TWI459500B - Electrostatic chuck and method of manufacturing the same - Google Patents

Electrostatic chuck and method of manufacturing the same Download PDF

Info

Publication number
TWI459500B
TWI459500B TW099127625A TW99127625A TWI459500B TW I459500 B TWI459500 B TW I459500B TW 099127625 A TW099127625 A TW 099127625A TW 99127625 A TW99127625 A TW 99127625A TW I459500 B TWI459500 B TW I459500B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
electrostatic chuck
dielectric
insulating layer
Prior art date
Application number
TW099127625A
Other languages
Chinese (zh)
Other versions
TW201120988A (en
Inventor
Jin-Il Sung
Kyung-Hwan Ye
Chi-Won Oh
Chung-Ryoul Yu
Original Assignee
Komico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komico Ltd filed Critical Komico Ltd
Publication of TW201120988A publication Critical patent/TW201120988A/en
Application granted granted Critical
Publication of TWI459500B publication Critical patent/TWI459500B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Description

靜電卡盤與製造其之方法Electrostatic chuck and method of manufacturing same

本發明是有關於一種靜電卡盤與製造其之方法,且特別是有關於一種用於電漿裝置以製造半導體裝置的靜電卡盤與製造其之方法。This invention relates to an electrostatic chuck and a method of making same, and more particularly to an electrostatic chuck for use in a plasma device for fabricating a semiconductor device and a method of making the same.

用以製造半導體裝置之電漿施加裝置通常包括支撐板可固定半導體基板,且因此在電漿施加裝置中用於電漿處理的氣體來源被轉換成電漿且基板進行程序。靜電卡盤已經被廣泛的應用在支撐板上。藉由靜電力基板係固定於靜電卡盤。A plasma application device for fabricating a semiconductor device generally includes a support plate to fix the semiconductor substrate, and thus a gas source for plasma treatment in the plasma application device is converted into a plasma and the substrate is programmed. Electrostatic chucks have been widely used on support plates. The substrate is fixed to the electrostatic chuck by an electrostatic force.

傳統靜電卡盤通常包括位於介電層之間的電極層。因此,電力可施加於電極層且靜電力產生於介電層中,且藉由靜電力基板固定於靜電卡盤。特別地,熱噴塗層廣泛的用在靜電卡盤之介電層以避免靜電卡盤在電漿施加裝置中被電漿蝕刻。用於靜電卡盤之熱噴塗層可藉由使用包括氧化釔與氧化鋁之陶瓷底粉末的熱塗佈程序來塗佈。Conventional electrostatic chucks typically include an electrode layer between the dielectric layers. Therefore, electric power can be applied to the electrode layer and an electrostatic force is generated in the dielectric layer, and is fixed to the electrostatic chuck by the electrostatic force substrate. In particular, thermal spray coatings are widely used in the dielectric layers of electrostatic chucks to prevent electrostatic chucks from being plasma etched in the plasma application apparatus. The thermal spray coating for the electrostatic chuck can be applied by a thermal coating procedure using a ceramic base powder comprising cerium oxide and aluminum oxide.

熱噴塗層以陶瓷粉末為基底通常具有結晶結構,且因此當熱噴塗層做為靜電卡盤之介電層時,介電層之介電特性係相對好。The thermal spray coating typically has a crystalline structure with ceramic powder as the substrate, and thus the dielectric properties of the dielectric layer are relatively good when the thermal spray coating acts as a dielectric layer for the electrostatic chuck.

然而,結晶熱噴塗層係多孔隙的且具有相對低的體積電阻,且因此漏電流就從熱噴塗層產生,且因此電弧常常發生在在靜電卡盤。由於這些原因,以填充物填充熱噴塗層之孔隙率的填充程序被建議,從而增加體積電阻。然而,介電層之體積電阻仍隨著靜電卡盤之操作時間增加而減小,且因此電弧仍產生在靜電卡盤中,且基板不穩定的被吸附或不穩定的被固定於靜電卡盤。也就是說,因熱噴塗層之孔隙率造成體積電阻的減少以及電弧常造成靜電卡盤之吸附品質之衰退。However, the crystalline thermal spray coating is porous and has a relatively low volume resistance, and thus leakage current is generated from the thermal spray coating, and thus arcing often occurs in electrostatic chucks. For these reasons, a filling procedure in which the filler fills the porosity of the thermal spray coating is suggested, thereby increasing the volume resistance. However, the volume resistance of the dielectric layer still decreases as the operating time of the electrostatic chuck increases, and thus the arc is still generated in the electrostatic chuck, and the substrate is unstablely adsorbed or unstable and fixed to the electrostatic chuck. . That is to say, the reduction in volume resistance due to the porosity of the thermal spray layer and the arc often cause the deterioration of the adsorption quality of the electrostatic chuck.

此外,隨著近來基板的增大,施加至電極層之電力需要增加。當高電壓電力施加於靜電卡盤之電極層,破裂便產生於熱噴塗層之基體與介電層之間,因為基體與介電層之間不同的熱膨脹係數。且因此電極層與介電層將不或不足以使彼此電性絕緣,此被知為絕緣破裂。結果,靜電卡盤之吸附品質趨向更退化,當基板尺寸變大。Further, as the substrate is recently increased, the power applied to the electrode layer needs to be increased. When high voltage power is applied to the electrode layer of the electrostatic chuck, cracking occurs between the substrate and the dielectric layer of the thermal spray layer because of the different coefficients of thermal expansion between the substrate and the dielectric layer. And therefore the electrode layer and the dielectric layer will not be insufficient or electrically insulated from each other, which is known as insulation cracking. As a result, the adsorption quality of the electrostatic chuck tends to be more degraded as the substrate size becomes larger.

因此,有強烈的需求用以改善靜電卡盤,其中介電層具有充足的體積電阻與穩定的介電常數用於靜電力並具有最小的漏電流。Therefore, there is a strong need to improve electrostatic chucks in which the dielectric layer has sufficient volume resistance and a stable dielectric constant for electrostatic forces and has minimal leakage current.

本發明係有關於一種靜電卡盤與製造其之方法,靜電卡盤具有改善之體積電阻,且無發生介電層之介電常數之退化,因此避免從介電層因漏電流造成之電弧。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an electrostatic chuck having an improved volume resistance and no degradation of the dielectric constant of the dielectric layer, thereby avoiding arcing due to leakage current from the dielectric layer.

根據本發明之一些實施例,提供一種靜電卡盤。靜電卡盤包括一基體、一第一絕緣層、一電極層以及一介電層。第一絕緣層設置於基體上且第一絕緣層具有非晶形結構。電極層設置於第一絕緣層上且電極層產生一靜電力。介電層位於電極層上。According to some embodiments of the invention, an electrostatic chuck is provided. The electrostatic chuck includes a substrate, a first insulating layer, an electrode layer, and a dielectric layer. The first insulating layer is disposed on the substrate and the first insulating layer has an amorphous structure. The electrode layer is disposed on the first insulating layer and the electrode layer generates an electrostatic force. The dielectric layer is on the electrode layer.

在一實施例中,介電層包括一第一介電層以及一第二介電層。第一介電層覆蓋電極層且第一介電層具有非結晶結構。第二介電層位於第一介電層上且第二介電層具有一結晶結構。In an embodiment, the dielectric layer includes a first dielectric layer and a second dielectric layer. The first dielectric layer covers the electrode layer and the first dielectric layer has an amorphous structure. The second dielectric layer is on the first dielectric layer and the second dielectric layer has a crystalline structure.

在一實施例中,第一介電層具有之厚度介於大約100微米到大約300微米,第二介電層具有之厚度介於大約200微米到大約400微米。In one embodiment, the first dielectric layer has a thickness between about 100 microns and about 300 microns, and the second dielectric layer has a thickness between about 200 microns and about 400 microns.

在一實施例中,第一介電層具有之孔隙率介於大約0.5%到大約2%,第二介電層具有之孔隙率介於大約3%到大約7%。In one embodiment, the first dielectric layer has a porosity of between about 0.5% and about 2% and the second dielectric layer has a porosity of between about 3% and about 7%.

在一實施例中,第一介電層具有之表面粗糙度介於大約4微米到大約8微米,第二介電層具有之表面粗糙度介於大約3微米到大約5微米。In one embodiment, the first dielectric layer has a surface roughness of between about 4 microns and about 8 microns, and the second dielectric layer has a surface roughness of between about 3 microns and about 5 microns.

在一實施例中,第一介電層及第二介電層具有之硬度至少大約650Hv,第一介電層及第二介電層具有之黏著強度至少大約14MPa。In one embodiment, the first dielectric layer and the second dielectric layer have a hardness of at least about 650 Hv, and the first dielectric layer and the second dielectric layer have an adhesion strength of at least about 14 MPa.

在一實施例中,第一介電層及第二介電層一起具有之體積電阻(volume resistance)介於大約1014 歐姆公分(Ω‧cm)到大約1015 微米歐姆公分。電極層被第一介電層覆蓋,第一介電層被第二介電層覆蓋。第一絕緣層具有之厚度介於大約400微米到大約600微米。In one embodiment, the first dielectric layer and the second dielectric layer together have a volume resistance of between about 10 14 ohm centimeters (Ω ‧ cm) to about 10 15 μm ohm centimeters. The electrode layer is covered by a first dielectric layer, and the first dielectric layer is covered by a second dielectric layer. The first insulating layer has a thickness of between about 400 microns and about 600 microns.

在一實施例中,一第二絕緣層設置於基體與電極層之間。第一絕緣層具有之厚度介於大約100微米到大約300微米,第二絕緣層具有之厚度介於大約200微米到大約400微米。In an embodiment, a second insulating layer is disposed between the substrate and the electrode layer. The first insulating layer has a thickness of between about 100 microns and about 300 microns, and the second insulating layer has a thickness of between about 200 microns and about 400 microns.

在一些其他實施例中,提供一種靜電卡盤。靜電卡盤一基體、一絕緣層、一電極層、一第一介電層以及一第二介電層。絕緣層位於基體上。電極層設置於絕緣層上且電極層產生一靜電力。第一介電層設置於電極層上且具有一非晶形結構。第二介電層設置於第一介電層上且具有一結晶結構。In some other embodiments, an electrostatic chuck is provided. The electrostatic chuck is a substrate, an insulating layer, an electrode layer, a first dielectric layer and a second dielectric layer. The insulating layer is on the substrate. The electrode layer is disposed on the insulating layer and the electrode layer generates an electrostatic force. The first dielectric layer is disposed on the electrode layer and has an amorphous structure. The second dielectric layer is disposed on the first dielectric layer and has a crystalline structure.

在一些實施例中,提供一種製造靜電卡盤之方法。首先,準備一基體且形成一第一絕緣層於基體上。第一絕緣層具有非晶形結構。然後,形成一電極層於第一絕緣層上,電極層產生一靜電力。接著,形成一介電層於電極層上。In some embodiments, a method of making an electrostatic chuck is provided. First, a substrate is prepared and a first insulating layer is formed on the substrate. The first insulating layer has an amorphous structure. Then, an electrode layer is formed on the first insulating layer, and the electrode layer generates an electrostatic force. Next, a dielectric layer is formed on the electrode layer.

在一實施例中,形成介電層之步驟如下。形成一第一介電層於該電極層上以使該第一介電層具有非晶形結構。然後,形成一第二介電層於第一介電層上以使第二介電層具有結晶結構。In one embodiment, the steps of forming a dielectric layer are as follows. A first dielectric layer is formed on the electrode layer such that the first dielectric layer has an amorphous structure. Then, a second dielectric layer is formed on the first dielectric layer to have the second dielectric layer have a crystalline structure.

在一實施例中,電極層可被第一介電層包覆,且第二介電層可形成於第一介電層、第一絕緣層以及基體上,以使第一介電層、第一絕緣層以及基體被第二介電層包覆。In an embodiment, the electrode layer may be covered by the first dielectric layer, and the second dielectric layer may be formed on the first dielectric layer, the first insulating layer, and the substrate to enable the first dielectric layer, An insulating layer and the substrate are covered by the second dielectric layer.

在一實施例中,第一絕緣層、第一介電層以及第二介電層藉由一大氣電漿噴霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱噴霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一真空電漿霧塗佈製程(vacuum plasma spray coating process)與一動力噴霧塗佈製程其中之一形成。In one embodiment, the first insulating layer, the first dielectric layer, and the second dielectric layer are subjected to an atmospheric plasma spray coating process, a rapid oxy-combustion thermal spray coating process ( A rapid oxygen-fuel thermal spray coating process, a vacuum plasma spray coating process and a dynamic spray coating process are formed.

在一實施例中,更執行填充程序以填充複數個填充物於該第一絕緣層、該第一介電層與該二介電層至少其中之一的內部空間。In one embodiment, a filling process is further performed to fill a plurality of fillers in an inner space of at least one of the first insulating layer, the first dielectric layer, and the two dielectric layers.

在一實施例中,形成電極層之前更包括形成一第二絕緣層於第一絕緣層與該基體其中之一上。In an embodiment, before forming the electrode layer, further comprising forming a second insulating layer on one of the first insulating layer and the substrate.

在一實施例中,更執行一填充程序用以填充複數個填充物於第一絕緣層、第二絕緣層、第一介電層與第二介電層至少其中之一的內部空間。第二絕緣層藉由一大氣電漿噴霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱噴霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一真空電漿霧塗佈製程(vacuum plasma spray coating process)與一動力噴霧塗佈製程其中之一形成。In one embodiment, a filling process is further performed to fill a plurality of fillers in an inner space of at least one of the first insulating layer, the second insulating layer, the first dielectric layer, and the second dielectric layer. The second insulating layer is coated by an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process, and a vacuum plasma spray coating process. (vacuum plasma spray coating process) is formed with one of a power spray coating process.

在一些實施例中,提供一種製造靜電卡盤之方法。準備一基體且形成一絕緣層於基體上。形成一電極層於絕緣層上,電極層產生一靜電力。形成一第一介電層於電極層上以使該第一介電層具有非晶形結構。形成一第二介電層於第一介電層上以使第二介電層具有結晶結構。In some embodiments, a method of making an electrostatic chuck is provided. A substrate is prepared and an insulating layer is formed on the substrate. An electrode layer is formed on the insulating layer, and the electrode layer generates an electrostatic force. A first dielectric layer is formed on the electrode layer such that the first dielectric layer has an amorphous structure. A second dielectric layer is formed on the first dielectric layer such that the second dielectric layer has a crystalline structure.

在一些實施例中,靜電卡盤之介電體可包括多層,多層包括非晶形熱噴塗層與結晶熱噴塗層,藉以在介電常數沒有任何衰退下增加介電體之體積電阻。因此,漏電流可在靜電卡盤最小化,且因此在靜電卡盤中因漏電流造成的破損可最小化。所以,靜電卡盤之整體電性特性可重大的因多層介電體改善。In some embodiments, the dielectric of the electrostatic chuck may comprise a plurality of layers comprising an amorphous thermal spray coating and a crystalline thermal spray coating to increase the volume resistance of the dielectric without any degradation of the dielectric constant. Therefore, leakage current can be minimized in the electrostatic chuck, and thus damage due to leakage current in the electrostatic chuck can be minimized. Therefore, the overall electrical characteristics of the electrostatic chuck can be significantly improved by the multilayer dielectric.

此外,靜電卡盤之絕緣體亦可包括多層,多層包括非晶形熱噴塗層與結晶熱噴塗層,因非晶形熱噴塗層以及改善在靜電卡盤中基體與電極層之間的絕緣電阻從而增加絕緣體之體積電阻。In addition, the insulator of the electrostatic chuck may further comprise a plurality of layers including an amorphous thermal spray coating and a crystalline thermal spray coating, and the insulator is increased due to the amorphous thermal spray coating and the insulation resistance between the substrate and the electrode layer in the electrostatic chuck. Volume resistance.

更進一步,緩衝層可形成於接頭之接觸面積,一電力之高電壓可施加於接頭之接觸面積,且因此因在接頭之接觸面積之熱應力的破裂可被避免。因此,靜電卡盤可改善其持久限制與操作壽命,且因此靜電卡盤之維持成本可被大幅減少。Further, the buffer layer can be formed in the contact area of the joint, and a high voltage of a power can be applied to the contact area of the joint, and thus the crack of the thermal stress due to the contact area of the joint can be avoided. Therefore, the electrostatic chuck can improve its long-term limitation and operational life, and thus the maintenance cost of the electrostatic chuck can be greatly reduced.

所以,本實施例所提出之靜電卡盤可應用在不同的電漿應用裝置,例如是改善電力特性與持久限制之電漿蝕刻裝置與電漿沈積裝置。Therefore, the electrostatic chuck proposed in this embodiment can be applied to different plasma application devices, such as plasma etching devices and plasma deposition devices that improve power characteristics and long-term limitations.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

請參考所附圖式,本發明在本文中更完整的說明,其中所附圖式顯示本發明之多個實施例。本發明可具有多種不同之實施例,且不以以下所述之實施例為限。以下所述之實施例係用以完整地揭露本發明,使得本發明所屬技術領域中具有通常知識者可完全了解本發明。為了更清楚說明本發明,圖式之層及區域之尺寸及相對尺寸可能被誇張地繪示。The present invention is described more fully herein with reference to the accompanying drawings, in which FIG. The invention is susceptible to various embodiments and is not limited to the embodiments described below. The embodiments described below are intended to fully disclose the present invention so that those skilled in the art can fully understand the invention. To more clearly illustrate the invention, the dimensions and relative dimensions of layers and regions of the drawings may be exaggerated.

當出現「一元件位於於另一元件之上」、「一元件連接於另一元件」或「一元件耦接於另一元件」之敘述時,一元件可直接配置於另一元件之上,或直接連接或耦接於另一元件,或有再一元件或中間層介於兩者之間。相對地,當出現「一元件直接位於另一元件之上」、「一元件直接連接於另一元件」或「一元件直接耦接於另一元件」之敘述時,兩者間並無其他元件或中間層。相似之元件係以相似之符號標示。此處所使用「且/或」之敘述係包括所列出項目之全部任意組合。When the phrase "a component is placed on another component" or "an element is connected to another component" or "an element is coupled to another component", a component can be directly disposed on another component. Or directly connected or coupled to another element, or there is another element or intermediate layer in between. In contrast, when there is a description of "a component is directly above another component", "a component is directly connected to another component" or "a component is directly coupled to another component", there is no other component between the two. Or the middle layer. Similar components are labeled with similar symbols. The phrase "and/or" used herein includes any and all combinations of the listed items.

雖然此處可用第一、第二、第三或其他敘述描述不同元件、成分、區域、層且/或部分,然而這些元件、成分、區域、層且/或部分並不受限於此些敘述,此些敘述僅用以區分不同的元件、成分、區域、層且/或部分。因此,在不脫離本發明之精神下,第一元件、成分、區域、層或部分可描述為第二元件、成分、區域、層或部分。Although the elements, components, regions, layers and/or portions may be described herein in terms of the first, second, third or other description, these elements, components, regions, layers and/or portions are not limited by these descriptions. These descriptions are only used to distinguish between different elements, components, regions, layers and/or parts. Thus, a first element, component, region, layer or section may be described as a second element, component, region, layer or section.

此處之空間相對用詞,例如是「在…下方」、「下面」、「下」、「上面」或「上」或其他類似用詞,可用於簡單地描述如所附圖式中所繪示之元件,或某特徵與另一元件或特徵之關係。可了解的是,此些空間相對用詞係包括其他方位之描述,並非受限於圖式中之方向。舉例來說,當圖式中之裝置上下顛倒時,「一元件位於另一元件或特徵之下」之敘述則變為「一元件位於另一元件或特徵之上」。因此,「下」之用詞係包括「上」和「下」兩種方位。元件可朝向其他方向(旋轉90度或朝向其他方向),而此處使用之空間相對用詞係被對應地解釋。The spatial relative terms herein, such as "below", "below", "below", "above" or "upper" or other similar terms, may be used to simply describe as depicted in the drawings. The element shown, or the relationship of a feature to another element or feature. It can be understood that these spatially relative terms are used to describe other orientations and are not limited by the orientation in the drawings. For example, when the device in the drawings is turned upside down, the recitation of "a component or another element or feature" means "one element is on the other element or feature." Therefore, the word "below" includes both "upper" and "lower". The elements may be oriented in other directions (rotated 90 degrees or toward other directions), and the space used herein is interpreted correspondingly to the words.

