KR20120069069A - Method of processing of pecvd tray for solar cell - Google Patents

Method of processing of pecvd tray for solar cell Download PDF

Info

Publication number
KR20120069069A
KR20120069069A KR1020100130449A KR20100130449A KR20120069069A KR 20120069069 A KR20120069069 A KR 20120069069A KR 1020100130449 A KR1020100130449 A KR 1020100130449A KR 20100130449 A KR20100130449 A KR 20100130449A KR 20120069069 A KR20120069069 A KR 20120069069A
Authority
KR
South Korea
Prior art keywords
tray
pecvd
powder
processing
solar cell
Prior art date
Application number
KR1020100130449A
Other languages
Korean (ko)
Inventor
박상빈
하굉호
Original Assignee
(주)제니스월드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제니스월드 filed Critical (주)제니스월드
Priority to KR1020100130449A priority Critical patent/KR20120069069A/en
Priority to PCT/KR2011/009765 priority patent/WO2012086974A2/en
Publication of KR20120069069A publication Critical patent/KR20120069069A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A method for processing a PECVD(Plasma Enhanced Chemical Vapor Deposition) tray for a solar cell is provided to reduce manufacturing costs by simplifying a plasma spray process on the upper side of the tray. CONSTITUTION: Y2O3 powder is manufactured. An embossing pin is formed by spraying Y2O3 powder on the upper side of a tray(30) with a plasma spray method. An average diameter of Y2O3 powder is 28 to 32 um.

Description

태양전지 화학기상증착장치 기판 운송용 트레이의 가공방법{Method of processing of PECVD Tray for Solar Cell}Process of processing tray for substrate transport of chemical vapor deposition device for solar cell {Method of processing of PECVD Tray for Solar Cell}

본 발명은 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(tray)의 가공방법에 관한 것으로서, 보다 상세하게는 태양전지용 PECVD 장치의 기판 고정을 위해, 트레이 상면에 홀(Hole)을 가공하고 상기 홀에 핀(Pin)을 결합하는 대신, 트레이 상면에 플라즈마 용사법으로 용사(spray)하여 엠보스(emboss) 형태의 핀(Pin)을 형성함으로 인해 트레이의 파손을 방지할 수 있는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이의 가공방법에 관한 것이다.The present invention relates to a method of processing a tray for transporting a chemical vapor deposition (PECVD) substrate for a solar cell, and more particularly, to process a hole on a top surface of a tray for fixing a substrate of a PECVD apparatus for a solar cell. Instead of bonding the pins to the holes, chemical vapor deposition on the upper surface of the tray can be sprayed by plasma spraying to form embossed pins to prevent tray damage. Apparatus (PECVD) relates to a processing method of a tray for transporting a substrate.

화석자원의 고갈과 환경오염에 대처하기 위해 최근 태양력 등의 청정에너지에 대한 관심이 높아지면서, 태양에너지를 전기에너지로 변환하는 태양전지에 대한 연구개발이 활력을 얻고 있다.In order to cope with the depletion of fossil resources and environmental pollution, recently, as interest in clean energy such as solar power is increasing, research and development on solar cells that convert solar energy into electric energy is gaining vitality.

태양전지는 pn 접합이 형성된 반도체의 내부에서 태양광에 의해 여기된 소수캐리어의 확산에 의하여 기전력을 발생시키는 소자로서 단결정실리콘, 다결정실리콘, 비정질실리콘, 화합물반도체 등의 반도체 재료를 이용하여 제조된다.A solar cell is an element that generates electromotive force by diffusion of a minority carrier excited by sunlight in a semiconductor in which a pn junction is formed, and is manufactured using semiconductor materials such as single crystal silicon, polycrystalline silicon, amorphous silicon, compound semiconductor, and the like.

단결정실리콘이나 다결정실리콘을 이용하면 발전효율은 높지만 재료비가 비싸고 공정이 복잡한 단점을 가지기 때문에 최근에는 유리나 플라스틱 등의 값싼 기판에 비정질실리콘이나 화합물반도체 등의 박막을 증착한 박막형 태양전지가 많이 사용되고 있다.When single crystal silicon or polycrystalline silicon is used, thin-film solar cells in which amorphous silicon or compound semiconductors are deposited on low-cost substrates, such as glass or plastic, have high power generation efficiency but high material costs and complicated processes.

