TWI443067B - 製造pcc之方法 - Google Patents

製造pcc之方法 Download PDF

Info

Publication number
TWI443067B
TWI443067B TW097114096A TW97114096A TWI443067B TW I443067 B TWI443067 B TW I443067B TW 097114096 A TW097114096 A TW 097114096A TW 97114096 A TW97114096 A TW 97114096A TW I443067 B TWI443067 B TW I443067B
Authority
TW
Taiwan
Prior art keywords
reaction
lime
calcium hydroxide
calcium
carbonation
Prior art date
Application number
TW097114096A
Other languages
English (en)
Other versions
TW200906727A (en
Inventor
Karre Hvid Hansen
Mogens Pedersen
Original Assignee
Omya Int Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38508721&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI443067(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Omya Int Ag filed Critical Omya Int Ag
Publication of TW200906727A publication Critical patent/TW200906727A/zh
Application granted granted Critical
Publication of TWI443067B publication Critical patent/TWI443067B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/182Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by an additive other than CaCO3-seeds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

製造PCC之方法 發明技術領域
本發明關於一種在低能量強度反應器中製造沉澱之碳酸鈣之方法。特別地,本發明提供一種獲得具有高無水物質含量的PCC之方法,其中該方法係藉由加入作為於習知方法中使用的熟石灰之替代品或補充品的生石灰或無水氫氧化鈣至碳酸化反應中。
發明背景
沉澱之碳酸鈣被廣泛地用作商品之製造中的無機顏料或填充劑,例如用於紙、牙膏、油漆及塑膠,並以高等級之PCC用於醫藥之調配物中。PCC係經由利用氣化鈣(石灰)、二氧化碳及水之反應方法而製造。該沉澱反應能夠取決於所使用之實際反應條件而製造三種不同的同質多晶形體(方解石、霰石及六方方解石)。PCC的主要商業類型為具有下列形態之針形霰石或方解石:菱形、稜形、膠狀、針形及偏三角面體,並就每一種形狀有可能藉由改變過程參數而調整聚集水平、顆粒尺寸、尺寸分布及表面積。
大部分商業上之PCC碳酸化反應係在具有低混合能量強度(小於10千瓦/立方公尺)之反應器中操作。因此,如果均勻的溶液應於碳酸化期間確定,且亦藉此確定均勻的產物時,則需要相對低的熟石灰黏度(小於1000之布氏黏度,3100轉/分鐘之心軸)。因此,在碳酸化步驟中 製造具有最終無水固形物介於12與24%之間的大部分商業上之PCC。如果填充劑經較長的距離輸送,則因為低的固形物量,故需要進一步的下游加工(濃縮)。以工業規模之填充劑濃縮通常包含高剪力或高壓力,引起一些PCC顆粒或PCC聚集體之破損。PCC顆粒之破損使Ca(OH)2 游離,藉此增加PCC溶液之pH。因為商業上之PCC溶液在介於8與10之間的PH下常為固體,所以常需要加入pH穩定步驟。
有可能藉由碳酸化產物之機械脫水,如藉由離心、傾析或過濾而使在習知的低能量強度反應器中製造之PCC的固形物增加,達到約35%之無水物質的無水物質含量。然而,這將降低顆粒尺寸分布之陡度,如以75%之顆粒尺寸分位數之質量除以25%之質量分位數之質量所計算增加之陡度值所示。由本發明者針對全程的PCC製造所執行之分析顯示75%/25%之質量分位數比率可從1.5增加至2.0。此外,可避免第二個pH穩定步驟。
許多用於PCC沉澱之方法被敘述於所屬技術領域中,其中具有高的無水物質含量之PCC係在包含使用生石灰之方法中製造:US 6,761,869、US 6,602,484、US 6,699,318、US 6,475,459及WO 03/106344,全部皆提供包含使生石灰碳酸化之方法或其中將熟化與碳酸化之步驟組合之方法。然而,在每一例子中,該方法需要高能量強度、高壓力及/或使用大量氣體,使得該等方法不適合以大規模及合理的成本製造PCC。此外,該等方法不可用於製造所有上述商 業上重要的PCC形態。
