JP2006120847A - Bipolar electrostatic chuck and its manufacturing method - Google Patents

Bipolar electrostatic chuck and its manufacturing method Download PDF

Info

Publication number
JP2006120847A
JP2006120847A JP2004307013A JP2004307013A JP2006120847A JP 2006120847 A JP2006120847 A JP 2006120847A JP 2004307013 A JP2004307013 A JP 2004307013A JP 2004307013 A JP2004307013 A JP 2004307013A JP 2006120847 A JP2006120847 A JP 2006120847A
Authority
JP
Japan
Prior art keywords
positive
electrostatic chuck
dielectric plate
plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004307013A
Other languages
Japanese (ja)
Other versions
JP4241571B2 (en
Inventor
Yoshiki Yoshioka
良樹 吉岡
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004307013A priority Critical patent/JP4241571B2/en
Publication of JP2006120847A publication Critical patent/JP2006120847A/en
Application granted granted Critical
Publication of JP4241571B2 publication Critical patent/JP4241571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bipolar electrostatic chuck which is uniform and strong in an electrostatic attraction force and has no leakage current, and to provide its manufacturing method. <P>SOLUTION: The bipolar electrostatic chuck comprises an insulating support plate, an internal electrode means 3 having positive and negative electrodes arranged on the insulating support plate, a dielectric plate which covers a support body and the internal electrode means 3, and a feeding terminal 7 which is connected to the positive and negative electrodes 1 and 2 and supported by the support body. On the dielectric plate, a voltage applying electrode is arranged. By applying a voltage between the voltage applying electrode and the feeding terminal 7, the volume characteristic resistance value R1 of the part 10 of the dielectric plate which faces the positive and negative electrodes 1 and 2 is adjusted lower (for example, 1/5 or less) than the volume characteristic resistance value R2 of the other part which does not face the positive and negative electrodes 1 and 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば半導体ウエハー、フレキシブル基板、あるいはガラス基板等の板状試料を吸着保持する際に用いられる双極型静電チャック及びその製造方法に関するものである。   The present invention relates to a bipolar electrostatic chuck used when adsorbing and holding a plate-like sample such as a semiconductor wafer, a flexible substrate, or a glass substrate, and a method for manufacturing the same.

板状試料を静電吸着力を利用して吸着固定する静電チャックを分類すると、一つの電極が誘電体層中に埋設された単極型静電チャックと、二つの電極を互いに隣接する状態で誘電体層中に配設した双極型静電チャックとに大別され、このうち双極型静電チャックは、静電吸着する工程において板状試料を接地する必要がないという利点があり、このために半導体製造装置等に多用されている。   When classifying electrostatic chucks that attract and fix plate-like specimens using electrostatic attraction force, a single-pole electrostatic chuck with one electrode embedded in a dielectric layer and two electrodes adjacent to each other The bipolar electrostatic chuck is roughly divided into the bipolar electrostatic chuck disposed in the dielectric layer. Among these, the bipolar electrostatic chuck has the advantage that it is not necessary to ground the plate-like sample in the electrostatic adsorption process. Therefore, it is frequently used in semiconductor manufacturing equipment.

例えば特開平2002−044971号公報(特許文献1)及び特開平2003−158150号公報(特許文献2)に示されている従来の双極型静電チャックにおいては、概略、絶縁性支持板の表面上に形成された正又は負の内部電極と負又は正の内部電極からなる双極型の静電吸着用内部電極が誘電体板で被覆され、この誘電体板の表面が、板状試料を載置するための静電吸着用静電吸着面とされ、前記静電吸着用電極に直流電圧を印加する給電用端子(電圧印加手段)が設けられている。   For example, in the conventional bipolar electrostatic chuck shown in Japanese Patent Application Laid-Open No. 2002-044771 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2003-158150 (Patent Document 2), the surface of the insulating support plate is roughly A bipolar type internal electrode for electrostatic attraction comprising a positive or negative internal electrode and a negative or positive internal electrode formed on the surface is covered with a dielectric plate, and the surface of the dielectric plate is placed with a plate-like sample. An electrostatic attracting surface for electrostatic attraction is provided, and a power feeding terminal (voltage applying means) for applying a DC voltage to the electrostatic attracting electrode is provided.

このような構造を有する従来の双極型静電チャックでは、一方の内部電極が正電極に、他方の内部電極が負電極になるよう直流電圧が印加され、板状試料を接地する必要がないなどの、単極型の静電チャックでは実現できない特性が得られるけれども、下記のような改善を要する点があった。   In a conventional bipolar electrostatic chuck having such a structure, a DC voltage is applied so that one internal electrode is a positive electrode and the other internal electrode is a negative electrode, and there is no need to ground a plate-like sample. Although characteristics that cannot be realized with a single-pole electrostatic chuck can be obtained, the following improvements are required.

(1)大きな静電吸着力を得るためには静電吸着用内部電極上の誘電体板の厚さを薄くする必要があるが、誘電体板の厚さが薄ければ薄いほど、誘電体板層の厚さの不均一性が静電吸着力の均一性に及ぼす影響が大きくなり、より均一な厚みの誘電体板層とする必要があるが、作製が困難となる。そのため、誘電体板の厚さを薄くして大きな静電吸着力を得ることには自ずと限度があった。   (1) In order to obtain a large electrostatic attraction force, it is necessary to reduce the thickness of the dielectric plate on the internal electrode for electrostatic attraction. However, the thinner the dielectric plate, the lower the dielectric The influence of the nonuniformity of the thickness of the plate layer on the uniformity of the electrostatic attraction force becomes large, and it is necessary to make the dielectric plate layer with a more uniform thickness, but the production becomes difficult. For this reason, there has been a limit to obtaining a large electrostatic attraction force by reducing the thickness of the dielectric plate.

(2)静電吸着される板状試料の部分的な浮き上がりを防止するためには、均一な静電吸着力が得られるようにする必要がある。そのためには、正電極となる一方の静電吸着用内部電極と、負電極となる他方の静電吸着用内部電極との距離を狭小となるようにすることが必要である。このように静電吸着用内部電極を配設すると、正電極となる一方の静電吸着用内部電極と、負電極となる他方の静電吸着用内部電極との間に漏れ電流が発生しやすく、また、電流による発熱で静電チャックが損傷するおそれがある。   (2) In order to prevent partial lifting of the plate-like sample to be electrostatically adsorbed, it is necessary to obtain a uniform electrostatic attraction force. For this purpose, it is necessary to make the distance between one electrostatic adsorption internal electrode serving as a positive electrode and the other electrostatic adsorption internal electrode serving as a negative electrode narrow. When the electrostatic adsorption internal electrode is arranged in this manner, a leakage current is easily generated between one electrostatic adsorption internal electrode serving as a positive electrode and the other electrostatic adsorption internal electrode serving as a negative electrode. In addition, the electrostatic chuck may be damaged by the heat generated by the current.

特開平2002−044971号公報Japanese Patent Laid-Open No. 2002-044771 特開平2003−158150号公報Japanese Patent Laid-Open No. 2003-158150

本発明は、従来の双極型静電チャックが有する前記問題点を解決することを目的とするものであり、すなわち正電極と負電極からなる静電吸着用内部電極上の誘電体板の厚さを薄くすることなく、より大きな静電吸着力を有し、静電吸着領域の全域にわたって静電吸着力が均一であり、漏れ電流に基づく発熱に起因する静電チャックの損傷の虞がない双極型静電チャック、及び、このような双極型静電チャックを廉価に効率よく製造可能な製造方法を提供しようとするものである。   An object of the present invention is to solve the above-described problems of the conventional bipolar electrostatic chuck, that is, the thickness of the dielectric plate on the internal electrode for electrostatic attraction composed of a positive electrode and a negative electrode. Bipolar that has a larger electrostatic attraction force without reducing the thickness, has a uniform electrostatic attraction force over the entire electrostatic attraction area, and does not cause damage to the electrostatic chuck due to heat generation due to leakage current An electrostatic chuck and a manufacturing method capable of manufacturing such a bipolar electrostatic chuck at low cost and efficiently are provided.