이러한 태양전지를 제조하기 위해서는 실리콘 웨이퍼나 유리기판(이하 '기판'이라 함)에 전극, 반도체층, 반사방지막 등을 형성하여야 하며, 이러한 공정은 해당공정을 위해 최적의 환경으로 설계된 공정챔버의 내부에서 진행된다.
In order to manufacture such solar cells, electrodes, semiconductor layers, and anti-reflection films must be formed on silicon wafers or glass substrates (hereinafter referred to as substrates). Proceeds from.

일반적으로 태양전지 제조시스템에서는 생산성을 높이기 위하여 다수의 기판을 한꺼번에 처리하는 경우가 많으며, 이 경우에는 주로 수십 내지 수백 매의 기판을 안치할 수 있는 트레이(tray)를 많이 사용한다.In general, a solar cell manufacturing system often processes a plurality of substrates at once in order to increase productivity, and in this case, a tray that can often hold several tens to hundreds of substrates is often used.

즉, 다수의 기판을 안치한 트레이를 공정챔버의 내부로 반입하여 기판이 트레이에 올려진 상태에서 공정을 진행하는 것이다.
In other words, the process is carried out in a state that the substrate is placed on the tray by loading the tray having a plurality of substrates into the process chamber.

종래에는 트레이 상면에 다수의 기판을 안치하기 위해, 트레이 상면에 다수의 홀(Hole)을 가공하고 상기 홀에 핀(Pin)을 결합하여 기판 측면 고정용으로 사용하였다. 하지만, 홀(Hole) 을 가공하는 과정에서 트레이가 파손되거나 홀(Hole)에 핀(Pin) 을 결합시 트레이가 손상되는 문제가 있었다.
Conventionally, in order to place a plurality of substrates on the upper surface of the tray, a plurality of holes (Hole) was processed on the upper surface of the tray and a pin (Pin) is coupled to the holes to be used for fixing the substrate side. However, there was a problem that the tray is damaged in the process of processing the hole (Hole) or the tray is damaged when the pin (Pin) is coupled to the hole (Hole).

따라서, 본 발명자는 트레이 상면에 다수의 홀(Hole)을 가공하고 상기 홀에 핀(Pin)을 결합하는 대신, 트레이 상면에 플라즈마 용사법으로 용사(spray)함으로 엠보스(emboss) 형태의 핀을 형성하여 기판 측면 고정용으로 사용함으로, 트레이의 파손을 방지할 수 있는 방법을 개발하였다.
Therefore, the present inventors form embossed pins by spraying plasma on the upper surface of the tray instead of processing a plurality of holes on the upper surface of the tray and bonding the pins to the holes. By using it for fixing the side of the substrate, a method for preventing damage to the tray has been developed.

본 발명의 목적은 태양전지용 PECVD 장치의 기판 고정을 위해, 트레이 상면에 홀(Hole)을 가공하고 상기 홀에 핀(Pin)을 결합하는 대신, 트레이(tray) 상면에 플라즈마 용사법으로 용사(spray)하여 엠보스(emboss) 형태의 핀(Pin)을 형성함으로 인해 트레이의 파손을 방지할 수 있는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이의 가공방법을 제공하는 것이다.
An object of the present invention is to spray a hole on the upper surface of the tray by spraying plasma on the upper surface of the tray instead of processing a hole (Hole) on the upper surface of the tray and bonding the pin to the hole for fixing the substrate of the PECVD apparatus for solar cells To provide a process for processing a tray for transporting a solar cell chemical vapor deposition (PECVD) substrate that can prevent the damage of the tray by forming a pin (emboss) of the pin (emboss).

상기 목적을 달성하기 위하여 본 발명은 다음과 같은 수단을 제공한다.In order to achieve the above object, the present invention provides the following means.

본 발명은 산화이트륨(Y2O3)분말을 제조하는 단계(단계 1); 및 상기 산화이트륨(Y2O3)분말을 용사재로 하여 플라즈마 용사법을 통해 트레이(30)에 용사(spray)하여 엠보스 형태의 핀(Pin)을 형성하는 단계(단계 2); 를 포함하는 것을 특징으로 하는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법을 제공한다.The present invention comprises the steps of preparing a yttrium (Y 2 O 3 ) powder (step 1); And spraying the tray 30 using the yttrium oxide (Y 2 O 3 ) powder as a thermal spraying method to form an embossed pin (Step 2). It provides a solar cell chemical vapor deposition apparatus (PECVD) substrate transport tray (Tray) processing method comprising a.

