元件702的讀取電壓可 小於該程式化電壓且大於該第一極性的閾電壓或該第二極性的第二閾電壓。
第8圖顯示一例示性記憶體架構800的側視圖的方塊圖,包括兩端點記憶體裝置的多個陣列用以減輕該陣列的導體上的漏電流,根據本發明所揭露的主旨的一或多個具體實施例。在一些具體實施例中,記憶體架構800甚至可在先進技術節點(例如,22奈米及以下)上促進改善記憶體密度。在其他具體實施例中,記憶體架構800能夠在非常低的製造成本下有利於製造出高容量、快速切換及高壽命的記憶體,其和包括預製造的電子部件的集成電路整體地結合在一起。
如所繪製,記憶體裝置800可包括基板802。基板802可以是矽晶圓,或其他適合的絕緣半導體材料用於製造一或多個電子裝置804在基板802上、中或部分在基板802之中(例如,當中該電子裝置804可包括電子裝置、絕緣體上矽裝置、或其他類似物、或前述的適合結合)。在第8圖的例子中,電子裝置804可至少部分形成在基板802之中。雖然電子裝置804是被描繪為完全在基板802之中,但應當理解的是電子裝置804可至少部份建構在基板802上面或之上(例如,前端線處理層)。例如,一或多個電子裝置804可包括電晶體,其具有形成於基板802之中的源極或漏極接點及在基板802之上的層中的浮動柵極或其他類似物。該一或多個電子裝置804可以是驅動電路、邏輯電路、處理裝置、陣列邏輯或其他類似物。後端 線處理過程可以形成於一個或多個絕緣層807之中或穿插於其中。後端線處理過程可包括導電層、記憶體層(例如,電阻切換層、或其他適合的兩端點記憶體主動區層)、選擇器層、阻隔層、電接觸層、絕緣層、或其他類似物、或前述的適合結合。
記憶體裝置800可包括一或多個選擇電晶體806,用於啟動或不啟動記憶體裝置800的記憶體單元812。選擇電晶體806可通過第一通孔層(via layer),通孔1 808,連接到關聯於記憶體單元812的位元線1 810。當選擇電晶體806被啟動,適合的信號(例如,程式化信號、讀取信號、抹除信號等)能通過通孔1 808應用在位元線1 810。位元線1 810依次連接到第一組記憶體單元812(繪製於第8圖的較下方的記憶體單元組)的各個第一接點。選擇電晶體806的不啟動可將位元線1 810與操作信號隔離,阻擋通孔1 808上的電流。因此,選擇電晶體806可作為在1T-nR記憶體架構中的1T電晶體,其中n是由被選擇電晶體806啟動的記憶體單元812的數目所定義。
在第一(較下方)陣列中的記憶體單元具有個別的第一接點連接到位元線1 810,且各個第二接點連接到字元線818中的每一個。注意各個記憶體單元812包括選擇器部件814與記憶體部件816電氣串聯。記憶體部件816可包括兩端點切換裝置(例如,電阻式記憶體、相變式記憶體、磁阻式記憶體等等),如同上文第7圖中關於兩端點記憶體元件702的敍述。同樣地,選擇器部件814可包 括如本文所述的選擇器裝置(例如,參閱上文第1、2、3、4和7圖所示),其具有一或多個電極、選擇器層和任選的一或多個離子導電層。
此外,應當理解的是選擇器部件814和記憶體部件816的方向可以顛倒;例如,記憶體單元812的第一陣列描述選擇器部件814在記憶體部件816下方,然而記憶體單元812的第二陣列(頂部陣列)描述選擇器部件814在記憶體部件816上方。應當理解記憶體單元812並不限於該繪製出的配置;在一替代的具體實施例中,記憶體單元812能均勻地具有各選擇器部件814在各記憶體部件816下方;其它具體實施例則是均勻地具有各選擇器部件814在各記憶體部件816上方;又其它具體實施例可具有前述的組合,且進一步的具體實施例可包括各選擇器部件814和記憶體部件816對於記憶體單元812的子集合的不均勻方向。
記憶體單元812的第二陣列(頂部陣列)在各記憶體部件816被連接到各字元線818,而在關聯的選擇器部件814被連接到第二位元線、位元線2 820。位元線2 820能通過一系列的通道被啟動,包括第一層通道1 806(由選擇電晶體啟動)、第二層通道2 822和第三層通道3 824。在其它具體實施例中,更多或更少的通道能被使用於連接位元線2 820與它所關聯的選擇電晶體806。
在一些具體實施例中,通道1 806、通道2 822或通道3 824(統稱為通道層806、822、824)能連接位元線 810、820或字元線818、源極線等(未繪製)至電子裝置804或兩端點切換裝置812的部件,如在本領域中已知或已由本領域中具備通常技術的人士通過本說明書所提供的上下文製成。通道層806、822和824可包括金屬、導電矽基底材料等等。在一些公開的具體實施例中,通道層806、822、824或其它未繪製的通道層可被使用於形成一或多層的非線性記憶體單元812(例如,當中一或多層記憶體部件814或選擇器部件816可至少部份地被製造出連同通道層806、822、824)。
應當被理解的是記憶體裝置800可具有記憶體單元812的陣列,其被推算在二維或三維陣列中的額外維度中。例如,記憶體裝置800可包括記憶體單元812的額外陣列在第8圖的頁面之內或外。在進一步的具體實施例中,記憶體裝置800可具有在位元線2820之上的位元線和字元線的附加層,以及記憶體單元812的各陣列存在於其之間,使得記憶體單元812的數目在垂直方向增加。
注意記憶體單元812被描繪為具有垂直排列(例如,在選擇器部件816之上的記憶體部件814),在其他具體實施例中,非線性記憶體單元812能以一傾斜角度來被排列。例如,記憶體部件816、選擇器部件814、或前述固態層的子集合,可以沿著不垂直基板802的頂部表面的方向依序排列。在至少一具體實施例中,記憶體部件814和選擇器部件816能以平行或接***行基板802的頂部表面的方向,或其他適合的方向來排列。在此類具體實施例 中,字元線818或位元線1 810或位元線2 820能被重新定位(例如,作為薄膜或填充於通道中)以適於容納該傾斜取向。
本發明的發明人瞭解一些用於製造非線性電子部件的傳統技術可涉及到相當高的溫度(例如,500℃、600℃或更高)。本發明人瞭解這些高溫過程一般與先進的CMOS過程不相容(例如,當中最大容許的製程溫度為小於370℃至430℃)。因此,本發明人瞭解記憶體裝置800的製造可能按慣例需要非整體的過程。本發明人相信非整體的製造可能更加地複雜,然而,比起整體的過程,舉例來說,需要更高的成本、更長的製造時間、以及更大的管理費用。反之,整體的製造可僅涉及到一組另外的遮罩或蝕刻過程以形成非線性記憶體單元812(或,例如,互連層806、通道層810、812、或金屬導體818)在具有電子裝置804預製於其中(或其上)的單一積體晶片上,作為一個例子。
第9圖描繪本發明另外的具體實施例中的記憶體單元的例示性陣列900的方塊圖。陣列900可以如所繪製,為交叉記憶體陣列,包括第一組導體,位元線902,本質上平行第二組導體,字元線904、與位於各位元線902和字元線904的交叉點的各兩端點記憶體裝置。陣列900描繪出由施加到字元線904的被選擇的一個的程式化供給信號所引起的潛行(sneak)通道電流(在本文中也被稱為漏電流),除了由位元線間的電壓電位(例如,電容電 壓)所引起的潛行通道電流之外。陣列900顯示有關於潛行通道電流的問題,且因此有用於顯示出兩端點記憶體之非線性特徵的優點。
如上所述,陣列900包括本質上垂直於一組字元線904的一組位元線902。當中各位元線902A、902B、902C與字元線904A、904B、904C的其中一個的相交處是非線性兩端點記憶體的位置,具有第一端點連接到位元線902中之一和第二端點連接到字元線904中之一。此外,所選擇的單元906是針對程式運作的非線性兩端點記憶體單元。尤其是,該程式運作包括約3伏特的程式化信號910施加在字元線904B。在一些具體實施例中,約1.5伏特的中間信號可被施加到未被選中的字元線904A、904C,而在其他具體實施例中,字元線904A、904C可保持浮動(floating)。此外,位元線902B被驅動至0伏特(例如,提供3伏特的電位差跨過所選擇的單元906),而位元線902A、902C可被驅動至1.5伏特(或例如,在至少一具體實施例中其可以維持浮動)。在位元線902A、902C和字元線904間的電容耦合將引起大於0伏特而小於3伏特的電壓到位元線902A、902C上。
該程式運作電壓可造成多個潛行通道電流;由信號程式910引起的潛行通道,稱為程式化潛行通道912,而在位元線902B上的潛行通道,稱為位元線潛行通道914。位元線潛行通道914以虛線表示,而程式化潛行通道912以細實線表示。兩通道皆是為位元線通道電流 914在字元線904A、904C上通過未選中的單元908而繪製。該位元線通道電流914各自作為該各通道的共同部件來分攤位元線902B。程式化潛行電流912傳播經過該被選中的局部字元線904B,分別到位元線902A、902C。
注意在不同於記憶體陣列900的被選中的字元線904B的字元線上的該程式化供給電流潛行通道未被繪製出。在一些具體實施例中,若該未被選中的字元線904A、904C被允許浮動,電容耦合會引起在未被選中的字元線904A、904C上的電壓,其可接近1.5伏特(例如,根據字元線間的電容)。在這些未被選中的字元線的潛行通道可以存在但可能對感應幅度僅具有小影響,故不繪製出。
繪製於第5圖中的具有I-V響應的非線性記憶體單元被使用於未被選中的單元908和被選中的單元906,在位元線902A、902C和字元線904A、904C上約有1.5伏特,將會小於該記憶體單元的選擇器元件的閾電壓(其根據第5圖是高於1.5伏特)。據此,在陣列900中的潛行通道電流的強度將是相當小的,對於所選擇的單元908的感應幅度上具有可忽略的影響,儘管事實上未被選中的單元908的記憶體元件918是在“開啟”的記憶體狀態。這是因為未被選中的單元908的選擇器部件916是在非導通狀態,從而降低通過未被選中的單元906的電流約4個量級的強度,儘管事實上未被選中的單元908的記憶體部件918被程式化到相對導通的狀態。在其它具體實施例中,位元線間與字元線間的電容耦合效應甚至可被減得更 少(例如,藉由使用具有小電容的相對小的局部字元線或局部位元線於陣列900)。當中電容耦合效應被減少(或當中的程式化電壓能被減少)以至於浮動位元線902A、902C或浮動字元線904A、904C各自具有的電壓小於約200毫伏特,接著第6圖中的具有I-V響應的非線性記憶體單元可被使用於陣列900。在這此情況中,潛行通道電流的強度藉由各選擇器部件916甚至可被減少更多(例如,最多到約7個量級的強度)。此電流的大幅減少能確保1T-nR陣列架構中的記憶體單元的n值,為相當大的數目,而對被選中的單元908維持可接受的感應幅度。因此,此類1T-nR架構可提供非常好的記憶體密度甚至用於先進的技術節點(例如,22奈米或以下)。
前述方塊圖已經描述關於記憶體單元的幾個部件(例如,層)之間的交互作用、其導電層、或包含這樣的記憶體單元/導電層的記憶體架構。應當理解在本發明主旨的一些適合的替代方面,這樣的圖示可包括在其中指定的那些部件和層、某些指定的部件/層、或另外的部件/層。子部件也可以被實現為電接觸到其他子部件而非包含於母部件/層中。例如,中間層可以被建立在相鄰於一或多個所揭露的層。作為一個例子,一個用於減輕或控制非有意氧化的適合的阻擋層可被置於一或多個被揭露的層之間。又在其它具體實施例中,所揭露的記憶體堆積或薄膜層組可具有比繪製出的還要少的層。例如,切換層可直接電接觸導電線,而不用具有一電極層於其中。此外,要注 意的是一或多個被揭露的製程可被組合成單一製程提供聚合功能。該被揭露的架構之部件也可與一或多個未在本文中具體描述但本領域之技術人士已知的其他元件交互作用。
鑒於上文所述的例示的方塊圖,可根據本文所公開的主旨而能實現的製程方法將參照第10圖到第12圖之流程圖而更好理解。而為便於說明,第10圖到第12圖中的方法被顯示並描述成一系列的方塊,應被理解和意識到的是,本發明的主旨並不受方塊的順序所限制,因為一些方塊可能與其他在本文中繪製和描述的方塊以不同順序或同時間發生。再者,並非所有被描繪的方塊對於實現本文所述之方法都是必需的。此外,應當進一步理解的是本說明書全部所揭露的一些或全部方法能夠被存在製造品中以利於運輸或傳送這樣的方法給電子裝置。該術語製造品,如使用的,涵蓋容易從任何連接載體或儲存媒介的可讀取電腦裝置的電腦程式。
第10圖描繪用於製造固態選擇器裝置的例示性方法1000的流程圖。在1002,方法1000可包括提供包含第一金屬材料的第一層狀結構。在1004,方法1000提供選擇器材料的層相鄰於該第一層狀結構。在至少一具體實施例中,該選擇器材料的層可接觸該第一層狀結構。在1006,方法1000可包括提供包含第二金屬材料相鄰於該選擇器材料的層的第二層狀結構。在至少一具體實施例中,該第二層狀結構可接觸該選擇器材料。在可替代或另 外的具體實施例中,該第一金屬材料可用以提供導電離子至該選擇器材料中,以響應施加跨過該第一層狀結構和該第二層狀結構的電壓。在其它具體實施例中,該選擇器材料可用以允許該導電離子滲透入該選擇器材料的層中,以響應施加於跨在該第一層狀結構和該第二層狀結構的電壓。根據又其他的具體實施例,該第一層狀結構、該選擇器材料的層、和該第二層狀結構可形成該固態選擇器裝置。又進一步的具體實施例中,該選擇器裝置可與兩端點記憶體裝置電氣串聯。
根據其他的具體實施例,該第二金屬材料可用以提供更多的導電離子至該選擇器材料中,以響應施加跨過該第一層狀結構和第二層狀結構的第二電壓,其與該電壓極性不同(例如,反極性)。在至少一具體實施例中,更多的導電離子至少部分自該選擇器材料中消散,以響應在閾電壓量值以下的該電壓或該第二電壓的量值。在進一步的具體實施例中,該選擇器材料的層的導電度可減少,以響應該至少部分自該選擇器材料中消散的更多的導電離子。