本発明者は、上記の課題解決のため鋭意検討した結果、絶縁性セラミックスと導電性材料との複合焼結体に電圧を印加すると、電圧印加部近傍の体積固有抵抗値が低下することを知見し、更に、誘電体板の、正電極に対向する部分と負電極に対向する部分との中間部分の体積固有抵抗値(R2)を、電極に対向している部分の体積固有抵抗値(R1)に比べて高くすると、静電吸着力が増加することを知見し、この知見に基いて本発明を形成するに至った。   As a result of diligent studies to solve the above problems, the present inventor has found that when a voltage is applied to a composite sintered body of an insulating ceramic and a conductive material, the volume resistivity value in the vicinity of the voltage application portion decreases. Further, the volume resistivity (R2) of the intermediate portion between the portion facing the positive electrode and the portion facing the negative electrode of the dielectric plate is set to the volume resistivity (R1) of the portion facing the electrode. ), The electrostatic attraction force was found to increase, and the present invention was formed based on this finding.

本発明の双極型静電チャックは、絶縁性支持板、前記支持板上に配置され、正電極と負電極とを含む双極型静電気吸着用内部電極手段と、
前記支持体及び前記内部電極手段を被覆している誘電体板と、前記正・負電極の各々に連結され、かつ支持板により支持されている給電用端子とを含み、
前記誘電体板の、前記正又は負電極に対向している部分の体積固有抵抗値(R1)が、前記誘電体板の、前記正及び負電極に対向していない部分の体積固有抵抗値(R2)よりも低いことを特徴とするものである。
本発明の双極型静電チャックにおいて、前記誘電体板の、前記正又は負電極に対向する部分の体積固有抵抗値(R1)が、1×109Ωcm〜1×1013Ωcmの範囲にあり、前記誘電体板の、前記正又は負電極に対向していない部分の体積固有抵抗値(R2)が、体積固有抵抗値(R1)の5倍以上であることが好ましい。
本発明の双極型静電チャックにおいて、互に隣り合う前記正電極と前記負電極との離間距離が、0.5〜5mmであることが好ましい。
本発明の双極型静電チャックにおいて、前記誘電体板が、絶縁性セラミックスと導電性材料との混合物を形成・焼結して得られた複合焼結体により形成されていることが好ましい。
本発明の双極型静電チャックにおいて、前記絶縁性セラミックスが、酸化アルミニウムであり、前記導電性材料が、導電性炭化珪素であることが好ましい。
The bipolar electrostatic chuck of the present invention comprises an insulating support plate, a bipolar type electrostatic internal electrode means disposed on the support plate and including a positive electrode and a negative electrode,
A dielectric plate covering the support and the internal electrode means, and a power feeding terminal connected to each of the positive and negative electrodes and supported by the support plate,
The volume resistivity value (R1) of the portion of the dielectric plate facing the positive or negative electrode is equal to the volume resistivity value (R1) of the portion of the dielectric plate not facing the positive and negative electrodes ( It is characterized by being lower than R2).
In the bipolar electrostatic chuck of the present invention, the volume resistivity (R1) of the portion of the dielectric plate facing the positive or negative electrode is in the range of 1 × 10 9 Ωcm to 1 × 10 13 Ωcm. The volume specific resistance value (R2) of the portion of the dielectric plate not facing the positive or negative electrode is preferably 5 times or more the volume specific resistance value (R1).
In the bipolar electrostatic chuck of the present invention, it is preferable that a separation distance between the positive electrode and the negative electrode adjacent to each other is 0.5 to 5 mm.
In the bipolar electrostatic chuck of the present invention, it is preferable that the dielectric plate is formed of a composite sintered body obtained by forming and sintering a mixture of an insulating ceramic and a conductive material.
In the bipolar electrostatic chuck of the present invention, it is preferable that the insulating ceramic is aluminum oxide and the conductive material is conductive silicon carbide.

本発明の双極型静電チャックの製造方法は、絶縁性支持板、前記支持板上に配置され、正電極と負電極とを含む双極型静電気吸着用内部電極手段と、
前記支持板及び前記内部電極手段を被覆している誘電体板と、前記正・負電極の各々に連結され、かつ支持板により支持されている給電用端子とを有する静電チャックを製造し、
この静電チャックの前記誘電体板の開放面上に、それを被覆する電圧印加用電極を載置し、前記電圧印加用電極と、前記給電用端子との間に、前記静電チャックの使用電圧より高い電圧を印加し、それによって、前記誘電体板の、前記正・負電極に対向している部分の体積固有抵抗値(R1)を、前記誘電体板の前記正・負電圧に対向していない部分の体積固有抵抗値(R2)より低く調整することを特徴とするものである。
The manufacturing method of the bipolar electrostatic chuck of the present invention comprises an insulating support plate, a bipolar type electrostatic internal electrode means disposed on the support plate and including a positive electrode and a negative electrode,
Producing an electrostatic chuck having a dielectric plate covering the support plate and the internal electrode means, and a power supply terminal connected to each of the positive and negative electrodes and supported by the support plate,
On the open surface of the dielectric plate of the electrostatic chuck, a voltage applying electrode that covers the dielectric plate is placed, and the electrostatic chuck is used between the voltage applying electrode and the power supply terminal. A voltage higher than the voltage is applied, whereby the volume resistivity (R1) of the portion of the dielectric plate facing the positive / negative electrode is opposed to the positive / negative voltage of the dielectric plate. The volume resistivity is adjusted to be lower than the volume resistivity (R2) of the portion that is not.

本発明によれば、正電極と負電極からなる静電吸着用内部電極手段上の誘電体板の厚さを薄くすることなく、より大きな静電吸着力を有し、静電吸着領域の全域にわたって静電吸着力が均一であり、しかも、漏れ電流に基づく発熱に起因する静電チャックの損傷の虞がない静電チャックを提供することができる。
また、本発明によれば、上記特性を有する双極型静電チャックを廉価に効率よく製造可能な静電チャックの製造方法を提供することができる。
According to the present invention, the electrostatic plate has a larger electrostatic adsorption force without reducing the thickness of the dielectric plate on the electrostatic adsorption internal electrode means composed of the positive electrode and the negative electrode, and the entire area of the electrostatic adsorption region. It is possible to provide an electrostatic chuck that has a uniform electrostatic attraction force and is free from damage of the electrostatic chuck due to heat generation based on leakage current.
In addition, according to the present invention, it is possible to provide a method for manufacturing an electrostatic chuck capable of manufacturing a bipolar electrostatic chuck having the above characteristics at low cost and efficiently.

本発明の実施形態を図面を参照して説明する。なお、この実施の形態は、本発明の趣旨を説明するためのものであって、本発明を限定するものではない。   Embodiments of the present invention will be described with reference to the drawings. In addition, this embodiment is for demonstrating the meaning of this invention, Comprising: This invention is not limited.

「双極型静電チャック」
まず、前記の「双極型静電チャック」の実施態様について説明する。
図1及び図2(図1の部分拡大部)に示されている双極型静電チャック10は、正電極1と負電極2からなる双極型の静電吸着用内部電極手段3が誘電体板4と絶縁性支持板5との間に挟持され、前記誘電体板4と絶縁性支持板5とが接合または接着されて一体化されたものである。
この誘電体板4の表面(上面)が板状試料W(図示されていない)を載置して静電吸着するための静電吸着面6を構成し、静電吸着用内部電極手段3に直流電圧を印加するための給電用端子(電圧印加手段)7,7が、前記絶縁性支持板5により保持されている。
"Bipolar electrostatic chuck"
First, an embodiment of the “bipolar electrostatic chuck” will be described.
The bipolar electrostatic chuck 10 shown in FIG. 1 and FIG. 2 (partially enlarged portion of FIG. 1) has a bipolar electrostatic chucking internal electrode means 3 composed of a positive electrode 1 and a negative electrode 2 as a dielectric plate. 4 and the insulating support plate 5, and the dielectric plate 4 and the insulating support plate 5 are joined or bonded together to be integrated.
The surface (upper surface) of the dielectric plate 4 constitutes an electrostatic adsorption surface 6 on which a plate-like sample W (not shown) is placed and electrostatically adsorbed. Feeding terminals (voltage applying means) 7 and 7 for applying a DC voltage are held by the insulating support plate 5.