可利用其他用於製造微粒PCC形態之專業化方法:US 5,695,733提供一種藉由控制在反應期間的導電度而使聚集之偏三角面體PCC轉換成聚集之菱形PCC之方法,及US 6,022,517敘述一種藉由使氫氧化鈣或氧化鈣在水溶性鋁化合物存在下碳酸化而製造具有棒狀或針狀的針形晶體叢之針形方解石或霰石碳酸鈣之方法。雖然該等方法可包含使生石灰碳酸化,但是該等不滿足適合於製造所有商業上重要的PCC形態之有效率且合乎經濟之方法的需求。
最後,當生石灰用於上述檢視之方法中時,建議將生石灰直接加入碳酸化反應器中。然而,在習知的低能量反應器中,使生石灰直接加入反應器中會有間題,因為有相對大量的氣體流經反應器。該氣體係以水飽和,並因為石灰具有吸濕性,所以氣流造成石灰沉降於各種設備零件上,導致反應器中的機械部分故障及形成不均勻的產物。此外,直接加入碳酸化反應器中的石灰可能在加入點引起大型鈣濃縮物。這可能造成種晶及藉此造成最終產物有更粗大的顆粒尺寸。然而,在低能量強度反應器中製造均勻沉澱之碳酸鈣且具有高的固形物之改進方法將有利於實用性且合乎經濟之理由。特別想要設計一種增加碳酸化反應中的固形物之原理,可使用其製備所有商業上有關的PCC形態。
發明概述
因此,本發明的目標係提供一種製造具有高固形物之下列形態:稜形、菱形、膠狀及偏三角面體PCC的針形霰石及方解石之有效率且高成本效益之方法。特別地,本發明的目標係提供一種解決由生石灰直接加入碳酸化反應器中所引起之上述間題的方法。
據此,設計一種方法,其允許在商業上之低能量強度的碳酸化反應器中製造PCC,其中最終的PCC固形物受到產物黏度的限制(受到CO2 吸收、混合、泵抽力等限制),並不受到原料(氫氧化鈣溶液)黏度的限制。如果未加入任何用以減低黏度之物質(分散助劑或其他),則可製造具有高達至少40%之固形物的PCC。如果加入分散劑或類似物,則有可能達到75%。
因此,本發明的一個觀點係關於一種藉由使氫氧化鈣碳酸化而製造沉澱之碳酸鈣之方法,其包含並行且於二或更多個單獨的反應容器中執行下列步驟:i)使氫氧化鈣與包含二氧化碳之氣體接觸,以允許碳酸鈣的形成,及ii)使氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合加入氫氧化鈣與碳酸鈣之所得混合物的一部分中;以該方式允許在二或更多個反應容器之間的連續或不連續循環。
本發明的另一觀點係關於一種反應器系統,其包含:a)視需要之水入口,b)氣體入口,及 c)再循環迴路,其包含加入石灰、氧化鈣、無水氫氧化鈣或三者中之任何組合之入口,及視需要之水入口。
本發明的另一觀點係提供一種根據本發明之反應器系統用於製造沉澱之碳酸鈣之用途。
本發明現將更詳細敘述於下。
發明詳述 定義
在更詳細討論本發明之前,先定義下列術語及慣例。
當在本發明的上下文中使用術語〝氧化鈣〞時,其係指具有100%之CaO之物質。
另一方面,術語〝無水氫氧化鈣〞係指具有80-100%之Ca(OH)2 及0-20%之水之物質。
關於本發明之術語〝石灰〞係按其習知意義使用,係指氧化鈣、氫氧化鈣、碳酸鈣與諸如砂、石頭、鐵、氧化鎂、重金屬等之雜質的混合物,其中氧化鈣一般超過以重量計80%之含量,氫氧化鈣含量一般少於5%,鈣酸鈣一般少於10%及雜質一般少於10%。
本發明的一個觀點係提供一種藉由使氫氧化鈣碳酸化而製造沉澱之碳酸鈣之方法,其包含並行且於二或更多個單獨的反應容器中執行下列步驟:i)使氫氧化鈣與包含二氧化碳之氣體接觸,以允許碳酸鈣的形成,及ii)使氧化鈣、石灰或無水氫氧化鈣或三者中之任何組 合加入氫氧化鈣與碳酸鈣之所得混合物的一部分中;以該方式允許在二或更多個反應容器之間的連續或不連續循環,亦參見圖2。
包含使用石灰來沉澱碳酸鈣的先前建議之方法基本上為單一步驟反應,其中將石灰直接加入碳酸化反應中。然而,在根據本發明之方法中,碳酸鈣之沉澱係以兩步驟法執行:在第一個反應容器中,使某量之氫氧化鈣與包含二氧化碳之氣體接觸,藉此允許碳酸鈣的形成。為了加速石灰及/或氫氧化鈣的加入,將第一個反應容器中的反應混合物之一部分或等分接著轉移至單獨或第二個反應容器中。隨後在加入氧化鈣、石灰或無水氫氧化鈣或三者中之任何一組合時,將反應混合物之一部分或等分轉移回到第一個反應容器中,並藉此與進行中的碳酸化反應組合。
在該兩步驟法中,有可能加入具有大於80%之固形物的石灰或氫氧化鈣,而未遭遇任何與先前技藝之方法有關聯的問題。特別避免與石灰或氫氧化鈣在碳酸化反應器內的落塵及沉積有關的問題。此外,本發明之方法有可能使碳酸化反應器中的無水物質從約20%增加至40%,並進一步高達45%、50%、55%、60%、65%、70%或75%,而不增加黏度且不造成不希望的產物形態變更。這使其有可能直接在習知的反應器中製造具有高達75%之無水物質的主要商業類型之PCC,具有下列形態之針形霰石或方解石:菱形、稜形、膠狀、針形及偏三角面體。
本發明進一步的優點係關於與以工業規模製造PCC有 關聯之經濟觀點。關於此點,根據本發明之方法提供在商業上利用比今日可能利用的石灰來源更多的可能性。另外,本發明者的分析顯示藉由實現本發明之方法有可能同時增加現有工場的生產力且減低多變的製造成本。減低製造成本係由下列5項動作達成:-減少處理水的消耗,-增加使用通常被認為難以處理之石灰的能力,諸如具有非常高或非常低反應性之石灰,或具有高份量的燒硬材料之石灰,-減少電力消耗,部分由於減少需要輸送的水及部分由於生產力增加,-減少石灰消耗,因為加入碳酸化之CaO及Ca(OH)2 的損失差不多為0,-按慣例減少冷卻水的消耗。