此處之用詞僅用以敘述本發明之實施例,並非用以限制本發明。除非特別註明,否則此處所用之「一」及「此」之單數形式之敘述,亦包括複數之形式。此處所用之「包含」及「包括」所述之特徵、整數、步驟、操作、元件或成份,並非排除其他之特徵、整數、步驟、操作、元件、成份或其組合。The words used herein are merely illustrative of the embodiments of the invention and are not intended to limit the invention. The singular forms of "a" and "the" are used in the s The use of the features, integers, steps, operations, components or components of the "comprising" and "comprising" are used to exclude other features, integers, steps, operations, components, components or combinations thereof.

本說明書描述的實施例與參照截面圖說明係概要說明理想化的實施例(和中間架構)。就其本身而言,說明形狀的變動結果(例如是製造技術或誤差)係可預期的。因此,實施例不應被理解為用以限制某區域為特定形狀,而是應包括從該特定形狀所衍生的變形,例如是製造上的誤差。例如,圖示為矩形的植入區域,基本上其邊角總是會具有圓角或曲角的特徵,及/或植入濃度的梯度並不是非黑即白地從植入區域改變成非植入區域。同樣的,由植入形成的埋設區域可能在介於埋設區域和進行植入的表面之間的區域會產生一些植入。因此於圖式中說明的區域係本質上的概要且它們的形狀不被預期為說明裝置範圍的真實形狀,也不被預期為限制本發明的範圍。The embodiments described in the specification and the reference cross-sectional illustrations are illustrative of an idealized embodiment (and intermediate architecture). For its part, it is anticipated that variations in shape (eg, manufacturing techniques or errors) are contemplated. Thus, embodiments should not be construed as limiting a particular region to a particular shape, but rather a variation that is derived from the particular shape, such as a manufacturing error. For example, an implanted area illustrated as a rectangle, substantially having a corner with rounded corners or curved corners, and/or a gradient of implant concentration is not black or white, changing from implanted to non-planted Into the area. Likewise, a buried region formed by implantation may result in some implantation between the buried region and the surface being implanted. The regions illustrated in the drawings are therefore in the nature and are not intended to limit the scope of the invention.

除非另外定義,此處所使用之所有用詞(包括技術及科學用詞),係與本發明所屬技術領域中具有通常知識者所了解之意義相同。此外,除非特別定義,此處所使用之普通字典所定義之用詞,當與相關技藝中之此用詞之意義一致,而非指理想化或過度正式之意思。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning meaning Moreover, unless otherwise defined, the terms defined by the ordinary dictionary used herein are intended to be consistent with the meaning of the terms used in the related art, and are not intended to be ideal or overly formal.

在本文件中,實施例將伴隨著參照圖式詳細說明實施例。特別地,本發明之以下實施例可揭露單極靜電卡盤具有單一電極。然而,技術特徵,新穎教示與本實施之好處亦可應用於雙極靜電卡盤,此係改領域之通常知識者所知。In the present document, the embodiments will be described in detail with reference to the drawings. In particular, the following embodiments of the invention may disclose that a single pole electrostatic chuck has a single electrode. However, the technical features, novel teachings, and benefits of this implementation can also be applied to bipolar electrostatic chucks, as is known to those of ordinary skill in the art.

第1圖繪示依照本發明之一實施例之靜電卡盤的剖面圖。1 is a cross-sectional view of an electrostatic chuck in accordance with an embodiment of the present invention.

請參照第1圖,依照本發明之一實施例之靜電卡盤100可包括一基體110、一第一絕緣層120、一電極層140、一第一介電層150、一第二介電層160以及一連接器170。Referring to FIG. 1 , an electrostatic chuck 100 according to an embodiment of the present invention may include a substrate 110 , a first insulating layer 120 , an electrode layer 140 , a first dielectric layer 150 , and a second dielectric layer . 160 and a connector 170.

在一實施例中,第一絕緣層120及第一介電層包括一熱噴塗層(thermal spray-coated layer),此熱噴塗層具有一非晶形結構。第二介電層160可包括一熱噴塗層,此熱噴塗層具有一結晶結構。因此,靜電卡盤100之電極層140可被多層覆蓋,此多層包括非晶形熱噴塗層以及結晶熱噴塗層。在多層中非晶形與結晶熱噴塗層之組合可對靜電卡盤100之靜電力提供充足的介電常數以及高體積電阻(volume resistance),從而改善靜電卡盤100的電性特性。特別地,用以電性絕緣基體110與電極層140的第一絕緣層120可包括非晶形熱噴塗層,從而因非晶形結構改善體積電阻並增加電性絕緣特性。In one embodiment, the first insulating layer 120 and the first dielectric layer comprise a thermal spray-coated layer, the thermally sprayed layer having an amorphous structure. The second dielectric layer 160 can include a thermal spray coating having a crystalline structure. Thus, the electrode layer 140 of the electrostatic chuck 100 can be covered by multiple layers including an amorphous thermal spray coating and a crystalline thermal spray coating. The combination of the amorphous and crystalline thermal spray coatings in the multilayer provides sufficient dielectric constant and high volume resistance to the electrostatic forces of the electrostatic chuck 100, thereby improving the electrical characteristics of the electrostatic chuck 100. In particular, the first insulating layer 120 for electrically insulating the substrate 110 and the electrode layer 140 may include an amorphous thermal sprayed layer to improve volume resistance and increase electrical insulating properties due to the amorphous structure.

基體110可具有平板或圓柱形狀,且可具有對應於被加工之物體的大小,物體可例如是基板。也就是說,基體110可具有相等或大於用在半導體裝置或平板顯示裝置之基板的大小。舉例來說,基體110可包括金屬,例如是鋁(A1)。此外,基體110可更包括一金屬層塗佈於基體110上。The base 110 may have a flat or cylindrical shape and may have a size corresponding to the object being processed, and the object may be, for example, a substrate. That is, the substrate 110 may have a size equal to or larger than that of the substrate used in the semiconductor device or the flat panel display device. For example, the substrate 110 can comprise a metal, such as aluminum (A1). In addition, the substrate 110 may further include a metal layer coated on the substrate 110.

第一絕緣層120可位於基體110上。舉例來說,第一絕緣層120可位於基體110之上表面的一部分上。舉例來說,第一絕緣層120可具有非晶形結構,且可藉由使用第一粉末的熱噴塗程序形成。也就是說,第一粉末可提供用以形成非晶形熱噴塗層。舉例來說,第一粉末可包括氧化釔或氧化鋁之粗粒粒子,其具有大約20微米至大約60微米的平均直徑。特別地,第一粉末可包括粗粒粒子,粗粒粒子從第一漿液與第二漿液之漿液混合物取得。第一漿液可包括多個具有大約0.01微米至大約2微米直徑之氧化釔(Y203)粒子,用以均勻分散氧化釔粒子之第一分散劑,用以黏合氧化釔粒子之第一黏合劑與一第一溶劑。氧化釔粒子、第一分散劑與第一黏合劑溶於此第一溶劑。第二漿液可包括多個具有大約0.5微米至大約2微米直徑之氧化鋁(A1203)粒子,用以均勻分散氧化鋁粒子之第二分散劑,用以黏合氧化鋁粒子之第二黏合劑與一第二溶劑。氧化鋁粒子、第二分散劑與第二黏合劑溶於此第二溶劑。漿液混合物中的氧化釔與氧化鋁之重量比的範圍介在大約1:0.4到1:1。第一粉末將在本文中詳細說明。The first insulating layer 120 may be located on the substrate 110. For example, the first insulating layer 120 may be located on a portion of the upper surface of the substrate 110. For example, the first insulating layer 120 may have an amorphous structure and may be formed by a thermal spraying process using the first powder. That is, the first powder can be provided to form an amorphous thermal spray coating. For example, the first powder may comprise coarse particles of cerium oxide or aluminum oxide having an average diameter of from about 20 microns to about 60 microns. In particular, the first powder may comprise coarse particles obtained from a slurry mixture of the first slurry and the second slurry. The first slurry may include a plurality of yttria (Y203) particles having a diameter of about 0.01 micrometer to about 2 micrometers for uniformly dispersing the first dispersing agent of the cerium oxide particles, and bonding the first binder of the cerium oxide particles to the first binder. The first solvent. The cerium oxide particles, the first dispersing agent and the first binder are dissolved in the first solvent. The second slurry may include a plurality of alumina (A1203) particles having a diameter of about 0.5 micrometer to about 2 micrometers, a second dispersing agent for uniformly dispersing the alumina particles, and a second binder for bonding the alumina particles with the second binder. Second solvent. The alumina particles, the second dispersing agent and the second binder are dissolved in the second solvent. The weight ratio of cerium oxide to aluminum oxide in the slurry mixture ranges from about 1:0.4 to 1:1. The first powder will be described in detail herein.

第一絕緣層120可具有大約400微米到大約600微米的厚度,且可使基體110與電極層140彼此電性絕緣。如果第一絕緣層120可具有小於400微米之厚度,儘管有足夠的體積電阻,第一絕緣層120之介質耐壓特性(withstanding voltage)可顯著退化,此將導致基體110與電極層140之間的電性絕緣退化。第一絕緣層120可因非晶形結構具有高體積電阻。舉例來說,藉由額外的填充程序用以填充熱噴塗層之孔隙率(porosity)可改善第一絕緣層120之體積電阻至大約1014 歐姆‧公分(Ω‧cm)到大約1015 歐姆‧公分(Ω‧cm)。而傳統之體積電阻大約為1013 歐姆‧公分(Ω‧cm)。更進一步,第一絕緣層120可具有非晶形結構,且因此第一絕緣層120中的孔隙空間可相對較小。因此,第一絕緣層120可具有相對小的孔隙率。舉例來說,第一絕緣層120的孔隙率可小於大約2%,且較佳地,小於大約1%。在本實施例中,第一絕緣層120可具有大約0.5%到大約2%的孔隙率,較佳地,大約0.5%到大約1%的孔隙率。此外,第一絕緣層120亦可具有大約4微米到大約8微米的表面粗糙度(Ra),因此具有大約14MPa的附著強度且亦可具有大約650Hv的硬度。The first insulating layer 120 may have a thickness of about 400 micrometers to about 600 micrometers, and the substrate 110 and the electrode layer 140 may be electrically insulated from each other. If the first insulating layer 120 can have a thickness of less than 400 microns, the dielectric withstanding voltage of the first insulating layer 120 can be significantly degraded despite sufficient volume resistance, which will result in a relationship between the substrate 110 and the electrode layer 140. The electrical insulation is degraded. The first insulating layer 120 may have a high volume resistance due to the amorphous structure. For example, the volume resistance of the first insulating layer 120 can be improved to about 10 14 ohms ‧ centimeters (Ω ‧ cm) to about 10 15 ohms by an additional filling procedure for filling the porosity of the thermal spray coating Centimeters (Ω‧cm). The conventional volume resistance is approximately 10 13 ohms ‧ cm (Ω ‧ cm) Still further, the first insulating layer 120 may have an amorphous structure, and thus the void spaces in the first insulating layer 120 may be relatively small. Therefore, the first insulating layer 120 may have a relatively small porosity. For example, the first insulating layer 120 may have a porosity of less than about 2%, and preferably, less than about 1%. In the present embodiment, the first insulating layer 120 may have a porosity of about 0.5% to about 2%, preferably about 0.5% to about 1%. In addition, the first insulating layer 120 may also have a surface roughness (Ra) of about 4 microns to about 8 microns, and thus have an adhesion strength of about 14 MPa and may also have a hardness of about 650 Hv.

黏合層115可進一步設置於基體110與第一絕緣層120之間,且可做為於基體110與第一絕緣層120之間的黏合劑。黏合層115的熱膨脹比(thermal expansion ratio)可為基體110與第一絕緣層120之熱膨脹比的平均值。因此黏合層115可做為具有不同熱膨脹比之基體110與第一絕緣層120的熱緩衝(thermal buffer)。舉例來說,黏合層115可包括一金屬合金例如為鎳鋁合金且可具有大約30微米到大約50微米的厚度,並具有小於或相等於大約5%的孔隙率。The adhesive layer 115 can be further disposed between the base 110 and the first insulating layer 120 and can serve as an adhesive between the base 110 and the first insulating layer 120. The thermal expansion ratio of the adhesive layer 115 may be an average value of the thermal expansion ratio of the base 110 and the first insulating layer 120. Therefore, the adhesive layer 115 can be used as a thermal buffer of the substrate 110 and the first insulating layer 120 having different thermal expansion ratios. For example, the adhesive layer 115 can comprise a metal alloy such as a nickel aluminum alloy and can have a thickness of from about 30 microns to about 50 microns and a porosity of less than or equal to about 5%.

電極層140可設置於第一絕緣層120上並產生一靜電力。舉例來說,電極層140可位於第一電極層120之上表面的一部分。特別地,電極層140可在第一與第二介電層150與160的介電體中產生靜電力。因此,靜電力可施加於第二介電層160之上表面,且藉由靜電力使基板固定於第二介電層160的上表面。電極層140可包括導電材料例如為鎢,且可藉由熱噴塗程序或網版印刷程序(screen printing process)形成。The electrode layer 140 may be disposed on the first insulating layer 120 and generate an electrostatic force. For example, the electrode layer 140 may be located at a portion of the upper surface of the first electrode layer 120. In particular, the electrode layer 140 can generate an electrostatic force in the dielectric of the first and second dielectric layers 150 and 160. Therefore, an electrostatic force can be applied to the upper surface of the second dielectric layer 160, and the substrate is fixed to the upper surface of the second dielectric layer 160 by electrostatic force. The electrode layer 140 may include a conductive material such as tungsten, and may be formed by a thermal spray process or a screen printing process.

在本實施例中,電極層140可具有大約30微米到大約50微米之厚度。當電極層140可具有小於大約30微米之厚度,電極層140之電阻可因電極層140之缺陷與孔隙率而非常高,因此靜電卡盤100之卡盤品質顯著惡化。當電極層140可具有大於大約50微米之厚度,可能在電極層140造成電弧。因此,較佳地電極層140可具有大約30微米到大約50微米之厚度。In the present embodiment, the electrode layer 140 may have a thickness of about 30 microns to about 50 microns. When the electrode layer 140 can have a thickness of less than about 30 microns, the electrical resistance of the electrode layer 140 can be very high due to defects and porosity of the electrode layer 140, so the chuck quality of the electrostatic chuck 100 is significantly deteriorated. When the electrode layer 140 can have a thickness greater than about 50 microns, it is possible to cause an arc at the electrode layer 140. Accordingly, electrode layer 140 may preferably have a thickness of from about 30 microns to about 50 microns.

一高電壓電力可經由連接器170施加於電極層140。連接器170可經過基體110與第一絕緣層120連接到電極層140。A high voltage power can be applied to the electrode layer 140 via the connector 170. The connector 170 may be connected to the electrode layer 140 through the base 110 and the first insulating layer 120.

第2圖繪示第1圖中之連接器的第一實施例的剖面圖。Fig. 2 is a cross-sectional view showing the first embodiment of the connector of Fig. 1.

請參照第2圖,根據第一實施例之連接器170可包括一接頭(terminal)171、一絕緣體172以及一緩衝層173。Referring to FIG. 2, the connector 170 according to the first embodiment may include a terminal 171, an insulator 172, and a buffer layer 173.

接頭171可貫穿基體110與第一絕緣層120並與電極層140接觸,因此從一外部電源(未顯示)可使電力經由接頭171施加於電極層140。因此,基體110與第一絕緣層120可包括貫孔(未顯示),接頭171可通過貫孔。舉例來說,接頭171可包括導電材料,例如鎢、鉬與鈦。The joint 171 can penetrate the base 110 and the first insulating layer 120 and be in contact with the electrode layer 140, so that electric power can be applied to the electrode layer 140 via the joint 171 from an external power source (not shown). Therefore, the base 110 and the first insulating layer 120 may include through holes (not shown) through which the joint 171 may pass. For example, the joint 171 can include a conductive material such as tungsten, molybdenum, and titanium.

絕緣體172可電性絕緣接頭171於環境並可包覆接頭171。因此,絕緣體172可設置於接頭171與基體110以及接頭171與第一絕緣層120之間。更進一步,當接頭171的中央部分可接觸電極層140時,絕緣層172可設置於電極層140與接頭171的周邊部分之間。舉例來說,絕緣體172可包括具有小孔隙率與良好絕緣性質的燒結陶瓷體(sintered ceramic body)。此外,絕緣體172可具有大約2000微米的厚度且大約0.1微米到大約2微米的表面粗糙度,以減少電弧。The insulator 172 can electrically insulate the joint 171 to the environment and can cover the joint 171. Therefore, the insulator 172 may be disposed between the joint 171 and the base 110 and the joint 171 and the first insulating layer 120. Further, when the central portion of the joint 171 can contact the electrode layer 140, the insulating layer 172 can be disposed between the electrode layer 140 and the peripheral portion of the joint 171. For example, the insulator 172 can include a sintered ceramic body having a small porosity and good insulating properties. Additionally, insulator 172 can have a thickness of about 2000 microns and a surface roughness of about 0.1 microns to about 2 microns to reduce arcing.

在一電漿程序中於靜電卡盤100上執行於基板,在此高溫下一熱應力可施加於靜電卡盤100。靜電卡盤100可在電漿程序中熱膨脹,且基體110、第一絕緣層120與絕緣體172的熱膨脹比可彼此不一樣,因此熱應力可施加於各基體110、第一絕緣層120與絕緣體172。特別地,熱應力可在絕緣體172與基體110以及絕緣體172與第一絕緣層120之間的邊緣表面之邊界部分最大。因絕緣體172相對小的力,熱應力可傳至第一絕緣層120因而產生破裂。接著,破裂可延續至第一介電層150與第二介電層160,因此靜電卡盤100會破裂。The substrate is applied to the electrostatic chuck 100 in a plasma process, and thermal stress can be applied to the electrostatic chuck 100 at this high temperature. The electrostatic chuck 100 can be thermally expanded in a plasma program, and the thermal expansion ratios of the substrate 110, the first insulating layer 120, and the insulator 172 can be different from each other, and thus thermal stress can be applied to each of the substrate 110, the first insulating layer 120, and the insulator 172. . In particular, thermal stress may be greatest at the boundary portion between the insulator 172 and the substrate 110 and the edge surface between the insulator 172 and the first insulating layer 120. Due to the relatively small force of the insulator 172, thermal stress can be transmitted to the first insulating layer 120 to cause cracking. Then, the rupture may continue to the first dielectric layer 150 and the second dielectric layer 160, and thus the electrostatic chuck 100 may be broken.

提供緩衝層173使熱應力造成靜電卡盤100之傷害變小。Providing the buffer layer 173 causes thermal stress to cause damage to the electrostatic chuck 100 to be small.

緩衝層173可包覆絕緣體172之上部。舉例來說,緩衝層173可位於絕緣體172與基體110之間的邊界表面的一部份上、絕緣體172與第一絕緣層120之間的邊界表面上以及絕緣體172與電極層140之間的邊界表面上。緩衝層173可包括陶瓷。舉例來說,陶瓷可包括氧化鋁(Al2O3)、氧化釔(Y2O3)、氧化鋁/氧化釔(Al2O3/Y2O3)、氧化鋯(ZrO2)、碳化鋁(AlC)、氮化鈦(TiN)、氮化鋁(AlN)、碳化鈦(TiC)、氧化鎂(MgO)、氧化鈣(CaO)、氧化鈰(CeO2)、氧化鈦(TiO2)、碳化硼(BxCy)、氮化硼(BN)、氧化矽(SiO2)、碳化矽(SiC)、釔鋁石榴石(YAG)、莫來石(Mullite)、氟化鋁(AlF3)等等。上述化合物可單獨或組合使用。緩衝層173可藉由熱噴塗程序形成。The buffer layer 173 may cover the upper portion of the insulator 172. For example, the buffer layer 173 may be located on a portion of the boundary surface between the insulator 172 and the substrate 110, on the boundary surface between the insulator 172 and the first insulating layer 120, and between the insulator 172 and the electrode layer 140. On the surface. The buffer layer 173 may include ceramic. For example, the ceramic may include alumina (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), alumina / yttria (Al 2 O 3 /Y 2 O 3 ), zirconia (ZrO 2 ), aluminum carbide (AlC), titanium nitride (TiN), nitrogen Aluminum (AlN), titanium carbide (TiC), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO2), titanium oxide (TiO2), boron carbide (BxCy), boron nitride (BN), oxidation矽 (SiO 2 ), lanthanum carbide (SiC), yttrium aluminum garnet (YAG), mullite (Mullite), aluminum fluoride (AlF 3 ), and the like. The above compounds may be used singly or in combination. The buffer layer 173 can be formed by a thermal spray process.