又其它的具體實施例中,該第一金屬材料或該第二金屬材料可選自由惰性金屬(例如,Pt、Pd、Ag、Au)、至少部分包含惰性金屬的金屬合金、快電場增強擴散材料(例如,Ni、Cu、Ag、Co、Fe)和CMOS配線金屬(例如,W、Al、Ti、TiN、TaN、WN)所組成的群組。在另外的具體實施例中,該選擇器材料層可選自由絕緣體、非計量比 氧化物,硫族化物、包括Ge、Sb、S和Te的固態電解質以及金屬摻雜材料所組成的群組。在又一實施例中,提供該第一層狀結構更可包括提供包含選自由主動金屬,W、Al、Cu、TiN和TiW所組成的群組的金屬材料的第一電極。又另一具體實施例中,提供該第一層狀結構可額外包括提供置於該選擇器材料的層和該選自由離子導體、固態電解質、金屬氧化物和金屬氧化物合金所組成的第二群組的金屬材料之間的第一離子導體。
根據進一步的具體實施例,方法1000可進一步包括形成多個兩端點記憶體裝置於半導體基板上,以及形成多個選擇器裝置。在一或多個具體實施例中,該兩端點記憶體裝置可各自與至少一個來自該多個選擇器裝置的選擇器裝置相關聯。在另外的具體實施例中,該多個兩端點記憶體裝置可包括該兩端點記憶體裝置,而該多個選擇器裝置可包含該選擇器裝置。在其它具體實施例中,該方法可進一步包括自該多個兩端點記憶體裝置和該多個選擇器裝置形成交叉記憶體結構。
第11圖描繪例示性方法1100用於製造具有非線性I-V特性的兩端點記憶體裝置的流程圖,根據本發明的另一具體實施例。在1102,方法1100可包括形成包含第一金屬材料的第一層狀結構於基板上。在至少一具體實施例中,該基板可包括一或多個電子裝置(例如,CMOS裝置、SOI裝置等等)形成於其中或其上。在1104,方法1100可包括形成接觸該第一層狀結構的離子導體層。另外,在 1106,方法1100可包括形成接觸該離子導體層的選擇器材料層。在1108,方法1100可包括形成接觸該選擇器材料的第二離子導體層。此外,在1110,方法1100可包括形成包含金屬材料並接觸該第二離子導體的第二層狀結構。除前述之外,在1112,方法1100可包括形成兩端點記憶體裝置與該第二層狀結構電氣串聯。在1114,方法1100可包括連接記憶體裝置的第一導體到該第一層狀結構。在1116,方法1100可包括連接該記憶體裝置的該第二導體到該兩端點記憶體裝置。
第12圖描繪例示性方法1200用於根據本主要發明的進一步具體實施例來操作交叉記憶體陣列的流程圖。例如,該交叉記憶體陣列可包括多個兩端點記憶體裝置和多個選擇器裝置,其中該多個兩端點記憶體裝置可各自串聯一個來自該多個選擇器裝置的選擇器裝置,其中各選擇器裝置是關聯於響應小於閾電壓的施加電壓的第一電氣特性,也可關聯於響應大於或等於該閾電壓的施加電壓的第二電氣特性。在1202,方法1200可包括施加大於該閾電壓的第一電壓至包括第一兩端點記憶體裝置串聯第一選擇器裝置的第一記憶體結構。在1204,方法1200可包括在施加第一電壓的同時,施加小於該閾電壓的第二電壓至包含第二兩端點記憶體裝置串聯第二選擇器裝置的第二記憶體結構。在1206,方法1200可包括決定電流,以響應施加該第一電壓同時施加該第二電壓。在各種具體實施例中,該電流包括關聯於該第一選擇器裝置的第一電流和 關聯於該第二選擇器裝置的第二電流。此外,該第一電流和該第二電流的電流比可落於選自由約1,000至約10,000,約10,000至約100,000,約100,000至約1,000,000,以及約1,000,000至約10,000,000的比例範圍所組成的群組。在進一步的具體實施例中,該第一兩端點記憶體裝置和該第二兩端點記憶體裝置可皆為程式化狀態。
根據一或多個另外的具體實施例,該多個選擇器裝置的一個選擇器裝置可包括第一主動金屬層、第二主動金屬層、以及於該第一主動金屬層和該第二主動金屬層之間的選擇層。在另外的具體實施例中,施加該第二電壓同時施加該第一電壓更可包括施加大於該閾電壓的該第一電壓於該第一選擇器裝置,從而導致在該第一選擇裝置的該選擇層中形成第一主動金屬層的金屬化離子粒子的導絲,以及施加小於該閾電壓的該第二電壓於該第二選擇器裝置,其中第一主動金屬層的金屬化離子粒子的導絲不會形成於該第二選擇器裝置的選擇層中(或只形成在該第二選擇器裝置的選擇層的子集合中,且不提供導電通道通過該第二選擇器裝置的選擇層)。
根據進一步的具體實施例,該閾電壓可介於由約0.1伏特至約2伏特,和約2伏特至約4伏特的範圍所組成的群組中。在另一具體實施例中,該第二電流可選自由約1×10-8安培至約1×10-14安培的範圍中。又其他具體實施例中,該第一電流可選自由約1×10-3安培至約1×10-6安培的範圍中。
在另外的具體實施例中,施加該第二電壓同時施加該第一電壓更可包括施加小於該閾電壓的該第二電壓至相異於該多個兩端點記憶體裝置的第二多個兩端點記憶體裝置,串聯相異於該多個選擇器裝置的第二多個選擇器裝置。在另外的具體實施例中,該第二多個兩端點記憶體裝置中的兩端點記憶體裝置的數量可選自約1,000至約250,000的範圍中。又其他具體實施例中,該第一兩端點記憶體裝置和該第二兩端點記憶體裝置皆在消除狀態。又其他的具體實施例中,該兩端點記憶體裝置包括絲狀為基礎的電阻式記憶體裝置。
在本發明的各種具體實施例中,所揭露的記憶體或記憶體架構可被採用作為具有CPU或微處理器的獨立或集成的嵌入式記憶體裝置。一些具體實施例可被實現,例如,作為電腦記憶體的一部分(例如,隨機存取記憶體、快取記憶體、唯讀記憶體、儲存記憶體、或其他類似物)。其他具體實施例可被實現,例如,作為可攜式記憶體裝置。適當的可攜式記憶體裝置的例子可包括移動式記憶體,像是保全數位(SD)卡、通用串列匯流排(USB)、記憶棒、壓縮快閃(CF)卡、或其他類似物、或前述的適當組合(例如,參見下文第13圖和第14圖)。
NAND FLASH被用於小型快速快閃裝置、USB裝置、SD卡、固態裝置(SSD)、和儲存類記憶體,以及其它規格(form-factors)。雖然NAND在過去十年已被證明是推動磁碟機向下擴展為更小型的裝置及更高晶片密度 的成功技術,隨著技術的縮小尺寸越過25奈米記憶體單元技術,一些結構、性能和可靠度的問題變得明顯。這些細節或類似的考量被本發明所揭露的各方面來解決。
為了提供本發明主旨的各方面的全貌,第13圖,以及下面討論中,旨在提供在一適當情境下的一簡要的、一般性的描述,其中本發明主旨的各方面能夠被實現或處理。而該主旨已在上文於固態記憶體和半導體架構和用於製造和操作這樣的記憶體或架構的製程方法的上一般性上下文中被描述,本領域的技術人士將認識到本說明書的內容也可結合其它架構或製程方法來被實現。再者,本領域的技術人士將理解到本發明所公開的方法可透過一處理系統或一電腦處理器來實施,不論是單獨實施還是連接主電腦(例如,下文第14圖中的電腦1402),其可包括單一處理器或多處理器電腦系統、小型電腦裝置、大型電腦、以及個人電腦、手持式計算設備(例如,PDA、智慧型電話、手錶)、微處理器型式的或可程式化消費或工業用電子設備等。所說明的各方面也可用分佈式計算環境來實施,其工作任務是由透過通信網絡連接的遠端處理裝置來實行。然而,一些如果不是本發明創新的所有方面可在獨立電子裝置上實施,像是記憶卡、快閃記憶模組、移動式記憶體或其他類似物。在分佈式計算環境中,程序模組皆可位於本地和遠端的儲存模組或裝置上。
第13圖是根據本說明書主旨的各方面所描繪的例示性的記憶體單元陣列1302的操作和控制環境 1300的方塊圖。在本說明書的主旨的至少一方面,記憶體單元陣列1302可包括各種記憶體單元技術。在至少一具體實施例中,該記憶體單元技術的記憶體單元可包括具有非線性I-V響應的兩端點記憶體,如本文所述。在另一具體實施例中,記憶體單元陣列1302可儲存操作模式用以致使製造兩端點記憶體單元電氣串聯選擇器裝置。
列控制器1306可被形成在相鄰於記憶體單元陣列1302。此外,列控制器1306可與記憶體單元陣列1302的位元線電性耦合。列控制器1306可控制各位元線,施加合適的程式,消除或讀取電壓到所選擇的位元線。
此外,操作和控制環境1300可包括行控制器1304。行控制器1304可被形成相鄰於列控制器1306,以及電連接到記憶體單元陣列1302的字元線。行控制器1304可選擇具有適當選擇電壓的記憶體單元的特定行。而且,行控制器1304可藉由施加適當電壓於所選擇的字元線來促進程式化、消除或讀取操作。
時脈源1308可提供各時序時脈脈衝以利於行控制器1304和列控制器1306的定時讀取、寫入、以及程式化操作。時脈源1308可進一步利於選擇字元線或位元線響應***作和控制環境1300所接收的外部或內部命令。輸出/輸入緩衝器1312可通過I/O緩衝器或其它I/O通信介面被連接到外部主機裝置,像是電腦或是其它處理裝置(未繪製,但見例如下文第12圖的電腦802)。輸入/輸出緩衝器1312可用於接收寫入的數據、接收消除指令、輸出 讀出的數據、和接收位址數據和命令數據以及各指令的位址數據。位址數據可藉由位址暫存器1310轉移到行控制器1304和列控制器1306。此外,輸入數據經由信號輸入線傳遞到記憶體單元陣列1302,而輸出數據經由信號輸出線從記憶體單元陣列1302接收。輸入數據可從主機裝置接收,而輸出數據可經由I/O緩衝器被傳送到主機裝置。
從主機裝置接收的命令可被提供給命令介面1314。命令介面1314可用於接收來自主機裝置的外部控制信號,並決定數據輸入到輸入/輸出緩衝器1312是為寫入數據、命令或是位址。輸入命令可被轉移到狀態機1316。
狀態機1316可用於管理記憶體單元1302的程式化和重程式化。狀態機1316經由輸入/輸出緩衝器1312和命令介面1314從主機裝置接收命令,並管理讀取、寫入、消除、數據輸入、數據輸出、以及與記憶體單元1302有關的相似功能。在一些方面,狀態機1316可發送和接收關於成功接收或執行各命令的確認或否定。
為了實現讀取、寫入、消除、輸入、輸出等功能,狀態機1316可控制時脈源1308。時脈源1308的控制可引起輸出脈衝用於有利行控制器1304和列控制器1306實現特定功能。輸出脈衝,例如,可被列控制器1306傳送到所選擇的位元線,或例如,被行控制器1304傳送到字元線。
連同第14圖,以下所述的系統和方法可在 硬體中實施,像是單一集成電路(IC)晶片、多個IC、特定用途積體電路(ASIC)、或其它類似物。再者,發生在每個過程中的一些或全部的過程方塊其中的順序不應被認為是限制性的。而是應當理解,一些過程方塊可以不同的順序來執行,而不是所有這些都可以在本文中明確說明。
參考第14圖,適合的操作環境1400以實現本發明所要求保護主旨的各方面包括電腦1402。電腦1402包括處理單元1404、系統記憶體1406、編解碼器1435、以及系統匯流排1408。系統匯流排1408耦合系統元件包括,但不限於,系統記憶體1406到處理單元1404。處理單元1404可以是任何可用的處理器。雙微處理器和其它多處理器架構也可被採用作為處理單元1404。
系統匯流排1408可以是任何若干類型的匯流排結構,包括記憶體匯流排或記憶體控制器、周邊匯流排或外部匯流排,和/或使用任何各種可用匯流排架構的局部匯流排包括,但不限於,工業標準架構(ISA)、微通道架構(MSA)、擴展的ISA(EISA)、智能驅動電子裝置(IDE)、VESA局部匯流排(VLB)、周邊組件互連(PCI)、卡匯流排、通用串列匯流排(USB)、先進圖形埠(AGP)、個人電腦記憶卡國際協會匯流排(PCMCIA)、火線(IEEE1934)、以及小型電腦系統介面(SCSI)。
系統記憶體1406包括易失性記憶體1410和非易失性記憶體1412,其可以使用一或多個本發明的記憶體架構,在各種具體實施例中。該基本輸入/輸出系統 (BIOS),包含基本規則以傳輸電腦1402之中的元件之間的訊息,像是在啟動期間,被儲存在非易失性記憶體1412。此外,根據本發明,編解碼器1435可包括至少一編碼器或編解碼器,其中該至少一編碼器或編解碼器可由硬體、軟體、或硬體和軟體的組合來組成。雖然,編解碼器1435被描示為單一元件,編解碼器1435可被包含在非易失性記憶體1412中。通過說明而非限制的方式,非易失性記憶體1412可包含唯讀記憶體(ROM)、可程式化ROM(PROM),電性可程式化ROM(EPROM),電性可消除式可程式化ROM(EEPROM)、或快閃記憶體。非易失性記憶體1412可採用一或多個本發明的記憶體架構,在至少一些本發明的具體實施例中。而且,非易失性記憶體1412可為電腦記憶體(例如,以電腦1402或其中的主機板物理集積),或移動式記憶體。合適的移動式記憶體與配合本發明中可被實現的具體實施例的例子可包括保全數位(SD)卡、壓縮快閃(CF)卡、通用串列匯流排(USB)記憶棒、或其他類似物。易失性記憶體1410包括隨機存取記憶體(RAM),其作用類似外部快取記憶體,且也可在各具體實施例中使用一或多個本發明的記憶體架構。通過說明而非限制的方式,RAM可用在許多型式像是靜態RAM(SRAM)、動態RAM(DRAM)、同步DRAM(SDRAM)、雙倍資料率SDRAM(DDR SDRAM)、以及增強型SDRAM(ESDRAM)等等。
電腦1402也可包括移動式/非移動式、易失性/非易失性電腦儲存媒介。第14圖顯示,例如,磁碟記 憶體1414。磁碟記憶體1414包括,但不限於,裝置像是磁碟記憶體驅動器、固態磁碟記憶體(SSD)軟碟驅動器、磁帶驅動器、Jaz驅動器、Zip驅動器、LS-100驅動器、快閃記憶卡、或記憶棒。此外,磁碟記憶體1414,可包括儲存媒介單獨或與組合其它儲存媒介包括,但不限於,光碟驅動器像是光碟ROM裝置(CD-ROM)、CD可記錄驅動器(CD-R drive)、CD可重寫驅動器(CD-RW驅動器)或數位多功能碟ROM驅動器(DVD-ROM)。為利於連接磁碟記憶體1414到系統匯流排1408,移動式或非移動式介面常被使用,像是介面1416。可理解的是磁碟記憶體1414可儲存關於用戶的訊息。這樣的訊息能被儲存在或被提供給服務器或給運行在用戶裝置上的應用程式。在一具體實施例中,用戶可被通知(例如,通過輸出裝置1436的方式)儲存在磁碟記憶體1414和/或傳送到服務器或應用程式的訊息類型。用戶可被提供機會以選擇加入或退出收集和/或與服務器或應用程式分享這樣的訊息(例如,通過從輸入裝置1428輸入的方式)。