生產力的增加源自於增加批組尺寸,同時使沉澱過程的非生產性序列維持恆定,諸如洩放、填充及清洗。該等過程常包含現今反應器循環的實質部分。增加PCC溶液的密度亦增加CO2 吸收,稍微引起生產力增加。
在根據本發明之方法中,將石灰或無水氫氧化鈣或二者之一組合加入碳酸化反應的一部分或等分中,作為增加無水物質的方式。然而,從處理觀點而言,下列項目必須納入考慮中:1.當氫氧化鈣與CO2 反應時,其釋放出水;該釋放包含約1立方公尺/3.5公噸無水PCC。這意謂如果使用無水 Ca(OH)2 時,則填充水平就必須降低約1立分公尺。
2.如果要使用石灰及氫氧化鈣二者時,則需要單獨的貯存系統。
因此,就大部分的目的而言,目前寧願使用石灰,如生石灰,更勝於使用氧化鈣及無水氫氧化鈣及氧化鈣、石灰及/或無水氫氧化鈣之組合。
在最簡單的具體實例中,該循環過程係藉由重複取出碳酸化反應之等分及加入石灰及/或氫氧化鈣至該等分中,然後使等分與碳酸化反應再組合之手動執行。然而,就大部分工業上的目的而言,方便在二或更多個反應容器之間建立固定連接,其取代以手動處理碳酸化反應的等分。該連接可以管子及/或軟管形式建立。
根據本發明的一個具體實例,將氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合經由循環迴路加入在方法步驟i)中的碳酸化反應中。在該具體實例中,步驟i)及ii)係在經由再循環迴路交互連接之反應容器中執行。應瞭解在該具體實例中有得自第一反應容器之反應混合物流,流過至少用以加入氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合之入口,並返回第一個反應容器中。進一步瞭解流經該再循環迴路可連續發生於整個碳酸化反應期間或碳酸化反應的主要部分期間。另一選擇地,混合物流可在無論任何必要時候於一或多個反應期間懸浮,如在為了控制碳酸化反應之反應條件的必要時候。
根據本發明之方法提供消除脫水容量之需求的特殊優 點,因為其提供不使用脫水步驟而製造具有高固形物之PCC的可能性。除了與消除脫水步驟有關聯的方便性之外,產物品質的加強將會提升,因為如果直接在反應器中製造例如具有35%之固形物的產物時,其具有比脫水產物更相當陡峭之尺寸分布。就習知的聚集之PCC而言,以75/25之質量分位數比率計算之尺寸分布係在1.40至1.65之範圍內。在正規的傾析器中脫水至35%之固形物典型地導致75/25之質量分位數比率增加0.1-0.2,但是當使用根據本發明之方法時,則獲得1.30-1.55之較低比率。在所屬技術領域中,已知高陡度之填充劑產物具有與低陡度之填充劑相比而更好的光學性能。因此,根據本發明的特殊具體實例,該方法不包含脫水步驟,以獲得所欲沉澱之碳酸鈣或沉澱之碳酸鈣溶液。
所加入之氧化鈣、石灰或氫氧化鈣或三者中之任何組合的實際量將取決於所欲之特殊的PCC產物而定。因此,就本發明的目的而言,氧化鈣、石灰或氫氧化鈣或三者中之任何組合可以不執行脫水步驟而足以提供成為最終產物之漿料含有從10-75%(W/W)之無水物質(沉澱之碳酸鈣)的量加入,如含有從10-70%(W/W)之漿料,如從10-65%(W/W),從10-60%(W/W),從10-55%(W/W),從10-50%(W/W),從10-45%(W/W),從15-45%(W/W),從20-45%(W/W),從25-45%(W/W),從25-40%(W/W),從27-38%(W/W),從27-33%(W/W),或如從30-38%(W/W)。
在根據本發明之方法中,碳酸化反應可在介於5與100℃之間的溫度下開始,如在介於5與60℃之間的溫度下,如在介於15與80℃之間的溫度下,或如在介於20與85℃之間的溫度下。較佳的開始溫度之特殊範圍將取決於所欲產物之特性而施予。通常,在加入CO2 期間的冷溫度傾向製造菱形PCC顆粒。在加入CO2 期間的較溫熱之溫度傾向製造偏三角面體PCC顆粒。特別地,如果所欲產物為離散之菱形PCC,則適合使用介於5與20℃之間的開始溫度。另一選擇為,當所欲產物為聚集之偏三角面體PCC或離散之霰石PCC時,則適合使用介於30與60℃之間的開始溫度。如果該方法係以製造膠狀PCC為目的而執行時,則可使用介於10與50℃之間的開始溫度。
用於製備各種PCC形態之概括指示,包括各種反應參數的敘述發現於文獻中,參見例如WO 01/92422 A1及WO 01/66467 A1。具有針形方解石形態之PCC的製造敘述於US 6,022,517中,而具有稜形方解石形態之PCC的製造提供於US 5,695,733中。
在本發明的特殊具體實例中,使用該方法製造膠狀PCC。根據該具體實例,在方法步驟i)中的碳酸化反應係在從10-60℃之溫度下開始,較佳地在從10-50℃之溫度下,並且氧化鈣、石灰或氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有膠狀方解石形態的沉澱之碳酸鈣晶體的漿料的量加入,如從30-35%(W/W)之具有膠狀方解石形態的沉澱之碳 酸鈣。