緩衝層173可具有大約100微米到大約250微米的厚度,較佳地,大約150微米到大約200微米。當緩衝層173可具有超過250微米的厚度,緩衝層173之孔隙空間可相對大,因此破裂趨向產生於緩衝層173中。更進一步,當緩衝層173可具有小於100微米,熱應力無法充分的被緩衝層173吸收。因此,較佳地緩衝層173可具有大約100微米到大約250微米的厚度。此外,緩衝層173可具有大約0.1微米到大約2微米的表面粗糙度,藉以減少緩衝層173中的表面電阻與電弧。Buffer layer 173 can have a thickness of from about 100 microns to about 250 microns, preferably from about 150 microns to about 200 microns. When the buffer layer 173 may have a thickness exceeding 250 μm, the void space of the buffer layer 173 may be relatively large, and thus the crack tends to be generated in the buffer layer 173. Further, when the buffer layer 173 may have less than 100 μm, thermal stress is not sufficiently absorbed by the buffer layer 173. Accordingly, it is preferred that the buffer layer 173 can have a thickness of from about 100 microns to about 250 microns. Further, the buffer layer 173 may have a surface roughness of about 0.1 micrometer to about 2 micrometers, thereby reducing surface resistance and arcing in the buffer layer 173.

靜電卡盤100中的熱應力係在電漿程序中的高溫下產生,熱應力可充分的被緩衝層173吸收以使靜電卡盤100不會因熱應力造成損傷。舉例來說,當靜電卡盤100可被加熱且基體110可在電漿程序中熱膨脹,緩衝層173可替代絕緣體172吸收基體110中的熱應力。The thermal stress in the electrostatic chuck 100 is generated at a high temperature in the plasma program, and the thermal stress can be sufficiently absorbed by the buffer layer 173 so that the electrostatic chuck 100 is not damaged by thermal stress. For example, when the electrostatic chuck 100 can be heated and the substrate 110 can be thermally expanded in a plasma program, the buffer layer 173 can absorb the thermal stress in the substrate 110 instead of the insulator 172.

舉例來說,緩衝層172的孔隙率可等於或多餘基體110、第一絕緣層120、第一介電層150與第二介電層160的孔隙率,因此改善緩衝層173的應力吸收效率。緩衝層173可具有大約2%到大約10%的孔隙率,較佳地,大約2%到大約7%。如果緩衝層173的孔隙率可大於大約10%,緩衝層173的力可能會不足且緩衝層173可從絕緣體172、基體110與絕緣層120分離開來。當緩衝層173之孔隙率可小於大約2%,緩衝層173中可能產生破裂。For example, the porosity of the buffer layer 172 may be equal to or excess of the porosity of the substrate 110, the first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160, thus improving the stress absorption efficiency of the buffer layer 173. Buffer layer 173 can have a porosity of from about 2% to about 10%, preferably from about 2% to about 7%. If the porosity of the buffer layer 173 may be greater than about 10%, the force of the buffer layer 173 may be insufficient and the buffer layer 173 may be separated from the insulator 172, the substrate 110, and the insulating layer 120. When the porosity of the buffer layer 173 may be less than about 2%, cracking may occur in the buffer layer 173.

更進一步,當緩衝層173具有指出邊緣部分,緩衝層173的邊緣部分可形成為圓弧或倒角,因為熱應力可集中於緩衝層173的邊緣部分。應力集中於緩衝層173之邊緣部分通常造成緩衝層173的破裂。Further, when the buffer layer 173 has the pointed edge portion, the edge portion of the buffer layer 173 may be formed as a circular arc or a chamfer because thermal stress may be concentrated on the edge portion of the buffer layer 173. The concentration of stress on the edge portion of the buffer layer 173 generally causes cracking of the buffer layer 173.

第3圖繪示第1圖中之連接器的第二實施例的剖面圖。Figure 3 is a cross-sectional view showing a second embodiment of the connector of Figure 1.

除了元件之形狀跟設置之外,第二實施例之連接器170實質上可具有與第2圖中之第一實施例之連接器170的組態與結構相同。因此,第3圖中具有相同功能相同的元件之說明可參照第2圖,任何進一步關於相同功能與組態之詳細說明將在本文中刪除。The connector 170 of the second embodiment may have substantially the same configuration and structure as the connector 170 of the first embodiment in FIG. 2 except for the shape and arrangement of the components. Therefore, the description of elements having the same functions in FIG. 3 can be referred to FIG. 2, and any further detailed description about the same functions and configurations will be deleted herein.

請參照第3圖,根據第二實施例之連接器170可包括接頭177、絕緣體178與緩衝層179。Referring to FIG. 3, the connector 170 according to the second embodiment may include a joint 177, an insulator 178, and a buffer layer 179.

接頭177可貫穿基體110與第一絕緣層120並接觸電極層140,因此藉由一外部電源使電力可經由接頭177施加於電極層140。The joint 177 can penetrate the base 110 and the first insulating layer 120 and contact the electrode layer 140, so that power can be applied to the electrode layer 140 via the joint 177 by an external power source.

絕緣體178可設置於基體110與接頭177之間,且可使基體110與接頭177彼此電性絕緣。特別地,絕緣體178可僅設置於基體110與接頭177之間,非設置於第二絕緣層120與接頭177之間。The insulator 178 may be disposed between the base 110 and the joint 177, and the base 110 and the joint 177 may be electrically insulated from each other. In particular, the insulator 178 may be disposed only between the base 110 and the joint 177, and not between the second insulating layer 120 and the joint 177.

提供緩衝層179可減少因熱應力造成靜電卡盤100之損害,緩衝層179包括第一緩衝179a與第二緩衝179b。Providing the buffer layer 179 can reduce the damage of the electrostatic chuck 100 caused by thermal stress, and the buffer layer 179 includes the first buffer 179a and the second buffer 179b.

第一緩衝179a可沿絕緣體178與接頭177之上部的表面延伸。因此第一緩衝179a可位於絕緣體178與基體110之間的邊緣表面的一部分上,絕緣體178與第一絕緣層120之間的邊緣表面上,以及接頭177與第一絕緣層120之間的邊緣表面上。因此,靜電卡盤100中的熱應力可藉由第一緩衝179a吸收。如果熱應力無法被第一緩衝179a充分吸收,第二緩衝179b可補充吸收靜電卡盤100中的熱應力。舉例來說,當熱應力無法完整被第一緩衝179a吸收,破裂可能會產生於基體110與絕緣體178之間的邊緣表面,且成長至第一與第二介電層150與160。第二緩衝179b可吸收未被第一緩衝179a吸收的剩餘熱應力,因此由剩餘熱應力造成的破裂可避免成長至第一與第二介電層150與160。The first buffer 179a may extend along the surface of the insulator 178 and the upper portion of the joint 177. Therefore, the first buffer 179a may be located on a portion of the edge surface between the insulator 178 and the substrate 110, on the edge surface between the insulator 178 and the first insulating layer 120, and the edge surface between the joint 177 and the first insulating layer 120. on. Therefore, the thermal stress in the electrostatic chuck 100 can be absorbed by the first buffer 179a. If the thermal stress is not sufficiently absorbed by the first buffer 179a, the second buffer 179b may supplement the thermal stress in the electrostatic chuck 100. For example, when thermal stress is not completely absorbed by the first buffer 179a, cracking may occur at the edge surface between the substrate 110 and the insulator 178 and grow to the first and second dielectric layers 150 and 160. The second buffer 179b can absorb the residual thermal stress that is not absorbed by the first buffer 179a, and thus the crack caused by the residual thermal stress can be prevented from growing to the first and second dielectric layers 150 and 160.

舉例來說,第二緩衝179b可位於絕緣體178之上部的周遭。在本實施例中,第二緩衝179b可位於絕緣體178與第二絕緣層120之間的邊緣表面上,以及基體110與第二絕緣層120之間的邊緣表面之一部份。結果,第一與第二緩衝179a與179b兩者可位於絕緣體178與第二絕緣層120之間的邊緣表面上。僅除了在靜電卡盤100中的位置,第二緩衝179b實質上可具有與第一緩衝179a之相同結構組態,例如是組成、厚度、表面粗糙度。For example, the second buffer 179b can be located around the upper portion of the insulator 178. In the present embodiment, the second buffer 179b may be located on an edge surface between the insulator 178 and the second insulating layer 120, and a portion of the edge surface between the substrate 110 and the second insulating layer 120. As a result, both the first and second buffers 179a and 179b can be located on the edge surface between the insulator 178 and the second insulating layer 120. Only in addition to the position in the electrostatic chuck 100, the second buffer 179b may have substantially the same structural configuration as the first buffer 179a, such as composition, thickness, surface roughness.

因此,熱應力可集中於絕緣體178與基體110之間的邊緣表面,且第一與第二緩衝179a與179b可位於絕緣體178與基體110之間的邊緣表面上。因此,靜電卡盤100中的熱應力可被吸收兩次,特別在絕緣體178與基體110之間的邊緣表面,從而避免應力集中造成因熱應力產生破裂擴展。因此,靜電卡盤100的持久性可大幅改善,且靜電卡盤100的維持費用可減少。第二緩衝179b可為補充提供於靜電卡盤100,因此該領域之通常知識者可知第二緩衝179b可根據程序需求而被刪除。Therefore, thermal stress can be concentrated on the edge surface between the insulator 178 and the base 110, and the first and second buffers 179a and 179b can be located on the edge surface between the insulator 178 and the base 110. Therefore, the thermal stress in the electrostatic chuck 100 can be absorbed twice, particularly at the edge surface between the insulator 178 and the base 110, thereby avoiding stress concentration and causing crack propagation due to thermal stress. Therefore, the durability of the electrostatic chuck 100 can be greatly improved, and the maintenance cost of the electrostatic chuck 100 can be reduced. The second buffer 179b may be provided in addition to the electrostatic chuck 100, so that one of ordinary skill in the art will recognize that the second buffer 179b can be deleted as required by the program.

在本實施例中,基體110在上邊緣部分可包括第一傾斜部分,如此一來絕緣體178的上表面可低於基體110的上表面。因此,基體110可比絕緣體178設置的更靠近電極層140,且第一絕緣層120的厚度可在第一區域A大於第二區域B。第一絕緣層120的第一區域A可定義為介於絕緣體178與電極層140之間的區域,且第一絕緣層120的第二區域B可定義為基體之上表面之間,除了第一絕緣層120之傾斜部分。雖然第一絕緣層120的密度可在第一區域A小於第二區域B,但第一絕緣層120的厚度可在第一區域A大於第二區域B,從而補償在第一絕緣層120之第一區域A的較小密度。因此,第一絕緣層120的第一區域A的漏電流可充分因其較厚之厚度而避免,從而避免基體110與電極層140之間的電弧。此外,因為熱應力在基體110與絕緣體178之邊緣部分周遭,第一絕緣層120可充分地避免破損,從而避免基體110與電極層140之間的電弧。In the present embodiment, the base 110 may include a first inclined portion at the upper edge portion, such that the upper surface of the insulator 178 may be lower than the upper surface of the base 110. Therefore, the base 110 may be disposed closer to the electrode layer 140 than the insulator 178, and the thickness of the first insulating layer 120 may be greater than the second region B in the first region A. The first region A of the first insulating layer 120 may be defined as a region between the insulator 178 and the electrode layer 140, and the second region B of the first insulating layer 120 may be defined as between the upper surfaces of the substrate, except for the first An inclined portion of the insulating layer 120. Although the density of the first insulating layer 120 may be smaller than the second region B in the first region A, the thickness of the first insulating layer 120 may be greater than the second region B in the first region A, thereby compensating for the first insulating layer 120. The smaller density of a region A. Therefore, the leakage current of the first region A of the first insulating layer 120 can be sufficiently avoided due to its thicker thickness, thereby avoiding an arc between the substrate 110 and the electrode layer 140. Further, since thermal stress is surrounded by the edge portions of the base 110 and the insulator 178, the first insulating layer 120 can sufficiently avoid breakage, thereby avoiding arcing between the base 110 and the electrode layer 140.

在一實施例中,電極層140亦可包括對應於基體110之第一傾斜部分的第二傾斜部分,因此對應於接頭177之電極層140可凹陷。如此一來,電極層140在基體110上的第一上表面可高於電極層140在接頭177上的第二上表面。因此,第一與第二介電層150與160之總厚度在第三區域C大於第四區域D。第一與第二介電層150與160之第三區域C可定義接頭177上總介電層之區域,且第一與第二介電層150與160之第四區域D可定義基體110上總介電層之區域。因此,當高電壓電力可經由接頭177施加於電極層140,靜電卡盤100上的基板在第三區域C比第四區域D與電極層140間隔的更開,從而避免接頭177與基板之間放電。In an embodiment, the electrode layer 140 may also include a second inclined portion corresponding to the first inclined portion of the base 110, and thus the electrode layer 140 corresponding to the joint 177 may be recessed. As such, the first upper surface of the electrode layer 140 on the substrate 110 can be higher than the second upper surface of the electrode layer 140 on the joint 177. Therefore, the total thickness of the first and second dielectric layers 150 and 160 is greater in the third region C than the fourth region D. The third region C of the first and second dielectric layers 150 and 160 may define a region of the total dielectric layer on the joint 177, and the fourth region D of the first and second dielectric layers 150 and 160 may define the substrate 110 The area of the total dielectric layer. Therefore, when high voltage power can be applied to the electrode layer 140 via the joint 177, the substrate on the electrostatic chuck 100 is spaced apart from the electrode layer 140 in the third region C than the fourth region D, thereby avoiding the connection between the joint 177 and the substrate. Discharge.

請再次參照第1圖,第一介電層150可位於電極層140上,如此使電極層140可埋於第一介電層150中。因此,電極層140可藉由第一介電層150包覆。舉例來說,第一介電層150可設置於電極層140之表面輪廓上以位於第一絕緣層120上,所以第一介電層150可位於電極層140上與第一絕緣層120上。舉例來說,第一介電層150可使用第一粉末進行熱噴塗程序,且因此第一介電層150可具有非晶形結構。也就是說,可使用相同粉末進行熱噴塗程序以形成第一介電層150與第一絕緣層120。Referring again to FIG. 1 , the first dielectric layer 150 may be disposed on the electrode layer 140 such that the electrode layer 140 may be buried in the first dielectric layer 150 . Therefore, the electrode layer 140 can be covered by the first dielectric layer 150. For example, the first dielectric layer 150 may be disposed on the surface contour of the electrode layer 140 to be located on the first insulating layer 120 , so the first dielectric layer 150 may be located on the electrode layer 140 and the first insulating layer 120 . For example, the first dielectric layer 150 can be thermally sprayed using the first powder, and thus the first dielectric layer 150 can have an amorphous structure. That is, the same powder may be used for the thermal spray process to form the first dielectric layer 150 and the first insulating layer 120.

舉例來說,第一介電層150可具有大約100微米到大約300微米的厚度。此外,第一介電層150可具有相對低的孔隙率,因為第一介電層150的內部空間可因非晶形結構變小。第一介電層150的孔隙率可大約小於2%,更佳地,小於大約1%。在本實施例中,第一介電層150的孔隙率可在大約0.5%到大約2%的範圍,更佳地,大約0.5%到大約1%。更進一步,第一介電層150可具有表面粗糙度(Ra)大約4微米到大約8微米,藉以具有大約超過14MPa的吸附強度。第一絕緣層150亦可具有超過大約650Hv的硬度。For example, the first dielectric layer 150 can have a thickness of from about 100 microns to about 300 microns. Further, the first dielectric layer 150 may have a relatively low porosity because the internal space of the first dielectric layer 150 may become smaller due to the amorphous structure. The first dielectric layer 150 may have a porosity of less than about 2%, more preferably less than about 1%. In the present embodiment, the first dielectric layer 150 may have a porosity of from about 0.5% to about 2%, more preferably from about 0.5% to about 1%. Still further, the first dielectric layer 150 may have a surface roughness (Ra) of about 4 microns to about 8 microns, thereby having an adsorption strength of more than about 14 MPa. The first insulating layer 150 may also have a hardness of more than about 650 Hv.

第二介電層160可位於第一介電層150上,且被傳輸的基板可位於第二介電層160上。舉例來說,第二介電層160可僅位於第一介電層150之表面上,或可位於基體110、第一絕緣層120所暴露的表面上以及第一介電層150之表面。因此,當第一絕緣層120與第一介電層150可堆疊於基體110上時,第二介電層160可設置於基體110上。所以,第一介電層150、第一絕緣層120與基體110可被第二介電層160覆蓋,從而減少因電漿造成第一介電層150、第一絕緣層120與基體110的傷害。舉例來說,藉由使用第二粉末之熱噴塗程序可形成第二介電層160,因此第二介電層160可具有結晶結構。第二介電層160可包括陶瓷。舉例來說,陶瓷可包括氧化鋁(Al2O3)、氧化釔(Y2O3)、氧化鋁/氧化釔(Al2O3/Y2O3)、氧化鋯(ZrO2)、碳化鋁(AlC)、氮化鈦(TiN)、氮化鋁(AlN)、碳化鈦(TiC)、氧化鎂(MgO)、氧化鈣(CaO)、氧化鈰(CeO2)、氧化鈦(TiO2)、碳化硼(BxCy)、氮化硼(BN)、氧化矽(SiO2)、碳化矽(SiC)、釔鋁石榴石(YAG)、莫來石(Mullite)、氟化鋁(AlF3)等等。上述化合物可單獨或組合使用。The second dielectric layer 160 may be located on the first dielectric layer 150 and the transferred substrate may be located on the second dielectric layer 160. For example, the second dielectric layer 160 may be located only on the surface of the first dielectric layer 150 or may be located on the substrate 110, the surface exposed by the first insulating layer 120, and the surface of the first dielectric layer 150. Therefore, when the first insulating layer 120 and the first dielectric layer 150 can be stacked on the substrate 110, the second dielectric layer 160 can be disposed on the substrate 110. Therefore, the first dielectric layer 150, the first insulating layer 120 and the substrate 110 may be covered by the second dielectric layer 160, thereby reducing the damage of the first dielectric layer 150, the first insulating layer 120 and the substrate 110 due to the plasma. . For example, the second dielectric layer 160 can be formed by a thermal spray process using a second powder, and thus the second dielectric layer 160 can have a crystalline structure. The second dielectric layer 160 can include ceramic. For example, the ceramic may include alumina (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), alumina / yttria (Al 2 O 3 /Y 2 O 3 ), zirconia (ZrO 2 ), aluminum carbide (AlC), titanium nitride (TiN), nitrogen Aluminum (AlN), titanium carbide (TiC), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO2), titanium oxide (TiO2), boron carbide (BxCy), boron nitride (BN), oxidation矽 (SiO 2 ), lanthanum carbide (SiC), yttrium aluminum garnet (YAG), mullite (Mullite), aluminum fluoride (AlF 3 ), and the like. The above compounds may be used singly or in combination.

舉例來說,第二介電層160可具有大約200微米到大約400微米的厚度。此外,第二介電層160可具有高於第一介電層150的孔隙率,因為其結晶結構。第二介電層160的孔隙率可在大約3%到大約7%的範圍。更進一步,第二介電層160可具有表面粗糙度(Ra)大約3微米到大約5微米,藉以具有大約超過14MPa的吸附強度。第二絕緣層160亦可具有超過大約650Hv的硬度。For example, the second dielectric layer 160 can have a thickness of from about 200 microns to about 400 microns. Further, the second dielectric layer 160 may have a higher porosity than the first dielectric layer 150 because of its crystalline structure. The porosity of the second dielectric layer 160 can range from about 3% to about 7%. Still further, the second dielectric layer 160 may have a surface roughness (Ra) of about 3 microns to about 5 microns, thereby having an adsorption strength of more than about 14 MPa. The second insulating layer 160 may also have a hardness of more than about 650 Hv.