前記誘電体板4は、その全体が絶縁性セラミックスと導電性材料との複合焼結体から形成されており、図2に示されるように、正電極1と負電極2からなる静電吸着用内部電極手段3の正・負電極1,2に対向している部分9の、この双極型静電チャックの使用温度下での体積固有抵抗値(R1)が好ましくは1×109Ωcm〜1×1013Ωcmの範囲内となるように制御されている。
前記の体積固有抵抗値が1×109Ωcmを下回ると、誘電体板上に載置される板状試料W等への漏れ電流が発生して漏れ電流によって板状試料Wを破壊する危険性が高くなることがあり、一方、前記の体積固有抵抗値(R1)が1×1013Ωcmを超えると板状試料Wの吸着、脱着後の応答性が著しく低下することがある。
The dielectric plate 4 is entirely formed of a composite sintered body of an insulating ceramic and a conductive material. As shown in FIG. 2, the dielectric plate 4 is for electrostatic attraction comprising a positive electrode 1 and a negative electrode 2. The volume specific resistance value (R1) of the internal electrode means 3 facing the positive / negative electrodes 1 and 2 at the operating temperature of this bipolar electrostatic chuck is preferably 1 × 10 9 Ωcm to 1 It is controlled to be within the range of × 10 13 Ωcm.
When the volume resistivity value is less than 1 × 10 9 Ωcm, there is a risk that a leakage current to the plate-like sample W or the like placed on the dielectric plate is generated and the plate-like sample W is destroyed by the leakage current. On the other hand, if the volume resistivity (R1) exceeds 1 × 10 13 Ωcm, the responsiveness after adsorption and desorption of the plate-like sample W may be remarkably lowered.

一方、前記誘電体板4の、前記正・負電極1,2に対向していない部分8の体積固有抵抗値R2は、前記正・負電極1,2に対向している部分9の体積固有抵抗値の5倍以上、であることが好ましく、より好ましくは10倍以上となるよう制御されている。
前記誘電体板4の、前記正・負電極に対向していない部分8の体積固有抵抗値R2がこのように高抵抗化されたことにより、互に隣り合う正電極1と負電極2との間の電位の分布は、前記部分9の低抵抗化以前においては図5aに示されている状態であったが、前記部分9が低抵抗化された後は、図5bに示されている状態に変化し、前記部分9上の電位は、静電吸着用内部電極手段3に印加された電位とほぼ同一になる。このため、誘電体板4の厚さを薄くすることなく、大きな静電吸着力が得られる。なお、図5a、図5bにおいて、正電極1と負電極2との間に±3000Vの直流電圧を印加した場合の等電位線が模式的に示されている。
また、誘電体板4の、正・負電極に対向していない前記部分8の体積固有抵抗値が、図5bに示されているように高抵抗化されたことにより通常の印加電圧、すなわち直流電圧:数千V程度の印加電圧下で正電極と負電極の間の漏れ電流の発生を防止することができ、この漏れ電流に起因する発熱による静電チャック10の損傷のおそれがなくなる。
On the other hand, the volume specific resistance R2 of the portion 8 of the dielectric plate 4 not facing the positive / negative electrodes 1 and 2 is the volume specific resistance R2 of the portion 9 facing the positive / negative electrodes 1 and 2. The resistance value is preferably 5 times or more, more preferably 10 times or more.
Since the volume specific resistance value R2 of the portion 8 of the dielectric plate 4 not facing the positive and negative electrodes is increased in this way, the positive electrode 1 and the negative electrode 2 adjacent to each other are increased. The distribution of the potential between them was in the state shown in FIG. 5a before the resistance of the portion 9 was lowered, but after the resistance of the portion 9 was lowered, the state shown in FIG. Thus, the potential on the portion 9 becomes substantially the same as the potential applied to the internal electrode means 3 for electrostatic attraction. For this reason, a large electrostatic attraction force can be obtained without reducing the thickness of the dielectric plate 4. 5a and 5b schematically show equipotential lines when a DC voltage of ± 3000 V is applied between the positive electrode 1 and the negative electrode 2. FIG.
Further, the volume resistivity of the portion 8 of the dielectric plate 4 not facing the positive / negative electrodes is increased as shown in FIG. Voltage: Leakage current between the positive electrode and the negative electrode can be prevented under an applied voltage of about several thousand volts, and there is no risk of damage to the electrostatic chuck 10 due to heat generation due to this leakage current.

また、上記のとおり大きな静電吸着力が得られるため、前記誘電体板4の厚さを薄くする必要がなく、板状試料Wを載置して静電吸着する誘電体板4の厚さ加工が容易で、静電吸着面6の全域における静電吸着力の均一化が達成される。   In addition, since a large electrostatic adsorption force can be obtained as described above, it is not necessary to reduce the thickness of the dielectric plate 4, and the thickness of the dielectric plate 4 that electrostatically adsorbs the plate-like sample W placed thereon. Processing is easy, and the electrostatic attraction force is uniformized throughout the electrostatic attraction surface 6.

更に、前記誘電体板4の、前記正・負電極1,2に対向していない部分8の体積固有抵抗値(R2)が前記のとおり高抵抗化されたことにより、正電極1と負電極2との間隔を0.5mm〜5mmの範囲内、好ましくは0.5mm〜3mmの範囲内と狭小化することが可能となり、もって、静電吸着面6の全域において、静電吸着力がほぼ均一となり、板状試料Wの部分的な浮き上がりを生ずることのない静電チャックが得られる。   Further, as the volume resistivity (R2) of the portion 8 of the dielectric plate 4 not facing the positive / negative electrodes 1 and 2 is increased as described above, the positive electrode 1 and the negative electrode 1 2 can be narrowed within a range of 0.5 mm to 5 mm, preferably within a range of 0.5 mm to 3 mm, so that the electrostatic attraction force is almost constant over the entire area of the electrostatic attraction surface 6. An electrostatic chuck that is uniform and does not cause partial lifting of the plate-like sample W can be obtained.

前記の誘電体板4を構成する1成分である前記絶縁性セラミックス材料としては、例えば、酸化アルミニウム(Al23)、酸化イットリア(Y23)、酸化ケイ素(SiO2)、酸化ジルコニウム(ZrO2)、酸化マグネシウム(MgO)、ムライト(3Al23・2SiO2)等を例示することができ、なかでも酸化アルミニウム(Al23)は、安価で耐熱性に優れ、複合焼結体の機械的特性も良好であるので本発明に好適に用いられる。 Examples of the insulating ceramic material that is one component constituting the dielectric plate 4 include aluminum oxide (Al 2 O 3 ), yttria oxide (Y 2 O 3 ), silicon oxide (SiO 2 ), and zirconium oxide. (ZrO 2 ), magnesium oxide (MgO), mullite (3Al 2 O 3 .2SiO 2 ) and the like can be exemplified. Among them, aluminum oxide (Al 2 O 3 ) is inexpensive and excellent in heat resistance, and is combined and sintered. Since the mechanical properties of the bonded body are also good, it is preferably used in the present invention.

また、前記の誘電体板4を構成する1成分である前記導電性材料粉末としては、焼結時の高温に耐え得るものであれば特に限定されず、例えば、導電性炭化珪素(SiC)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)等の高融点金融、カーボン(C)等を例示することができ、なかでも導電性炭化珪素(SiC)は、酸化アルミニウム(Al23)と複合化した場合、得られる複合焼結体は比抵抗値の温度依存性が少なく、ハロゲンガスに対する耐蝕性に優れ、耐熱性、耐熱衝撃性に優れ、高温下の使用において熱応力による損傷の危険性が少ないので、本発明に好適に用いられる。 In addition, the conductive material powder that is one component constituting the dielectric plate 4 is not particularly limited as long as it can withstand high temperatures during sintering. For example, conductive silicon carbide (SiC), Examples thereof include high melting point finance such as molybdenum (Mo), tungsten (W), and tantalum (Ta), carbon (C), etc. Among them, conductive silicon carbide (SiC) is aluminum oxide (Al 2 O 3). ), The resulting composite sintered body has less temperature dependence of specific resistance, excellent corrosion resistance to halogen gas, excellent heat resistance and thermal shock resistance, and damage due to thermal stress when used at high temperatures Therefore, it is preferably used in the present invention.