在第二個特殊的具體實例中,該方法係以製造離散之菱形PCC為目的而執行。因此,在方法步驟i)中的碳酸化反應係在從5-20℃之溫度下開始,並且氧化鈣、石灰或氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從27-35%(W/W)之具有菱形方解石形態的沉澱之碳酸鈣晶體的漿料的量加入。
在進一步的具體實例中,在方法步驟i)中的碳酸化反應係在從15-60℃之溫度下開始,並且氧化鈣、石灰或氫氧化鈣或三者中之任何之組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有聚集之偏三角面體方解石形態的沉澱之碳酸鈣晶體的漿料的量加入。
在其他的具體實例中,在方法步驟i)中的碳酸化反應係在從25-60℃之溫度下開始,並且石灰、氧化鈣或氫氧化鈣或三者中之任何一組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有針形方解石形態的沉澱之碳酸鈣晶體的漿料的量加入。
在另外其他的具體實例中,在方法步驟i)中的碳酸化反應係在從5-30℃之溫度下開始,並且氧化鈣、石灰或氫氧化鈣或三者中之任何一組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有離散之稜形方解石形態的沉澱之碳酸鈣晶體的漿料的量加入。
在另外進一步的具體實例中,在方法步驟i)中的碳酸化反應係在從30-80℃之溫度下開始,並且氧化鈣、石灰 或氫氧化鈣或三者中之任何一組合係以足以提供成為最終產物之含有從10-45%(W/W)之霰石形態的沉澱之碳酸鈣晶體的漿料的量加入。
為了完全開發根據本發明之方法的潛在性,故較佳的是氧化鈣、石灰或氫氧化鈣或三者中之任何該組合具有高固形物含量。就特殊的目的而言,75%或更高的固形物含量可能較佳,如80%或更高,85%或更高,90%或更高,95%或更高,96%或更高,97%或更高,98%或更高的固形物含量,或如99%或更高的固形物含量。
在該方法中所使用的二或更多個反應容器之間產生循環的方便途徑是確保有一來自步驟i)之反應容器的自由溢流進入步驟ii)之反應容器中。該等設定說明於本發明申請案的圖2a中。在該圖中所說明的系統中,碳酸化反應發生在反應容器(A)中,但是氧化鈣、石灰或氫氧化鈣或三者中之任何一組合的加入發生在反應容器(B)中。來自反應容器(A)的自由溢流係藉由架設在反應容器(A)的下三分之一處的管子或軟管部分(C)來確保。
就本發明的某些應用而言,可能希望在碳酸化反應期間提供冷卻或加熱。在本發明的上下文中,方便獲得冷卻或加熱的方式係配備具冷卻裝置、熱交換裝置或加熱裝置的上述再循環迴路。
需要高能量輸入來製備具有高固形物之PCC的已知方法係在具有1立方公尺或更小尺寸之反應器中執行。根據本發明之方法可以實驗室為目的及在相對小型系統中使 用,以及用於大型工業尺寸製造,且典型地,熟習技術者將瞄準使用具有容積相當大於典型的高能量強度反應器之反應器。因此,在本方法中的步驟i)之反應容器及圖2與3中的反應容器(A)較佳地具有2立方公尺或更大的容積,如3立方公尺或更大,4立方公尺或更大,5立方公尺或更大,10立方公尺或更大,15立方公尺或更大,20立方公尺或更大,25立方公尺或更大,30立方公尺或更大,35立方公尺或更大,40立方公尺或更大,45立方公尺或更大,50立方公尺或更大,60立方公尺或更大,70立方公尺或更大,80立方公尺或更大,90立方公尺或更大,100立方公尺或更大,125立方公尺或更大,或如150立方公尺或更大的容積。
同樣地,可能較佳的是在本方法中的步驟i)之反應容器及圖2與3中的反應容器(A)具有從1-70立方公尺為範圍之容積,如從2-70立方公尺,從3-70立方公尺,從4-70立方公尺,從5-70立方公尺,從7-70立方公尺,從10-80立方公尺,從15-90立方公尺,從20-95立方公尺,從25-100立方公尺,從30-110立方公尺,從40-125立方公尺,或如從40-150立方公尺。
因為石灰、氧化鈣或無水氫氧化鈣或三者中之任何組合係藉由初步與碳酸化反應的一小部分混合而加入,所以為了方便起見,較佳的是步驟ii)之反應容器及圖3之反應容器(B)具有效容積相當小於在本方法中的步驟i)之反應容器及圖3中的反應容器(A)之有效容積。特別地,50公升 或更大的容積為步驟ii)之反應容器的較佳容積,如100公升或更大,250公升或更大,500公升或更大,200公升或更大,750公升或更大,1000公升或更大,2000公升或更大,3000公升或更大,4000公升或更大,如5000公升或更大。
同樣地,可能較佳的是在本方法中的步驟ii)之反應容器及圖3中之反應容器(B)具有50-1000公升之容積,如75-1000公升,100-1000公升,150-1000公升,200-1000公升,250-1000公升,300-1000公升,350-1000公升,400-1000公升,450-1000公升,或如500-1000公升之容積。
雖然瞭解只由二氧化碳組成之氣體可用在根據本發明的方法步驟i)中,但是應瞭解該氣體的二氧化碳含量可取決於來源及目的而變更。因此,在方法步驟i)中的包含二氧化碳之氣體可例如具有5-35%之二氧化碳含量,如5-30%,或10-25%,或70-100%,75-100%,80-100%,90-100%,或如95-100%之二氧化碳含量。在作為實施例而包括在本發明申請案中的本發明特別說明的具體實例中,已使用包含15-25%之二氧化碳的氣體。