第一與第二介電層150與160可分別具有大約100微米到大約300微米與大約200微米到400微米的厚度,係以第一與第二介電層150與160之總介電常數之觀點,總體積電阻例如是第一與第二介電層150與160的絕緣電阻以及用以固定基板至靜電卡盤100的吸附力。當第一介電層與第二介電層150與160之總厚度,也就是說,介電體之厚度可大於大約500微米,基板與電極層彼此過度的分開,因此基板無法良好的固定於靜電卡盤100上,所以較佳地第一與第二介電層150與160之總厚度可大約小於500微米。此外,當第二介電層160可具有大約小於200微米之厚度時,介電體之介電常數不足以使靜電力用以吸住(chuck)基板,因為介電常數決定性的被具有結晶結構的第二介電層160決定。更進一步,當第一介電層150可具有大約小於100微米的厚度,介電體的體積電阻不足以使靜電力用以吸住基板,因為體積電阻決定性的被具有非晶形結構的第一介電層150決定。因此,以第一介電層150可具有大於大約100微米之厚度,以及第二介電層160可具有大於大約200微米之厚度為條件下,第一與第二介電層150與160的總厚度不可大於大約500微米。由於這些原因,第一介電層150可具有大約100微米到大約300微米的厚度範圍,且第二介電層160可具有大約200微米到大約400微米的厚度範圍。The first and second dielectric layers 150 and 160 can each have a thickness of between about 100 microns and about 300 microns and between about 200 microns and 400 microns, with a total dielectric constant of the first and second dielectric layers 150 and 160. The total volume resistance is, for example, the insulation resistance of the first and second dielectric layers 150 and 160 and the adsorption force for fixing the substrate to the electrostatic chuck 100. When the total thickness of the first dielectric layer and the second dielectric layers 150 and 160, that is, the thickness of the dielectric body may be greater than about 500 micrometers, the substrate and the electrode layer are excessively separated from each other, so the substrate cannot be well fixed to The electrostatic chuck 100 is preferably so that the total thickness of the first and second dielectric layers 150 and 160 can be less than about 500 microns. In addition, when the second dielectric layer 160 can have a thickness of less than about 200 microns, the dielectric constant of the dielectric is insufficient for electrostatic forces to chuck the substrate because the dielectric constant is decisively crystalline. The second dielectric layer 160 is determined. Further, when the first dielectric layer 150 may have a thickness of less than about 100 micrometers, the volume resistance of the dielectric body is insufficient to cause an electrostatic force to attract the substrate because the volume resistance is decisively determined by the first medium having an amorphous structure. The electrical layer 150 determines. Thus, with the first dielectric layer 150 having a thickness greater than about 100 microns and the second dielectric layer 160 having a thickness greater than about 200 microns, the total of the first and second dielectric layers 150 and 160 The thickness cannot be greater than about 500 microns. For these reasons, the first dielectric layer 150 can have a thickness ranging from about 100 microns to about 300 microns, and the second dielectric layer 160 can have a thickness ranging from about 200 microns to about 400 microns.

因此,靜電卡盤100的介電體可包括具有一非晶形噴塗層與一結晶噴塗層的一多層(multilayer),因此在沒有減少任何介電常數下增加靜電卡盤100的體積電阻。舉例來說,第一介電層150可具有大約109 歐姆公分(Ω‧cm)到大約1011 歐姆公分(Ω‧cm)之體積電阻,此係傳統結晶熱噴塗層之體積電阻;第二介電層160可具有大約1013 歐姆公分(Ω‧cm)之體積電阻,此係傳統非晶形熱噴塗層之體積電阻。此外,靜電卡盤100之介電體可具有大約1013 歐姆公分之總體積電阻。因此,靜電卡盤100之介電體可包括具有結晶層與非晶形層之多層,此介電體可在介電常數不退化下增加介電體的體積電阻。體積電阻的改善可引導介電體之絕緣特性的增加,從而改善介電體之整體電性特性。另外,第一絕緣層120可包括具有良好體積電阻的非晶形熱噴塗層,從而改善介電體之整體體積電阻與電性特性。Thus, the dielectric of the electrostatic chuck 100 can include a multilayer having an amorphous sprayed layer and a crystalline sprayed layer, thereby increasing the volumetric resistance of the electrostatic chuck 100 without reducing any dielectric constant. For example, the first dielectric layer 150 may have a volume resistance of about 10 9 ohm centimeters (Ω ‧ cm) to about 10 11 ohm centimeters (Ω ‧ cm), which is the volume resistance of the conventional crystalline thermal spray coating layer; The dielectric layer 160 may have a volume resistance of about 10 13 ohm centimeters (Ω ‧ cm), which is the volume resistance of a conventional amorphous thermal spray coating. Additionally, the dielectric of electrostatic chuck 100 can have a total volume resistance of approximately 10 13 ohms. Therefore, the dielectric of the electrostatic chuck 100 may include a plurality of layers having a crystalline layer and an amorphous layer, which may increase the volume resistance of the dielectric without deteriorating the dielectric constant. The improvement in volume resistance can lead to an increase in the dielectric properties of the dielectric, thereby improving the overall electrical properties of the dielectric. In addition, the first insulating layer 120 may include an amorphous thermal spray layer having a good volume resistance, thereby improving the overall volume resistance and electrical characteristics of the dielectric.

在第一絕緣層120與包括第一與第二介電層150與160的介電體上可執行一後處理。舉例來說,以填充物填充不同之內部空間的程序可執行於第一絕緣層120與介電體上,且因此第一絕緣層120與介電體中的孔隙空間與裂痕可充分的被填充物填滿。填充程序可同時執行於整個第一絕緣層120、第一介電層150與第二介電層160上。此外,填充程序亦可單獨地分別執行於各個第一絕緣層120、第一介電層150與第二介電層160上。填充物可包括一樹酯,例如是基於矽的丙烯酸樹酯。A post process can be performed on the first insulating layer 120 and the dielectric including the first and second dielectric layers 150 and 160. For example, a procedure of filling a different inner space with a filler may be performed on the first insulating layer 120 and the dielectric, and thus the void spaces and cracks in the first insulating layer 120 and the dielectric may be sufficiently filled. Filled up. The filling process can be performed on the entire first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160 simultaneously. In addition, the filling process may also be separately performed on each of the first insulating layer 120, the first dielectric layer 150, and the second dielectric layer 160. The filler may comprise a resin such as a hydrazine based acrylate.

絕緣層120與介電體的體積電阻可藉由填充程序增加。舉例來說,具有結晶結構之第二介電層160的體積電阻藉由填充程序可從大約109 歐姆公分到大約1011 歐姆公分之範圍增加到大約1013 歐姆公分。此外,具有非晶形結構之第一介電層150與第一絕緣層120之體積電阻藉由填充程序可由1013 歐姆公分增加至大約1014 歐姆公分到大約1015 歐姆公分之範圍。更進一步,介電體之總體積電阻藉由填充程序亦可由大約1013 歐姆公分增加至大約1014 歐姆公分到大約1015 歐姆公分之範圍。The volume resistance of the insulating layer 120 and the dielectric can be increased by a filling procedure. For example, the volume resistance of the second dielectric layer 160 having a crystalline structure can be increased from about 10 9 ohm centimeters to about 10 11 ohm centimeters to about 10 13 ohm centimeters by a filling procedure. In addition, the volume resistance of the first dielectric layer 150 and the first insulating layer 120 having an amorphous structure may be increased from 10 13 ohms to about 10 14 ohms to about 10 15 ohms by a filling procedure. Furthermore, the total volume resistance of the dielectric body can also be increased from about 10 13 ohms to about 10 14 ohms to about 10 15 ohms by the filling procedure.

因此,具有一非晶形層與一結晶層之多層結構之靜電卡盤100,此靜電卡盤之介電體之體積電阻在介電常數沒有退化下體積電阻可充分的增加,從而減少從介電體之漏電流與電弧。此外,絕緣層之絕緣特性亦可因非晶形熱噴塗層之高體積電阻而充分的改善。Therefore, the electrostatic chuck 100 having a multilayer structure of an amorphous layer and a crystalline layer, the volume resistance of the dielectric of the electrostatic chuck can be sufficiently increased without deteriorating the dielectric constant, thereby reducing the dielectric from the dielectric The leakage current and arc of the body. In addition, the insulating properties of the insulating layer can be sufficiently improved by the high volume resistance of the amorphous thermal spray coating.

如果第一介電層150可包括結晶熱噴塗層且第二介電層160可包括非晶形熱噴塗層相反於上述介電體之組態,介電體之總體積電阻亦可在無任何介電常數之退化下改善。然而,非晶形結構可具有更多破裂的機會,因為非晶形熱噴塗層之熱膨脹係數相對較小,儘管其有高體積電阻。此外,非晶形結構亦可具有更多電弧的機會,因為介電常數的增加。由於這些原因,較佳地,結晶熱噴塗層而非非晶形熱噴塗層可位於靜電卡盤100之頂部。因此,包括結晶熱噴塗層之第二介電層160可位於包括非晶形熱噴塗層之第一介電層150上,且因此結晶熱噴塗層可設置在靜電卡盤100之頂部。If the first dielectric layer 150 can include a crystalline thermal spray coating and the second dielectric layer 160 can include an amorphous thermal spray coating opposite to the configuration of the dielectric described above, the total volume resistance of the dielectric can also be without any Improvement under the degradation of the electrical constant. However, the amorphous structure may have more chance of cracking because the amorphous thermal spray coating has a relatively small coefficient of thermal expansion despite its high volume resistance. In addition, the amorphous structure may also have more chance of arcing due to an increase in dielectric constant. For these reasons, preferably, the crystalline thermal spray coating, rather than the amorphous thermal spray coating, can be located on top of the electrostatic chuck 100. Accordingly, the second dielectric layer 160 including the crystalline thermal spray coating can be located on the first dielectric layer 150 including the amorphous thermal spray coating, and thus the crystalline thermal spray coating can be disposed on top of the electrostatic chuck 100.

第4圖繪示依照本發明之另一實施例之靜電卡盤的剖面圖。繪示於第4圖中的靜電卡盤200與第1圖中的靜電卡盤100具有相似之結構與組態,第4圖中與第1圖中相同的符號表示相同之元件。Figure 4 is a cross-sectional view showing an electrostatic chuck in accordance with another embodiment of the present invention. The electrostatic chuck 200 shown in Fig. 4 has a similar structure and configuration to the electrostatic chuck 100 of Fig. 1, and the same reference numerals in Fig. 4 as those in Fig. 1 denote the same elements.

請參照第4圖,依照本發明之另一實施例之靜電卡盤200可包括一基體110、一第一絕緣層220、一第二絕緣層230、一電極層140、一第一介電層150、一第二介電層160與一連接器170。Referring to FIG. 4, an electrostatic chuck 200 according to another embodiment of the present invention may include a substrate 110, a first insulating layer 220, a second insulating layer 230, an electrode layer 140, and a first dielectric layer. 150. A second dielectric layer 160 and a connector 170.

基體110可具有平板或圓柱形狀,且可具有對應於被加工之物體的大小,物體可例如是基板。舉例來說,基體110可包括金屬,例如是鋁(Al)。此外,基體110可更包括一金屬層塗佈於基體110上。The base 110 may have a flat or cylindrical shape and may have a size corresponding to the object being processed, and the object may be, for example, a substrate. For example, the substrate 110 can comprise a metal, such as aluminum (Al). In addition, the substrate 110 may further include a metal layer coated on the substrate 110.

第一絕緣層220可位於基體110上。舉例來說,第一絕緣層220可位於基體110之上表面的一部分上。第一絕緣層220可具有非晶形結構,且可藉由使用第一粉末的熱噴塗程序形成。第一絕緣層220可具有大約大於100微米的厚度,較佳地,具有大約100微米至300微米的厚度且可使基體110與電極層140彼此電性絕緣。如果第一絕緣層220可具有小於大約100微米之厚度,第一絕緣層220之體積電阻會太小以使基體110與電極層140之間的無法彼此電性絕緣。因此,第一絕緣層220可具有至少大約100微米之厚度。此外,第一絕緣層220的孔隙率可小於大約2%,且較佳地,小於大約1%。在本實施例中,第一絕緣層220可具有大約0.5%到大約2%的孔隙率,較佳地,大約0.5%到大約1%的孔隙率。更進一步,第一絕緣層220亦可具有大約4微米到大約8微米的表面粗糙度(Ra),因此具有大約14MPa的附著強度且亦可具有大約650Hv的硬度。The first insulating layer 220 may be located on the substrate 110. For example, the first insulating layer 220 may be located on a portion of the upper surface of the substrate 110. The first insulating layer 220 may have an amorphous structure and may be formed by a thermal spraying process using the first powder. The first insulating layer 220 may have a thickness greater than about 100 microns, preferably from about 100 microns to 300 microns, and may electrically insulate the substrate 110 from the electrode layer 140 from each other. If the first insulating layer 220 may have a thickness of less than about 100 microns, the volume resistance of the first insulating layer 220 may be too small to electrically insulate the substrate 110 from the electrode layer 140 from each other. Thus, the first insulating layer 220 can have a thickness of at least about 100 microns. Additionally, the first insulating layer 220 may have a porosity of less than about 2%, and preferably less than about 1%. In the present embodiment, the first insulating layer 220 may have a porosity of about 0.5% to about 2%, preferably about 0.5% to about 1%. Furthermore, the first insulating layer 220 may also have a surface roughness (Ra) of about 4 microns to about 8 microns, and thus has an adhesion strength of about 14 MPa and may also have a hardness of about 650 Hv.

第二絕緣層230可位於第一絕緣層220上。舉例來說,第二絕緣層230可藉由使用第二粉末之熱噴塗程序僅塗佈於第一絕緣層220之上表面,且因此第二絕緣層230可具有結晶結構。第二絕緣層220可包括陶瓷。舉例來說,陶瓷可包括氧化鋁(Al2O3)、氧化釔(Y2O3)、氧化鋁/氧化釔(Al2O3/Y2O3)、氧化鋯(ZrO2)、碳化鋁(AlC)、氮化鈦(TiN)、氮化鋁(AlN)、碳化鈦(TiC)、氧化鎂(MgO)、氧化鈣(CaO)、氧化鈰(CeO2)、氧化鈦(TiO2)、碳化硼(BxCy)、氮化硼(BN)、氧化矽(SiO2)、碳化矽(SiC)、釔鋁石榴石(YAG)、莫來石(Mullite)、氟化鋁(AlF3)等等。上述化合物可單獨或組合使用。The second insulating layer 230 may be located on the first insulating layer 220. For example, the second insulating layer 230 may be applied only to the upper surface of the first insulating layer 220 by a thermal spraying process using the second powder, and thus the second insulating layer 230 may have a crystalline structure. The second insulating layer 220 may include ceramic. For example, the ceramic may include alumina (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), alumina / yttria (Al 2 O 3 /Y 2 O 3 ), zirconia (ZrO 2 ), aluminum carbide (AlC), titanium nitride (TiN), nitrogen Aluminum (AlN), titanium carbide (TiC), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO2), titanium oxide (TiO2), boron carbide (BxCy), boron nitride (BN), oxidation矽 (SiO 2 ), lanthanum carbide (SiC), yttrium aluminum garnet (YAG), mullite (Mullite), aluminum fluoride (AlF 3 ), and the like. The above compounds may be used singly or in combination.

第二絕緣層230可具有大約200微米到大約400微米之厚度,且因第二絕緣層230之孔隙率大於第一絕緣層220之孔隙率,因為第二絕緣層具有結晶結構。舉例來說,第二絕緣層230可具有大約3%到大約7%的孔隙率。第二絕緣層230亦可具有大約3微米到大約5微米的表面粗糙度(Ra),具有大約14MPa的附著強度且亦可具有大約650Hv的硬度。The second insulating layer 230 may have a thickness of about 200 micrometers to about 400 micrometers, and the porosity of the second insulating layer 230 is greater than the porosity of the first insulating layer 220 because the second insulating layer has a crystalline structure. For example, the second insulating layer 230 may have a porosity of about 3% to about 7%. The second insulating layer 230 may also have a surface roughness (Ra) of about 3 microns to about 5 microns, an adhesion strength of about 14 MPa, and may also have a hardness of about 650 Hv.

當本實施例可揭露第二絕緣層230在靜電卡盤200中可位於第一絕緣層220上,第二絕緣層230可被修改為位於基體110上,特別地,設置於基體110與第一絕緣層220之間。也就是說,第一與第二絕緣層220與230可一起形成一絕緣體並位於基體110與電極層140之間,且在絕緣體中第一與第二絕緣層之堆疊順序係可交換。因此,用以在靜電卡盤200中電性絕緣的基體110與電極層140之絕緣體可包括多層,此多層中可堆疊一結晶結構層與一非晶形結構層,從而改善靜電卡盤200之體積電阻與絕緣特性。When the second insulating layer 230 can be located on the first insulating layer 220 in the electrostatic chuck 200, the second insulating layer 230 can be modified to be located on the substrate 110, in particular, the substrate 110 and the first Between the insulating layers 220. That is, the first and second insulating layers 220 and 230 may together form an insulator and be located between the substrate 110 and the electrode layer 140, and the stacking order of the first and second insulating layers may be exchanged in the insulator. Therefore, the insulator of the substrate 110 and the electrode layer 140 for electrically insulating in the electrostatic chuck 200 may include a plurality of layers in which a crystal structure layer and an amorphous structure layer may be stacked, thereby improving the volume of the electrostatic chuck 200. Resistance and insulation properties.

電極層140可設置於第二絕緣層230上,且產生靜電力。舉例來說,電極層140可位於第二絕緣層230之上表面的一部份上。電極層140可包括導電材料,例如是鎢(W)。The electrode layer 140 may be disposed on the second insulating layer 230 and generate an electrostatic force. For example, the electrode layer 140 may be located on a portion of the upper surface of the second insulating layer 230. The electrode layer 140 may include a conductive material such as tungsten (W).

第一與第二介電層150與160可連續地位於電極層140上,且可作為介電體之功能,藉由電極層140可產生一靜電力於其上。第一介電層150可藉由使用第一粉末之熱噴塗程序形成,且第二介電層160可藉由使用第二粉末之熱噴塗程序形成,因此第一介電層150可具有非晶形結構且第二介電層160可具有結晶結構。The first and second dielectric layers 150 and 160 may be continuously disposed on the electrode layer 140 and function as a dielectric through which the electrode layer 140 can generate an electrostatic force. The first dielectric layer 150 can be formed by a thermal spraying process using the first powder, and the second dielectric layer 160 can be formed by a thermal spraying process using the second powder, so the first dielectric layer 150 can have an amorphous shape. The structure and the second dielectric layer 160 may have a crystalline structure.

因此,用以在靜電卡盤200中產生靜電力的介電體以及絕緣體亦可包括多層,此多層中可堆疊一結晶熱噴塗層與一非晶形熱噴塗層。介電體的結晶層可充分地改善介電常數用以產生靜電力,且介電體的非晶形層可改善靜電卡盤200之體積電阻與絕緣特性。靜電卡盤200在沒有任何介電常數之減少下具有改善的體積電阻,且具有極佳的絕緣特性。因此,靜電卡盤200可充分的避免因漏電流產生的傷害,從而改善靜電卡盤200的電性特性。Therefore, the dielectric body and the insulator for generating an electrostatic force in the electrostatic chuck 200 may further include a plurality of layers in which a crystalline thermal sprayed layer and an amorphous thermal sprayed layer may be stacked. The crystalline layer of the dielectric can sufficiently improve the dielectric constant to generate an electrostatic force, and the amorphous layer of the dielectric can improve the volume resistance and insulating properties of the electrostatic chuck 200. The electrostatic chuck 200 has an improved volume resistance without any reduction in dielectric constant and has excellent insulating properties. Therefore, the electrostatic chuck 200 can sufficiently avoid the damage caused by the leakage current, thereby improving the electrical characteristics of the electrostatic chuck 200.

舉例來說,連接器170可貫穿基體110、第一絕緣層220與第二絕緣層230,且因此接觸電極層140。高電壓電力可從一外部電源施加於電極層140。For example, the connector 170 may penetrate the base 110, the first insulating layer 220, and the second insulating layer 230, and thus contact the electrode layer 140. High voltage power can be applied to the electrode layer 140 from an external power source.

在本實施例中的連接器170實質上可具有與第2圖及第3圖說明之連接器相同之結構與組態,除了第二絕緣層230可額外地設置於基體110與電極層140之間。因此,任何關於連接器170詳細的說明將被省略。The connector 170 in this embodiment may have substantially the same structure and configuration as the connector illustrated in FIGS. 2 and 3 except that the second insulating layer 230 may be additionally disposed on the base 110 and the electrode layer 140. between. Therefore, any detailed description about the connector 170 will be omitted.

以下,本實施例之靜電卡盤之絕緣電阻與較佳的實驗可與傳統之靜電卡盤相比較。Hereinafter, the insulation resistance of the electrostatic chuck of the present embodiment and a preferred experiment can be compared with a conventional electrostatic chuck.

實施之實驗所用之條件在傳統之靜電卡盤與本實施例之靜電卡盤所用的是一樣的。靜電卡盤之尺寸係大約300Φ與45T,且絕緣體與介電體之總厚度大約950微米到大約1050微米的範圍內,在介電體具有大約400微米到大約500微米的條件下。施加於靜電卡盤之電極層電力通常從大約500伏特到大約2500伏特,藉由一大約500伏特之單位部級(unit step)。The conditions used in the experiments carried out were the same as those used in the conventional electrostatic chuck of the present embodiment. The size of the electrostatic chuck is about 300 Φ and 45 T, and the total thickness of the insulator and dielectric is in the range of about 950 microns to about 1050 microns, and the dielectric has a condition of about 400 microns to about 500 microns. The electrode layer power applied to the electrostatic chuck typically ranges from about 500 volts to about 2500 volts by a unit step of about 500 volts.