상기 산화이트륨(Y2O3)분말은 조립 입자들이 28~32㎛의 평균 지름을 갖는 것을 특징으로 한다.The yttrium oxide (Y 2 O 3 ) powder is characterized in that the granulated particles have an average diameter of 28 ~ 32㎛.

상기 엠보스 형태의 핀은 높이가 0.9~1.1㎜이며, 직경이 2.9~3.1㎜인 것을 특징으로 한다.
The embossed pin has a height of 0.9 to 1.1 mm and a diameter of 2.9 to 3.1 mm.

본 발명에 따른 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법은, 트레이 상면에 홀을 가공하고 핀을 결합하는 대신에, 트레이 상면에 플라즈마 용사법으로 용사(spray)하여 엠보스(emboss) 형태의 핀(Pin)을 형성하므로 인해 트레이(ray)에 파손이 발생되지 않는 효과가 있다.In the method of processing a tray for transporting a chemical vapor deposition (PECVD) substrate for a solar cell according to the present invention, instead of processing holes and joining pins on the upper surface of the tray, spraying is performed on the upper surface of the tray by plasma spraying. Due to the formation of a boss (emboss) pin (Pin) there is an effect that the damage to the tray (ray) does not occur.

또한, 종래의 트레이 상면에 홀을 가공하고 핀을 결합하는 공정에 비해, 본 발명에서는 트레이(tray) 상면에 플라즈마 스프레이(spray)하는 공정으로 단순화하므로 인해 제조비용을 절감할 수 있는 장점이 있다.
In addition, the present invention has advantages in that the manufacturing cost can be reduced due to the process of plasma spraying the upper surface of the tray, compared to the process of processing a hole on the upper surface of the tray and combining the pins.

도 1은 PECVD 장치의 구성도.
도 2는 트레이에 홀 가공시 발생하는 크랙을 나타내는 사진.
도 3은 홀에 핀을 결합시 발생하는 트레이 파손을 나타내는 사진.
도 4는 본 발명에 따른 플라즈마 스프레이로 엠보스 형태의 핀을 형성한 사진.
도 5는 본 발명에 따른 플라즈마 스프레이로 형성한 엠보스 형태의 8개의 핀이 기판을 Guide 하는 사진.
1 is a block diagram of a PECVD apparatus.
Fig. 2 is a photograph showing cracks generated when a hole is made in a tray.
Figure 3 is a photograph showing the tray damage caused when the pin is coupled to the hole.
Figure 4 is a photograph of forming an embossed pin with a plasma spray according to the present invention.
Figure 5 is a photograph of the embossed eight pins formed by the plasma spray guide the substrate.

이하, 본 발명을 상세히 설명하면 다음과 같다.
Hereinafter, the present invention will be described in detail.

태양전지를 제조하기 위해서는 실리콘웨이퍼 등의 기판에 P형 또는 N형 반도체층, 반사방지막, 전극 등의 박막을 증착하는 공정과, 에너지 변환효율을 개선하는데 필요한 패턴을 형성하기 위해 증착된 박막을 식각하는 공정 등을 거쳐야 한다. 이러한 공정은 해당 공정을 위해 최적의 환경으로 설계된 챔버의 내부에서 진행된다.To manufacture a solar cell, a process of depositing a thin film such as a P-type or N-type semiconductor layer, an anti-reflection film, an electrode, or the like on a substrate such as a silicon wafer, and etching the deposited thin film to form a pattern required to improve energy conversion efficiency. To go through the process. This process takes place inside a chamber that is designed to be optimal for the process.

도 1을 참조하여 플라즈마를 이용하여 기판에 박막을 증착하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치(100)의 구성을 설명한다.Referring to FIG. 1, a configuration of a plasma enhanced chemical vapor deposition (PECVD) apparatus 100 for depositing a thin film on a substrate using plasma will be described.