應當理解的是,第14圖描述做為用戶和在合適作業環境1400中所述的基本電腦資源之間的媒介的軟體。這樣的軟體包括作業系統1418。作業系統1418,其可被存在磁碟記憶體1414中,作為控制和分配電腦1402的資源。應用程式1420有益於管理資源,藉由作業系統1418通過程式化模組1424,和程式化數據1426,像是引導/關閉事務表及其它類似物,不論是儲存在系統記憶體1406 還是磁碟記憶體1414。應當理解的是本發明所要求保護的主旨可以各種作業系統或作業系統的組合來實現。
用戶通過輸入裝置1428輸入命令或訊息到電腦1402。輸入裝置1428包括,但不限於,指向裝置像是鼠標、軌跡球、指示筆、觸控面板、鍵盤、麥克風、操縱桿、遊戲墊、圓盤式衛星天線、掃描儀、TV調諧卡、數位相機、數位攝像機、網絡攝像機、及其它類似物。這些和其它輸入裝置通過系統匯流排1408經由介面埠1430連接到處理單元1404。介面埠1430包括,例如,串列埠、並行埠、遊戲埠、以及通用串列匯流排(USB)。輸出裝置1436使用一些像輸入裝置1428一樣類型的埠。因此,例如,USB埠可被用於提供輸入到電腦1402和從電腦1402輸出訊息到輸出裝置1436。輸出轉接器1434被提供以說明存在一些輸出裝置,像是顯示器、揚聲器、和印表機,在其它輸出裝置中,需要特殊的轉接器。輸出轉接器1434可包括,通過說明但不限制,視頻和聲音卡提供輸出裝置1436和系統匯流排1408之間的連接方式。應當注意的是其它裝置和/或裝置系統皆提供輸入和輸出能力,像是遠端電腦1438。
電腦1402可操作在網絡工作環境中使用邏輯連接到一或多個遠端電腦,像是遠端電腦1438。遠端電腦1438可為個人電腦、服務器、路由器、網絡PC、工作站、微處理器的電器、對等裝置、智慧型電話、平板電腦、或其它網絡節點,且通常包括許多描述關於電腦1402的元 件。為簡明起見,僅記憶體儲存裝置1440與遠端電腦1438被示出。遠端電腦1438通過網絡介面1442邏輯連接到電腦1402,然後再經由通信連接器1444連接。網絡介面1442包括有線和/或無線通信網絡像是局部網絡(LAN)和廣域網絡(WAN)和蜂巢式網絡。LAN技術包括光纖分佈式數據介面(FDDI)、銅分佈式數據介面(CDDI)、乙太網絡、信號環和其他類似物。WAN技術包括,但不限於,點對點連結、電路交換網絡像是整合服務數位網絡(ISDN)及其變體、封包交換網絡、和數位用戶線路(DSL)。
通信連接器1444指的是硬體/軟體用於連接網絡介面1442到系統匯流排1408。而通信連接器1444被示出以說明清晰度內部電腦1402,它也可以被外接到電腦1402。用於連接到網絡介面1442的必需硬體/軟體包括,僅為說明性的目的,內部和外部科技,像是包括一般性電話級數據機的的數據機、電纜數據機和DSL數據機、ISDN轉接器、和有線與無線的乙太網絡卡、集線器和路由器。
本說明書中所說明的方面也可被實施在分佈式計算環境中,其中的某些工作是藉由通過通信網絡所連結的遠端處理裝置來進行。在分佈式計算環境中,程式化模組或儲存資訊、指令、或其他類似物可位於本地或遠端的記憶體儲存裝置。
再者,可理解的是本文中所描述的各種元件可包括電子電路,其可包括組件和合適值的電路元件以實現本說明書主旨的具體實施例。此外,可理解的是許多 各種元件能被實現在一或多個IC晶片上。例如,在具體實施例中,一組元件可被實現在單個IC晶片上。在其它具體實施例中,各元件中的一或多個被製造或實現在單獨的IC晶片上。
如本文中所使用的術語“部件”、“系統”、“架構”等是意在稱呼電腦或電子相關的實體、或是硬體、硬體和軟體的組合、軟體(例如,執行中的)或韌體。例如,元件可以是一或多個電晶體、記憶體單元、電晶體或記憶體單元的佈置、柵陣列、可程式化柵陣列、特定用途積體電路、控制器、處理器,在該處理器運作的過程、目的物、可執行文件、程式或出入或連接半導體記憶體的應用程式、電腦、或其他類似物、或其適當組合。該元件可包括可消除程式化(例如,至少部分存在可消除記憶體中的處理指令)或硬程式化(例如,在製造時燒入到非消除式記憶體的處理指令)。
通過說明的方式,一個執行過程從記憶體和處理器皆可以是部件。作為另一個例子,一個架構可包括電子硬體的配置(例如,並聯或串聯電晶體)、處理指令和處理器,其在適當的電子硬體的配置方式實現該處理指令。另外,架構可包括單個元件(例如,電晶體、柵陣列…)或多個元件的配置(例如,電晶體的串聯或並聯配置、柵陣列連接程式化電路、電源線、電接地線、輸入信號線和輸出信號線等等)。系統可包括一或多個部件,以及一或多個架構。一例示性系統可包括切換區塊架構,其中該切換區 塊架構包含交叉的輸入/輸出線和通過柵極電晶體,以及電源、信號產生器、通信匯流排、控制器、I/O介面、位址暫存器等等。應當理解的是一些重複的定義是可預期的,且架構或系統可以是獨立的部件,或另一架構的元件,系統等。
除上述之外,本發明的主旨可作為一方法、裝置或用一般製造,程式化或工程技術制出的製造品來實現以製造出硬體、韌體、軟體、或其任何適當組合以控制電子裝置來實現本發明的主旨。文中使用的術語“裝置”、“製造品”意在包含電子裝置、半導體裝置、電腦、或任何從電腦可讀裝置、載體或媒介中存取的電腦程式。電腦可讀媒介可包括硬體媒介,或軟體媒介。另外,該媒介可包括非臨時性的媒介或傳輸媒介。在一例子中,非臨時性媒介可包括電腦可讀硬體媒介。電腦可讀硬體媒介的具體實例可包括但不限於,磁性儲存裝置(例如,硬碟、軟碟、磁條…)、光碟(例如,光碟片(CD)、數位多用途光碟(DVD)…)、智能卡、和快閃記憶體裝置(例如,卡、桿、鍵驅動…)。電腦可讀傳輸媒介可包括載波,或類似物。當然,本領域的技術人士將理解可在不偏離本發明主旨的精神和範圍的情況下對本文的型態做許多修改。
已於上文中描述了本發明的具體實施例。這當然,不可能為了詳述本發明而描述出每個可想到的部件或方法的組合,但任一個本領域的技術人士可認識到本發明的許多進一步的組合和排列是有可能的。因此,本發 明主旨意在涵蓋落入本發明的精神和範圍之內的所有這類更改,修改和變化。此外,就術語“包括”、“包含”、“具”或“具有”及其變化的範圍被用在說明書還是申請專利範圍中,這樣的術語旨在是包容性的,類似當“包括”在申請專利範圍中作為銜接詞來解釋時該術語“包括”的形式。
此外,本文中使用的字詞“例示性”是表示充當為範例、例子、或說明。本文中描述為“例示性”的任何方面或設計並不一定要被解釋為優於或者勝過其他方面或設計。相反的,字詞例示的使用是旨在以具體方式呈現概念。如本說書中使用的,術語“或”是意在表示包含性的“或”而非排他性的“或”。即是說,除非另有指定,或從上下文中清楚可見,“X採用A或B”是意在表示任何自然的包括性排列。即,如果X採用A;X採用B;或X採用A和B,那麼“X採用A或B”滿足前述任何情況。此外,冠詞“一”或“一個”用在本說明書和申請專利範圍中一般應被解釋為“一個或多個”,除非另有指定或從上下文中明確得知其針對單數形式。
此外,本說明書中的某些部分已經被以在電子記憶體中的數據位元上的演算法或處理操作的形式呈現。這些過程描述或表示是被這些本領域中熟習此技藝的人士有效傳達他們的工作內容給其他熟練人士所採用的機制。這裏的方法,通常被認為是一種導致所期望結果的行為的自相容序列。該行為是那些需要物理量的物理操作。 通常,雖然不是一定,這些物理量是採用能被儲存、傳輸、組合、比較、和/或以其他方式操縱的電性和/或磁性信號的形式。
已經被證明主要是出於公用原因的便利性,將這些信號稱為位元、值、元素、符號、字符、術語、數字、或諸如此類。然而,應當被牢記所有這些和類似的術語都將與合適的物理量相關且僅僅是方便應用這些物理量的標籤。除非特別聲明,否則或從前文討論中顯而易見,應當理解整個發明的主旨,利用諸如處理、計算、複製、模仿、確定或發送等來討論,指的是處理系統的行為和過程和/或類似的消費行為,或工業用電子裝置或機器,其操縱或轉換由電路、電子裝置的暫存器或記憶體中的物理量(電氣或電子)所表示的數據或信號為在機器或電腦系統記憶體或暫存器或其他這種資訊儲存、傳送、和/或顯示裝置中所表示的其他數據或類似信號。
對於由上述部件、架構、電路、處理過程等所執行的各種功能,用於描述這些元件的術語(包括所提及的“工具”),除非另有說明,都旨在響應到任何執行所描述元件的指定功能的元件(例如,功能等效件),即使結構上不等同於本發明的結構,其系執行本文中所說明知各實施方面中的功能。另外,雖然僅有關於若干具體實施例中一個特定特徵已經被公開,這樣的特徵可以與其他具體實施例中的一個或多個特徵合併而成為任何所期望的或有利的給定或特定的應用。也應當理解到,該具體實施例包 括系統以及具有電腦可執行指令的電腦可讀媒介用以執行各種過程的行動和/或事件。
1000‧‧‧方法
1002、1004、1006‧‧‧步驟

Claims (20)

  1. 一種形成用於兩端點記憶體裝置的選擇器裝置的方法,包括:提供包括第一金屬材料的第一層狀結構;提供接觸該第一層狀結構的選擇器材料的層;以及提供包含第二金屬材料且接觸該選擇器材料的該層的第二層狀結構,其中:該第一金屬材料用以提供導電離子至該選擇器材料,以響應施加跨過該第一層狀結構和該第二層狀結構的電壓,該選擇器材料用以允許該導電離子滲透入該選擇器材料層,以響應該施加跨過該第一層狀結構和該第二層狀結構的該電壓,該第一層狀結構、該選擇器材料的層、以及該第二層狀結構形成該選擇器裝置,以及該選擇器裝置與該兩端點記憶體裝置電氣串聯。
  2. 如申請專利範圍第1項所述之方法,其中,該第二金屬材料用以提供更多的導電離子至該選擇器材料,以響應施加跨過該第一層狀結構和該第二層狀結構的第二電壓,該第二電壓與該電壓的極性相反。
  3. 如申請專利範圍第2項所述之方法,其中:該更多的導電離子至少部分自該選擇器材料的層 消散,以響應該電壓或該第二電壓在閾電壓量值以下的量值;以及該選擇器材料的層的導電度減少,以響應至少部分自該選擇器材料的層消散的該更多的導電離子。
  4. 如申請專利範圍第1項所述之方法,其中至少其中之一為:該第一金屬材料或該第二金屬材料是選自由惰性金屬、至少部分包含惰性金屬的金屬合金、快電場增強擴散材料、鎳(Ni)、銅(Cu)、銀(Ag)、鈷(Co)、鐵(Fe)、鎢(W)、鋁(Al)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)、以及前述一或多種的合金所組成的群組;或該選擇器材料的該層是選自由絕緣體、非計量比氧化物、硫族化物、包括鍺(Ge)、銻(Sb)、硫(S)和碲(Te)的固態電解質、以及金屬摻雜材料所組成的群組。
  5. 如申請專利範圍第1項所述之方法,其中,該提供該第一層狀結構和該第二層狀結構更包括:提供第一電極或第二電極,分別包括選自由鈷(Co)、鎳(Ni)、鐵(Fe)、銀(Ag)、鈦(Ti)、鎢(W)、鋁(Al)、銅(Cu)、氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(TiW)、以及前述一或多種材料的合金所組成的群組的金屬材料;以及至少其中之一為:提供置於該選擇器材料的層與該第一電極之間的第一離子導體,該第一電極是選自由離子導體、固態 電解質、金屬氧化物和金屬氧化物合金所組成的第二群組;或提供置於該選擇器材料的層與該第二電極之間的第二離子導體,該第二離子導體是選自該第二群組。
  6. 如申請專利範圍第1項所述之方法,更包括:形成多個兩端點記憶體裝置於半導體基板上;以及形成多個選擇器裝置,其中:該兩端點記憶體裝置的各者與至少一個來自該多個選擇器裝置的至少一個選擇器裝置相關聯,該多個兩端點記憶體裝置包括該兩端點記憶體裝置,以及該多個選擇器裝置包括該選擇器裝置。
  7. 如申請專利範圍第6項所述之方法,更包括自該多個兩端點記憶體裝置和該多個選擇器裝置形成交叉記憶體結構。
  8. 一種用於兩端點記憶體的選擇器裝置,包括:第一層狀結構,包含第一金屬材料;選擇器材料的層,接觸該第一層狀結構;以及第二層狀結構,接觸該選擇器材料的該層並包含第二金屬材料,其中:該第一金屬材料用以提供導電離子至該選擇器材料,以響應施加跨過該第一層狀結構和該第二層狀結構的閾電壓, 該選擇器材料用以允許該導電離子滲透入該選擇器材料的層,以響應該施加跨過該第一層狀結構和該第二層狀結構的閾電壓,以及該選擇器裝置與該兩端點記憶體裝置電氣串聯。
  9. 如申請專利範圍第8項所述之選擇器裝置,其中:該選擇器材料是關聯於第一電流,以響應小於該閾電壓的施加電壓;該選擇器材料是關聯於第二電流,以響應大於或等於該閾電壓的該施加電壓;以及該第二電流和該第一電流的比例為約1,000或更大。
  10. 如申請專利範圍第9項所述之選擇器裝置,其中,該選擇器材料從關聯該第二電流改為關聯該第一電流,以響應從大於或等於該閾電壓降至小於該閾電壓的該施加電壓。
  11. 如申請專利範圍第8項所述之選擇器裝置,其中:該第二層狀結構用以提供額外的導電離子至該選擇器材料,以響應施加跨過該第一層狀結構和該第二層狀結構的第二電壓,該第二電壓具有與該閾電壓不同的極性;該額外的導電離子滲透入該選擇器材料以形成導電子區域,以響應該第二電壓;該選擇器材料層是關聯於增加的電流以響應該額 外的導電離子滲透入該選擇器材料;該額外的導電離子至少部份使該選擇器材料層的該導電子區域解形成以響應小於第二量值閾值的該第二電壓的量值;該選擇器材料層是關聯於減少的電流以響應該至少部份使該導電子區域解形成的該額外的導電離子;以及該減少的電流和該增加的電流的比例為1,000或更大。
  12. 如申請專利範圍第8項所述之選擇器裝置,其中,該閾電壓是選自約0.1伏特至約4伏特的範圍,而該選擇器裝置的電氣響應是介於下列範圍中至少一者:自約1mV/decade至約60mV/decade;或自約0.15decades/mV至約1decade/mV。
  13. 如申請專利範圍第8項所述之選擇器裝置,其中,該選擇器材料具有厚度選自約0.5nm至約50nm的範圍。