第5圖繪示靜電卡盤之絕緣電阻與施加於靜電卡盤之電力間的關係示意圖。Figure 5 is a schematic diagram showing the relationship between the insulation resistance of the electrostatic chuck and the power applied to the electrostatic chuck.

在第5圖中,本實施例之靜電卡盤100的介電體的絕緣電阻具有至少大約為傳統靜電卡盤的絕緣電阻的2.5倍。因此,實驗結果顯示具有包括結晶熱噴塗層與非晶形熱噴塗層之多層的介電體具有的體積電阻,遠大於包括單一結晶層的傳統介電體。In Fig. 5, the dielectric resistance of the dielectric body of the electrostatic chuck 100 of the present embodiment has at least about 2.5 times the insulation resistance of the conventional electrostatic chuck. Therefore, the experimental results show that the dielectric body having a plurality of layers including the crystalline thermal sprayed layer and the amorphous thermal sprayed layer has a volume resistance much larger than that of a conventional dielectric body including a single crystalline layer.

因為絕緣電阻的改善,從靜電卡盤100之漏電流可充分的減少,且因此在靜電卡盤100中藉由漏電流產生之電弧亦可避免。Since the insulation resistance is improved, the leakage current from the electrostatic chuck 100 can be sufficiently reduced, and thus the arc generated by the leakage current in the electrostatic chuck 100 can be avoided.

特別地,傳統靜電卡盤之絕緣電阻對於從大約500伏特到大約2500伏特之電力的電壓變化相對於本實施例提供之靜電卡盤100較不敏感。根據實驗結果,傳統靜電卡盤之絕緣電阻起始大約5530MΩ,當大約500伏特之電力施加於電極層;絕緣電阻增加至至多大約5780MΩ,當大約2500伏特之電力施加於在傳統靜電卡盤中的電極層。詳細地,傳統靜電卡盤之絕緣電阻量測為大約5640MΩ、5780MΩ與5650MΩ,當電力施加於電極層之伏特分別在大約1000伏特、1500伏特與2000伏特。也就是說,越高之電力的電壓,在傳統靜電卡盤中的漏電流更多,在一樣的電阻下電流正比於電壓。因此,電力之電壓變高,在傳統靜電卡盤中因漏電流產生的電弧產生頻率更高。因此,越高之電力之電壓,傳統靜電卡盤之電力特性越退化。In particular, the insulation resistance of a conventional electrostatic chuck is less sensitive to voltage changes from about 500 volts to about 2500 volts relative to the electrostatic chuck 100 provided by this embodiment. According to the experimental results, the insulation resistance of the conventional electrostatic chuck starts at about 5530 MΩ, when about 500 volts of power is applied to the electrode layer; the insulation resistance increases to at most about 5780 MΩ, when about 2500 volts of power is applied to the conventional electrostatic chuck. Electrode layer. In detail, the insulation resistance of the conventional electrostatic chuck is measured to be about 5640 MΩ, 5780 MΩ, and 5650 MΩ, and the volts applied to the electrode layer when the power is applied are about 1000 volts, 1500 volts, and 2000 volts, respectively. That is to say, the higher the voltage of the power, the more leakage current in the conventional electrostatic chuck, and the current is proportional to the voltage under the same resistance. Therefore, the voltage of the electric power becomes high, and the frequency of the arc generated by the leakage current in the conventional electrostatic chuck is higher. Therefore, the higher the voltage of the power, the more degraded the power characteristics of the conventional electrostatic chuck.

相反地,本實施例之靜電卡盤100絕緣電阻對於從大約500伏特到大約2500伏特之電力的電壓變化相對於本實施例提供之靜電卡盤100較敏感。根據實驗結果,當大約500伏特之電力施加於電極層,靜電卡盤100之絕緣電阻起始大約14900MΩ;當大約2500伏特之電力施加於在靜電卡盤100中的電極層,絕緣電阻大幅增加至大約24600MΩ,增加達起始絕緣電阻大約65%之多。詳細地,靜電卡盤100之絕緣電阻量測為大約18200MΩ、21200MΩ與23500MΩ,當電力施加於電極層之伏特分別在大約1000伏特、1500伏特與2000伏特。也就是說,儘管電力的電壓增加,漏電流仍最小化,因為當電力之電壓增加,絕緣電阻仍連續地增加。因此,雖然電力之電壓在靜電卡盤100中增加,仍可充分的避免因為漏電流產生電弧。In contrast, the insulation resistance of the electrostatic chuck 100 of the present embodiment is relatively sensitive to voltage changes from about 500 volts to about 2500 volts relative to the electrostatic chuck 100 provided in this embodiment. According to the experimental results, when an electric power of about 500 volts is applied to the electrode layer, the insulation resistance of the electrostatic chuck 100 starts at about 14900 MΩ; when an electric power of about 2500 volts is applied to the electrode layer in the electrostatic chuck 100, the insulation resistance is greatly increased to Approximately 24,600 MΩ, which increases the initial insulation resistance by as much as 65%. In detail, the insulation resistance of the electrostatic chuck 100 is measured to be about 18,200 MΩ, 2,1200 MΩ, and 23,500 MΩ, and the voltage applied to the electrode layer is about 1000 volts, 1500 volts, and 2000 volts, respectively. That is, although the voltage of the electric power increases, the leakage current is minimized because the insulation resistance continuously increases as the voltage of the electric power increases. Therefore, although the voltage of the electric power is increased in the electrostatic chuck 100, arcing due to leakage current can be sufficiently avoided.

因此,根據本發明之實施例的靜電卡盤100或200可包括具有堆疊之結晶層與非晶形層的多層之介電體或絕緣體,從而增加介電體或絕緣體之絕緣電阻。因此,在靜電卡盤100或200中的漏電流可被充分的減少,且因漏電流造成之電弧可在靜電卡盤100或200中大幅的減少。Therefore, the electrostatic chuck 100 or 200 according to an embodiment of the present invention may include a plurality of dielectric bodies or insulators having a stacked crystal layer and an amorphous layer, thereby increasing the insulation resistance of the dielectric body or the insulator. Therefore, the leakage current in the electrostatic chuck 100 or 200 can be sufficiently reduced, and the arc due to the leakage current can be greatly reduced in the electrostatic chuck 100 or 200.

第6圖繪示當操作傳統之靜電卡盤與本發明構思之靜電卡盤時,漏電流與操作時間以及氦氣洩漏與操作時間的關係示意圖。Fig. 6 is a view showing the relationship between leakage current and operation time, and leakage of helium and operation time when a conventional electrostatic chuck and an electrostatic chuck of the present invention are operated.

第6圖更清楚的顯示在同一操作時間,靜電卡盤100中的漏電流低於傳統靜電卡盤的漏電流。Figure 6 more clearly shows that at the same operating time, the leakage current in the electrostatic chuck 100 is lower than the leakage current of the conventional electrostatic chuck.

基板的溫度一般因用以製造半導體裝置之施加電漿設備的電漿源而升高,且基板之高溫會造成許多不同的程序缺陷。因此,冷卻氣體例如氦氣係常透過貫孔提供於基板之背面,且因此基板可冷卻至預期之溫度。在此狀況下,貫孔通過靜電卡盤中的基體、絕緣體與/或介電體。冷卻氣體之用量常決定地藉由靜電卡盤之吸附品質(chuck quiality)決定。靜電卡盤之吸附品質意指靜電卡盤對於基板之緊附程度。當靜電卡盤具有良好的吸附品質,介於基板與靜電卡盤之間的間隙空間係充分的密封並隔絕環境,且氦氣不會從基板與靜電卡盤之間的間隙空間漏出。也就是說,越佳的吸附品質,就會越少的氦氣漏出量。相反地,當靜電卡盤具有退化的吸附品質,介於基板與靜電卡盤100之間的間隙空間便無法充足的密封並隔絕環境,且氦氣容易會從基板與靜電卡盤之間的間隙空間漏出。也就是說,越差的吸附品質,就會越多的氦氣漏出量。The temperature of the substrate is generally increased by the plasma source used to fabricate the semiconductor device to apply the plasma device, and the high temperature of the substrate can cause many different program defects. Therefore, a cooling gas such as helium gas is often supplied through the through holes to the back surface of the substrate, and thus the substrate can be cooled to a desired temperature. In this case, the through holes pass through the substrate, the insulator and/or the dielectric in the electrostatic chuck. The amount of cooling gas used is often determined by the chuck quiality of the electrostatic chuck. The adsorption quality of the electrostatic chuck means the degree of adhesion of the electrostatic chuck to the substrate. When the electrostatic chuck has good adsorption quality, the gap space between the substrate and the electrostatic chuck is sufficient to seal and insulate the environment, and the helium gas does not leak from the gap space between the substrate and the electrostatic chuck. In other words, the better the adsorption quality, the less the amount of helium leaks. Conversely, when the electrostatic chuck has degraded adsorption quality, the gap space between the substrate and the electrostatic chuck 100 cannot be sufficiently sealed and insulated from the environment, and the helium gas is likely to be separated from the gap between the substrate and the electrostatic chuck. Space leaks out. That is to say, the worse the adsorption quality, the more the amount of helium leaks.

第6圖的實驗結果顯示靜電卡盤100中的氦氣漏出的量遠小於傳統靜電卡盤,且結果顯示靜電卡盤100的吸附品質可遠優於傳統的靜電卡盤。此外,傳統靜電卡盤中氦氣的量隨著操作時間的經過係跳動的,而靜電卡盤100中氦氣的量隨著操作時間的經過係一致的。也就是說,氦氣漏出的量在靜電卡盤100遠比傳統靜電卡盤要一致。The experimental results of Fig. 6 show that the amount of helium leakage in the electrostatic chuck 100 is much smaller than that of the conventional electrostatic chuck, and the results show that the adsorption quality of the electrostatic chuck 100 can be much superior to the conventional electrostatic chuck. In addition, the amount of helium in the conventional electrostatic chuck jumps with the passage of the operation time, and the amount of helium in the electrostatic chuck 100 is consistent with the passage of the operation time. That is to say, the amount of helium leakage is much higher in the electrostatic chuck 100 than in the conventional electrostatic chuck.

因此,第5圖與第6圖中的實驗結果顯示在靜電卡盤100中漏電流與氦氣漏出皆遠較傳統靜電卡盤減少,此顯示靜電卡盤100之吸附品質可遠優於傳統靜電卡盤之吸附品質。更進一步,第5圖與第6圖中的實驗結果亦顯示靜電卡盤100的吸附品質之均勻性遠優於傳統靜電卡盤。Therefore, the experimental results in FIGS. 5 and 6 show that the leakage current and the helium gas leakage in the electrostatic chuck 100 are far less than those of the conventional electrostatic chuck, which shows that the adsorption quality of the electrostatic chuck 100 can be far superior to the conventional static electricity. The adsorption quality of the chuck. Furthermore, the experimental results in FIGS. 5 and 6 also show that the uniformity of the adsorption quality of the electrostatic chuck 100 is much better than that of the conventional electrostatic chuck.

第7A圖繪示包括第1圖與第2圖中之靜電卡盤的施加電漿裝置的蝕刻速率示意圖。第7B圖繪示包括傳統之靜電卡盤的施加電漿裝置的蝕刻量示意圖。FIG. 7A is a schematic diagram showing the etching rate of the plasma application device including the electrostatic chucks in FIGS. 1 and 2. FIG. 7B is a schematic view showing the etching amount of the plasma applying device including the conventional electrostatic chuck.

具有靜電卡盤100之第一電漿蝕刻裝置與具有傳統靜電卡盤之第二電漿蝕刻裝置設定相同的程序條件。基板分別在第一與第二電漿蝕刻裝置中操作。接著,各基板的蝕刻面積區分成多個矩陣,且基板的每個矩陣的蝕刻量被量測並繪製於第7A與7B圖。電漿空間(plasna space)之高度大約120釐米(mm)且內部壓力大約250 mTorr於各第一與第二電漿蝕刻裝置。電力大約5000瓦施加於各電漿蝕刻裝置以產生電漿蝕刻源。此外,六氟化硫(SF6)氣體大約400mTorr、氧氣大約7000mTorr分別提供於電漿蝕刻裝置兩者作為氣體源用於電漿蝕刻程序。The first plasma etching apparatus having the electrostatic chuck 100 sets the same program conditions as the second plasma etching apparatus having the conventional electrostatic chuck. The substrate is operated in the first and second plasma etching devices, respectively. Next, the etching area of each substrate is divided into a plurality of matrices, and the etching amount of each matrix of the substrate is measured and plotted in FIGS. 7A and 7B. The plasna space has a height of about 120 centimeters (mm) and an internal pressure of about 250 mTorr to each of the first and second plasma etching devices. Approximately 5,000 watts of power is applied to each of the plasma etching devices to produce a plasma etch source. Further, sulfur hexafluoride (SF6) gas of about 400 mTorr and oxygen of about 7000 mTorr are respectively supplied to the plasma etching apparatus as a gas source for the plasma etching process.

第一電漿蝕刻裝置的蝕刻量。The amount of etching of the first plasma etching apparatus.

第二電漿蝕刻裝置的蝕刻量。The amount of etching of the second plasma etching apparatus.

蝕刻程序的均勻性以方程式(1)計算。The uniformity of the etching procedure is calculated by equation (1).

蝕刻程序的均勻性=(最大蝕刻量-最小蝕刻量)/(最大蝕刻量+最小蝕刻量)----方程式(1)。Uniformity of the etching procedure = (maximum etching amount - minimum etching amount) / (maximum etching amount + minimum etching amount) - Equation (1).

上述表一與表二之實驗結果直觀的繪製於第7A與第7B圖。The experimental results of Tables 1 and 2 above are graphically plotted in Figures 7A and 7B.

請參照第7A圖與第7B圖,在第一電漿蝕刻裝置中的平均蝕刻量大約13290.7,而在第二電漿蝕刻裝置中的平均蝕刻量大約10840.7。因此,包括靜電卡盤100之第一電漿蝕刻裝置的實驗結果顯示比包括傳統靜電卡盤之第二電漿蝕刻裝置有優越的表現。Referring to FIGS. 7A and 7B, the average etching amount in the first plasma etching apparatus is about 13290.7, and the average etching amount in the second plasma etching apparatus is about 10840.7. Therefore, the experimental results of the first plasma etching apparatus including the electrostatic chuck 100 show superior performance to the second plasma etching apparatus including the conventional electrostatic chuck.

此外,在第二電漿蝕刻裝置中蝕刻程序的均勻性大約18.8%,而在第一電漿蝕刻裝置中蝕刻程序的均勻性大約7.15%。因此,包括靜電卡盤100之第一電漿蝕刻裝置的實驗結果亦顯示比包括傳統靜電卡盤之第二電漿蝕刻裝置有優越的蝕刻均勻性。Further, the uniformity of the etching process in the second plasma etching apparatus is about 18.8%, and the uniformity of the etching process in the first plasma etching apparatus is about 7.15%. Therefore, the experimental results of the first plasma etching apparatus including the electrostatic chuck 100 also show superior etching uniformity than the second plasma etching apparatus including the conventional electrostatic chuck.

因此,在電漿蝕刻裝置中藉由使用靜電卡盤基板可被蝕刻的更有均勻性,從而改善蝕刻程序的可靠性。Therefore, the uniformity of etching can be etched by using the electrostatic chuck substrate in the plasma etching apparatus, thereby improving the reliability of the etching process.

以下,用於非晶形熱噴塗層之第一粉末將被詳細說明。Hereinafter, the first powder for the amorphous thermal spray layer will be described in detail.

第8圖繪示用以形成第1圖中之非晶形熱噴塗層的第一粉末之分子結構的照片。Figure 8 is a photograph showing the molecular structure of the first powder used to form the amorphous thermal sprayed layer of Figure 1.

請參照第8圖,第一粉末可從第一與第二漿液之混合物得到。以下,漿液的量可基於重量百分比描述。Referring to Figure 8, the first powder can be obtained from a mixture of the first and second slurries. Hereinafter, the amount of the slurry can be described based on the weight percentage.

第一漿液可包括多個氧化釔(Y2O3)粒子、第一分散劑、第一結合劑與第一溶劑。The first slurry may include a plurality of yttria (Y 2 O 3 ) particles, a first dispersant, a first binder, and a first solvent.

氧化釔粒子可具有大約0.01微米到大約2微米的直徑。當氧化釔粒子具有之直徑小於大約0.01微米,第一粉末的平均直徑太小以致於第一粉末之粒子具有粗粒(coarse-grained)粒子,難以具有球形。相反地,當氧化釔粒子具有之直徑大於大約2微米,氧化釔粒子的平均直徑太大以致於結塊,且因此第一粉末之粗粒粒子之平均直徑極度地增加。The cerium oxide particles can have a diameter of from about 0.01 microns to about 2 microns. When the cerium oxide particles have a diameter of less than about 0.01 μm, the average diameter of the first powder is too small that the particles of the first powder have coarse-grained particles, and it is difficult to have a spherical shape. Conversely, when the cerium oxide particles have a diameter greater than about 2 microns, the average diameter of the cerium oxide particles is too large to agglomerate, and thus the average diameter of the coarse particles of the first powder is extremely increased.

第一分散劑可在第一漿液中均勻分散氧化釔粒子。舉例來說,第一分散劑可包括基本材料。基本材料例如是可包括碳基(carboxyl-based)材料、酯基(ester-based)材料、氨基材料(amide-based)等。此些可單獨或組合使用。第一分散劑之pH值可為大約10到大約12,更佳地,大約為10。當第一分散劑可包括基本材料,氧化釔粒子具有負表面電荷。第一漿液中之第一分散劑的量可在大約0.3%到大約0.5%的範圍。當第一分散劑的量在第一漿液中可大於大約0.5%,第一漿液難以藉由乾噴霧程序(dry spray process)形成球形。相反地,當第一分散劑的量在第一漿液中可小於大約0.3%,第一漿液可具有過度的黏度。The first dispersant uniformly disperses the cerium oxide particles in the first slurry. For example, the first dispersant can include a base material. The base material may include, for example, a carboxyl-based material, an ester-based material, an amide-based, or the like. These can be used singly or in combination. The pH of the first dispersant can range from about 10 to about 12, and more preferably, about 10. When the first dispersant may include a base material, the cerium oxide particles have a negative surface charge. The amount of the first dispersant in the first slurry may range from about 0.3% to about 0.5%. When the amount of the first dispersant is greater than about 0.5% in the first slurry, the first slurry is difficult to form a sphere by a dry spray process. Conversely, when the amount of the first dispersant can be less than about 0.3% in the first slurry, the first slurry can have an excessive viscosity.

第一結合劑可在第一漿液中化學鍵結氧化釔粒子。第一漿液中之第一結合劑的量可在大約2%到大約3%的範圍。當第一結合劑的量在第一漿液中可小於大約2%,氧化釔粒子難以彼此鍵結且因此第一粉末難以形成球形,當第一結合劑的量大於大約3%,第一漿液可具有過度的黏度。第一結合劑可包括乙烯為基礎(vinyl-based)的材料、丙烯為基礎(acryl-based)的材料等。The first binder can chemically bond the cerium oxide particles in the first slurry. The amount of the first binder in the first slurry can range from about 2% to about 3%. When the amount of the first binder is less than about 2% in the first slurry, the cerium oxide particles are difficult to bond to each other and thus the first powder is difficult to form a sphere, and when the amount of the first binder is greater than about 3%, the first slurry may be Has excessive viscosity. The first binder may include a vinyl-based material, an acryl-based material, and the like.