일정한 반응공간을 형성하는 챔버(11)의 내부에 트레이지지대(12)가 설치되고, 상기 트레이지지대(12)는 하부면 중앙부에 결합된 지지부(13)에 의해 지지된다. 상기 트레이지지대(12)는 챔버(11) 외부에서 반입된 트레이(30)가 놓여지는 곳으로서, 기판(10)을 가열하기 위한 기판가열수단(14)을 내부에 포함한다. The tray support 12 is installed in the chamber 11 forming a constant reaction space, and the tray support 12 is supported by the support 13 coupled to the center of the lower surface. The tray support 12 is a place where the tray 30 loaded from the outside of the chamber 11 is placed, and includes a substrate heating means 14 for heating the substrate 10 therein.

상기 트레이(30)는 태양전지 제조용 기판처리장치에서 생산성을 높이기 위해 사용되는 기판운송수단으로서, 여러 개로 분할된 기판(10)이 상기 트레이(30)에 수십 내지 수백 개씩 적재된 상태에서 공정이 진행된다. The tray 30 is a substrate transport means used to increase productivity in a substrate processing apparatus for manufacturing a solar cell, and the process proceeds in a state where several divided substrates 10 are loaded in the tray 30 by tens or hundreds. do.

상기 트레이지지대(12)의 상부에는 챔버(11) 내부로 RF전력을 공급하는 플라즈마 전극(16)이 설치되고, 상기 플라즈마 전극(16)에는 RF전원(19)이 연결된다. 상기 플라즈마 전극(16)과 RF전원(19)의 사이에는 임피던스를 정합하는 매칭회로(18)가 설치된다. 상기 플라즈마 전극(16)의 하부에는 다수의 분사홀을 가지는 가스분배판(15)이 소정 간격 이격되어 설치되며, 플라즈마 전극(16)의 중앙부에는 가스공급관(17)이 관통하여 결합된다.A plasma electrode 16 for supplying RF power into the chamber 11 is installed above the tray support 12, and an RF power source 19 is connected to the plasma electrode 16. A matching circuit 18 for matching impedance is provided between the plasma electrode 16 and the RF power source 19. A gas distribution plate 15 having a plurality of injection holes is provided below the plasma electrode 16 at predetermined intervals, and a gas supply pipe 17 penetrates and is coupled to a central portion of the plasma electrode 16.

챔버(11)의 하부에는 잔류가스를 배기하는 배기구(20)가 설치된다.The lower part of the chamber 11 is provided with an exhaust port 20 for exhausting residual gas.

이와 같은 구조의 PECVD장치(100)에서 가스공급관(17)을 통해 원료물질을 분사하고 플라즈마 전극(16)에 RF전력을 인가하면, 플라즈마 전극(16)과 접지된 트라이지지대(12) 사이에 형성되는 RF전기장에 의하여 가속된 전자가 중성기체와 충돌함으로써 이온 및 활성종의 혼합체인 플라즈마가 발생한다.In the PECVD apparatus 100 having such a structure, when raw material is injected through the gas supply pipe 17 and RF power is applied to the plasma electrode 16, the plasma electrode 16 is formed between the grounded tri support 12. When the electrons accelerated by the RF electric field collide with the neutral gas, plasma, which is a mixture of ions and active species, is generated.

이렇게 생성된 이온 또는 활성종이 상기 트레이(30)에 안치된 기판(10)에 입사하여 증착됨으로써 박막이 형성된다.
The ions or active species thus generated are incident on the substrate 10 placed in the tray 30 and deposited to form a thin film.

종래에는 상기 트레이(30) 상면에 기판(20)을 안치하기 위해 트레이(30) 상면에 홀(Hole)을 가공하고 상기 홀에 핀(Pin)을 결합하는 방식을 사용하였는데, 홀(Hole)을 가공하는 과정에서 트레이(30)에 크랙(crack)이 발생(도 2 참조)하며, 홀에 핀(Pin)을 결합시 트레이(30)가 파손(도 3 참조)되는 문제가 있었다.
Conventionally, in order to place the substrate 20 on the upper surface of the tray 30, a hole is processed on the upper surface of the tray 30 and a pin is coupled to the hole. In the process of processing, cracks are generated in the tray 30 (see FIG. 2), and when the pins are coupled to the holes, the tray 30 is broken (see FIG. 3).