また、静電吸着用内部電極手段3は、例えば図3に示されるように、同一円心を有する大きさの異なる円形をなす正電極1が、一定の間隔をおいて絶縁性支持板5の表面上に幾重にも形成され、これらの円形の正電極1の全てが一部で結合して正電極1を形成している。正電極1と同様に形成された負電極2は、正電極1を構成する各電極の間に配置され、この静電吸着用内部電極手段3においては、正電極1と負電極2が交互に配置された構造を有している。   Further, as shown in FIG. 3, for example, the internal electrode means 3 for electrostatic attraction is configured so that positive electrodes 1 having the same circular center and different circular sizes are arranged on the insulating support plate 5 with a certain interval. It is formed in layers on the surface, and all of these circular positive electrodes 1 are joined together to form the positive electrode 1. A negative electrode 2 formed in the same manner as the positive electrode 1 is disposed between the electrodes constituting the positive electrode 1. In the internal electrode means 3 for electrostatic adsorption, the positive electrode 1 and the negative electrode 2 are alternately arranged. It has an arranged structure.

前記の静電吸着用内部電極手段3の正・負電極1,2は、モリブデン(Mo)やタングステン(W)などの高融点金属や、炭化タンタル(TaC)や炭化珪素(SiC)等を含む導電性セラミックスで形成されている。そして、静電吸着用電極手段3は、正電極1と負電極2とが略均一、例えば、正電極1と負電極2の面積比が1:0.9〜1:1.1となるよう配置されていることが好ましく、このようにすることにより静電吸着力を均一化することができる。   The positive and negative electrodes 1 and 2 of the internal electrode means 3 for electrostatic adsorption include refractory metals such as molybdenum (Mo) and tungsten (W), tantalum carbide (TaC), silicon carbide (SiC), and the like. It is made of conductive ceramics. In the electrostatic chucking electrode means 3, the positive electrode 1 and the negative electrode 2 are substantially uniform, for example, the area ratio of the positive electrode 1 and the negative electrode 2 is 1: 0.9 to 1: 1.1. It is preferable to arrange them, and by doing so, the electrostatic attraction force can be made uniform.

前記絶縁性支持板5は、給電用端子7,7を保持するとともに、前記静電吸着用内部電極手段3と、前記誘電体板4とを下方から支持するものである。
前記絶縁性支持板5は、前記誘電体板4と同等以上の絶縁性の材料で形成された板状板の焼結体であれば特に制限されないが、熱膨張係数が前記絶縁体性誘電体板4の熱膨張係数に近似する焼結体であることが好ましく、例えば酸化アルミニウム(Al23)焼結体、酸化アルミニウム(Al23)−炭化珪素(SiC)複合焼結体等を例示することができ、例えば、前記誘電体板4と同一の焼結体で形成されていてもよい。
The insulating support plate 5 holds the power feeding terminals 7 and 7 and supports the internal electrode means 3 for electrostatic adsorption and the dielectric plate 4 from below.
The insulating support plate 5 is not particularly limited as long as the insulating support plate 5 is a sintered body of a plate-like plate formed of an insulating material equal to or higher than that of the dielectric plate 4, but has a thermal expansion coefficient of the insulating dielectric. A sintered body that approximates the thermal expansion coefficient of the plate 4 is preferable. For example, an aluminum oxide (Al 2 O 3 ) sintered body, an aluminum oxide (Al 2 O 3 ) -silicon carbide (SiC) composite sintered body, etc. For example, the dielectric plate 4 may be formed of the same sintered body.

正電極1と負電極2からなる静電吸着用内部電極手段3が板状の焼結体で形成された誘電体板4と、板状の焼結体で形成された前記絶縁性支持板5間に挟持された双極型静電チャックについて説明したが、本発明はこのような構造に限定されるものではない。
即ち、本発明の双極型静電チャックは、
(1)板状の焼結体で形成された絶縁性支持板5の表面上に形成された正電極1と負電極2からなる静電吸着用内部電極手段3が前記の誘電体板4を構成する成分と同一の成分を有する溶射材料で形成されたものであってもよく、また、
(2)板状の焼結体で形成された誘電体板4の下面上に形成され、かつ正電極1と負電極2からなる静電吸着用内部電極手段3が、前記の絶縁性支持板5を構成する成分と同一の成分を有する溶射材料で被覆されていてもよく、
(3)さらには、誘電体板4と同一成分の板状の圧粉体中に正電極1と負電極2からなる静電吸着用内部電極手段3を埋設し、これを焼結して得られたものであってもよい。
A dielectric plate 4 in which an internal electrode means 3 for electrostatic attraction comprising a positive electrode 1 and a negative electrode 2 is formed of a plate-shaped sintered body, and the insulating support plate 5 formed of a plate-shaped sintered body. Although the bipolar electrostatic chuck sandwiched between them has been described, the present invention is not limited to such a structure.
That is, the bipolar electrostatic chuck of the present invention is
(1) The electrostatic adsorption internal electrode means 3 comprising the positive electrode 1 and the negative electrode 2 formed on the surface of the insulating support plate 5 formed of a plate-like sintered body replaces the dielectric plate 4. It may be formed of a thermal spray material having the same component as the constituent component,
(2) The internal electrode means 3 for electrostatic attraction formed of the positive electrode 1 and the negative electrode 2 on the lower surface of the dielectric plate 4 formed of a plate-like sintered body is the insulating support plate. 5 may be coated with a thermal spray material having the same components as the components constituting
(3) Further, the internal electrode means 3 for electrostatic adsorption composed of the positive electrode 1 and the negative electrode 2 is embedded in a plate-shaped green compact having the same component as that of the dielectric plate 4, and obtained by sintering. It may be what was made.

上記の構成を有する本発明の双極型静電チャックは、下記の実用的特性を有するものである。
(1)誘電体板4の厚さを薄くすることなく、静電吸着力の増大を図ることができる。
(2)従って、従来型の双極型静電チャックと同一の静電吸着力を得るに要する印加電圧は低電圧で十分となる。
(3)均一な静電吸着力が得られ静電吸着される板状試料Wの部分的な浮き上がりを防止することができる。
The bipolar electrostatic chuck of the present invention having the above-described configuration has the following practical characteristics.
(1) The electrostatic attraction force can be increased without reducing the thickness of the dielectric plate 4.
(2) Therefore, a low voltage is sufficient as the applied voltage required to obtain the same electrostatic attraction force as that of the conventional bipolar electrostatic chuck.
(3) A uniform electrostatic attraction force can be obtained and partial lifting of the plate-like sample W to be electrostatically attracted can be prevented.

(4)静電吸着用内部電極手段3上の誘電体板4の厚さを厳格に均一にする必要がなく、誘電体板4の作製が容易となる。
(5)静電吸着用内部電極手段3と板状試料Wとの間、または正電極1と負電極2との間の漏れ電流が少なく、発熱して板状試料Wや静電チャック10が損傷するおそれがない。
という効果を奏するものとなる。
(4) It is not necessary to make the thickness of the dielectric plate 4 on the internal electrode means 3 for electrostatic attraction strictly uniform, and the production of the dielectric plate 4 becomes easy.
(5) The leakage current between the internal electrode means 3 for electrostatic adsorption and the plate-like sample W or between the positive electrode 1 and the negative electrode 2 is small, and the plate-like sample W and the electrostatic chuck 10 are heated due to heat generation. There is no risk of damage.
It has the effect of.