第一漿液可包括第一溶劑的剩餘量(residual amount),氧化釔粒子、第一分散劑與第一結合劑溶解於其中。當第一結合劑可包括一乙烯為基礎的材料,第一溶劑可包括有機底材料,例如是乙醇。相反地,當第一結合劑可包括一丙烯為基礎的材料,第一溶劑可包括水相底材料。乙烯為基礎的材料可包括乙烯醋酸乙烯酯(ethylene vinyl acetate)樹酯、聚氯乙烯(polyvinyl chloride)樹酯、聚乙烯吡咯烷酮(polyvinyl pyrrolidine)、聚乙烯醇樹脂(polyvinyl alcohol)樹酯、聚乙烯醇縮丁醛(polyvinyl butyral)、聚醋酸乙烯酯(polyvinyl acetate)、聚氯乙烯醚(polyvinyl ether)等。此些可單獨或組合使用。此外,丙烯為基礎的材料可包括異丁烯酸酯(methacryl)樹酯、聚甲基丙烯酸甲酯(poly methyl methacrylate)樹酯、聚丙烯腈(poly acrylonitrile)樹酯、丙烯酸正丁酯(normal butylacryl)樹酯、聚苯乙烯聚甲基丙烯酸甲酯(polystyrene polymethyl methacryl)樹酯等。此些可單獨或組合使用。The first slurry may include a residual amount of the first solvent in which the cerium oxide particles, the first dispersing agent, and the first binding agent are dissolved. When the first binder may comprise an ethylene based material, the first solvent may comprise an organic base material such as ethanol. Conversely, when the first binder may comprise a propylene based material, the first solvent may comprise an aqueous phase bottom material. Ethylene-based materials may include ethylene vinyl acetate resin, polyvinyl chloride resin, polyvinyl pyrrolidine, polyvinyl alcohol resin, polyethylene. Polyvinyl butyral, polyvinyl acetate, polyvinyl ether, and the like. These can be used singly or in combination. In addition, propylene-based materials may include methacryl resin, polymethyl methacrylate resin, polyacrylonitrile resin, and normal butylacryl. Star ester, polystyrene polymethyl methacryl resin, and the like. These can be used singly or in combination.

第一漿液可藉由球磨機(ball mill)形成。在第一漿液中乾組成的量可正比於第一分散劑的量。當乾組成的量在第一漿液中可小於大約20%,在第一漿液中氧化釔粒子很缺乏以使第一粉末之粗粒粒子之直徑極小。相反的,當乾組成的量在第一漿液中可大於大約30%,在第一漿液可具有高黏度使得難以正確控制製造第一粉末的程序,且第一粉末可形成非球形。因此,第一漿液中的乾組成之量可在大約20%到大約30%的範圍。The first slurry can be formed by a ball mill. The amount of dry composition in the first slurry can be proportional to the amount of the first dispersant. When the amount of dry composition can be less than about 20% in the first slurry, the cerium oxide particles are scarce in the first slurry so that the diameter of the coarse particles of the first powder is extremely small. Conversely, when the amount of dry composition can be greater than about 30% in the first slurry, the first slurry can have a high viscosity such that it is difficult to properly control the procedure for making the first powder, and the first powder can form a non-spherical shape. Thus, the amount of dry composition in the first slurry can range from about 20% to about 30%.

第二漿液可包括多個氧化鋁粒子、第二分散劑、第二結合劑與第二溶劑。The second slurry may include a plurality of alumina particles, a second dispersant, a second binder, and a second solvent.

氧化鋁粒子可具有大約0.5微米到大約2微米的直徑。當氧化鋁粒子具有之直徑小於大約0.5微米,第一粉末的平均直徑太小且第一粉末難以形成球形粗粒粒子。相反地,當氧化鋁粒子具有之直徑大於大約2微米,氧化鋁粒子的平均直徑太大以致於氧化鋁結塊,且因此第一粉末之粗粒粒子之平均直徑極度地增加。The alumina particles can have a diameter of from about 0.5 microns to about 2 microns. When the alumina particles have a diameter of less than about 0.5 μm, the average diameter of the first powder is too small and the first powder is difficult to form spherical coarse particles. Conversely, when the alumina particles have a diameter greater than about 2 microns, the average diameter of the alumina particles is so large that the alumina agglomerates, and thus the average diameter of the coarse particles of the first powder is extremely increased.

第二分散劑可在第二漿液中均勻分散氧化鋁粒子。舉例來說,第二分散劑可包括酸材料(acid materials)。基本材料例如是可包括碳基(carboxyl-based)材料、酯基(ester-based)材料、氨基材料(amide-based)等。此些可單獨或組合使用。第二分散劑之pH值可為大約2到大約4,更佳地,大約為2。當第二分散劑可包括酸材料,氧化鋁粒子具有正表面電荷。第二漿液中之第二分散劑的量可在大約0.3%到大約2%的範圍。當第二分散劑的量在第二漿液中可大於大約0.5%,第二漿液難以藉由乾射出程序(dry injection process)形成球形。相反地,當第二分散劑的量可小於大約0.3%,第二漿液可具有過度的黏度。The second dispersant can uniformly disperse the alumina particles in the second slurry. For example, the second dispersant can include acid materials. The base material may include, for example, a carboxyl-based material, an ester-based material, an amide-based, or the like. These can be used singly or in combination. The pH of the second dispersant can range from about 2 to about 4, and more preferably, about 2. When the second dispersant may include an acid material, the alumina particles have a positive surface charge. The amount of the second dispersant in the second slurry may range from about 0.3% to about 2%. When the amount of the second dispersant is greater than about 0.5% in the second slurry, the second slurry is difficult to form a sphere by a dry injection process. Conversely, when the amount of the second dispersant can be less than about 0.3%, the second slurry can have an excessive viscosity.

第二結合劑可在第二漿液中化學鍵結氧化鋁粒子。第二漿液中之第二結合劑的量可在大約2%到大約3%的範圍。當第二結合劑的量在第二漿液中可小於大約2%,氧化鋁粒子難以彼此鍵結且因此第一粉末難以形成球形,當第二結合劑的量大於大約3%,第二漿液可具有過度的黏度。第二結合劑實質上可具有與第一結合劑相同的結構與組態。The second binder can chemically bond the alumina particles in the second slurry. The amount of the second binder in the second slurry can range from about 2% to about 3%. When the amount of the second binder is less than about 2% in the second slurry, the alumina particles are difficult to bond with each other and thus the first powder is difficult to form a sphere, and when the amount of the second binder is greater than about 3%, the second slurry may Has excessive viscosity. The second binder may have substantially the same structure and configuration as the first binder.

第二漿液可包括第二溶劑的剩餘量(residual amount),氧化鋁粒子、第二分散劑與第二結合劑溶解於其中。第二溶劑可實質上可具有與第一溶劑相同之結構與組態,且因此更進一步關於第二漿液的詳細說明將會省略。The second slurry may include a residual amount of the second solvent in which the alumina particles, the second dispersant, and the second binder are dissolved. The second solvent may have substantially the same structure and configuration as the first solvent, and thus a detailed description about the second slurry will be omitted.

第二漿液可藉由球磨機(ball mill)形成。在第二漿液中乾組成的量可正比於第二分散劑的量。當乾組成的量在第二漿液中可小於大約20%,在第二漿液中氧化鋁粒子很缺乏以使第一粉末之粗粒粒子之尺寸可極小。相反的,當乾組成的量在第二漿液中可大於大約30%,在第二漿液可具有高黏度使得難以正確控制製造第一粉末的程序,且第一粉末可形成非球形。因此,第二漿液中的乾組成之量可在大約20%到大約30%的範圍。The second slurry can be formed by a ball mill. The amount of dry composition in the second slurry can be proportional to the amount of the second dispersant. When the amount of dry composition can be less than about 20% in the second slurry, the alumina particles are so low in the second slurry that the size of the coarse particles of the first powder can be extremely small. Conversely, when the amount of dry composition can be greater than about 30% in the second slurry, the second slurry can have a high viscosity such that it is difficult to properly control the procedure for making the first powder, and the first powder can form a non-spherical shape. Thus, the amount of dry composition in the second slurry can range from about 20% to about 30%.

第一與第二漿液之混合物中氧化釔與氧化鋁的重量比大約1:9到大約4:6的範圍,在第一粉末中,氧化鋁粒子可多於氧化釔粒子。因此,氧化鋁之材料特性可主導使用第一粉末之熱噴塗層中,且因此使用第一粉末之熱噴塗層具有高機械強度且低吸附強度之特性。相反地,當第一與第二漿液之混合物中氧化釔與氧化鋁的重量比大約8:2到大約9:1的範圍,在第一粉末中,氧化釔粒子可多於氧化鋁粒子。因此,氧化釔之材料特性可主導使用第一粉末之熱噴塗層中,且因此使用第一粉末之熱噴塗層具有低機械強度且低吸附強度之特性。因此,第一與第二漿液之混合物中氧化釔與氧化鋁的重量比大約5:5到大約7:3的範圍,更佳地,大約5:5。The weight ratio of cerium oxide to aluminum oxide in the mixture of the first and second slurry ranges from about 1:9 to about 4:6, and in the first powder, the alumina particles may be more than the cerium oxide particles. Therefore, the material properties of the alumina can dominate the thermal spray coating using the first powder, and thus the thermal spray coating using the first powder has the characteristics of high mechanical strength and low adsorption strength. Conversely, when the weight ratio of cerium oxide to aluminum oxide in the mixture of the first and second slurries is in the range of about 8:2 to about 9:1, the cerium oxide particles may be more than the alumina particles in the first powder. Therefore, the material properties of cerium oxide can dominate the thermal spray coating using the first powder, and thus the thermal spray coating using the first powder has the characteristics of low mechanical strength and low adsorption strength. Accordingly, the weight ratio of cerium oxide to aluminum oxide in the mixture of the first and second slurries is in the range of from about 5:5 to about 7:3, more preferably, about 5:5.

第一粉末可包括粗粒粒子,粗粒粒子可從第一與第二漿液的混合物取得,粗粒粒子平均直徑大約20微米到大約60微米,更佳地,大約30微米到大約40微米。當第一粉末的平均直徑可小於大約20微米,第一粉末的尺寸太小以使第一粉末難以在施加電漿裝置中達到一物體(article)。相反地,當第一粉末的平均直徑可大於大約60微米,第一粉末的尺寸太大以使第一粉末彼此結塊且因此第一粉末難以均勻的在施加電漿裝置中灑於物體上。The first powder may comprise coarse particles, and the coarse particles may be obtained from a mixture of first and second slurries having an average diameter of from about 20 microns to about 60 microns, more preferably from about 30 microns to about 40 microns. When the average diameter of the first powder can be less than about 20 microns, the size of the first powder is too small to make it difficult for the first powder to reach an article in the application of the plasma device. Conversely, when the average diameter of the first powder may be greater than about 60 microns, the size of the first powder is too large to cause the first powder to cake with each other and thus the first powder is difficult to uniformly sprinkle on the object in the application plasma device.

第9圖繪示用以形成第8圖中的第一粉末的方法之單元程序步驟的流程圖。Figure 9 is a flow chart showing the unit procedure steps of the method for forming the first powder in Figure 8.

請參照第9圖,第一漿液可藉由球磨機以形成第一粉末(步驟S110)。第一漿液可包括多個氧化釔粒子,其具有大約0.01微米到大約2微米的直徑,第一分散劑用以均勻分散氧化釔粒子,第一結合劑用以結合氧化釔粒子,且在氧化釔粒子、第一分散劑與第一結合劑溶解於第一溶劑中。如果氧化釔粒子可充足的彼此鍵結,第一結合劑可不包括在第一漿液中,此為該領域具有通常知識者所知。Referring to FIG. 9, the first slurry may be formed by a ball mill to form a first powder (step S110). The first slurry may comprise a plurality of cerium oxide particles having a diameter of from about 0.01 micron to about 2 microns, the first dispersing agent for uniformly dispersing the cerium oxide particles, the first binding agent for binding the cerium oxide particles, and the cerium oxide. The particles, the first dispersant and the first binder are dissolved in the first solvent. If the cerium oxide particles are sufficiently bonded to each other, the first binder may not be included in the first slurry, as is known in the art to those of ordinary skill in the art.

第10圖繪示用以形成第9圖中的第一漿液之方法的流程圖。Figure 10 is a flow chart showing a method for forming the first slurry in Figure 9.

請參照第10圖,準備第一溶劑(步驟S111)且氧化釔粒子具有大約0.01微米到大約2微米之直徑可提供至第一溶劑(步驟S112)。之後,第一分散劑可提供至第一溶劑,在第一漿液中第一分散劑的量之濃度大約為0.3%到大約0.5%的範圍(步驟S113),且第一結合劑可提供至第一溶劑,在第一漿液中第一結合劑的量之濃度大約為2%到大約3%的範圍(步驟S114)。氧化釔粒子可因第一分散劑具有負表面電荷。氧化釔粒子的提供順序,第一分散劑與第一結合劑提供至第一溶劑的順序可交換,此為該領域具有通常知識者所知。Referring to FIG. 10, a first solvent is prepared (step S111) and the cerium oxide particles having a diameter of about 0.01 μm to about 2 μm are supplied to the first solvent (step S112). Thereafter, the first dispersant may be supplied to the first solvent, and the concentration of the first dispersant in the first slurry is in a range of about 0.3% to about 0.5% (step S113), and the first binder may be supplied to the first A solvent, the concentration of the first binder in the first slurry is in the range of about 2% to about 3% (step S114). The cerium oxide particles may have a negative surface charge due to the first dispersant. The order in which the cerium oxide particles are provided, the order in which the first dispersing agent is supplied to the first solvent is interchangeable, as is known in the art.

之後,氧化釔粒子、第一分散劑與第一結合劑可藉由球磨機在第一溶劑中與另一混合,從而形成第一漿液。Thereafter, the cerium oxide particles, the first dispersing agent and the first binder may be mixed with the other in a first solvent by a ball mill to form a first slurry.

請再次參照第9圖,第二漿液可藉由球磨機形成。(步驟S120)Referring again to Figure 9, the second slurry can be formed by a ball mill. (Step S120)

第二漿液可包括多個氧化鋁粒子,其具有大約0.5微米到大約2微米的直徑,第二分散劑用以均勻分散氧化鋁粒子,第二結合劑用以結合氧化鋁粒子,且氧化鋁粒子、第二分散劑與第二結合劑溶解於第二溶劑中。如果氧化鋁粒子可充足的彼此鍵結,第二結合劑可不包括在第二漿液中,此為該領域具有通常知識者所知。The second slurry may comprise a plurality of alumina particles having a diameter of from about 0.5 microns to about 2 microns, a second dispersant for uniformly dispersing the alumina particles, a second binder for binding the alumina particles, and the alumina particles And the second dispersing agent and the second binding agent are dissolved in the second solvent. If the alumina particles are sufficiently bonded to each other, the second binder may not be included in the second slurry, as is known to those of ordinary skill in the art.

第11圖繪示用以形成第9圖中的第二漿液之方法的流程圖。Figure 11 is a flow chart showing the method for forming the second slurry in Figure 9.

請參照第11圖,準備第二溶劑(步驟S121)且氧化鋁粒子具有大約0.5微米到大約2微米之直徑可提供至第二溶劑(步驟S122)。之後,第二分散劑可提供至第二溶劑,在第二漿液中第二分散劑的量之濃度大約為0.3%到大約2%的範圍(步驟S123),且第二結合劑可提供至第二溶劑,在第二漿液中第二結合劑的量之濃度大約為2%到大約3%的範圍(步驟S124)。氧化鋁粒子可因第二分散劑具有正表面電荷。氧化鋁粒子的提供順序,第二分散劑與第二結合劑提供至第二溶劑的順序可交換,此為該領域具有通常知識者所知。Referring to FIG. 11, a second solvent is prepared (step S121) and the alumina particles having a diameter of about 0.5 μm to about 2 μm are supplied to the second solvent (step S122). Thereafter, the second dispersant may be supplied to the second solvent, and the concentration of the second dispersant in the second slurry is in a range of about 0.3% to about 2% (step S123), and the second binder may be supplied to the second The concentration of the second binder in the second slurry in the second slurry is in the range of about 2% to about 3% (step S124). The alumina particles may have a positive surface charge due to the second dispersant. The order in which the alumina particles are supplied, the order in which the second dispersant and the second binder are supplied to the second solvent are interchangeable, as is known in the art.

接著,氧化鋁粒子、第二分散劑與第二結合劑可藉由球磨機在第二溶劑中與另一混合,從而形成第二漿液。Next, the alumina particles, the second dispersant, and the second binder may be mixed with the other by a ball mill in a second solvent to form a second slurry.

請再次參照第9圖,第一漿液與第二漿液彼此混合,氧化釔與氧化鋁的重量比大約7:3到大約5:5,也就是說1:0.4到1,從而形成漿液混合物。(步驟S130)。Referring again to Figure 9, the first slurry and the second slurry are mixed with each other, and the weight ratio of cerium oxide to aluminum oxide is from about 7:3 to about 5:5, that is, 1:0.4 to 1, thereby forming a slurry mixture. (Step S130).

第12圖繪示用以形成第9圖中的漿液混合物之方法的示意圖。Figure 12 is a schematic view showing a method for forming the slurry mixture in Figure 9.

請參照第12圖,氧化釔粒子具有負表面電荷可藉由靜電力吸引具有正表面電荷氧化鋁粒子,從而結合氧化釔粒子與氧化鋁粒子彼此。Referring to Fig. 12, the cerium oxide particles have a negative surface charge to attract the particles having positive surface charge by electrostatic force, thereby binding the cerium oxide particles and the alumina particles to each other.

請再次參照第9圖,漿液混合物可藉由乾噴霧程序形成具有氧化釔粒子與氧化鋁粒子的粗粒粒子(步驟S140)。漿液混合物可在高溫下噴灑,舉例來說,大約800℃到大約1500℃之噴霧室(spray chamber)。在高溫下噴灑可增加第一粉末的粗粒粒子之硬度。Referring again to Fig. 9, the slurry mixture can form coarse particles having cerium oxide particles and alumina particles by a dry spray process (step S140). The slurry mixture can be sprayed at elevated temperatures, for example, from about 800 ° C to about 1500 ° C in a spray chamber. Spraying at a high temperature increases the hardness of the coarse particles of the first powder.

舉例來說,漿液混合物可包括具有氧化釔與氧化鋁之粗粒粒子且可具有大約20微米到大約60微米的平均粒子直徑。For example, the slurry mixture can include coarse particles having cerium oxide and aluminum oxide and can have an average particle diameter of from about 20 microns to about 60 microns.

步驟S110到步驟S140之單元步驟用以形成於第9圖中顯示之第一粉末,可執行於常壓空氣下,氫氣、氧氣、氮氣以及混合物。The unit step of step S110 to step S140 is for forming the first powder shown in Fig. 9, which can be carried out under atmospheric air, hydrogen, oxygen, nitrogen, and a mixture.

之後,根據本實施例製造靜電卡盤之方法將被詳細說明。第4圖中的靜電卡盤包括第3圖中之連接器可為本文中之關於製造靜電卡盤之較佳描述。Hereinafter, a method of manufacturing an electrostatic chuck according to the present embodiment will be described in detail. The electrostatic chuck of Fig. 4, including the connector of Fig. 3, can be a preferred description herein for making an electrostatic chuck.

第13圖繪示依照本發明之一實施例之製造靜電卡盤的方法之單元程序步驟的流程圖。Figure 13 is a flow chart showing the steps of a unit procedure of a method of manufacturing an electrostatic chuck in accordance with an embodiment of the present invention.

請參照第3、4與14圖,準備基體110(步驟S210)用以製造第4圖中的靜電卡盤200。基體110可具有平板或圓柱形狀。基體110可包括貫孔,連接器170可穿透貫孔。Referring to Figures 3, 4 and 14, the substrate 110 is prepared (step S210) for manufacturing the electrostatic chuck 200 of Fig. 4. The base 110 may have a flat plate or a cylindrical shape. The base 110 can include a through hole through which the connector 170 can penetrate.

接著,可準備連接器170(步驟S220),獨立於基體110。準備之連接器170之組態可為接頭177被包覆於絕緣體178且第一緩衝179a可設置於絕緣體178之上部上。Next, the connector 170 can be prepared (step S220), independent of the base 110. The configuration of the prepared connector 170 can be such that the connector 177 is wrapped over the insulator 178 and the first buffer 179a can be disposed on the upper portion of the insulator 178.

之後,連接器170可***於基體110之貫孔(步驟S230)且基體110與連接器170可在貫孔中彼此自我對準。接著,第二緩衝179b可形成在第一絕緣層220與絕緣體178之間的第一邊緣區域,且在第一絕緣層220與基體110之間的第二邊緣區域。Thereafter, the connector 170 can be inserted into the through hole of the base 110 (step S230) and the base 110 and the connector 170 can be self-aligned with each other in the through hole. Next, the second buffer 179b may be formed in a first edge region between the first insulating layer 220 and the insulator 178, and in a second edge region between the first insulating layer 220 and the substrate 110.

然後,黏合層115可形成於基體110之上表面上,除了連接器170與第二緩衝179b(步驟S240)。黏合層115可具有在基體110與第一絕緣層220之間的黏合功能,且可包括金屬合金例如是鎳鋁合金。Then, an adhesive layer 115 may be formed on the upper surface of the base 110 except for the connector 170 and the second buffer 179b (step S240). The adhesive layer 115 may have an adhesive function between the base 110 and the first insulating layer 220, and may include a metal alloy such as a nickel aluminum alloy.