본 발명에서는 트레이(30) 상면에 홀(Hole)을 가공하고, 홀에 핀(Pin)을 결합하는 대신에, 트레이(30) 상면에 플라즈마 용사법으로 용사(spray)하여 엠보스(emboss) 형태로 핀을 형성함으로 인해 트레이(30)의 파손을 방지함에 특징이 있다.
In the present invention, instead of processing a hole (Hole) on the upper surface of the tray 30, and bonded to the hole (Pin) in the hole, by spraying the plasma (spray) on the upper surface of the tray 30 in the form of emboss (emboss) It is characterized by preventing the breakage of the tray 30 by forming a pin.

다음은 본 발명에 따른 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(30)의 가공방법을 설명한다.
Next will be described a processing method of the solar cell chemical vapor deposition apparatus (PECVD) substrate transport tray 30 according to the present invention.

본 발명의 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법은,The solar cell chemical vapor deposition apparatus (PECVD) substrate transport tray (Tray) processing method of the present invention,

산화이트륨(Y2O3)분말을 제조하는 단계(단계 1); 및Preparing a yttrium oxide (Y 2 O 3 ) powder (step 1); And

상기 산화이트륨(Y2O3)분말을 용사재로 하여 플라즈마 용사법을 통해 트레이(30) 상면에 용사(spray)하여 엠보스 형태의 핀(Pin)을 형성하는 단계(단계 2);Spraying the upper surface of the tray 30 by using a plasma spray method using the yttrium oxide (Y 2 O 3 ) powder as a spray material to form an embossed pin (Step 2);

를 포함한다.
.

상기 트레이(30)는 다수개의 기판(10)들을 적재하여 한꺼번에 이송하기 위한 구성으로서 설계 및 디자인에 따라서 다양한 구성이 가능하며, 기판(10)의 박막증착공정에 영향을 주지 않는 재질이면 어떠한 재질 및 구조도 가능하다.
The tray 30 is a configuration for loading and transporting a plurality of substrates 10 at a time, and can be configured in various ways according to the design and design, and if the material does not affect the thin film deposition process of the substrate 10, any material and The structure is also possible.

상기 단계 1에서 산화이트륨(Y2O3)분말은 분무 건조법으로 제조할 수 있다. 상기 산화이트륨(Y2O3)분말을 용해하여 용액이나 Slurry 상태에서 Rotary Atomize 에서 분말을 만들어 건조 후 조립화하여 사용할 수 있다.Yttrium oxide (Y 2 O 3 ) powder in step 1 may be prepared by a spray drying method. The yttrium oxide (Y 2 O 3 ) powder can be dissolved to form a powder in Rotary Atomize in solution or slurry state, and then dried and granulated.

상기 산화이트륨(Y2O3)분말은 조립 입자들이 28~32㎛의 평균 지름을 갖는 것이 바람직하며, 평균 지름이 28㎛ 미만이면 접착력이 떨어지고 코팅층 내에 균열이 발생할 수 있으며, 32㎛ 초과되면 기공이 커져서 부식이 발생할 수 있다.
The yttrium oxide (Y 2 O 3 ) powder is preferably granulated particles have an average diameter of 28 ~ 32㎛, if the average diameter is less than 28㎛ adhesive strength and cracks may occur in the coating layer, if the pore exceeds 32㎛ This may grow and cause corrosion.

상기 단계 2는 상기 산화이트륨(Y2O3)분말을 용사재로 하여 플라즈마 용사법을 통해 트레이(30)에 용사(spray)하여 엠보스 형태의 핀(Pin)을 형성하는 단계이다. 용사법은 Ar, He 등의 불활성 가스에 고주파 아크를 주입하여 가스를 이온화하여 노즐에서 발생하는 고열에 분말을 이송시켜 고속으로 모재에 분사하여 코팅층을 형성하는 방법이다. 특별히 플라즈마 용사법은 고온의 열원을 이용하여 분말 형태의 용사재를 용융시킨 후 모재(substrate)에 고속으로 분사하여 코팅층을 제조하는 용사법이다. In step 2, the yttrium (Y 2 O 3 ) powder is used as a thermal spraying material to spray the tray 30 through a plasma spraying method to form an embossed fin. The thermal spraying method is a method of forming a coating layer by injecting a high frequency arc into an inert gas such as Ar and He to ionize the gas to transfer the powder to the high heat generated by the nozzle and spraying the powder at a high speed to form a coating layer. In particular, the plasma spraying method is a thermal spraying method for manufacturing a coating layer by melting a thermal spraying material in a powder form using a high temperature heat source and then spraying the thermal spraying material at a high speed on a substrate.