  14. 如申請專利範圍第8項所述之選擇器裝置,其中,至少一者為:該第一金屬材料是選自由惰性金屬、至少部份包括惰性金屬的金屬合金、快電場增強擴散材料、鎳(Ni)、銅(Cu)、銀(Ag)、鈷(Co)、鐵(Fe)、鎢(W)、鋁(Al)、鈦(Ti)、氮化鈦(TiN)、氮化鉭(TaN)、氮化鎢(WN)、以及前述材料的適當合金所組成的群組;該選擇器材料的層是選自由絕緣體、非計量比氧 化物、硫族化物、包括鍺(Ge)、銻(Sb)、硫(S)和碲(Te)的固態電解質、以及金屬摻雜材料所組成的群組。
  15. 如申請專利範圍第8項所述之選擇器裝置,其中,該第一層狀結構或該第二層狀結構包括:第一電極,包括金屬材料;以及第一離子導體,置於該選擇器材料的層和該金屬材料之間。
  16. 一種操作交叉記憶體陣列的方法,該交叉記憶體陣列包括多個兩端點記憶體裝置和多個選擇器裝置,其中,該多個兩端點記憶體裝置的各者來自該多個選擇器裝置的一個選擇器裝置關聯串聯,其中,各選擇器裝置關聯第一電氣特性,以響應小於閾電壓的施加電壓,並且關聯第二電氣特性,以響應大於或等於該閾電壓的施加電壓,該方法包括:施加大於該閾電壓的第一電壓至第一記憶體結構,該第一記憶體結構包括與第一選擇器裝置串聯的第一兩端點記憶體裝置;施加該第一電壓的同時,施加小於該閾電壓的第二電壓至第二記憶體結構,該第二記憶體結構包括與第二選擇器裝置串聯的第二兩端點記憶體裝置;以及決定電流,以響應施加該第一電壓同時施加該第二電壓,其中:該電流包括關聯該第一選擇器裝置的第一電流和關聯該第二選擇器裝置的第二電流;以及 該第一電流和該第二電流的電流比落於選自由約10,000至約100,000、約100,000至約1,000,000、以及約1,000,000至約10,000,000的比例範圍所組成的一群組範圍的一比例範圍。
  17. 如申請專利範圍第16項所述之方法,其中,該第一兩端點記憶體裝置和該第二兩端點記憶體裝置皆為程式化狀態。
  18. 如申請專利範圍第16項所述之方法,其中:該多個選擇器裝置中的一個選擇器裝置包括第一主動金屬層、第二主動金屬層、以及置於該第一主動金屬層和該第二主動金屬層之間的選擇層;以及施加該第二電壓同時施加該第一電壓,更包括:施加大於該閾電壓的該第一電壓於該第一選擇器裝置,從而導致在該第一選擇器裝置的該選擇層中形成第一主動金屬層的金屬化離子粒子的導絲,以及施加小於該閾電壓的該第二電壓於該第二選擇器裝置,其中,第一主動金屬層的金屬化離子粒子的導絲不會形成於該第二選擇器裝置的選擇層中。
  19. 如申請專利範圍第16項所述之方法,其中,至少一者為:該閾電壓介於由約0.1伏特至約2伏特和約2伏特至約4伏特的範圍所組成的群組中; 該第二電流選自由約1×10-8安培至約1×10-14安培的範圍中;以及該第一電流選自由約1×10-3安培至約1×10-6安培的範圍中。
  20. 如申請專利範圍第16項所述之方法,其中:施加該第二電壓同時施加該第一電壓更包括,施加小於該閾電壓的該第二電壓至與第二多個選擇器裝置串聯的第二多個兩端點記憶體裝置,該第二多個兩端點記憶體裝置相異於該多個兩端點記憶體裝置,而該第二多個選擇器裝置相異於該多個選擇器裝置;以及該第二多個兩端點記憶體裝置中的兩端點記憶體裝置的數量是選自約1,000至約250,000的範圍中。
TW104107381A 2014-03-11 2015-03-09 用於雙端點記憶體的選擇器裝置 TWI597725B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461951454P 2014-03-11 2014-03-11
US201462021660P 2014-07-07 2014-07-07
US14/588,185 US9425237B2 (en) 2014-03-11 2014-12-31 Selector device for two-terminal memory

Publications (2)

Publication Number Publication Date
TW201546806A TW201546806A (zh) 2015-12-16
TWI597725B true TWI597725B (zh) 2017-09-01

Family

ID=54069787

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104107381A TWI597725B (zh) 2014-03-11 2015-03-09 用於雙端點記憶體的選擇器裝置

Country Status (7)

Country Link
US (6) US9425237B2 (zh)
EP (1) EP3117436B1 (zh)
JP (1) JP6714512B2 (zh)
KR (1) KR102388557B1 (zh)
CN (1) CN104916776B (zh)
TW (1) TWI597725B (zh)
WO (1) WO2015138119A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943632B2 (en) 2019-03-18 2021-03-09 Toshiba Memory Corporation Magnetic storage device
TWI817327B (zh) * 2021-01-21 2023-10-01 台灣積體電路製造股份有限公司 記憶體陣列、記憶體裝置及其形成方法

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6992503B2 (en) 2002-07-08 2006-01-31 Viciciv Technology Programmable devices with convertibility to customizable devices
US7112994B2 (en) 2002-07-08 2006-09-26 Viciciv Technology Three dimensional integrated circuits
US8643162B2 (en) 2007-11-19 2014-02-04 Raminda Udaya Madurawe Pads and pin-outs in three dimensional integrated circuits
US7030651B2 (en) 2003-12-04 2006-04-18 Viciciv Technology Programmable structured arrays
US9595670B1 (en) * 2014-07-21 2017-03-14 Crossbar, Inc. Resistive random access memory (RRAM) cell and method for forming the RRAM cell
WO2016018240A1 (en) * 2014-07-29 2016-02-04 Hewlett-Packard Development Company, L.P. Multiphase selectors
US20160043135A1 (en) * 2014-08-05 2016-02-11 Yoshinori Kumura Semiconductor memory device and manufacturing method thereof
JP6386349B2 (ja) * 2014-11-19 2018-09-05 東芝メモリ株式会社 不揮発性記憶装置
US9419058B1 (en) * 2015-02-05 2016-08-16 Sandisk Technologies Llc Memory device with comb-shaped electrode having a plurality of electrode fingers and method of making thereof
US9583187B2 (en) * 2015-03-28 2017-02-28 Intel Corporation Multistage set procedure for phase change memory
US20180075904A1 (en) * 2015-04-27 2018-03-15 Hewlett Packard Enterprise Development Lp Memristive crossbar array having multi-selector memristor cells
US9577190B2 (en) * 2015-06-27 2017-02-21 Intel Corporation Thermal management structure for low-power nonvolatile filamentary switch
TWI625874B (zh) * 2015-11-05 2018-06-01 華邦電子股份有限公司 導電橋接式隨機存取記憶體
US20170141306A1 (en) * 2015-11-17 2017-05-18 Chang Gung University Memory structure
KR102444945B1 (ko) * 2015-12-09 2022-09-21 에스케이하이닉스 주식회사 스위칭 소자, 및 스위칭 소자를 선택 소자로서 구비하는 저항 변화 메모리 장치
WO2017106317A1 (en) 2015-12-14 2017-06-22 Shih-Yuan Wang Resistive random-access memory with protected switching layer
WO2017111776A1 (en) * 2015-12-23 2017-06-29 Intel Corporation Non-volatile memory devices including integrated ballast resistor
US10008423B1 (en) * 2015-12-28 2018-06-26 Apple Inc. Transistor work function adjustment by laser stimulation
US9754665B2 (en) 2016-01-29 2017-09-05 Sandisk Technologies Llc Vacancy-modulated conductive oxide resistive RAM device including an interfacial oxygen source layer
US9859337B2 (en) 2016-02-26 2018-01-02 Sandisk Technologies Llc Three-dimensional memory device with vertical semiconductor bit lines located in recesses and method of making thereof
CN107204397B (zh) * 2016-03-18 2019-06-21 中国科学院微电子研究所 用于双极性阻变存储器的选择器件及其制备方法
WO2017171820A1 (en) * 2016-03-31 2017-10-05 Intel Corporation Multilayer selector device with low leakage current
US10840431B2 (en) 2016-03-31 2020-11-17 Intel Corporation Multilayer selector device with low holding voltage
US9953697B2 (en) 2016-04-25 2018-04-24 Sandisk Technologies Llc Volatile memory device employing a resistive memory element
US11538857B2 (en) * 2016-05-18 2022-12-27 Avalanche Technology, Inc. Bidirectional selector device for memory applications
US11848039B2 (en) * 2016-05-18 2023-12-19 Avalanche Technology, Inc. Cross-point MRAM including self-compliance selector
US10224367B2 (en) * 2016-05-18 2019-03-05 Avalanche Technology, Inc. Selector device incorporating conductive clusters for memory applications
US10593727B2 (en) * 2016-05-18 2020-03-17 Avalanche Technology, Inc. Magnetic memory cell including two-terminal selector device
US9613689B1 (en) 2016-07-08 2017-04-04 Sandisk Technologies Llc Self-selecting local bit line for a three-dimensional memory array
JP2018006696A (ja) * 2016-07-08 2018-01-11 東芝メモリ株式会社 記憶装置