「双極型静電チャックの製造方法」
次いで、本発明の「双極型静電チャックの製造方法」の実施態様について説明する。
まず、絶縁性セラミックス粉末と導電性材料粉末とを混合して混合粉末とし、この混合粉末を公知の方法に従って成形、焼結して板状焼結体を作製し、誘電体板を得る。
絶縁性セラミックス粉末と導電性材料粉末との混合比は、焼結後において、静電チャックの使用条件(印加電圧、使用温度)下で誘電体板として要求される体積固有抵抗値よりも、例えば5〜数100倍高い体積固有抵抗値となる混合比率であり、より具体的には、以下に詳述する正・負電極1,2に対向する部分の低抵抗値化を考慮し、低抵抗値化される分だけ高抵抗値化された体積固有抵抗値となるような混合比率を用いる。
"Production method of bipolar electrostatic chuck"
Next, an embodiment of the “bipolar electrostatic chuck manufacturing method” of the present invention will be described.
First, an insulating ceramic powder and a conductive material powder are mixed to form a mixed powder, and the mixed powder is molded and sintered according to a known method to produce a plate-like sintered body to obtain a dielectric plate.
The mixing ratio of the insulating ceramic powder and the conductive material powder is, for example, higher than the volume specific resistance value required for the dielectric plate under the usage conditions (applied voltage and temperature) of the electrostatic chuck after sintering. 5 to several hundred times higher mixing ratio of volume resistivity, more specifically, low resistance in consideration of lowering the resistance of the portion facing the positive and negative electrodes 1 and 2 described in detail below. A mixing ratio is used such that the volume specific resistance value is increased by the amount of resistance.

即ち、絶縁性セラミックス材料粉末として酸化アルミニウム(Al23)粉末を用い、導電性材料粉末として導電性炭化珪素(SiC)粉末を用いるときは、好適な混合比率は、例えば、酸化アルミニウム(Al23)粉末:70〜99重量%、導電性炭化珪素(SiC)粉末:30〜1重量%程度である。 That is, when aluminum oxide (Al 2 O 3 ) powder is used as the insulating ceramic material powder and conductive silicon carbide (SiC) powder is used as the conductive material powder, a suitable mixing ratio is, for example, aluminum oxide (Al 2 O 3 ) powder: 70 to 99% by weight, conductive silicon carbide (SiC) powder: about 30 to 1% by weight.

前記の導電性炭化珪素粉末としては、プラズマCVD法によって製造された粉末が好ましい。特に、非酸化性雰囲気のプラズマ中にシラン化合物またはハロゲン化珪素と炭化水素の原料ガスを導入し、反応系の圧力を1.01×105Pa(1気圧)未満から1.33×10Pa(0.1torr)の範囲で制御しつつ気相反応させて得られた、平均粒子径0.1μm以下の導電性炭化珪素(SiC)超微粉末が、焼結性に優れており、高純度であり、粒子形状が球状であるために成形時の分散性が良好である。 The conductive silicon carbide powder is preferably a powder produced by a plasma CVD method. In particular, a silane compound or silicon halide and hydrocarbon source gas is introduced into plasma in a non-oxidizing atmosphere, and the pressure of the reaction system is changed from less than 1.01 × 10 5 Pa (1 atm) to 1.33 × 10 Pa ( The conductive silicon carbide (SiC) ultrafine powder having an average particle size of 0.1 μm or less, obtained by performing a gas phase reaction while controlling in a range of 0.1 torr) has excellent sinterability and high purity. In addition, since the particle shape is spherical, the dispersibility during molding is good.

一方、酸化アルミニウム(Al23)粉末等の絶縁性材料粉末を、公知の方法に従って成形、焼結して板状焼結体を作製し、この板状焼結体板に機械加工を施して給電用端子の挿入孔を形成し、絶縁性支持板を作製する。 On the other hand, an insulating material powder such as aluminum oxide (Al 2 O 3 ) powder is molded and sintered according to a known method to produce a plate-like sintered body, and this plate-like sintered body plate is machined. Then, an insertion hole for the power supply terminal is formed to produce an insulating support plate.

前記の誘電体板と絶縁性支持体を用い、双極型静電チャックを作成する。
即ち、前記絶縁性支持板に穿設された挿入孔に、給電用端子を押し込み、組み込み固定する。ついで、この給電用端子が組み込み固定された絶縁性支持板上に、後の加圧下での熱処理工程で、正電極と負電極からなる静電吸着用内部電極となるよう、タンタルカーバイト(TaC)等の導電性セラミックス材料粉末を含む塗布材を印刷塗布し、乾燥して、静電吸着用内部電極形成層を形成し、次いで、絶縁性支持板上の前記静電吸着用内部電極形成層以外の領域に、酸化アルミニウム(Al23)等の絶縁性材料粉末を含む塗布材を印刷塗布し、乾燥して、絶縁材層を形成する。
A bipolar electrostatic chuck is produced using the dielectric plate and the insulating support.
That is, a power feeding terminal is pushed into an insertion hole formed in the insulating support plate, and is fixedly assembled. Next, a tantalum carbide (TaC) is formed on the insulating support plate in which the power supply terminal is incorporated and fixed so that it becomes an internal electrode for electrostatic attraction consisting of a positive electrode and a negative electrode in a heat treatment step under pressure. ) And the like, and a coating material containing a conductive ceramic material powder is printed and dried to form an internal electrode forming layer for electrostatic adsorption, and then the internal electrode forming layer for electrostatic adsorption on an insulating support plate A coating material containing an insulating material powder such as aluminum oxide (Al 2 O 3 ) is printed and applied to a region other than, and dried to form an insulating material layer.

次いで、この静電吸着用内部電極形成層(印刷面)及び絶縁材層を挟み込むように、前記絶縁性支持板と誘電体板とを重ね合わせ、加圧下で熱処理して接合一体化し、双極型静電チャックを製造する。なお、誘電体板と絶縁性支持板との接合は、前記接合方法の他に、シリコーン系接着剤やエポキシ系接着剤を用いる接着方法を用いてもよい。   Next, the insulating support plate and the dielectric plate are overlapped with each other so as to sandwich the internal electrode forming layer (printing surface) for electrostatic adsorption and the insulating material layer, and heat-treated under pressure to be joined and integrated. An electrostatic chuck is manufactured. In addition, the dielectric plate and the insulating support plate may be joined using a bonding method using a silicone-based adhesive or an epoxy-based adhesive in addition to the above-described bonding method.

そして、公知の方法によって作製された前記双極型静電チャックの板状試料載置面に誘電体板と同一または略同一の直径の円盤状金属板を電圧印加用電極として載置し、この円盤状金属板と静電チャックの給電用端子との間に電圧を印加する。
印加される電圧は直流電圧、交流電圧のいずれであってもよいが、作業上の安全性の点から直流電圧が好適である。電圧を印加すると、電圧印加部近傍領域(即ち、正・負電極1,2に対向する部分)の体積固有抵抗値が低下する。電圧印加する時間は、電圧印加部近傍領域(即ち、正・負電極1,2に対向する部分)の体積固有抵抗値が静電チャックとして最適の体積固有抵抗値、例えば、1×109Ωcm〜1×1013Ωcmの範囲内となるまでとする。
Then, a disk-shaped metal plate having the same or substantially the same diameter as the dielectric plate is mounted as a voltage application electrode on the plate-shaped sample mounting surface of the bipolar electrostatic chuck manufactured by a known method. A voltage is applied between the metal plate and the power feeding terminal of the electrostatic chuck.
The applied voltage may be either a DC voltage or an AC voltage, but a DC voltage is preferred from the viewpoint of work safety. When a voltage is applied, the volume specific resistance value in the vicinity of the voltage application portion (that is, the portion facing the positive / negative electrodes 1 and 2) decreases. The voltage application time is such that the volume specific resistance value in the vicinity of the voltage application portion (that is, the portion facing the positive and negative electrodes 1 and 2) is an optimum volume specific resistance value as an electrostatic chuck, for example, 1 × 10 9 Ωcm ˜1 × 10 13 Ωcm.