第一絕緣層220可形成於基體110上且可塗佈黏合層115(步驟S250)。舉例來說,第一絕緣層220可藉由使用第一粉末之熱噴塗程序形成,且因此非晶形熱噴塗層可形成於基體110上作為第一絕緣層220。第一絕緣層220可形成於基體110之上表面之整個表面或一部份上,其上可塗佈黏合層115。第一粉末可包括與第8與12圖所說明之相同結構與組態,因此任何進一步的在第一粉末上的詳細說明將被省略。熱噴塗程序可包括大氣電漿噴霧(atmospherically plasma spray)塗佈程序、快速的氧氣燃料的熱噴塗程序(rapid oxygen-fuel thermal spray coating process)、真空電漿噴霧塗佈程序(vacuum plasma spray coating process)以及動力噴霧塗佈程序(kinetic spray coating process)。The first insulating layer 220 may be formed on the substrate 110 and may be coated with the adhesive layer 115 (step S250). For example, the first insulating layer 220 may be formed by a thermal spraying process using the first powder, and thus an amorphous thermal spray layer may be formed on the substrate 110 as the first insulating layer 220. The first insulating layer 220 may be formed on the entire surface or a portion of the upper surface of the substrate 110, and the adhesive layer 115 may be coated thereon. The first powder may comprise the same structure and configuration as illustrated in Figures 8 and 12, so any further detailed description on the first powder will be omitted. The thermal spray process may include an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process, and a vacuum plasma spray coating process. And a kinetic spray coating process.

然後,第二絕緣層230可藉由使用第二粉末熱噴塗程序形成於第一絕緣層220上(步驟S260)。因此,第二絕緣層230可形成於第一絕緣層220的整個表面,且結晶熱噴塗層可形成於第一絕緣層220上作為第二絕緣層230。舉例來說,第二絕緣層230可包括陶瓷。舉例來說,陶瓷可包括氧化鋁(Al2O3)、氧化釔(Y2O3)、氧化鋁/氧化釔(Al2O3/Y2O3)、氧化鋯(ZrO2)、碳化鋁(AlC)、氮化鈦(TiN)、氮化鋁(AlN)、碳化鈦(TiC)、氧化鎂(MgO)、氧化鈣(CaO)、氧化鈰(CeO2)、氧化鈦(TiO2)、碳化硼(BxCy)、氮化硼(BN)、氧化矽(SiO2)、碳化矽(SiC)、釔鋁石榴石(YAG)、莫來石(Mullite)、氟化鋁(AlF3)等等。上述化合物可單獨或組合使用。Then, the second insulating layer 230 may be formed on the first insulating layer 220 by using a second powder thermal spraying process (step S260). Therefore, the second insulating layer 230 may be formed on the entire surface of the first insulating layer 220, and the crystalline thermal spray layer may be formed on the first insulating layer 220 as the second insulating layer 230. For example, the second insulating layer 230 may include ceramic. For example, the ceramic may include alumina (Al 2 O 3 ), yttrium oxide (Y 2 O 3 ), alumina / yttria (Al 2 O 3 /Y 2 O 3 ), zirconia (ZrO 2 ), aluminum carbide (AlC), titanium nitride (TiN), nitrogen Aluminum (AlN), titanium carbide (TiC), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO2), titanium oxide (TiO2), boron carbide (BxCy), boron nitride (BN), oxidation矽 (SiO 2 ), lanthanum carbide (SiC), yttrium aluminum garnet (YAG), mullite (Mullite), aluminum fluoride (AlF 3 ), and the like. The above compounds may be used singly or in combination.

第一與第二絕緣層220與230可藉由熱噴塗程序例如是大氣電漿噴霧(atmospherically plasma spray)塗佈程序、快速的氧氣燃料的熱噴塗程序(rapid oxygen-fuel thermal spray coating process)、真空電漿噴霧塗佈程序(vacuum plasma spray coating process)以及動力噴霧塗佈程序(kinetic spray coating process),除了用以形成各自的熱噴塗層之粉末。The first and second insulating layers 220 and 230 may be subjected to a thermal spray process such as an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process, A vacuum plasma spray coating process and a kinetic spray coating process, except for the powder used to form the respective thermal spray coating.

因此,第二絕緣層230的上表面可進一步藉由平坦化製程平坦。此外,對應連接器170之第二絕緣層230可部分在平坦化製程中被移除,且因此連接器170之上表面可被暴露。如果第1圖中的靜電卡盤100,僅第一絕緣層120不含第二絕緣層可形成於基體110與電極層140之間,連接器170亦可在用以平坦第一絕緣層120之平坦化程序中被暴露。Therefore, the upper surface of the second insulating layer 230 can be further planarized by the planarization process. Further, the second insulating layer 230 of the corresponding connector 170 may be partially removed in the planarization process, and thus the upper surface of the connector 170 may be exposed. In the electrostatic chuck 100 of FIG. 1 , only the first insulating layer 120 does not include the second insulating layer and may be formed between the substrate 110 and the electrode layer 140 , and the connector 170 may also be used to planarize the first insulating layer 120 . The flattening program is exposed.

電極層140可形成於第二絕緣層230上(步驟S270)。電極層140可形成於第二絕緣層230之上表面之一部份上,且可包括導電材料,例如是鎢。也就是說,電極層140可堆疊於第二絕緣層230上且具有小於第二絕緣層230之尺寸。The electrode layer 140 may be formed on the second insulating layer 230 (step S270). The electrode layer 140 may be formed on a portion of the upper surface of the second insulating layer 230 and may include a conductive material such as tungsten. That is, the electrode layer 140 may be stacked on the second insulating layer 230 and have a size smaller than that of the second insulating layer 230.

第一介電層150可形成於第二絕緣層230與電極層140上,藉由使用第一粉末之熱噴塗程序,且因此非晶形熱噴塗層可形成於電極層140上做為第一介電層150(步驟S280)。第一介電層150可塗佈於第二絕緣層之整個表面上,第二絕緣層上可形成電極層140,且因此電極層140可完全被第一介電層150覆蓋。第一介電層150可藉由與形成第一絕緣層220使用相同之第一粉末的熱噴塗程序來形成。The first dielectric layer 150 may be formed on the second insulating layer 230 and the electrode layer 140 by using a thermal spraying procedure of the first powder, and thus the amorphous thermal spray layer may be formed on the electrode layer 140 as the first dielectric layer The electric layer 150 (step S280). The first dielectric layer 150 may be coated on the entire surface of the second insulating layer, and the electrode layer 140 may be formed on the second insulating layer, and thus the electrode layer 140 may be completely covered by the first dielectric layer 150. The first dielectric layer 150 can be formed by a thermal spray process using the same first powder as forming the first insulating layer 220.

之後,第二介電層160可藉由使用第二粉末之熱噴塗程序形成於第一介電層150上,且因此結晶熱噴塗層可形成於介電層150上做為第二介電層160(步驟S290)。特別地,第二介電層160可形成於靜電卡盤200之上部與第一介電層150上。也就是說,基體110之邊緣部分無法被塗佈第一介電層150,基體110之上側部分、第一與第二絕緣層220與230之側表面與第一介電層150之側表面可塗佈第二介電層160。因此,基體110、第一與第二絕緣層220與230以及第一介電層150所有暴露的表面可被第二介電層160覆蓋。在如此之狀況下,介於基體110與第二介電層160之間、介於第一與第二絕緣層220與230以及第二介電層160之間、與介於第一介電層150與第二介電層160之間的噴霧邊界表面可產生破裂與電弧。出於這些原因,第一與第二絕緣層220與230以及第一介電層150的側表面與基體110之側表面亦可被第二介電層160覆蓋。Thereafter, the second dielectric layer 160 can be formed on the first dielectric layer 150 by a thermal spraying process using the second powder, and thus the crystalline thermal spray layer can be formed on the dielectric layer 150 as the second dielectric layer. 160 (step S290). In particular, the second dielectric layer 160 may be formed on the upper portion of the electrostatic chuck 200 and the first dielectric layer 150. That is, the edge portion of the base 110 cannot be coated with the first dielectric layer 150, and the side surface of the base 110, the side surfaces of the first and second insulating layers 220 and 230, and the side surface of the first dielectric layer 150 may be A second dielectric layer 160 is applied. Therefore, all exposed surfaces of the substrate 110, the first and second insulating layers 220 and 230, and the first dielectric layer 150 may be covered by the second dielectric layer 160. In such a situation, between the substrate 110 and the second dielectric layer 160, between the first and second insulating layers 220 and 230 and the second dielectric layer 160, and between the first dielectric layer The spray boundary surface between 150 and the second dielectric layer 160 can create cracks and arcs. For these reasons, the side surfaces of the first and second insulating layers 220 and 230 and the first dielectric layer 150 and the side surface of the substrate 110 may also be covered by the second dielectric layer 160.

第二介電層160可藉由使用相同粉末相同熱噴塗程序形成為第二絕緣層230。此外,用以形成第二介電層160之熱噴塗程序亦可包括大氣電漿噴霧(atmospherically plasma spray)塗佈程序、快速的氧氣燃料的熱噴塗程序(rapid oxygen-fuel thermal spray coating process)、真空電漿噴霧塗佈程序(vacuum plasma spray coating process)以及動力噴霧塗佈程序(kinetic spray coating process),除了用以形成各自的熱噴塗層之粉末,例如是用以形成第一絕緣層220之熱噴塗程序。The second dielectric layer 160 can be formed as the second insulating layer 230 by the same thermal spraying procedure using the same powder. In addition, the thermal spray process for forming the second dielectric layer 160 may also include an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process, a vacuum plasma spray coating process and a kinetic spray coating process, except for forming a powder of a respective thermal spray layer, for example, to form a first insulating layer 220 Thermal spray program.

第二介電層160亦可藉由平坦化程序平坦,且因此第二介電層之上表面地凸起物可被移除。The second dielectric layer 160 can also be planarized by a planarization process, and thus the bumps on the surface above the second dielectric layer can be removed.

然後,填充程序可執行於包括第一與第二介電層150與160之介電體上,且在絕緣體上包括第一與第二絕緣層220與230(步驟S300)。因此,介電體與絕緣體的多種內部空間可被填充物填充。舉例來說,介電體與絕緣體中的孔隙空間與破裂可被填充物填充,從而增加介電體與絕緣體的體積電阻。填充物可包括樹酯,例如是矽的丙烯酸樹脂。Then, a filling process may be performed on the dielectric including the first and second dielectric layers 150 and 160, and the first and second insulating layers 220 and 230 are included on the insulator (step S300). Therefore, various internal spaces of the dielectric body and the insulator can be filled with the filler. For example, void spaces and ruptures in the dielectric and insulator can be filled by the filler, thereby increasing the volume resistance of the dielectric and insulator. The filler may include a resin such as an enamel acrylic resin.

當本實施例揭露填充程序可在介電體與絕緣體形成後執行,依據程序條件與需求填充程序的順序與時間以及介電體與絕緣體的形成係可交換,此為該領域具通常知識者所知。舉例來說,第一填充程序可執行於絕緣體上,在第一與第二絕緣層220與230之後;且第二填充程序執行於介電體上,在第一與第二介電層150與160之後。不然,填充程序可在第一絕緣層220、第二絕緣層230、第一介電層150與第二介電層160之間執行三到四次。也就是說,填充程序可各自的於各第一與第二絕緣層以及第一與第二介電層之間執行,或各種第一與第二絕緣層以及第一與第二介電層之組合上執行。When the present embodiment discloses that the filling procedure can be performed after the dielectric body and the insulator are formed, the order and time of the filling procedure and the formation of the dielectric body and the insulator can be exchanged according to the program conditions and requirements, which is a common knowledge in the field. know. For example, the first filling process can be performed on the insulator after the first and second insulating layers 220 and 230; and the second filling process is performed on the dielectric body, and the first and second dielectric layers 150 are After 160. Otherwise, the filling process may be performed three to four times between the first insulating layer 220, the second insulating layer 230, the first dielectric layer 150, and the second dielectric layer 160. That is, the filling process may be performed between each of the first and second insulating layers and the first and second dielectric layers, or the first and second insulating layers and the first and second dielectric layers. Executed on the combination.

此外,平坦化程序亦可執行於各黏合層115、第一絕緣層220、電極層140、第一介電層150與第二介電層160以及第二絕緣層230上,此為該領域具通常知識者所知。In addition, the planarization process can also be performed on each of the adhesive layer 115, the first insulating layer 220, the electrode layer 140, the first dielectric layer 150 and the second dielectric layer 160, and the second insulating layer 230. Usually known to the knowledge.

上述較佳實施例所揭露之製造靜電卡盤200之方法,其中絕緣體可包括多層,多層具有第一與第二絕緣層220與230。如第4圖所示。The method of manufacturing the electrostatic chuck 200 disclosed in the above preferred embodiments, wherein the insulator may include a plurality of layers having first and second insulating layers 220 and 230. As shown in Figure 4.

然而,靜電卡盤100中絕緣體可包括如第1圖所示單一第一絕緣層,除了形成第二絕緣層260之程序步驟S260之外,可以上述之相同製成製造,為該領域具通常知識者所知。However, the insulator in the electrostatic chuck 100 may include a single first insulating layer as shown in FIG. 1 except that the process step S260 of forming the second insulating layer 260 may be manufactured in the same manner as described above, and has a general knowledge in the field. Known.

根據本發明之實施例,靜電卡盤之介電體可包括多層,包括非晶形熱噴塗層以及結晶熱噴塗層,從而在沒有因為非晶形熱噴塗層使任何介電常數衰退之情形下,增加介電體之體積電阻。因此,靜電卡盤之漏電流可最小化且因此因為漏電流造成的破裂亦可在靜電卡盤中最小化。因此,靜電卡盤之整體電性特性可因多層介電體而大幅改善。According to an embodiment of the invention, the dielectric of the electrostatic chuck may comprise a plurality of layers, including an amorphous thermal spray coating and a crystalline thermal spray coating, thereby increasing without any dielectric constant decay due to the amorphous thermal spray coating. The volume resistance of the dielectric. Therefore, the leakage current of the electrostatic chuck can be minimized and thus the crack due to the leakage current can also be minimized in the electrostatic chuck. Therefore, the overall electrical characteristics of the electrostatic chuck can be greatly improved by the multilayer dielectric.

此外,靜電卡盤之絕緣體亦可包括非晶形熱噴塗層,因為非晶形熱噴塗層與改善靜電卡盤中基體與電極層之間的絕緣電阻,從而增加絕緣體之體積電阻。In addition, the insulator of the electrostatic chuck may also include an amorphous thermal spray coating because the amorphous thermal spray coating improves the insulation resistance between the substrate and the electrode layer in the electrostatic chuck, thereby increasing the volume resistance of the insulator.

更進一步,緩衝層可形成於接頭之電力之高電壓施加的接觸面積,且因此因熱應力之破裂可發生於接頭之接觸面積。因此,靜電卡盤可具有改善之持久力與操作壽命,且因此靜電卡盤之維持費可大幅減少。Further, the buffer layer can be formed at a high voltage applied contact area of the power of the joint, and thus the crack of the thermal stress can occur in the contact area of the joint. Therefore, the electrostatic chuck can have improved durability and operational life, and thus the maintenance cost of the electrostatic chuck can be greatly reduced.

因此,本發明所提供之靜電卡盤可使用在不同的電漿施加裝置,例如是電漿蝕刻裝置與電漿沈積裝置,可改善電性特性與持久性。Therefore, the electrostatic chuck provided by the present invention can be used in different plasma application devices, such as a plasma etching device and a plasma deposition device, to improve electrical characteristics and durability.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100、200...靜電卡盤100, 200. . . Electrostatic chuck

110...基體110. . . Matrix

115...黏合層115. . . Adhesive layer

120、220...第一絕緣層120, 220. . . First insulating layer

140...電極層140. . . Electrode layer

150...第一介電層150. . . First dielectric layer

160...第二介電層160. . . Second dielectric layer

170...連接器170. . . Connector

171、177...接頭171,177. . . Connector

172、178...絕緣體172, 178. . . Insulator

173、179...緩衝層173, 179. . . The buffer layer

179a...第一緩衝179a. . . First buffer

179b...第二緩衝179b. . . Second buffer

230...第二絕緣層230. . . Second insulating layer

第1圖繪示依照本發明之一實施例之靜電卡盤的剖面圖。1 is a cross-sectional view of an electrostatic chuck in accordance with an embodiment of the present invention.

第2圖繪示第1圖中之連接器的第一實施例的剖面圖。Fig. 2 is a cross-sectional view showing the first embodiment of the connector of Fig. 1.

第3圖繪示第1圖中之連接器的第二實施例的剖面圖。Figure 3 is a cross-sectional view showing a second embodiment of the connector of Figure 1.

第4圖繪示依照本發明之另一實施例之靜電卡盤的剖面圖。Figure 4 is a cross-sectional view showing an electrostatic chuck in accordance with another embodiment of the present invention.

第5圖繪示靜電卡盤之絕緣電阻與施加於靜電卡盤之電力間的關係示意圖。Figure 5 is a schematic diagram showing the relationship between the insulation resistance of the electrostatic chuck and the power applied to the electrostatic chuck.

第6圖繪示當操作傳統之靜電卡盤與本發明構思之靜電卡盤時,漏電流與操作時間以及氦氣洩漏與操作時間的關係示意圖。Fig. 6 is a view showing the relationship between leakage current and operation time, and leakage of helium and operation time when a conventional electrostatic chuck and an electrostatic chuck of the present invention are operated.

第7A圖繪示包括第1圖與第2圖中之靜電卡盤的施加電漿裝置的蝕刻速率示意圖。FIG. 7A is a schematic diagram showing the etching rate of the plasma application device including the electrostatic chucks in FIGS. 1 and 2.

第7B圖繪示包括傳統之靜電卡盤的施加電漿裝置的蝕刻量示意圖。FIG. 7B is a schematic view showing the etching amount of the plasma applying device including the conventional electrostatic chuck.

第8圖繪示用以形成第1圖中之非晶形熱噴塗層的第一粉末之分子結構的照片。Figure 8 is a photograph showing the molecular structure of the first powder used to form the amorphous thermal sprayed layer of Figure 1.

第9圖繪示用以形成第8圖中的第一粉末的方法之單元程序步驟的流程圖。Figure 9 is a flow chart showing the unit procedure steps of the method for forming the first powder in Figure 8.

第10圖繪示用以形成第9圖中的第一漿液之方法的流程圖。Figure 10 is a flow chart showing a method for forming the first slurry in Figure 9.

第11圖繪示用以形成第9圖中的第二漿液之方法的流程圖。Figure 11 is a flow chart showing the method for forming the second slurry in Figure 9.

第12圖繪示用以形成第9圖中的漿液混合物之方法的示意圖。Figure 12 is a schematic view showing a method for forming the slurry mixture in Figure 9.

第13圖繪示依照本發明之一實施例之製造靜電卡盤的方法之單元程序步驟的流程圖。Figure 13 is a flow chart showing the steps of a unit procedure of a method of manufacturing an electrostatic chuck in accordance with an embodiment of the present invention.