熟習技術者進一步瞭解有可能藉由變更二氧化碳供應至碳酸化反應中的速度而控制沉澱速度。在本發明特殊的具體實例中,在本方法之步驟i)中的二氧化碳係以相當於每分鐘從2-8之每一反應器容積的氣體容積之速度加入,如從2.2-4.8,或從2.3-4.5,或從2.4-4.3,或從2.5-4.1, 或如從2.6-3.9。
就大部分的目的而言,較佳的是在本發明的方法中所加入的氧化鈣及/或無水氫氧化鈣,及/或氫氧化鈣具有15毫米或更小的顆粒尺寸,如12毫米或更小,10毫米或更小,9毫米或更小,或8毫米或更小。
為了獲得具有高達75%之固形物含量的PCC產物,可能需要加入一或多種具有降低反應及最終產物中的黏度之能力的組份,該組份視需要選自由下列者所組成的群組:分散劑,諸如陰離子聚合物及鈣鹽。該等組份可在反應之前或在反應期間於反應系統的任何位置上加入。
根據本發明之方法使用具有低強度之能量,與用於製備具有高固形物之PCC的先前已知之方法相反。因此,本方法的特性係該反應容器的內容物可使用50千瓦/立方公尺或更低的能量強度適當地混合,較佳地40千瓦/立方公尺,如30千瓦/立方公尺或更低,20千瓦/立方公尺或更低,15千瓦/立方公尺或更低,10千瓦/立方公尺或更低,9千瓦/立方公尺或更低,8千瓦/立方公尺或更低,7千瓦/立方公尺或更低,6千瓦/立方公尺或更低,5千瓦/立方公尺或更低,4千瓦/立方公尺或更低,3千瓦/立方公尺或更低,或如2千瓦/立方公尺或更低。關於能量強度,申請者係使用具有3-5千瓦/立方公尺之強度的能量運轉根據本發明之方法。
通常,適當的碳酸化所需之反應時間係取決於反應混合物的無水物質含量、特殊的CO2 加入速度及攪拌程度與 類型而定:但是隨著無水物質含量的增加而需要更長的碳酸化時間。關於本發明之方法,可能希望允許方法步驟i)之碳酸化反應進行30分鐘至24小時,如從1至20小時,從1至15小時,從1至10小時,從1至5小時,從1至3小時,或如從2至20小時,從2至15小時,從2至10小時,或從2至5小時,或如從3至20小時,從3至15小時,從3至10小時,或如從1至6小時。申請者使用習知的低能量強度反應器以具有約5%之無水物質含量之反應混合使用30分鐘至1小時之反應時間達成滿意的碳酸化。同樣地,申請者使用習知的低能量強度反應器以具有約18%之無水物質含量之反應混合使用6小時之反應時間達成滿意的碳酸化。
在根據本發明進一步的具體實例中,在方法步驟ii)中加入氧化鈣、石灰或無水氫氧化鈣或三者中之任何該組合之前,允許步驟i)之碳酸化繼續進行5分鐘或更長,如10分鐘或更長,15分鐘或更長,20分鐘或更長,30分鐘或更長,1小時或更長,2小時或更長,3小時或更長,4小時或更長,5小時或更長,6小時或更長,或如7小時或更長。
為了使碳酸化反應持續完整性,較佳的是可允許碳酸化繼續進行,直到在25℃下達成8或更小的pH為止。亦較佳的是可允許步驟1中的碳酸化反應繼續,直到10%或更多的鈣具有碳酸鈣的形式為止。這取決於欲製造之產物類型而定。
在本發明主要的具體實例中,目標係以在碳酸化反應期間沒有任何實質的晶體型態改變而製造PCC。在該等具體實例中,氧化鈣係以足以在整個過程期間維持過剩的量加入。
然而,在本發明的範圍內,亦以操作本發明之方法而使得碳酸鈣的型態於方法期間改變。特別地,本發明之方法可用於例如轉換聚集之偏三角面體PCC成為聚集之稜形PCC。如Kroc等人於美國專利5,695,733之先前建議,該轉換可藉由控制在碳酸化反應期間的反應混合物之溶液導電度而達成。因此,本發明的特殊具體實例提供一種包含使用偏三角面體的沉澱之碳酸鈣的晶種材料之方法,且其中該氣體包含二氧化碳,以及該氧化鈣、石灰或無水氫氧化鈣或三者中之任何該組合係以經調整之量及速度加入,以便維持方法步驟i)之碳酸化反應的溶液導電度介於1.0與7.0 mS之間。特別地,較佳的是可維持方法步驟i)之碳酸化反應的溶液導電度介於1.9與4.2 mS之間。
在其中使用本發明之方法以變更在碳酸化反應期間的PCC之形態的應用中,如US 5,695,733所指導,其中可能更佳的是偏三角面體的沉澱之碳酸鈣的晶種材料具有介於0.9與3.0微米之間的平均球直徑,如從0.9至2.0微米。該晶種材料可藉由使氫氧化鈣的水漿料碳酸化而產生,其中碳酸化係在介於18與52℃之間的溫度下開始。在碳酸化之前,可篩選氫氧化鈣,以移除雜質及生石灰。
本發明進一步的目標係提供一種增加藉由氫氧化鈣的 碳酸化所製備之沉澱之碳酸鈣產物的無水物質含量之方法。該方法包含並行且於二或更多個單獨的反應容器中執行下列步驟:i)使氫氧化鈣與包含二氧化碳之氣體接觸,以允許碳酸鈣的形成,及ii)使氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合加入氫氧化鈣與碳酸鈣之所得混合物的一部分中;以該方式允許在二或更多個反應容器之間的連續或不連續循環。
根據以上敘述,用於增加沉澱之碳酸鈣產物的無水物質含量之方法較佳地包含將石灰、氧化鈣或無水氫氧化鈣或三者中之任何組合經由再循環迴路連續或不連續地加入方法步驟i)之碳酸化反應中。