具体的な電圧印加条件は、絶縁性セラミックスと導電性材料との複合焼結体の種類、絶縁性セラミックスと導電性材料との配合比率、複合焼結体の形状などにより変動するので、一義的には規定し難いが、印加電圧は、製造しようとする静電チャックの使用電圧以上の電圧とすることが必要である。
印加される電圧が「静電チャックの使用電圧」以下であっても、前記誘電体板の電圧印加部近傍領域の体積固有抵抗値は低下するが、印加される電圧が最終的に製造される静電チャックの使用印加電圧以下の電圧であると、静電チャックの使用中に絶縁性誘電体の体積固有抵抗値が低下し続けることとなる。電圧印加する際の雰囲気は限定されず、通常、大気中で電圧印加する。
The specific voltage application conditions vary depending on the type of composite sintered body of insulating ceramic and conductive material, the blending ratio of insulating ceramic and conductive material, the shape of the composite sintered body, etc. However, it is necessary to set the applied voltage to a voltage higher than the working voltage of the electrostatic chuck to be manufactured.
Even when the applied voltage is equal to or lower than the “use voltage of the electrostatic chuck”, the volume resistivity value in the vicinity of the voltage application portion of the dielectric plate is lowered, but the applied voltage is finally manufactured. When the voltage is equal to or lower than the use applied voltage of the electrostatic chuck, the volume resistivity value of the insulating dielectric continues to decrease during use of the electrostatic chuck. The atmosphere for applying the voltage is not limited, and the voltage is usually applied in the air.

前記電圧の印加に際しては、電圧印加部の体積固有抵抗値を測定しつつ、前記電圧を印加することが好ましい。
即ち、前記電圧の印加を一時的に中止した後、この電極間に500V程度の直流電圧を印加し、流れる電流値を測定し、オームの法則から抵抗値を算出することによりその部分の体積固有抵抗値を算出する。このように前記誘電体板の抵抗値を測定しながら前記電圧を印加することにより、正確な所望の体積固有抵抗値を有する静電チャックを、廉価に効率的に製造することができる。
In applying the voltage, it is preferable to apply the voltage while measuring the volume specific resistance value of the voltage application unit.
That is, after the application of the voltage is temporarily stopped, a direct current voltage of about 500 V is applied between the electrodes, the flowing current value is measured, and the resistance value is calculated from Ohm's law to determine the specific volume of the portion. Calculate the resistance value. Thus, by applying the voltage while measuring the resistance value of the dielectric plate, an electrostatic chuck having an accurate desired volume specific resistance value can be manufactured efficiently and inexpensively.

このように、絶縁性セラミックスと導電性材料との複合焼結体に、静電チャックの使用電圧以上の電圧を印加することによって、電圧印加部近傍領域(即ち、静電吸着用内部電極手段の正・負電極に対向する部分)の体積固有抵抗値が低下する理由は、必ずしも明確ではないが、電圧が印加された電圧印加部近傍領域の絶縁性に富む組織が、導電性に富む組織に組織変化するためと考えられる。   Thus, by applying a voltage higher than the working voltage of the electrostatic chuck to the composite sintered body of the insulating ceramic and the conductive material, the area near the voltage application portion (that is, the internal electrode means for electrostatic adsorption) The reason why the volume resistivity value of the portion facing the positive and negative electrodes decreases is not necessarily clear, but the highly insulating structure in the vicinity of the voltage application portion to which the voltage is applied becomes the highly conductive structure. This is thought to change the organization.

本発明を下記実施例により更に説明する。
実施例1
平均粒子径0.06μmの炭化珪素超微粉末をプラズマCVD法により気相合成し、この炭化珪素超微粉末9重量%と、平均粒子径0.15μmの酸化アルミニウム粉末91重量%とを均一に混合した。
この混合粉末を円盤状に成形し、次いで、アルゴン雰囲気中において、1800℃の温度で4時間、加圧しながら焼結することにより、直径298mm、厚み1mmの円盤状複合焼結体を作製し、絶縁性誘電体を得た。加圧力は40MPaとした。
The invention is further illustrated by the following examples.
Example 1
A silicon carbide ultrafine powder having an average particle size of 0.06 μm is synthesized in a gas phase by a plasma CVD method, and 9 wt% of the silicon carbide ultrafine powder and 91 wt% of aluminum oxide powder having an average particle size of 0.15 μm are uniformly distributed. Mixed.
The mixed powder is formed into a disk shape, and then sintered under pressure at a temperature of 1800 ° C. for 4 hours in an argon atmosphere to produce a disk-shaped composite sintered body having a diameter of 298 mm and a thickness of 1 mm, An insulating dielectric was obtained. The applied pressure was 40 MPa.

得られた前記円盤状複合焼結体中の炭化珪素粒子、酸化アルミニウム粒子の平均粒子径を、SEM(走査型電子顕微鏡)観察法により測定した。また、この複合焼結体の室温下における体積固有抵抗値を常法に従って測定した。得られた結果を表1に示す。   The average particle diameters of the silicon carbide particles and the aluminum oxide particles in the obtained discoid composite sintered body were measured by an SEM (scanning electron microscope) observation method. Further, the volume resistivity value of this composite sintered body at room temperature was measured according to a conventional method. The obtained results are shown in Table 1.

Figure 2006120847
Figure 2006120847

一方、前記の酸化アルミニウムのみを用いた他は同様にして、直径298mm、厚さ5mmの焼結体を作製し、この複合焼結体の中心部より50mm離れた場所2箇所に、内径5mmの給電用端子の挿入孔2本を機械加工により穿孔し、絶縁体支持板を作製した。
次に、この絶縁性支持板の面上の静電吸着用内部電極を形成する領域内に、図3に示される双極型の形状(電極幅は正電極、負電極共に2mm、正電極と負電極との間の距離1mm)に、炭化タンタル(TaC)35vol%と酸化アルミニウム(Al23)65vol%との混合粉末をスクリーン印刷によって塗布して導電性材料層を形成し、導電性材料層を形成した領域外の領域に、酸化アルミニウム(Al23)粉末をスクリーン印刷によって塗布し、絶縁性材料層を形成した。
On the other hand, a sintered body having a diameter of 298 mm and a thickness of 5 mm was prepared in the same manner except that only the aluminum oxide was used, and an inner diameter of 5 mm was formed at two locations 50 mm away from the center of the composite sintered body. Two insertion holes for feeding terminals were drilled by machining to produce an insulator support plate.
Next, in the region for forming the internal electrode for electrostatic attraction on the surface of the insulating support plate, the bipolar shape shown in FIG. 3 (the electrode width is 2 mm for both the positive electrode and the negative electrode, and the positive electrode and the negative electrode are negative). A mixed powder of 35 vol% tantalum carbide (TaC) and 65 vol% aluminum oxide (Al 2 O 3 ) is applied by screen printing to a distance of 1 mm between the electrodes and a conductive material layer is formed. Aluminum oxide (Al 2 O 3 ) powder was applied to the region outside the region where the layer was formed by screen printing to form an insulating material layer.

次に、絶縁性支持板の給電用端子の挿入孔2本に、炭化タンタル(TaC)焼結体製の給電用端子を挿入した後、前記の誘電体板の主面と、前記の絶縁性支持板の導電性材料層と絶縁性材料層が形成されている主面とが対向するよう、前記の誘電体板と前記の絶縁性支持板とを重ね合わせ、次いで、前記誘電体板と前記絶縁性支持板とを1700℃に加熱しながら7.5MPaに加圧して、導電性材料層から静電吸着用内部電極を形成するとともに、絶縁性材料層から接合層を形成して、前記誘電体板と前記絶縁性支持板とを正電極と負電極からなる静電吸着用内部電極を介して接合一体化した後、誘電体の面を研削して誘電層の厚さを0.5mmとした。   Next, after inserting a power supply terminal made of a tantalum carbide (TaC) sintered body into two insertion holes of the power supply terminal of the insulating support plate, the main surface of the dielectric plate and the insulation The dielectric plate and the insulating support plate are overlapped so that the conductive material layer of the support plate is opposed to the main surface on which the insulating material layer is formed, and then the dielectric plate and the The insulating support plate is heated to 1700 ° C. and pressurized to 7.5 MPa to form an electrostatic adsorption internal electrode from the conductive material layer, and a bonding layer from the insulating material layer. After the body plate and the insulating support plate are joined and integrated via the electrostatic adsorption internal electrode composed of a positive electrode and a negative electrode, the surface of the dielectric is ground so that the thickness of the dielectric layer is 0.5 mm. did.