100...靜電卡盤100. . . Electrostatic chuck

110...基體110. . . Matrix

115...黏合層115. . . Adhesive layer

120...第一絕緣層120. . . First insulating layer

140...電極層140. . . Electrode layer

150...第一介電層150. . . First dielectric layer

160...第二介電層160. . . Second dielectric layer

170...連接器170. . . Connector

Claims (23)

一種靜電卡盤,包括:一基體;一絕緣層,設置於該基體上,且該絕緣層具有非晶形結構;一電極層,設置於該絕緣層上,且該電極層產生一靜電力;以及一介電層,位於該電極層上,其中該介電層包括:一第一介電層,覆蓋該電極層,且該第一介電層具有非晶形結構;以及一第二介電層,位於該第一介電層上,且該第二介電層具有結晶結構。 An electrostatic chuck comprising: a substrate; an insulating layer disposed on the substrate, wherein the insulating layer has an amorphous structure; an electrode layer disposed on the insulating layer, wherein the electrode layer generates an electrostatic force; a dielectric layer is disposed on the electrode layer, wherein the dielectric layer comprises: a first dielectric layer covering the electrode layer, and the first dielectric layer has an amorphous structure; and a second dielectric layer, Located on the first dielectric layer, and the second dielectric layer has a crystalline structure. 如申請專利範圍第1項所述之靜電卡盤,其中該第一介電層具有之厚度介於大約100微米到大約300微米,該第二介電層具有之厚度介於大約200微米到大約400微米。 The electrostatic chuck of claim 1, wherein the first dielectric layer has a thickness of between about 100 microns and about 300 microns, and the second dielectric layer has a thickness of between about 200 microns and about 400 microns. 如申請專利範圍第1項所述之靜電卡盤,其中該第一介電層具有之孔隙率介於大約0.5%到大約2%,該第二介電層具有之孔隙率介於大約3%到大約7%。 The electrostatic chuck of claim 1, wherein the first dielectric layer has a porosity of from about 0.5% to about 2%, and the second dielectric layer has a porosity of about 3%. To about 7%. 如申請專利範圍第1項所述之靜電卡盤,其中該第一介電層具有之表面粗糙度介於大約4微米到大約8微米,該第二介電層具有之表面粗糙度介於大約3微米到大約5微米。 The electrostatic chuck of claim 1, wherein the first dielectric layer has a surface roughness of between about 4 microns and about 8 microns, and the second dielectric layer has a surface roughness of about 3 microns to about 5 microns. 如申請專利範圍第1項所述之靜電卡盤,其中該第一介電層及該第二介電層具有之硬度至少大約650Hv, 該第一介電層及該第二介電層具有之黏著強度至少大約14MPa。 The electrostatic chuck of claim 1, wherein the first dielectric layer and the second dielectric layer have a hardness of at least about 650 Hv, The first dielectric layer and the second dielectric layer have an adhesion strength of at least about 14 MPa. 如申請專利範圍第1項所述之靜電卡盤,其中該第一介電層及該第二介電層一起具有之體積電阻(volume resistance)介於大約1014 歐姆公分(Ω.cm)到大約1015 歐姆公分。The electrostatic chuck of claim 1, wherein the first dielectric layer and the second dielectric layer together have a volume resistance of about 10 14 ohm centimeters (Ω·cm) to Approximately 10 15 ohm centimeters. 如申請專利範圍第1項所述之靜電卡盤,其中該電極層被該第一介電層覆蓋,該第一介電層被該第二介電層覆蓋。 The electrostatic chuck of claim 1, wherein the electrode layer is covered by the first dielectric layer, and the first dielectric layer is covered by the second dielectric layer. 如申請專利範圍第1項所述之靜電卡盤,其中該絕緣層具有之厚度介於大約400微米到大約600微米。 The electrostatic chuck of claim 1, wherein the insulating layer has a thickness of between about 400 microns and about 600 microns. 一種靜電卡盤,包括:一基體;一第一絕緣層,設置於該基體上,且該第一絕緣層具有非晶形結構;一第二絕緣層,設置於該第一絕緣層上,且該第二絕緣層具有結晶結構;一電極層,設置於該第二絕緣層上,且該電極層產生一靜電力;以及一介電層,位於該電極層上。 An electrostatic chuck comprising: a substrate; a first insulating layer disposed on the substrate; the first insulating layer has an amorphous structure; a second insulating layer disposed on the first insulating layer, and the The second insulating layer has a crystalline structure; an electrode layer is disposed on the second insulating layer, and the electrode layer generates an electrostatic force; and a dielectric layer is disposed on the electrode layer. 如申請專利範圍第9項所述之靜電卡盤,其中該第一絕緣層具有之厚度介於大約100微米到大約300微米,該第二絕緣層具有之厚度介於大約200微米到大約400微米。 The electrostatic chuck of claim 9, wherein the first insulating layer has a thickness of between about 100 microns and about 300 microns, and the second insulating layer has a thickness of between about 200 microns and about 400 microns. . 一種靜電卡盤,包括: 一基體;一絕緣層,位於該基體上;一電極層,設置於該絕緣層上,且該電極層產生一靜電力;一第一介電層,設置於該電極層上,且具有非晶形結構;以及一第二介電層,設置於該第一介電層上且具有結晶結構。 An electrostatic chuck comprising: a substrate; an insulating layer on the substrate; an electrode layer disposed on the insulating layer, and the electrode layer generates an electrostatic force; a first dielectric layer disposed on the electrode layer and having an amorphous shape And a second dielectric layer disposed on the first dielectric layer and having a crystalline structure. 如申請專利範圍第11項所述之靜電卡盤,其中該第一介電層具有之厚度介於大約100微米到大約300微米,該第二介電層具有之厚度介於大約200微米到大約400微米。 The electrostatic chuck of claim 11, wherein the first dielectric layer has a thickness of between about 100 microns and about 300 microns, and the second dielectric layer has a thickness of between about 200 microns and about 400 microns. 如申請專利範圍第11項所述之靜電卡盤,其中該第一介電層具有之孔隙率介於大約0.5%到大約2%,該第二介電層具有之孔隙率介於大約3%到大約7%。 The electrostatic chuck of claim 11, wherein the first dielectric layer has a porosity of from about 0.5% to about 2%, and the second dielectric layer has a porosity of about 3%. To about 7%. 如申請專利範圍第11項所述之靜電卡盤,其中該第一介電層具有之表面粗糙度介於大約4微米到大約8微米,該第二介電層具有之表面粗糙度介於大約3微米到大約5微米。 The electrostatic chuck of claim 11, wherein the first dielectric layer has a surface roughness of between about 4 microns and about 8 microns, and the second dielectric layer has a surface roughness of about 3 microns to about 5 microns. 如申請專利範圍第11項所述之靜電卡盤,其中該第一介電層及該第二介電層具有之硬度至少大約650Hv,該第一介電層及該第二介電層具有之黏著強度至少大約14MPa。 The electrostatic chuck of claim 11, wherein the first dielectric layer and the second dielectric layer have a hardness of at least about 650 Hv, and the first dielectric layer and the second dielectric layer have The adhesion strength is at least about 14 MPa. 如申請專利範圍第11項所述之靜電卡盤,其中該第一介電層及該第二介電層一起具有之體積電阻 (volume resistance)介於大約1014 歐姆公分(Ω.cm)到大約1015 歐姆公分。The electrostatic chuck of claim 11, wherein the first dielectric layer and the second dielectric layer together have a volume resistance of about 10 14 ohm centimeters (Ω·cm) to Approximately 10 15 ohm centimeters. 一種製造靜電卡盤之方法,包括:準備一基體;形成一第一絕緣層於該基體上,該第一絕緣層具有非晶形結構;形成一電極層於該第一絕緣層上,該電極層產生一靜電力;以及形成一介電層於該電極層上,包括:形成一第一介電層於該電極層上,使該第一介電層具有非晶形結構;以及形成一第二介電層於該第一介電層上,使該第二介電層具有結晶結構。 A method of manufacturing an electrostatic chuck, comprising: preparing a substrate; forming a first insulating layer on the substrate, the first insulating layer having an amorphous structure; forming an electrode layer on the first insulating layer, the electrode layer Generating an electrostatic force; and forming a dielectric layer on the electrode layer, comprising: forming a first dielectric layer on the electrode layer, the first dielectric layer having an amorphous structure; and forming a second dielectric layer The electrical layer is on the first dielectric layer such that the second dielectric layer has a crystalline structure. 如申請專利範圍第17項所述之方法,其中該電極層被該第一介電層包覆,且該第二介電層形成於該第一介電層、該第一絕緣層以及該基體上,以使該第一介電層、該第一絕緣層以及該基體被該第二介電層包覆。 The method of claim 17, wherein the electrode layer is covered by the first dielectric layer, and the second dielectric layer is formed on the first dielectric layer, the first insulating layer, and the substrate Upper, so that the first dielectric layer, the first insulating layer, and the substrate are covered by the second dielectric layer. 如申請專利範圍第17項所述之方法,其中該第一絕緣層、該第一介電層以及該第二介電層藉由一大氣電漿噴霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱噴霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一真空電漿噴霧塗佈製程(vacuum plasma spray coating process)與一動力噴霧塗佈製程其中之一形成。 The method of claim 17, wherein the first insulating layer, the first dielectric layer, and the second dielectric layer are subjected to an atmosphericly plasma spray coating process, A rapid oxygen-fuel thermal spray coating process, a vacuum plasma spray coating process and a dynamic spray coating process are formed. 如申請專利範圍第17項所述之方法,更包括填 充複數個填充物於該第一絕緣層、該第一介電層與該二介電層至少其中之一的內部空間。 For example, the method described in claim 17 of the patent application includes Filling a plurality of fillers in the inner space of the first insulating layer, the first dielectric layer and at least one of the two dielectric layers. 如申請專利範圍第17項所述之方法,其中形成該電極層之前更包括形成一第二絕緣層於該第一絕緣層與該基體其中之一上。 The method of claim 17, wherein forming the electrode layer further comprises forming a second insulating layer on one of the first insulating layer and the substrate. 如申請專利範圍第21項所述之方法,更包括執行一填充程序用以填充複數個填充物於該第一絕緣層、該第二絕緣層、該第一介電層與該第二介電層至少其中之一的內部空間;其中該第二絕緣層藉由一大氣電漿噴霧塗佈製程(atmospherically plasma spray coating process)、一快速氧燃燒熱噴霧塗佈製程(rapid oxygen-fuel thermal spray coating process)、一真空電漿噴霧塗佈製程(vacuum plasma spray coating process)與一動力噴霧塗佈製程其中之一形成。 The method of claim 21, further comprising performing a filling process for filling a plurality of fillers on the first insulating layer, the second insulating layer, the first dielectric layer and the second dielectric An inner space of at least one of the layers; wherein the second insulating layer is subjected to an atmospheric plasma spray coating process, a rapid oxygen-fuel thermal spray coating process Process), a vacuum plasma spray coating process and one of a dynamic spray coating process. 一種製造靜電卡盤之方法,包括:準備一基體;形成一絕緣層於該基體上;形成一電極層於該絕緣層上,該電極層產生一靜電力;形成一第一介電層於該電極層上,使該第一介電層具有非晶形結構;以及形成一第二介電層於該第一介電層上,使該第二介電層具有結晶結構。 A method of manufacturing an electrostatic chuck, comprising: preparing a substrate; forming an insulating layer on the substrate; forming an electrode layer on the insulating layer, the electrode layer generating an electrostatic force; forming a first dielectric layer thereon The first dielectric layer has an amorphous structure on the electrode layer; and a second dielectric layer is formed on the first dielectric layer, so that the second dielectric layer has a crystalline structure.
TW099127625A 2009-08-21 2010-08-18 Electrostatic chuck and method of manufacturing the same TWI459500B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090077369A KR100997374B1 (en) 2009-08-21 2009-08-21 Electrode static chuck and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TW201120988A TW201120988A (en) 2011-06-16
TWI459500B true TWI459500B (en) 2014-11-01

Family

ID=43410233

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099127625A TWI459500B (en) 2009-08-21 2010-08-18 Electrostatic chuck and method of manufacturing the same

Country Status (5)

Country Link
JP (1) JP5421460B2 (en)
KR (1) KR100997374B1 (en)
CN (1) CN203055886U (en)
TW (1) TWI459500B (en)
WO (1) WO2011021824A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642139B (en) * 2016-08-16 2018-11-21 北京北方華創微電子裝備有限公司 Chuck, reaction chamber and semiconductor processing device
TWI728977B (en) * 2015-11-17 2021-06-01 美商應用材料股份有限公司 Substrate support assembly with deposited surface features
TWI798868B (en) * 2020-10-16 2023-04-11 美商應用材料股份有限公司 Systems and methods of seasoning electrostatic chucks with dielectric seasoning films

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120069069A (en) * 2010-12-20 2012-06-28 (주)제니스월드 Method of processing of pecvd tray for solar cell
KR101981766B1 (en) * 2011-06-02 2019-05-23 어플라이드 머티어리얼스, 인코포레이티드 Electrostatic chuck aln dielectric repair
CN102610476B (en) * 2012-03-12 2015-05-27 中微半导体设备(上海)有限公司 Electrostatic chuck
KR101974386B1 (en) * 2012-03-21 2019-05-03 주식회사 미코 Electrode static chuck
CN103794445B (en) * 2012-10-29 2016-03-16 中微半导体设备(上海)有限公司 For electrostatic chuck assembly and the manufacture method of plasma process chamber
EP2948818B1 (en) * 2013-01-22 2020-07-01 ASML Netherlands B.V. Electrostatic clamp
US20140318455A1 (en) * 2013-04-26 2014-10-30 Varian Semiconductor Equipment Associates, Inc. Low emissivity electrostatic chuck
JP6104075B2 (en) * 2013-06-28 2017-03-29 日本特殊陶業株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP6120702B2 (en) * 2013-06-28 2017-04-26 日本特殊陶業株式会社 Vacuum adsorption apparatus and method for manufacturing the same
KR101385950B1 (en) * 2013-09-16 2014-04-16 주식회사 펨빅스 Electrostatic chuck and manufacturing method of the same
EP3103136B1 (en) * 2014-02-07 2021-06-23 Entegris, Inc. Electrostatic chuck and method of making same
CN105448794B (en) * 2014-08-13 2019-07-19 北京北方华创微电子装备有限公司 A kind of pallet and bogey
US10325800B2 (en) * 2014-08-26 2019-06-18 Applied Materials, Inc. High temperature electrostatic chucking with dielectric constant engineered in-situ charge trap materials
KR101694754B1 (en) * 2016-09-08 2017-01-11 (주)브이앤아이솔루션 eletectrostatic chuck and manufacturing method for the same
CN108346611B (en) * 2017-01-24 2021-05-18 中微半导体设备(上海)股份有限公司 Electrostatic chuck, manufacturing method thereof and plasma processing device
KR102066271B1 (en) * 2017-04-18 2020-01-14 단국대학교 천안캠퍼스 산학협력단 Sealing method of electrostatic chuck
JP6967944B2 (en) * 2017-11-17 2021-11-17 東京エレクトロン株式会社 Plasma processing equipment
JP7401266B2 (en) * 2018-12-27 2023-12-19 東京エレクトロン株式会社 Substrate mounting table and substrate processing equipment
CN111383986A (en) * 2018-12-27 2020-07-07 东京毅力科创株式会社 Substrate mounting table and substrate processing apparatus
WO2020182637A1 (en) * 2019-03-13 2020-09-17 Asml Holding N.V. Electrostatic clamp for a lithographic apparatus
CN109881184B (en) * 2019-03-29 2022-03-25 拓荆科技股份有限公司 Substrate bearing device with electrostatic force suppression
KR102130442B1 (en) * 2019-09-16 2020-07-06 주식회사 제스코 Method of manufacturing mobile glass chuck, mobile glass chuck using the same and method of attaching mobile glass to mobile panel of smartphone
CN111900117A (en) * 2019-12-31 2020-11-06 苏州芯慧联半导体科技有限公司 Electrostatic chuck
KR102332730B1 (en) * 2020-01-13 2021-12-01 (주)티티에스 Regeneration method of electrostatic chuck
KR102626584B1 (en) * 2020-12-24 2024-01-18 도카로 가부시키가이샤 Electrostatic chucks and handling devices
CN116262666B (en) * 2022-12-29 2024-05-17 浙江省冶金研究院有限公司 Preparation method of aluminum nitride-based ceramic composite material and application of aluminum nitride-based ceramic composite material to electrostatic chuck

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW236709B (en) * 1993-03-09 1994-12-21 Toto Ltd
JPH09283607A (en) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JPH10116888A (en) * 1996-07-19 1998-05-06 Applied Materials Inc Electrostatic chuck and its production
JPH10154745A (en) * 1996-11-26 1998-06-09 Hitachi Ltd Electrostatic attracting device
TW416117B (en) * 1997-03-06 2000-12-21 Applied Materials Inc Monocrystalline ceramic electrostatic chuck
TW434780B (en) * 1998-12-10 2001-05-16 Applied Materials Inc Apparatus and method for actively controlling surface potential of an electrostatic chuck
TW502368B (en) * 2001-11-06 2002-09-11 Duratek Inc Electrostatic chuck and method for manufacturing the same
TW516155B (en) * 2000-12-11 2003-01-01 Advanced Ceramics Internat Cor Electrostatic chuck and the manufacturing method thereof
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck
TWI236084B (en) * 2003-03-20 2005-07-11 Duratek Inc Method for manufacturing an electrostatic chuck

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020064508A (en) * 2001-02-02 2002-08-09 삼성전자 주식회사 Electrostatic chuck

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW236709B (en) * 1993-03-09 1994-12-21 Toto Ltd
JPH09283607A (en) * 1996-04-08 1997-10-31 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JPH10116888A (en) * 1996-07-19 1998-05-06 Applied Materials Inc Electrostatic chuck and its production
JPH10154745A (en) * 1996-11-26 1998-06-09 Hitachi Ltd Electrostatic attracting device
TW416117B (en) * 1997-03-06 2000-12-21 Applied Materials Inc Monocrystalline ceramic electrostatic chuck
TW434780B (en) * 1998-12-10 2001-05-16 Applied Materials Inc Apparatus and method for actively controlling surface potential of an electrostatic chuck
TW516155B (en) * 2000-12-11 2003-01-01 Advanced Ceramics Internat Cor Electrostatic chuck and the manufacturing method thereof
TW502368B (en) * 2001-11-06 2002-09-11 Duratek Inc Electrostatic chuck and method for manufacturing the same
TWI236084B (en) * 2003-03-20 2005-07-11 Duratek Inc Method for manufacturing an electrostatic chuck
JP2005057234A (en) * 2003-07-24 2005-03-03 Kyocera Corp Electrostatic chuck

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI728977B (en) * 2015-11-17 2021-06-01 美商應用材料股份有限公司 Substrate support assembly with deposited surface features
TWI774205B (en) * 2015-11-17 2022-08-11 美商應用材料股份有限公司 Substrate support assembly with deposited surface features
US11476146B2 (en) 2015-11-17 2022-10-18 Applied Materials, Inc. Substrate support assembly with deposited surface features
US11769683B2 (en) 2015-11-17 2023-09-26 Applied Materials, Inc. Chamber component with protective ceramic coating containing yttrium, aluminum and oxygen
TWI642139B (en) * 2016-08-16 2018-11-21 北京北方華創微電子裝備有限公司 Chuck, reaction chamber and semiconductor processing device
TWI798868B (en) * 2020-10-16 2023-04-11 美商應用材料股份有限公司 Systems and methods of seasoning electrostatic chucks with dielectric seasoning films
US11646216B2 (en) 2020-10-16 2023-05-09 Applied Materials, Inc. Systems and methods of seasoning electrostatic chucks with dielectric seasoning films

Also Published As

Publication number Publication date
WO2011021824A2 (en) 2011-02-24
TW201120988A (en) 2011-06-16
KR100997374B1 (en) 2010-11-30
JP2013502721A (en) 2013-01-24
WO2011021824A3 (en) 2011-07-07
CN203055886U (en) 2013-07-10
JP5421460B2 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
TWI459500B (en) Electrostatic chuck and method of manufacturing the same
KR101986682B1 (en) Substrate support assembly having metal bonded protective layer
US7416793B2 (en) Electrostatic chuck and manufacturing method for the same, and alumina sintered member and manufacturing method for the same
TWI518841B (en) Electrostatic sucker
JP3154629U (en) Electrostatic chuck
US20070146961A1 (en) Electrostatic chuck
TW200816364A (en) Electrostatic chuck with heater and manufacturing method thereof
JP4082924B2 (en) Electrostatic chuck holder and substrate processing apparatus
KR101122709B1 (en) Electrode static chuck
KR102675440B1 (en) Electrostatic chuck device and method of manufacturing the same
JP2003282688A (en) Electrostatic chuck
US20210335644A1 (en) Ceramics substrate , method of manufacturing the same, electrostatic chuck, substrate fixing device, and semiconductor device package
TWI401768B (en) Electrostatic chuck containing buffer layer for reducing thermal stress
TWI379380B (en) Electrostatic chuck containing double buffer layer for reducing thermal stress
JPH09283606A (en) Electrostatic chuck
US20230298861A1 (en) Member for semiconductor manufacturing apparatus
JP7388573B2 (en) Ceramic bonded body, electrostatic chuck device, manufacturing method of ceramic bonded body
WO2022077821A1 (en) Electrostatic chuck provided with heating function and preparation method therefor
JP2003168726A (en) Electrostatic chuck for semiconductor manufacturing device and its manufacturing method
TW202105593A (en) Electrostatic chuck and substrate fixing device
JP2006120847A (en) Bipolar electrostatic chuck and its manufacturing method
US11942350B2 (en) Electrostatic chuck and substrate holding device
JP7388575B2 (en) Ceramic bonded body, electrostatic chuck device
JP7327713B1 (en) Ceramic bonded body, electrostatic chuck device, and method for manufacturing ceramic bonded body
JP2007243149A (en) Electrostatic chuck