因為本方法指望以加入石灰或氧化鈣或無水氫氧化鈣或三者中之任何組合作為增加在所得PCC產物中的固形物含量之方式,所以本發明較佳地不包含脫水步驟,以獲得所欲沉澱之碳酸鈣或沉澱之碳酸鈣溶液。
在第二個觀點中,本發明提供一種反應器系統。在圖2中顯示根據本發明的該觀點之反應器系統的原理。如圖中所示,該反應器系統包含:a)視需要之水入口(C),b)氣體入口(D),及c)再循環迴路(E),其包含加入石灰、氧化鈣、無水氫氧化鈣或三者中之任何組合之入口(F),及視需要之水入口 (G)。
在圖2中所說明之反應器系統中,碳酸化反應係在第一個或主要反應器/反應容器(A)中執行,同時氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合直接加入再循環迴路中。因此,圖形亦說明目前較佳的具體實例,其中反應器系統包含配備再循環迴路的單一反應器容器。
與反應器系統設計有關的進一步具體實例說明在圖3中,其中反應器系統包含兩個反應器容器,第一個反應器(A)及第二個反應器(B),彼等經由再循環迴路(E)交互連接。可視為再循環迴路之整合部分的反應容器(B)包含用於加入石灰、氧化鈣、無水氫氧化鈣或三者中之任何組合之入口(F)及視需要之水入口(G)。
亦在本發明的範圍內提供包含兩個以上的反應器或反應容器之反應器系統。特別地,可能期望一種系統,其中碳酸鈣之沉澱可發生在二個或更多個全部皆連接至同一用於加入氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合之入口(F)的主要反應器中。在該系統中,來自二或更多個主要反應器之再循環迴路將要會合至一個共同的第二個反應容器中,經由該容器使氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合可加入發生在主要反應器中的碳酸化反應中。
根據本發明的反應器系統特別適合以大規模製備PCC,並在較佳的具體實例中,主要或第一個反應容器的容積因此相當大於典型的高能量強度反應器之容積。根據 該等較佳的具體實例,第一個反應容器(A)具有2-70立方公尺之容積,如3-70立方公尺,4-70立方公尺,5-70立方公尺,7-70立方公尺,10-80立方公尺,15-90立方公尺,20-95立方公尺,25-100立方公尺,30-110立方公尺,40-125立方公尺,或如40-150立方公尺。
相當小於主要的反應容器(A)的該第二個反應器較佳地具有從50-1000公升之容積,如100公升或更大,250公升或更大,500公升或更大,200公升或更大,750公升或更大,1000公升或更大,2000公升或更大,3000公升或更大,4000公升或更大,如5000公升或更大。其可視需要配備有強迫混合及/或強迫再循環。
本發明的進一步觀點係關於如上述之反應器系統用於製造沉澱之碳酸鈣之用途。
應注意在本發明的觀點中之一的上下文中所述之具體實例及特點亦適用於本發明的其他觀點。
在整個本發明的說明書之中,應瞭解用詞〝包含(comprise)〞或其變型〝包含(comprises)〞或〝包含(comprising)〞意味著內含所述之要素、整數或步驟,或要素、整數或步驟之群組,但是不排除任何其他要素、整數或步驟,或要素、整數或步驟之群組。
在本發明申請案中引證的所有專利及非專利參考文獻以其完整內容引入於本文中以供參考。
現在,本發明將於下列的非限制性實施例中予以更詳細地敘述。
實施例
以來自Golling之採石廠的PCC優質石灰Leube AG用於所有下列的實施例中。在實施例1-8中,PCC之沉澱係在小規模試驗性反應器系統中執行。碳酸化反應器具有2立分公尺之總容積,具有1200毫米之直徑。將兩個攪拌器放置在反應器中間的軸上。兩個攪拌器各具有6個空心輪葉。軸速為240轉/分鐘。氣體係經由反應器底部引入。允許來自碳酸化反應器之液體自由流入具有攪拌之1000公升方形容器中。將閥***兩個反應器之間,以便能夠停止流動或調節液體流動。使用變頻幫浦,將液體送回碳酸化反應器中。
在實施例9中,PCC之沉澱係在商業上的反應器系統中執行。碳酸化反應器具有50立分公尺之總容積,具有3500毫米之直徑。將兩個攪拌器放置在反應器中間的軸上。兩個攪拌器各具有6個空心輪葉。軸速為82轉/分鐘。氣體係經由反應器底部引入。允許來自碳酸化反應器之液體自由流入具有一圓錐之1000公升槽中。動力有可能經由旋轉閥加入1000公升容器中。將閥***兩個反應器之間,以便能夠停止流動或調節液體流動。使用變頻幫浦,將液體送回碳酸化反應器中。
在實施例1-7中,在整個反應期間測量導電度、pH、溫度、反應器內與外之CO2 含量及輸入反應器之動力,但是未顯示。
在加入CaO及在反應完成之前,亦自每一反應取出樣品,該樣品顯示在石灰經由再循環迴路加入之後沒有任何形態改變。所有的樣品皆就以下的參數予以分析:固形物、表面積(BET)、以Sedigraph之顆粒尺寸分布(MPS)。
Sedigraph之MPS係在Micromeritics Sedigraph 5100上測量。樣品係藉由將相當於4公克無水PCC之產物量加入60毫升之0.1%(w/v)之焦磷酸鈉溶液中而製備。將懸浮液在Polytron PT 3000/3100中以15,000轉/分鐘經3分鐘分散。接著使用超音波浴接受15分鐘超音波及隨後加入Sedigraph之混合室中。