본 발명에서는 플라즈마 용사법을 이용하되 코팅층을 형성하는 것이 아니라 엠보스(emboss) 형태의 핀(Pin)을 형성함에 특징이 있다. In the present invention, the plasma spraying method is used, but the coating layer is not formed, but an embossed pin is formed.

상기 엠보스 형태의 핀(Pin)의 높이는 0.9~1.1㎜가 바람직하며, 엠보스 형태의 핀의 높이가 0.9㎜ 미만이면 기판이 탈락할 수 있으며, 1.1㎜ 초과되면 가격이 대폭 상승되는 문제가 있다. 상기 엠보스 형태의 핀(Pin)의 직경은 2.9~3.1㎜가 바람직하다.
The height of the embossed pin (Pin) is preferably 0.9 ~ 1.1mm, if the height of the embossed pin is less than 0.9mm may drop off the substrate, there is a problem that the price is significantly increased if exceeded 1.1mm . The diameter of the embossed pin (Pin) is preferably 2.9 ~ 3.1mm.

상기 엠보스 형태의 핀(Pin)은 기판(10)의 Guide 역할을 하는 것으로서, 홀(Hole)을 가공하고 홀에 핀을 결합하는 방식이 아니라, 플라즈마 용사법으로 용사(spray)하여 엠보스(emboss) 형태의 핀(Pin)을 형성하는 방식으로 트레이(30)가 파손되지 않게 되는 효과가 있다. 또한, 트레이에 홀을 가공하고 핀을 결합하는 공정에 비해, 트레이에 용사(spray)하는 공정으로 단순화하므로 인해 제조비용을 절감할 수 있는 장점이 있다.
The embossed pin serves as a guide of the substrate 10, and is embossed by spraying by plasma spraying, not by processing holes and bonding pins to the holes. There is an effect that the tray 30 is not broken in such a manner as to form a pin (P). In addition, there is an advantage in that the manufacturing cost can be reduced due to the process of spraying the tray and the process of spraying holes in the tray and combining the pins.

이하, 실시 예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시 예에 의해 제한되는 것은 아니다.
Hereinafter, the constitution and effects of the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, but the scope of the present invention is not limited by these examples.

분무 건조법 방법으로 산화이트륨(Y2O3)분말을 제조하였다. 상기 산화이트륨(Y2O3)분말을 용해하여 Slurry 상태에서 Rotary Atomize 에서 분말을 만들어 건조 후 조립화하였다. 상기 조립 입자들의 평균 지름은 30㎛ 였다.Yttrium oxide (Y 2 O 3 ) powder was prepared by a spray drying method. The yttrium oxide (Y 2 O 3 ) powder was dissolved to form a powder in Rotary Atomize in a slurry state, and dried and granulated. The average diameter of the granulated particles was 30 μm.

상기 산화이트륨(Y2O3)분말을 용사재로 하여 플라즈마 용사법을 통해 PECVD 트레이(30)에 용사(spray)하여 1.0㎜ 높이, 3.0㎜ 직경으로 엠보스 형태의 핀(Pin)을 형성하였으며, 상기 엠보스 형태의 핀(Pin) 사진은 도 4와 같다. The yttrium (Y 2 O 3 ) powder was sprayed onto the PECVD tray 30 by a plasma spraying method to form an embossed pin having a height of 1.0 mm and a diameter of 3.0 mm. The embossed pin picture is shown in FIG. 4.

상기 엠보스 형태의 핀(Pin) 8개가 기판을 Guide 하는 사진을 도 5에 나타내었다.Figure 8 shows a photograph in which the eight embossed pins guide the substrate.

상기 PECVD 는 주성엔지니어링사의 태양전지 PECVD를 사용하였다.PECVD used Jusung Engineering's solar cell PECVD.

상기 플라즈마 스프레이(spray)는 SG-100 장비를 사용하였으며, Ar과 He의 혼합 가스를 사용하였다.The plasma spray (Spray) was used SG-100 equipment, a mixture of Ar and He was used.

이때 플라즈마 스프레이 장치의 작업조건은 표 1과 같다.At this time, the working conditions of the plasma spray apparatus are shown in Table 1.