KR102571566B1 (ko) * 2016-07-15 2023-08-29 삼성전자주식회사 반도체 메모리 장치
US9748266B1 (en) 2016-07-20 2017-08-29 Sandisk Technologies Llc Three-dimensional memory device with select transistor having charge trapping gate dielectric layer and methods of making and operating thereof
US9767901B1 (en) 2016-08-24 2017-09-19 Hewlett Packard Enterprise Development Lp Circuits having selector devices with different I-V responses
FR3056011B1 (fr) * 2016-09-09 2019-05-24 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif de selection d’une cellule memoire
SG11201900437YA (en) * 2016-09-29 2019-02-27 Univ Nanyang Tech Memory device, method of forming the same, method for controlling the same and memory array
US9806256B1 (en) 2016-10-21 2017-10-31 Sandisk Technologies Llc Resistive memory device having sidewall spacer electrode and method of making thereof
WO2018125238A1 (en) * 2016-12-30 2018-07-05 Intel Corporation Systems, methods, and apparatus for semiconductor memory with porous active layer
US10163982B2 (en) * 2017-03-30 2018-12-25 Intel Corporation Multi-deck memory device with inverted deck
JP6870476B2 (ja) * 2017-05-26 2021-05-12 富士通株式会社 半導体装置及び半導体装置の製造方法
US10340449B2 (en) 2017-06-01 2019-07-02 Sandisk Technologies Llc Resistive memory device containing carbon barrier and method of making thereof
KR20180136304A (ko) * 2017-06-14 2018-12-24 포항공과대학교 산학협력단 문턱 스위칭 소자
US10157653B1 (en) 2017-06-19 2018-12-18 Sandisk Technologies Llc Vertical selector for three-dimensional memory with planar memory cells
US10256272B2 (en) 2017-06-26 2019-04-09 Sandisk Technologies Llc Resistive memory device containing etch stop structures for vertical bit line formation and method of making thereof
WO2019005019A1 (en) * 2017-06-27 2019-01-03 Intel Corporation FERROELECTRIC MEMORY MATRIX WITH CROSS POINTS
JP6672224B2 (ja) * 2017-07-12 2020-03-25 株式会社東芝 磁気メモリ
US10354710B2 (en) * 2017-07-24 2019-07-16 Sandisk Technologies Llc Magnetoelectric random access memory array and methods of operating the same
WO2019022732A1 (en) * 2017-07-26 2019-01-31 Intel Corporation BILOUCHE SELECTOR FOR LOW VOLTAGE BIPOLAR MEMORY DEVICES
WO2019055003A1 (en) * 2017-09-13 2019-03-21 Intel Corporation SELECTOR ELEMENT WITH BALLAST FOR LOW VOLTAGE BIPOLAR MEMORY DEVICES
WO2019066828A1 (en) 2017-09-27 2019-04-04 Intel Corporation DOUBLE ELEMENT SELECTOR OF LOW VOLTAGE BIPOLAR MEMORY DEVICES
WO2019066905A1 (en) * 2017-09-29 2019-04-04 Intel Corporation VERTICAL FLASH MEMORY CELL WITH FAST READ SELECTOR
US11152569B2 (en) * 2017-11-30 2021-10-19 Taiwan Semiconductor Manufacturing Co., Ltd. PCRAM structure with selector device
WO2019132995A1 (en) * 2017-12-29 2019-07-04 Intel Corporation Selectors for memory devices
US10957410B1 (en) * 2018-03-02 2021-03-23 Crossbar, Inc. Methods and apparatus for facilitated program and erase of two-terminal memory devices
JP2019160981A (ja) 2018-03-13 2019-09-19 東芝メモリ株式会社 磁気記憶装置
JP2019169573A (ja) 2018-03-23 2019-10-03 東芝メモリ株式会社 記憶装置
WO2019187032A1 (ja) * 2018-03-30 2019-10-03 富士通株式会社 抵抗変化素子及びその製造方法、記憶装置
US10497867B1 (en) 2018-07-02 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Multi-layer structure to increase crystalline temperature of a selector device
US20200013951A1 (en) * 2018-07-06 2020-01-09 Taiwan Semiconductor Manufacturing Co., Ltd. Pcram structure
KR102571555B1 (ko) * 2018-08-28 2023-08-29 삼성전자주식회사 가변 저항 메모리 소자
US10658427B2 (en) * 2018-10-18 2020-05-19 Micron Technology, Inc. Memory for embedded applications
US10971684B2 (en) 2018-10-30 2021-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Intercalated metal/dielectric structure for nonvolatile memory devices
CN109545964B (zh) * 2018-12-14 2021-03-19 中国科学院上海微***与信息技术研究所 一种基于氧化物离子注入的选通材料、选通器单元及其制备方法
US11164627B2 (en) 2019-01-25 2021-11-02 Micron Technology, Inc. Polarity-written cell architectures for a memory device
US10916698B2 (en) 2019-01-29 2021-02-09 Toshiba Memory Corporation Semiconductor storage device including hexagonal insulating layer
US10796729B2 (en) 2019-02-05 2020-10-06 Micron Technology, Inc. Dynamic allocation of a capacitive component in a memory device
US11194726B2 (en) 2019-02-25 2021-12-07 Micron Technology, Inc. Stacked memory dice for combined access operations
JP2020144959A (ja) * 2019-03-06 2020-09-10 キオクシア株式会社 半導体記憶装置
JP2020150082A (ja) 2019-03-12 2020-09-17 キオクシア株式会社 記憶装置
CN110148667B (zh) * 2019-04-12 2020-10-09 华中科技大学 一种选通管器件的预处理方法
US20200342926A1 (en) * 2019-04-28 2020-10-29 Sandisk Technologies Llc One selector one resistor mram crosspoint memory array fabrication methods
US11075338B2 (en) 2019-05-24 2021-07-27 International Business Machines Corporation Resistive memory cell structure
US11211426B2 (en) * 2019-10-01 2021-12-28 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel junction selector MRAM
JP2021129071A (ja) 2020-02-17 2021-09-02 キオクシア株式会社 半導体記憶装置および半導体記憶装置の製造方法
KR20210128661A (ko) 2020-04-17 2021-10-27 삼성전자주식회사 반도체 장치
US11664848B2 (en) 2020-05-14 2023-05-30 International Business Machines Corporation Adjustable attenuation wrap plug
DE102021106752B4 (de) * 2020-05-29 2023-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Speichervorichtung, integrierte schaltungsvorrichtung und verfahren
US11222844B2 (en) * 2020-06-11 2022-01-11 Globalfoundries U.S. Inc. Via structures for use in semiconductor devices
US11653504B2 (en) * 2020-07-02 2023-05-16 Samsung Electronics Co., Ltd. Semiconductor memory device with selection transistors with substrate penetrating gates
US11404638B2 (en) * 2020-07-28 2022-08-02 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-doped data storage structure configured to improve resistive memory cell performance
WO2022056760A1 (en) * 2020-09-17 2022-03-24 Yangtze Advanced Memory Industrial Innovation Center Co., Ltd Phase-change memory devices having metal filament threshold switching selector and methods for forming the same
JP2022049883A (ja) 2020-09-17 2022-03-30 キオクシア株式会社 磁気記憶装置