表面積(BET)係在TriStar 3000上測量,其係根據BET程序於乾燥樣品上測量氮吸附。
固形物係使用具有PE360 Mettler尺規之LP 16紅外線乾燥單元測量(精確度為1毫克)。
黏度係在Brookfield型RVTDV-II黏度計上測量。
使用滴定法測定有多少Ca(OH)2 在CaO開始加入時反應成CaCO3 。將10公克部分碳酸化溶液以1M HCl滴定,使用酚酞作為指示劑。
實施例1
製備用於製造聚集之偏三角面體PCC產物之石灰。將1.5立分公尺Ca(OH)2 轉移至具有14.3%之固體Ca(OH)2 的PCC反應器中。將溫度調整至45℃。將含有20% CO2 之氣體以370標立方公尺/小時加入,直到pH在8.0以下經過約15分鐘。這意謂實際上所有的Ca(OH)2 沉澱成 CaCO3 。在PCC反應器與外槽之間的循環開始。允許溶液從PCC反應器自由流入外槽中及接著泵抽回到PCC反應器中。經過再循環迴路之流速係在40與80公升/分鐘之間變更,其係取決於黏度而定,並且在外槽中的水平係在100與200公升之間變更。接著將石灰加入外槽中,直到pH上升至大於11為止(約37公斤),並隨後將石灰以3.2公斤/分鐘之連續速度加入,直到加入總共150公斤為止。當反應幾乎完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經過約15分鐘時,則終止氣體的加入。
最終PCC為聚集之S-PCC,其具有2.9微米之平均顆粒尺寸,4.2平方公尺/公克之比表面積(BET),22厘泊之布氏黏度及31%之固形物。
實施例2
製備用於製造膠狀PCC產物之石灰。將1.5立分公尺Ca(OH)2 轉移至具有16.2%之固體Ca(OH)2 的PCC反應器中。將溫度調整至11℃。將含有19% CO2 之氣體以270標立方公尺/小時加入。當80%之Ca(OH)2 轉變成CaCO3 時,則使用與實施例1相同的參數開始再循環,並將CaO加入再循環槽中。先以2.5公斤CaO/小時加入18分鐘及再以3公斤CaO/小時加入另外37分鐘。加入總共156公斤CaO。連續加入氣體。當反應幾乎完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為膠狀,其具有3.1微米之平均顆粒尺寸, 17.4平方公尺/公克之比表面積(BET),41厘泊之布氏黏度及35%之固形物。
實施例3
製備用於製造膠狀PCC之石灰。將1.5立分公尺Ca(OH)2 轉移至具有15.6%之固體Ca(OH)2 的PCC反應器中。將溫度調整至11℃。將含有19% CO2 之氣體以270標立方公尺/小時加入。當40%之Ca(OH)2 轉變成CaCO3 時,則使用與實施例1相同的參數開始再循環,並將CaO加入再循環槽中。以5公斤CaO/分鐘加入再循環槽中16分鐘。加入總共80公斤CaO。當CaO的加入完成時,則終止再循環及將外槽洩放至反應器中。在再循環迴路洩放之後,則立即將反應器內容器冷卻至21℃。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為膠狀PCC,其具有1.94微米之平均顆粒尺寸,18.5平方公尺/公克之比表面積(BET),41厘泊之布氏黏度及24%之固形物。
實施例4
製備用於製造霰石PCC產物之石灰。將加入2.5%霰石晶種之1.5立分公尺Ca(OH)2 轉移至具有8.2%之固體Ca(OH)2 的PCC反應器中。將溫度調整至55℃。使反應器內容物開始再循環。經過再循環迴路的流速係在40與80公升/分鐘之間變更,其係取決於黏度而定,並且在外槽中的水平係在25與100公升之間變更。先將含有6% CO2 之氣體以100標立方公尺/小時加入15分鐘。接著將氣體改 變成15% CO2 及225標立方公尺/小時。當導電度在反應結束點開始下降時,則將CaO以維持導電度在2.5 mS/公分(沒有補償之溫度)之速度加入再循環迴路中。加入總共75公斤CaO。當CaO的加入完成時,則將再循環迴路洩放至反應器中且允許反應完成。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為霰石PCC,其具有2.05微米之平均顆粒尺寸,7.5平方公尺/公克之比表面積(BET),370厘泊之布氏黏度及16%之固形物。
實施例5
製備用於製造聚集之偏三角面體PCC產物之石灰。將1.5立分公尺Ca(OH)2 轉移至具有13.5%之固體Ca(OH)2 的PCC反應器中。將溫度調整至45℃。將含有20% CO2 之氣體以277標立方公尺/小時加入。在15分鐘之後,開始在PCC反應器與外槽之間的循環,如實施例1中所述。當95%之Ca(OH)2 已反應成CaCO3 時,先將石灰以2.5公斤/分鐘之連續速度加入再循環槽中20分鐘及接著以3公斤加入37分鐘,直到加入總共160公斤為止。將反應幾乎完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為聚集之S-PCC,其具有3.1微米之平均顆粒尺寸,3.5平方公尺/公克之比表面積(BET),55厘泊之布氏黏度及32%之固形物。
實施例6