Ar gas pressure (psi)Ar gas pressure (psi) 5050 He gas pressure (psi)He gas pressure (psi) 110110 Carrier gas pressure (psi)Carrier gas pressure (psi) 3535 Spray distance (㎜)Spray distance (mm) 150150 Feed rate (g/min)Feed rate (g / min) 1616

[비교예 1]Comparative Example 1

PECVD 트레이(30)에 홀(Hole)을 직경 3㎜, 깊이 3㎜가 되도록 가공한 후, 상기 홀에 그래파이트(graphite) 재질의 핀(Pin)을 결합하였다.
Holes were processed in the PECVD tray 30 to have a diameter of 3 mm and a depth of 3 mm, and then a pin of graphite material was bonded to the holes.

[실험예 1][Experimental Example 1]

실시예 1의 플라즈마 용사법으로 트레이에 엠보스 형태의 핀(Pin)을 400개 형성하였으며, 비교예 1의 방법으로 트레이에 홀을 가공하고 상기 홀에 핀을 400개 결합하였다. 상기 트레이 제작 과정에서 트레이 파손 발생하는 여부 및 PECVD 장비를 사용하여 증착 공정 완료 후 트레이 파손 발생 여부를 측정하여 표 2에 나타내었다.
400 embossed pins were formed in the tray by the plasma spray method of Example 1, and holes were processed in the tray by the method of Comparative Example 1, and 400 pins were coupled to the holes. It is shown in Table 2 to determine whether the tray breakage occurs in the tray manufacturing process and the tray breakage after completion of the deposition process using a PECVD equipment.

구분
division
트레이 파손 발생 건수The number of tray breakage occurrence
트레이 제작 과정Tray Production Process 증착 공정 완료 후After the deposition process is complete 실시예 1Example 1 0건/400개0 items / 400 0건/400개0 items / 400 비교예 1Comparative Example 1 40건/400개40/400 30건/400개30 cases / 400 pieces

표 2에서 보는 바와 같이, 실시예 1에서는 플라즈마 용사법으로 트레이에 엠보스 형태의 핀을 400개 형성하는 과정과 PECVD 증착 공정 완료 후에도 트레이(tray) 파손이 전혀 발생하지 않는 반면에, 비교예 1에서는 트레이에 홀(Hole)을 가공하고 핀(Pin)을 400개 결합하는 과정에서 트레이가 파손되는 경우가 40건 발생하였으며, PECVD 증착 공정 완료 후에 트레이가 파손되는 경우가 30건이 추가적으로 발생한 것을 알 수 있다.
As shown in Table 2, in Example 1, no tray break occurs even after the process of forming 400 embossed pins on the tray by plasma spraying and completion of the PECVD deposition process. In the process of processing holes in the tray and joining 400 pins, 40 cases of trays were broken, and 30 cases of trays were broken after completion of the PECVD deposition process. .

100 : PECVD 장치
10 : 기판 11 : 챔버
12 : 트레이지지대 13 : 지지부
14 : 기판가열수단 15 : 가스분배판
16 : 플라즈마 전극 17 : 가스공급관
18 : 매칭회로 19 : RF전원
20 : 배기구 30 : 트레이
100: PECVD apparatus
10 substrate 11 chamber
12: tray support 13: support
14 substrate heating means 15 gas distribution plate
16 plasma electrode 17 gas supply pipe
18: matching circuit 19: RF power supply
20: exhaust port 30: tray

Claims (3)