US11411125B2 (en) 2020-10-06 2022-08-09 Applied Materials, Inc. Ferroelectric-assisted tunneling selector device
US11557354B2 (en) * 2021-02-03 2023-01-17 Macronix International Co., Ltd. Flash memory and flash memory cell thereof
US11437083B2 (en) 2021-02-05 2022-09-06 International Business Machines Corporation Two-bit magnetoresistive random-access memory device architecture
KR102567759B1 (ko) * 2021-07-12 2023-08-17 한양대학교 산학협력단 선택 소자 및 이를 이용한 메모리 소자
US11793001B2 (en) 2021-08-13 2023-10-17 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory
US12020736B2 (en) 2021-08-13 2024-06-25 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory array
US11915734B2 (en) 2021-08-13 2024-02-27 International Business Machines Corporation Spin-orbit-torque magnetoresistive random-access memory with integrated diode
CN115249765A (zh) * 2022-08-17 2022-10-28 长江先进存储产业创新中心有限责任公司 相变存储器及其制造方法

Family Cites Families (145)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123645A (ja) 1987-11-05 1989-05-16 Fuji Electric Co Ltd 電気集じん装置
JP2000058681A (ja) 1998-08-05 2000-02-25 Matsushita Electron Corp 不揮発性半導体メモリ装置及びその駆動方法
JP4212079B2 (ja) 2000-01-11 2009-01-21 ローム株式会社 表示装置およびその駆動方法
US8218350B2 (en) 2000-02-11 2012-07-10 Axon Technologies Corporation Programmable metallization cell structure including an integrated diode, device including the structure, and method of forming same
JP2001249324A (ja) 2000-03-03 2001-09-14 Hitachi Ltd 液晶表示装置
US6855975B2 (en) 2002-04-10 2005-02-15 Micron Technology, Inc. Thin film diode integrated with chalcogenide memory cell
TWI233204B (en) 2002-07-26 2005-05-21 Infineon Technologies Ag Nonvolatile memory element and associated production methods and memory element arrangements
US6870755B2 (en) 2002-08-02 2005-03-22 Unity Semiconductor Corporation Re-writable memory with non-linear memory element
US6795338B2 (en) 2002-12-13 2004-09-21 Intel Corporation Memory having access devices using phase change material such as chalcogenide
US7589343B2 (en) * 2002-12-13 2009-09-15 Intel Corporation Memory and access device and method therefor
JP2004319587A (ja) 2003-04-11 2004-11-11 Sharp Corp メモリセル、メモリ装置及びメモリセル製造方法
DE10320239B4 (de) 2003-05-07 2006-06-01 Infineon Technologies Ag DRAM-Speicherzelle und Verfahren zum Herstellen einer solchen DRAM-Speicherzelle
US7274064B2 (en) 2003-06-09 2007-09-25 Nanatero, Inc. Non-volatile electromechanical field effect devices and circuits using same and methods of forming same
US6849891B1 (en) 2003-12-08 2005-02-01 Sharp Laboratories Of America, Inc. RRAM memory cell electrodes
US7176530B1 (en) 2004-03-17 2007-02-13 National Semiconductor Corporation Configuration and fabrication of semiconductor structure having n-channel channel-junction field-effect transistor
US7339818B2 (en) 2004-06-04 2008-03-04 Micron Technology, Inc. Spintronic devices with integrated transistors
US6990017B1 (en) * 2004-06-30 2006-01-24 Intel Corporation Accessing phase change memories
US7105408B2 (en) 2004-09-24 2006-09-12 Intel Corporation Phase change memory with a select device having a breakdown layer
US7307268B2 (en) 2005-01-19 2007-12-11 Sandisk Corporation Structure and method for biasing phase change memory array for reliable writing
US7154774B2 (en) 2005-03-30 2006-12-26 Ovonyx, Inc. Detecting switching of access elements of phase change memory cells
US7280390B2 (en) 2005-04-14 2007-10-09 Ovonyx, Inc. Reading phase change memories without triggering reset cell threshold devices
US7382028B2 (en) 2005-04-15 2008-06-03 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming silicide and semiconductor device formed thereby
TWI255018B (en) 2005-06-15 2006-05-11 Winbond Electronics Corp Method of fabricating a non-volatile memory
US7277313B2 (en) 2005-08-31 2007-10-02 Micron Technology, Inc. Resistance variable memory element with threshold device and method of forming the same
KR100970383B1 (ko) 2005-10-19 2010-07-15 후지쯔 가부시끼가이샤 불휘발성 반도체 기억 장치의 기입 방법
US7187577B1 (en) 2005-11-23 2007-03-06 Grandis, Inc. Method and system for providing current balanced writing for memory cells and magnetic devices
US7599209B2 (en) 2005-12-23 2009-10-06 Infineon Technologies Ag Memory circuit including a resistive memory element and method for operating such a memory circuit
KR100684908B1 (ko) 2006-01-09 2007-02-22 삼성전자주식회사 다수 저항 상태를 갖는 저항 메모리 요소, 저항 메모리 셀및 그 동작 방법 그리고 상기 저항 메모리 요소를 적용한데이터 처리 시스템
US7829875B2 (en) 2006-03-31 2010-11-09 Sandisk 3D Llc Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
US8014199B2 (en) 2006-05-22 2011-09-06 Spansion Llc Memory system with switch element
US7824943B2 (en) 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
JP2008021750A (ja) 2006-07-11 2008-01-31 Matsushita Electric Ind Co Ltd 抵抗変化素子およびその製造方法、ならびにそれを用いた抵抗変化型メモリ
US7932548B2 (en) 2006-07-14 2011-04-26 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
JP4869006B2 (ja) 2006-09-27 2012-02-01 株式会社東芝 半導体記憶装置の制御方法
JP4560025B2 (ja) 2006-09-29 2010-10-13 株式会社東芝 磁気ランダムアクセスメモリ及びその製造方法
CN101501850B (zh) 2006-10-16 2011-01-05 松下电器产业株式会社 非易失性存储元件及其制造方法
US10134985B2 (en) 2006-10-20 2018-11-20 The Regents Of The University Of Michigan Non-volatile solid state resistive switching devices
JP2008160031A (ja) 2006-12-26 2008-07-10 Sony Corp 記憶素子及びメモリ
JP4202411B2 (ja) 2006-12-28 2008-12-24 パナソニック株式会社 抵抗変化型素子および抵抗変化型記憶装置
JP4221031B2 (ja) * 2007-02-09 2009-02-12 シャープ株式会社 不揮発性半導体記憶装置及びその書き換え方法
US7755941B2 (en) 2007-02-23 2010-07-13 Panasonic Corporation Nonvolatile semiconductor memory device
US7382647B1 (en) * 2007-02-27 2008-06-03 International Business Machines Corporation Rectifying element for a crosspoint based memory array architecture
WO2008107941A1 (ja) 2007-03-01 2008-09-12 Fujitsu Limited 半導体装置及びその製造方法
US7704788B2 (en) 2007-04-06 2010-04-27 Samsung Electronics Co., Ltd. Methods of fabricating multi-bit phase-change memory devices and devices formed thereby
US7579612B2 (en) 2007-04-25 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive memory device having enhanced resist ratio and method of manufacturing same