次に、図4に示すように、静電チャックの板状試料載置面に直径298mm、厚さ5mmの円盤状金属板を載置し、この円盤状金属板と給電用端子2本との間に、静電チャックの使用電圧(3000V)以上の電圧である5000Vの直流電圧を60分間印加して、正電極と負電極からなる静電吸着用内部電極上に位置する部位の体積固有抵抗値が4×1011Ωcmである双極型静電チャックを得た。 Next, as shown in FIG. 4, a disk-shaped metal plate having a diameter of 298 mm and a thickness of 5 mm is mounted on the plate-shaped sample mounting surface of the electrostatic chuck, and the disk-shaped metal plate and two power supply terminals are connected. In the meantime, a direct current voltage of 5000 V, which is a voltage equal to or higher than the working voltage (3000 V) of the electrostatic chuck, is applied for 60 minutes, and the volume resistivity of the portion located on the internal electrode for electrostatic attraction consisting of a positive electrode and a negative electrode A bipolar electrostatic chuck having a value of 4 × 10 11 Ωcm was obtained.

「比較例1」
実施例に準じて双極型静電チャックを得た。ただし、電圧印加処理は施さなかった。正電極と負電極からなる静電吸着用内部電極上の体積固有抵抗値は、吸着領域全域にわたって、8×1013Ωcmであった。
“Comparative Example 1”
A bipolar electrostatic chuck was obtained according to the example. However, the voltage application process was not performed. The volume specific resistance value on the internal electrode for electrostatic adsorption composed of a positive electrode and a negative electrode was 8 × 10 13 Ωcm over the entire adsorption region.

「比較例2」
実施例に準じて双極型静電チャックを得た。ただし、酸化アルミニウムと炭化珪素の混合比率を90重量%:10重量%に変更し、電圧印加処理は施さなかった。正電極と負電極からなる静電吸着用内部電極上の体積固有抵抗値は、吸着領域全域にわたって、4×1011Ωcmであった。
“Comparative Example 2”
A bipolar electrostatic chuck was obtained according to the example. However, the mixing ratio of aluminum oxide and silicon carbide was changed to 90% by weight: 10% by weight, and no voltage application treatment was performed. The volume specific resistance value on the internal electrode for electrostatic attraction composed of a positive electrode and a negative electrode was 4 × 10 11 Ωcm over the entire adsorption region.

「評価」
実施例及び比較例1で得られた双極型静電チャックの静電吸着力、正電極と負電極間の漏れ電流をそれぞれ測定した。その結果を表2に示す。測定条件は次のとおりであった。
(1)静電吸着力
板状試料として、ガラス板と導電膜付きガラス板とを用いた。これらのガラス板は100mm×100mm×0.7mmの大きさであり、導電膜付きガラス板の導電膜の表面抵抗値は10Ω/□である。この2種類のガラス板を静電チャックの板状試料載置面に(導電膜付きガラス板は、導電膜面が上面となるように)設置後、真空下(<0.1Pa)、印加電圧±3000Vを印加し、そのまま60秒保持し、その後電圧を印加した状態で板状試料を垂直方向に引上げ、静電吸着力を測定した。
(2)漏れ電流
静電吸着力測定時の電極間に流れる電流を測定した。
"Evaluation"
The electrostatic attraction force and the leakage current between the positive electrode and the negative electrode of the bipolar electrostatic chuck obtained in Example and Comparative Example 1 were measured. The results are shown in Table 2. The measurement conditions were as follows.
(1) Electrostatic adsorption force As a plate-like sample, a glass plate and a glass plate with a conductive film were used. These glass plates have a size of 100 mm × 100 mm × 0.7 mm, and the surface resistance value of the conductive film of the glass plate with a conductive film is 10Ω / □. After these two types of glass plates are placed on the plate-like sample mounting surface of the electrostatic chuck (for a glass plate with a conductive film, the conductive film surface is the upper surface), the applied voltage is applied under vacuum (<0.1 Pa). ± 3000 V was applied and held as it was for 60 seconds, and then the plate-like sample was pulled in the vertical direction with the voltage applied, and the electrostatic adsorption force was measured.
(2) Leakage current The current flowing between the electrodes at the time of electrostatic attraction force measurement was measured.

Figure 2006120847
Figure 2006120847

なお、比較例2で得られた双極型静電チャックでは、正電極と負電極との間に流れる電流が大きく、電圧を印加することができなかった。   In the bipolar electrostatic chuck obtained in Comparative Example 2, the current flowing between the positive electrode and the negative electrode was large, and no voltage could be applied.

本発明の双極型静電チャックは、誘電体板の厚さを薄くしなくても静電吸着領域の全域にわたり均一な、かつ良好な静電吸着力を発揮し、しかも漏れ電流がなく、従って、漏れ電流に起因する発熱によって静電チャックが損傷を受けることがないものであって、実用上きわめて有用なものであり、本発明方法は、このような双極型静電チャックを効率よく、安価に製造することを可能にする。   The bipolar electrostatic chuck of the present invention exhibits a uniform and good electrostatic attraction force over the entire area of the electrostatic attraction region without reducing the thickness of the dielectric plate, and has no leakage current. The electrostatic chuck is not damaged by the heat generated due to the leakage current, and is extremely useful in practical use. The method of the present invention makes such a bipolar electrostatic chuck efficient and inexpensive. Makes it possible to manufacture.

本発明の双極型静電チャックの一例の断面説明図。Sectional explanatory drawing of an example of the bipolar electrostatic chuck of this invention. 図1の双極型静電チャックの一部分の断面説明図。FIG. 2 is a cross-sectional explanatory view of a part of the bipolar electrostatic chuck of FIG. 1. 本発明の双極型静電チャックに使用される双極型静電吸着用内部電極手段の一例の構造を示す平面説明図。FIG. 3 is an explanatory plan view showing a structure of an example of a bipolar electrostatic chuck internal electrode means used in the bipolar electrostatic chuck of the present invention. 本発明の双極型静電チャックを製造する方法に用いられる装置の一例の断面説明図。Cross-sectional explanatory drawing of an example of the apparatus used for the method of manufacturing the bipolar electrostatic chuck of this invention. 図5aは、低抵抗化前の誘電体板の正・負電極に対向していない部分の電位分布図。図5bは、誘電体板の前記部分の、低抵抗化後の電位分布図。FIG. 5A is a potential distribution diagram of a portion of the dielectric plate that has not been reduced in resistance and does not face the positive and negative electrodes. FIG. 5 b is a potential distribution diagram after the resistance reduction of the portion of the dielectric plate.

符号の説明Explanation of symbols

1 正電極
2 負電極
3 双極型静電吸着用内部電極手段
4 誘電体板
5 絶縁性支持板
6 静電吸着面
7 給電用端子
8 誘電体板の正・負電極に対向していない部分
9 誘電体板の正・負電極に対向している部分
10 双極型静電チャック
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Bipolar type internal electrode means for electrostatic adsorption 4 Dielectric plate 5 Insulating support plate 6 Electrostatic adsorption surface 7 Feeding terminal 8 Portion of dielectric plate not facing positive / negative electrode 9 Part of the dielectric plate facing the positive and negative electrodes 10 Bipolar electrostatic chuck

Claims (6)