산화이트륨(Y2O3)분말을 제조하는 단계(단계 1); 및
상기 산화이트륨(Y2O3)분말을 용사재로 하여 플라즈마 용사법을 통해 트레이(30) 상면에 용사(spray)하여 엠보스 형태의 핀(Pin)을 형성하는 단계(단계 2);
를 포함하는 것을 특징으로 하는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법.
Preparing a yttrium oxide (Y 2 O 3 ) powder (step 1); And
Spraying the upper surface of the tray 30 by using a plasma spray method using the yttrium oxide (Y 2 O 3 ) powder as a spray material to form an embossed pin (Step 2);
Process for processing a solar cell chemical vapor deposition apparatus (PECVD) substrate transport tray (Tray) comprising a.
제 1항에 있어서, 단계 1에서,
상기 산화이트륨(Y2O3)분말은 조립 입자들이 28~32㎛의 평균 지름을 갖는 것을 특징으로 하는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법.
The method of claim 1, wherein in step 1,
The yttrium oxide (Y 2 O 3 ) powder is a method for processing a solar cell chemical vapor deposition device (PECVD) substrate transport tray (Tray), characterized in that the granulated particles have an average diameter of 28 ~ 32㎛.
제 1항에 있어서, 단계 2에서,
상기 엠보스 형태의 핀은 높이가 0.9~1.1㎜이며, 직경이 2.9~3.1㎜인 것을 특징으로 하는 태양전지 화학기상증착장치(PECVD) 기판 운송용 트레이(Tray)의 가공방법.
The method of claim 1, wherein in step 2,
The embossed pin has a height of 0.9 to 1.1 mm and a diameter of 2.9 to 3.1 mm, characterized in that the chemical vapor deposition apparatus (PECVD) substrate transport tray (Tray) for transportation.
KR1020100130449A 2010-12-20 2010-12-20 Method of processing of pecvd tray for solar cell KR20120069069A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100130449A KR20120069069A (en) 2010-12-20 2010-12-20 Method of processing of pecvd tray for solar cell
PCT/KR2011/009765 WO2012086974A2 (en) 2010-12-20 2011-12-19 Processing method of tray for transporting substrate of chemical vapor deposition apparatus for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100130449A KR20120069069A (en) 2010-12-20 2010-12-20 Method of processing of pecvd tray for solar cell

Publications (1)

Publication Number Publication Date
KR20120069069A true KR20120069069A (en) 2012-06-28

Family

ID=46314595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100130449A KR20120069069A (en) 2010-12-20 2010-12-20 Method of processing of pecvd tray for solar cell

Country Status (2)

Country Link
KR (1) KR20120069069A (en)
WO (1) WO2012086974A2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863457B1 (en) * 2008-01-14 2008-11-18 주식회사 코미코 Method of manufacturing spray coating layer and spray coating layer manufactured by the method of manufacturing spray coating layer
JP2009176959A (en) * 2008-01-24 2009-08-06 Shin Etsu Handotai Co Ltd Susceptor, vapor phase growing apparatus, and vapor phase growing method
KR100984749B1 (en) * 2008-02-15 2010-10-01 (주)미코씨엔씨 Mask for forming a thermal sprayed protrusion, method for forming a thermal sprayed protrusion using the mask and method for manufacturing a substrate supporting apparatus using the mask
KR100997374B1 (en) * 2009-08-21 2010-11-30 주식회사 코미코 Electrode static chuck and method of manufacturing the same

Also Published As

Publication number Publication date
WO2012086974A3 (en) 2012-10-11
WO2012086974A2 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
US10629760B2 (en) Method of fabricating an emitter region of a solar cell
KR101100284B1 (en) Thin film deposition apparatus
KR20080100057A (en) Manufacturing method of crystalline silicon solar cell and manufacturing apparatus and system for the same
JP5289108B2 (en) Substrate etching equipment
US20110308458A1 (en) Thin Film Deposition Apparatus
KR20110101227A (en) Dry cleaning of silicon surface for solar cell applications
KR20100004857A (en) Dry etching apparatus
KR101147658B1 (en) Plasma processing apparatus and method
CN112359348A (en) Method and device for depositing doped amorphous silicon thin film without winding plating
KR101373746B1 (en) Apparatus for Processing Substrate Using Plasma
US20120295394A1 (en) Method for rear point contact fabrication for solar cells
KR101447434B1 (en) Solar cell, method and apparatus for fabrication of the solar cell
KR20070117312A (en) Tray having heating means and substrate processing apparatus using the same
TWI802280B (en) Substrate processing system and substrate processing method
KR20120069069A (en) Method of processing of pecvd tray for solar cell
KR101555955B1 (en) Method for manufacturing Wafer type Solar Cell
CN101964301A (en) Plasma filter screen device, plasma screening method and plasma equipment thereof
KR20160017034A (en) Solar cell manufacturing method
KR102619046B1 (en) Apparatus for processing substrate and method for processing substrate
CN113066896A (en) Preparation method of solar cell emitter junction
TWI275139B (en) Pre-cleaning method of substrate for semiconductor device
KR101508251B1 (en) Diffusion furnace for making solar battery
JP6024417B2 (en) Sample holder
TWI825615B (en) Substrate processing system and substrate processing method
KR101446631B1 (en) Plasma processing apparatus for large area substrates

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application