JP2008277543A (ja) 2007-04-27 2008-11-13 Toshiba Corp 不揮発性半導体記憶装置
US7577024B2 (en) 2007-05-25 2009-08-18 Intel Corporation Streaming mode programming in phase change memories
US20080301497A1 (en) 2007-06-04 2008-12-04 Silicon Motion, Inc. Testing Apparatus, System, and Method for Testing at Least One Device with a Connection Interface
JP5227544B2 (ja) 2007-07-12 2013-07-03 株式会社日立製作所 半導体装置
US7995371B2 (en) * 2007-07-26 2011-08-09 Unity Semiconductor Corporation Threshold device for a memory array
JP2009099206A (ja) 2007-10-17 2009-05-07 Toshiba Corp 抵抗変化メモリ装置
JP2009117003A (ja) 2007-11-09 2009-05-28 Toshiba Corp 不揮発性メモリ装置のデータ読み出し方法
US7786464B2 (en) 2007-11-20 2010-08-31 Infineon Technologies Ag Integrated circuit having dielectric layer including nanocrystals
US7897953B2 (en) 2008-01-16 2011-03-01 Micron Technology, Inc. Multi-level programmable PCRAM memory
US7961506B2 (en) 2008-02-05 2011-06-14 Micron Technology, Inc. Multiple memory cells with rectifying device
US7961507B2 (en) 2008-03-11 2011-06-14 Micron Technology, Inc. Non-volatile memory with resistive access component
US7830698B2 (en) 2008-04-11 2010-11-09 Sandisk 3D Llc Multilevel nonvolatile memory device containing a carbon storage material and methods of making and using same
JP2009267185A (ja) 2008-04-28 2009-11-12 Sharp Corp 不揮発性半導体記憶装置
JP2010003916A (ja) 2008-06-20 2010-01-07 Elpida Memory Inc 半導体装置及びその製造方法
JP2010009669A (ja) 2008-06-26 2010-01-14 Toshiba Corp 半導体記憶装置
JP5459999B2 (ja) * 2008-08-08 2014-04-02 株式会社東芝 不揮発性半導体記憶素子、不揮発性半導体装置及び不揮発性半導体素子の動作方法
JP2010087007A (ja) 2008-09-29 2010-04-15 Elpida Memory Inc 相変化メモリ装置及びその製造方法
US7933136B2 (en) 2008-11-07 2011-04-26 Seagate Technology Llc Non-volatile memory cell with multiple resistive sense elements sharing a common switching device
JP2010118128A (ja) 2008-11-14 2010-05-27 Toshiba Corp 強誘電体メモリ
US8067815B2 (en) 2008-12-11 2011-11-29 Macronix International Co., Lt.d. Aluminum copper oxide based memory devices and methods for manufacture
JP2010146665A (ja) 2008-12-19 2010-07-01 Toshiba Corp 抵抗変化型不揮発性半導体メモリ
US8455855B2 (en) 2009-01-12 2013-06-04 Micron Technology, Inc. Memory cell having dielectric memory element
JP5367400B2 (ja) 2009-02-12 2013-12-11 株式会社東芝 半導体記憶装置、及びその製造方法
US7978510B2 (en) * 2009-03-01 2011-07-12 International Businesss Machines Corporation Stochastic synapse memory element with spike-timing dependent plasticity (STDP)
WO2010104918A1 (en) 2009-03-10 2010-09-16 Contour Semiconductor, Inc. Three-dimensional memory array comprising vertical switches having three terminals
JP4846816B2 (ja) 2009-03-19 2011-12-28 株式会社東芝 抵抗変化型メモリ
US8420478B2 (en) 2009-03-31 2013-04-16 Intermolecular, Inc. Controlled localized defect paths for resistive memories
KR20100111165A (ko) 2009-04-06 2010-10-14 삼성전자주식회사 3차원 메모리 소자
JP2011014640A (ja) * 2009-06-30 2011-01-20 Toshiba Corp 不揮発性半導体記憶装置
CN102484129B (zh) 2009-07-10 2015-07-15 惠普发展公司,有限责任合伙企业 具有本征整流器的忆阻结
JP2011023645A (ja) 2009-07-17 2011-02-03 Sharp Corp 不揮発性可変抵抗素子を用いた半導体記憶装置
KR20110020533A (ko) 2009-08-24 2011-03-03 삼성전자주식회사 재기입가능한 3차원 반도체 메모리 장치의 제조 방법
US8274130B2 (en) 2009-10-20 2012-09-25 Sandisk 3D Llc Punch-through diode steering element
US8072795B1 (en) 2009-10-28 2011-12-06 Intermolecular, Inc. Biploar resistive-switching memory with a single diode per memory cell
JP2013510438A (ja) * 2009-11-06 2013-03-21 ラムバス・インコーポレーテッド 三次元メモリアレイ積層構造体
WO2011062067A1 (en) 2009-11-20 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8279665B2 (en) * 2009-11-23 2012-10-02 International Business Machines Corporation Memory cell and select element
JP5558090B2 (ja) 2009-12-16 2014-07-23 株式会社東芝 抵抗変化型メモリセルアレイ
US8045364B2 (en) 2009-12-18 2011-10-25 Unity Semiconductor Corporation Non-volatile memory device ion barrier
US8415731B2 (en) 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
WO2011097592A1 (en) * 2010-02-07 2011-08-11 Zeno Semiconductor , Inc. Semiconductor memory device having electrically floating body transistor, and having both volatile and non-volatile functionality and method
US9536970B2 (en) 2010-03-26 2017-01-03 Samsung Electronics Co., Ltd. Three-dimensional semiconductor memory devices and methods of fabricating the same
KR101883236B1 (ko) 2010-06-11 2018-08-01 크로스바, 인크. 메모리 디바이스를 위한 필러 구조 및 방법
US8411485B2 (en) 2010-06-14 2013-04-02 Crossbar, Inc. Non-volatile variable capacitive device including resistive memory cell
US8737111B2 (en) 2010-06-18 2014-05-27 Sandisk 3D Llc Memory cell with resistance-switching layers
US8520425B2 (en) 2010-06-18 2013-08-27 Sandisk 3D Llc Resistive random access memory with low current operation
US8351241B2 (en) 2010-06-24 2013-01-08 The Regents Of The University Of Michigan Rectification element and method for resistive switching for non volatile memory device
US10128261B2 (en) 2010-06-30 2018-11-13 Sandisk Technologies Llc Cobalt-containing conductive layers for control gate electrodes in a memory structure
KR20120003351A (ko) 2010-07-02 2012-01-10 삼성전자주식회사 3차원 비휘발성 메모리 장치 및 그 동작방법
US20120007035A1 (en) 2010-07-12 2012-01-12 Crossbar, Inc. Intrinsic Programming Current Control for a RRAM
US8467227B1 (en) 2010-11-04 2013-06-18 Crossbar, Inc. Hetero resistive switching material layer in RRAM device and method
JP5566217B2 (ja) * 2010-07-30 2014-08-06 株式会社東芝 不揮発性記憶装置
JP5671418B2 (ja) 2010-08-06 2015-02-18 株式会社半導体エネルギー研究所 半導体装置の駆動方法
US9251893B2 (en) 2010-08-20 2016-02-02 Shine C. Chung Multiple-bit programmable resistive memory using diode as program selector
KR101755234B1 (ko) 2010-08-26 2017-07-07 삼성전자 주식회사 비휘발성 메모리 장치
US8634228B2 (en) 2010-09-02 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
TWI431762B (zh) 2010-09-16 2014-03-21 Univ Nat Sun Yat Sen 電阻式記憶體元件及其製作方法
US8767441B2 (en) 2010-11-04 2014-07-01 Crossbar, Inc. Switching device having a non-linear element
US8502185B2 (en) 2011-05-31 2013-08-06 Crossbar, Inc. Switching device having a non-linear element
KR101811308B1 (ko) 2010-11-10 2017-12-27 삼성전자주식회사 저항 변화 체를 갖는 비 휘발성 메모리 소자 및 그 제조방법