絶縁性支持板、前記支持板上に配置され、正電極と負電極とを含む双極型静電気吸着用内部電極手段と、
前記支持体及び前記内部電極手段を被覆している誘電体板と、前記正・負電極の各々に連結され、かつ支持板により支持されている給電用端子とを含み、
前記誘電体板の、前記正又は負電極に対向している部分の体積固有抵抗値(R1)が、前記誘電体板の、前記正及び負電極に対向していない部分の体積固有抵抗値(R2)よりも低いことを特徴とする双極型静電チャック。
An insulative support plate, an internal electrode means for bipolar electrostatic adsorption disposed on the support plate and including a positive electrode and a negative electrode;
A dielectric plate covering the support and the internal electrode means; and a power feeding terminal connected to each of the positive and negative electrodes and supported by the support plate,
The volume resistivity value (R1) of the portion of the dielectric plate facing the positive or negative electrode is equal to the volume resistivity value (R1) of the portion of the dielectric plate not facing the positive and negative electrodes ( A bipolar electrostatic chuck characterized by being lower than R2).
前記誘電体板の、前記正又は負電極に対向する部分の体積固有抵抗値(R1)が、1×109Ωcm〜1×1013Ωcmの範囲にあり、前記誘電体板の、前記正又は負電極に対向していない部分の体積固有抵抗値(R2)が、体積固有抵抗値(R1)の5倍以上である、請求項1に記載の双極型静電チャック。 The volume resistivity (R1) of the portion of the dielectric plate facing the positive or negative electrode is in the range of 1 × 10 9 Ωcm to 1 × 10 13 Ωcm, and the positive or negative of the dielectric plate The bipolar electrostatic chuck according to claim 1, wherein a volume specific resistance value (R2) of a portion not facing the negative electrode is not less than 5 times the volume specific resistance value (R1). 互に隣り合う前記正電極と前記負電極との離間距離が、0.5〜5mmである、請求項1又は2に記載の双極型静電チャック。   The bipolar electrostatic chuck according to claim 1 or 2, wherein a distance between the positive electrode and the negative electrode adjacent to each other is 0.5 to 5 mm. 前記誘電体板が、絶縁性セラミックスと導電性材料との混合物を形成・焼結して得られた複合焼結体により形成されている、請求項1〜3のいずれか1項に記載の双極型静電チャック。   The bipolar plate according to any one of claims 1 to 3, wherein the dielectric plate is formed of a composite sintered body obtained by forming and sintering a mixture of an insulating ceramic and a conductive material. Type electrostatic chuck. 前記絶縁性セラミックスが、酸化アルミニウムであり、前記導電性材料が、導電性炭化珪素である、請求項4に記載の双極型静電チャック。   The bipolar electrostatic chuck according to claim 4, wherein the insulating ceramic is aluminum oxide, and the conductive material is conductive silicon carbide. 絶縁性支持板、前記支持板上に配置され、正電極と負電極とを含む双極型静電気吸着用内部電極手段と、
前記支持板及び前記内部電極手段を被覆している誘電体板と、前記正負電極の各々に連結され、かつ支持板により支持されている給電用端子とを有する静電チャックを製造し、
この静電チャックの前記誘電体板の開放面上に、それを被覆する電圧印加用電極を載置し、前記電圧印加用電極と、前記給電用端子との間に、前記静電チャックの使用電圧より高い電圧を印加し、それによって、前記誘電体板の、前記正・負電極に対向している部分の体積固有抵抗値(R1)を、前記誘電体板の前記正・負電圧に対向していない部分の体積固有抵抗値(R2)より低く調整することを特徴とする、双極型静電チャックの製造方法。
An insulative support plate, an internal electrode means for bipolar electrostatic adsorption disposed on the support plate and including a positive electrode and a negative electrode;
Producing an electrostatic chuck having a dielectric plate covering the support plate and the internal electrode means, and a power feeding terminal connected to each of the positive and negative electrodes and supported by the support plate,
On the open surface of the dielectric plate of the electrostatic chuck, a voltage applying electrode that covers the dielectric plate is placed, and the electrostatic chuck is used between the voltage applying electrode and the power supply terminal. A voltage higher than the voltage is applied, whereby the volume resistivity (R1) of the portion of the dielectric plate facing the positive / negative electrode is opposed to the positive / negative voltage of the dielectric plate. A method of manufacturing a bipolar electrostatic chuck, wherein the volume resistivity is adjusted to be lower than a volume resistivity (R2) of a portion that is not formed.
JP2004307013A 2004-10-21 2004-10-21 Manufacturing method of bipolar electrostatic chuck Active JP4241571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307013A JP4241571B2 (en) 2004-10-21 2004-10-21 Manufacturing method of bipolar electrostatic chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307013A JP4241571B2 (en) 2004-10-21 2004-10-21 Manufacturing method of bipolar electrostatic chuck

Publications (2)

Publication Number Publication Date
JP2006120847A true JP2006120847A (en) 2006-05-11
JP4241571B2 JP4241571B2 (en) 2009-03-18

Family

ID=36538448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307013A Active JP4241571B2 (en) 2004-10-21 2004-10-21 Manufacturing method of bipolar electrostatic chuck

Country Status (1)

Country Link
JP (1) JP4241571B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042197A (en) * 2006-08-01 2008-02-21 Applied Materials Inc Substrate support having protection layer for plasma-resistant property
JP2011086919A (en) * 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
JP2011222793A (en) * 2010-04-12 2011-11-04 Sumitomo Electric Ind Ltd Electrostatic chuck
WO2011116357A3 (en) * 2010-03-19 2011-11-24 Sri International Electroadhesive device, method of adhering a device and electrolaminate system
CN104051495A (en) * 2014-05-28 2014-09-17 京东方科技集团股份有限公司 Packaging device and packaging equipment
JP2015228406A (en) * 2014-05-30 2015-12-17 株式会社日本セラテック Electrostatic chuck

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042197A (en) * 2006-08-01 2008-02-21 Applied Materials Inc Substrate support having protection layer for plasma-resistant property
JP2011086919A (en) * 2009-09-17 2011-04-28 Ngk Insulators Ltd Electrostatic chuck and manufacturing method of the same
KR101531726B1 (en) * 2009-09-17 2015-06-25 엔지케이 인슐레이터 엘티디 Electrostatic chuck and method for producing same
WO2011116357A3 (en) * 2010-03-19 2011-11-24 Sri International Electroadhesive device, method of adhering a device and electrolaminate system
JP2013523074A (en) * 2010-03-19 2013-06-13 エスアールアイ インターナショナル Materials for electroadhesion and laminating
US9401668B2 (en) 2010-03-19 2016-07-26 Sri International Materials for electroadhesion and electrolaminates
JP2011222793A (en) * 2010-04-12 2011-11-04 Sumitomo Electric Ind Ltd Electrostatic chuck
CN104051495A (en) * 2014-05-28 2014-09-17 京东方科技集团股份有限公司 Packaging device and packaging equipment
JP2015228406A (en) * 2014-05-30 2015-12-17 株式会社日本セラテック Electrostatic chuck

Also Published As

Publication number Publication date
JP4241571B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4008230B2 (en) Manufacturing method of electrostatic chuck
JP4855177B2 (en) Electrostatic chuck device
JP4744855B2 (en) Electrostatic chuck
US7619870B2 (en) Electrostatic chuck
US8284538B2 (en) Electrostatic chuck device
US20080062609A1 (en) Electrostatic chuck device
JP4879929B2 (en) Electrostatic chuck and manufacturing method thereof
JP4943086B2 (en) Electrostatic chuck apparatus and plasma processing apparatus
JPH11111828A (en) Electrostatic sucking device
JPH11176920A (en) Electrostatic chuck device
JP7020238B2 (en) Electrostatic chuck device
JP2015019027A (en) Electrostatic chuck device
JP3973872B2 (en) Electrode built-in susceptor and manufacturing method thereof
JP4943085B2 (en) Electrostatic chuck apparatus and plasma processing apparatus
JP2008042140A (en) Electrostatic chuck device
JP3586034B2 (en) Electrostatic chuck
JP4241571B2 (en) Manufacturing method of bipolar electrostatic chuck
JP3348140B2 (en) Electrostatic chuck
JP2004055608A (en) Susceptor with built-in electrode
JP2017183467A (en) Electrostatic chuck device, and manufacturing method of electrostatic chuck device
JP2008042137A (en) Electrostatic chuck device
JP4890428B2 (en) Electrostatic chuck
TWI240985B (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed
JP2002110773A (en) Electrostatic chuck
TWI836170B (en) Ceramic joint body, electrostatic chuck device, and method for manufacturing ceramic joint body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4241571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5