US8891319B2 (en) 2010-11-30 2014-11-18 Micron Technology, Inc. Verify or read pulse for phase change memory and switch
JP2012134439A (ja) 2010-11-30 2012-07-12 Elpida Memory Inc 半導体装置及びその製造方法
CN103348464B (zh) 2011-01-26 2016-01-13 株式会社半导体能源研究所 半导体装置及其制造方法
JP2012174766A (ja) 2011-02-18 2012-09-10 Toshiba Corp 不揮発性抵抗変化素子
JP5584155B2 (ja) 2011-03-16 2014-09-03 株式会社東芝 半導体メモリ
US8320160B2 (en) 2011-03-18 2012-11-27 Crossbar, Inc. NAND architecture having a resistive memory cell connected to a control gate of a field-effect transistor
FR2973554B1 (fr) 2011-04-04 2013-04-12 Commissariat Energie Atomique "dispositif electronique de type selecteur"
RU2468471C1 (ru) 2011-04-07 2012-11-27 Государственное образовательное учреждение высшего профессионального образования "Петрозаводский государственный университет" Способ получения энергонезависимого элемента памяти
WO2012178114A2 (en) 2011-06-24 2012-12-27 Rambus Inc. Resistance memory cell
US8598562B2 (en) 2011-07-01 2013-12-03 Micron Technology, Inc. Memory cell structures
JP5548170B2 (ja) 2011-08-09 2014-07-16 株式会社東芝 抵抗変化メモリおよびその製造方法
WO2013052321A2 (en) 2011-10-03 2013-04-11 Invensas Corporation Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
JP5266429B1 (ja) * 2011-12-02 2013-08-21 パナソニック株式会社 クロスポイント型抵抗変化不揮発性記憶装置
US8853099B2 (en) 2011-12-16 2014-10-07 Intermolecular, Inc. Nonvolatile resistive memory element with a metal nitride containing switching layer
KR101338360B1 (ko) * 2012-04-04 2013-12-06 광주과학기술원 선택 소자, 이를 포함하는 비휘발성 메모리 셀 및 이의 제조방법
JP5996324B2 (ja) 2012-08-07 2016-09-21 シャープ株式会社 不揮発性半導体記憶装置とその製造方法
US8987796B2 (en) 2012-08-17 2015-03-24 Ps4 Luxco S.A.R.L. Semiconductor device having semiconductor pillar
TWI489461B (zh) 2012-09-04 2015-06-21 Ind Tech Res Inst 電阻式記憶體結構、其操作方法及製作方法
KR101357847B1 (ko) 2012-09-07 2014-02-05 창원대학교 산학협력단 싱글 폴리 이이피롬 메모리
JP2014075424A (ja) 2012-10-03 2014-04-24 Toshiba Corp 不揮発性可変抵抗素子、制御装置および記憶装置
US8969843B2 (en) * 2013-02-21 2015-03-03 Kabushiki Kaisha Toshiba Memory device
US9230987B2 (en) 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
US9698153B2 (en) 2013-03-12 2017-07-04 Sandisk Technologies Llc Vertical NAND and method of making thereof using sequential stack etching and self-aligned landing pad
US9099645B2 (en) * 2013-03-22 2015-08-04 Kabushiki Kaisha Toshiba Resistance random access memory device
US9128119B2 (en) 2013-03-29 2015-09-08 Hamilton Sundstrand Corporation Electrical circuit testing
CN103280526B (zh) 2013-05-29 2015-03-11 北京大学 一种忆阻层及忆阻器
CN105474397B (zh) 2013-08-19 2019-06-18 出光兴产株式会社 氧化物半导体基板及肖特基势垒二极管
US9312005B2 (en) * 2013-09-10 2016-04-12 Micron Technology, Inc. Accessing memory cells in parallel in a cross-point array
US8995169B1 (en) 2013-09-12 2015-03-31 Sandisk 3D Llc Method of operating FET low current 3D Re-RAM
JP2015056642A (ja) 2013-09-13 2015-03-23 株式会社東芝 半導体記憶装置
US9023719B2 (en) 2013-09-17 2015-05-05 Sandisk Technologies Inc. High aspect ratio memory hole channel contact formation
EP2887396B1 (en) * 2013-12-20 2017-03-08 Imec Three-dimensional resistive memory array
US9275730B2 (en) * 2014-04-11 2016-03-01 Micron Technology, Inc. Apparatuses and methods of reading memory cells based on response to a test pulse
US9460788B2 (en) 2014-07-09 2016-10-04 Crossbar, Inc. Non-volatile memory cell utilizing volatile switching two terminal device and a MOS transistor
US9698201B2 (en) 2014-07-09 2017-07-04 Crossbar, Inc. High density selector-based non volatile memory cell and fabrication
US9685483B2 (en) 2014-07-09 2017-06-20 Crossbar, Inc. Selector-based non-volatile cell fabrication utilizing IC-foundry compatible process
US9425390B2 (en) * 2014-10-16 2016-08-23 Micron Technology, Inc. Select device for memory cell applications
US9356074B1 (en) * 2014-11-17 2016-05-31 Sandisk Technologies Inc. Memory array having divided apart bit lines and partially divided bit line selector switches
US20170104031A1 (en) * 2015-10-07 2017-04-13 Intermolecular, Inc. Selector Elements
US10090840B1 (en) 2017-06-29 2018-10-02 Intel Corporation Integrated circuits with programmable non-volatile resistive switch elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10943632B2 (en) 2019-03-18 2021-03-09 Toshiba Memory Corporation Magnetic storage device
TWI817327B (zh) * 2021-01-21 2023-10-01 台灣積體電路製造股份有限公司 記憶體陣列、記憶體裝置及其形成方法

Also Published As

Publication number Publication date
EP3117436A1 (en) 2017-01-18
US10121540B1 (en) 2018-11-06
US9847130B1 (en) 2017-12-19
US20190122732A1 (en) 2019-04-25
KR102388557B1 (ko) 2022-04-20
US20150263069A1 (en) 2015-09-17
EP3117436A4 (en) 2017-11-15
WO2015138119A1 (en) 2015-09-17
KR20160132444A (ko) 2016-11-18
JP6714512B2 (ja) 2020-06-24
WO2015138119A4 (en) 2015-11-05
JP2017516293A (ja) 2017-06-15
US20210280246A1 (en) 2021-09-09
US10964388B2 (en) 2021-03-30
EP3117436B1 (en) 2021-01-06
TW201546806A (zh) 2015-12-16
US9425237B2 (en) 2016-08-23
CN104916776A (zh) 2015-09-16
US9761635B1 (en) 2017-09-12
CN104916776B (zh) 2017-10-27
US11776626B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
TWI597725B (zh) 用於雙端點記憶體的選擇器裝置
US10658033B2 (en) Non-volatile memory cell utilizing volatile switching two terminal device and a MOS transistor
US9768234B2 (en) Resistive memory architecture and devices
US10608180B2 (en) Resistive memory cell with intrinsic current control
US9397291B1 (en) RRAM with dual mode operation
US20230157186A1 (en) Non-stoichiometric resistive switching memory device and fabrication methods
US10134984B1 (en) Two-terminal memory electrode comprising a non-continuous contact surface
US9355717B1 (en) Memory array with embedded source line driver and improved voltage regularity
US11387409B1 (en) Formation of structurally robust nanoscale Ag-based conductive structure
US10211397B1 (en) Threshold voltage tuning for a volatile selection device
US9373410B1 (en) MLC OTP operation in A-Si RRAM
US9502102B1 (en) MLC OTP operation with diode behavior in ZnO RRAM devices for 3D memory
CN107403866B (zh) 非化学计量电阻式切换内存装置和制造方法