製備用於製造離散之菱形PCC產物之石灰。將1.5立分公尺Ca(OH)2 轉移至具有15%之固體Ca(OH)2 的PCC反應器中。將溫度調整至11℃。將含有19% CO2 之氣體以270標立方公尺/小時加入。當80%之Ca(OH)2 反應成CaCO3 時,則使用與實施例1相同的參數開始再循環,並將CaO加入再循環槽中。將2.5公斤CaO/分鐘加入再循環槽中60分鐘。加入總共150公斤CaO。繼續加入氣體。當反應幾乎完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為離散之菱形PCC,其具有2.21微米之平均顆粒尺寸,4.5平方公尺/公克之比表面積(BET),130厘泊之布氏黏度及31%之固形物。
實施例7
製備用於製造聚集之偏三角面體PCC產物之石灰。將1.5立分公尺Ca(OH)2 轉移至具有13.5%之固體Ca(OH)2 的PCC反應器中。將溫度調整至45℃。將含有20% CO2 之氣體以277標立方公尺/小時加入。在15分鐘之後,開始在PCC反應器與外槽之間的循環,如實施例1中所述。當95%之Ca(OH)2 已反應成CaCO3 時,則將石灰以3公斤/分鐘之連續速度加入再循環槽中。在40分鐘之後,將陰離子聚合物(0.5% w/w)加入再循環槽中。CaO的加入繼續65分鐘。藉此加入總共315公斤CaO。當反應幾乎完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經約15分鐘時,則終止氣體的加入。
最終PCC為聚集之S-PCC,其具有3.6微米之平均顆粒尺寸,2.4平方公尺/公克之比表面積(BET),450厘泊之布氏黏度及55%之固形物。
實施例8
在20℃及60℃下測試來自實施例5之產物的pH穩定性,該測試係藉由將1公升產物轉移至水浴中及使其處理溫和攪拌下。另一PCC批組係根據實施例5中所述之條件,但是不加入任何CaO至再循環迴路中而製造,該批組的最終固形物為17%(批組5A)。亦測試批組5A之pH穩定性。將批組5A使用傾析器濃縮成31%固形物(批組5B)。再測試批組5B之pH穩定性。來自實施例5及5A之產物的pH穩定性類似,反而在濃縮之後有更相當高的pH且其亦在較高的速度下提升。亦可觀察批組5之75/25比率比5A之該比率更低,其又比5B之該比率更低,顯示5B之顆粒尺寸分布之陡度比5A之該陡度更低,其又比批組5之顆粒尺寸分布之陡度更低。
實施例9
製備用於製造聚集之偏三角面體PCC產物之石灰。將35立分公尺Ca(OH)2 轉移至具有15%之固體Ca(OH)2 的PCC反應器中。將溫度調整至46℃。在PCC反應器與外槽之間的循環開始。允許溶液從PCC反應器自由流入外槽中及接著泵抽回到PCC反應器中。經過再循環迴路的流速約70立方公尺/小時。使外槽中的量維持在500公斤。將含有約20% CO2 之氣體以約5500標立方公尺/小時加入。 當95%之Ca(OH)2 沉澱為CaCO3 時,則將石灰以1.7公噸/分鐘加入外槽中,直到加入總共4.7公噸為止。當反應完成時,則終止再循環及將外槽洩放至反應器中。當pH在8以下經約10分鐘時,則終止氣體的加入。
最終PCC為聚集之S-PCC,其具有2.5微米之平均顆粒尺寸,5.3平方公尺/公克之比表面積(BET),150厘泊之布氏黏度及35%之固形物。攪拌係以約3.2千瓦/立方公尺進行。
(A)‧‧‧第一個反應容器
(B)‧‧‧第二個反應容器
(C)‧‧‧水入口
(D)‧‧‧氣體入口
(E)‧‧‧再循環迴路
(F)‧‧‧入口
(G)‧‧‧水入口
圖1:來自2004年10月5日之歐洲碳酸鈣聯盟(the Calcium carbonate association Europe),PCC任務小組會議之PCC法的綜述。
圖2:根據本發明之反應器系統的圖示代表,其包含第一個或主要反應容器(A)、視需要之水入口(C)、氣體入口(D)及再循環迴路(E),其包含加入氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合之入口(F)及視需要之水入口(G)。
圖3:根據本發明之反應器系統的圖示代表,其包含第一個或主要反應容器(A)、第二個反應容器(B)、視需要之水入口(C)、氣體入口(D)及再循環迴路(E),其包含加入氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合之入口(F)及視需要之水入口(G)。
圖4:如實施例1所製備之偏三角面體PCC的SEM照片。
圖5:如實施例2所製備之膠狀PCC產物的SEM照片。
圖6:如實施例3所製備之膠狀PCC產物的SEM照片。
圖7:如實施例4所製備之聚集之霰石PCC的SEM照片。
圖8:如實施例5所製備之離散之菱形PCC的SEM照片。
(A)‧‧‧第一個反應容器
(C)‧‧‧水入口
(D)‧‧‧氣體入口
(E)‧‧‧再循環迴路
(F)‧‧‧入口
(G)‧‧‧水入口

Claims (71)

  1. 一種藉由使氫氧化鈣碳酸化而製造沉澱之碳酸鈣之方法,其包含並行且於二或更多個單獨的反應容器中執行下列步驟:i)使氫氧化鈣與包含二氧化碳之氣體接觸,以允許碳酸鈣的形成,及ii)使氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合加入氫氧化鈣與碳酸鈣之所得混合物的一部分中;以該方式允許在二或更多個反應容器之間的連續或不連續循環。
  2. 根據申請專利範圍第1項之方法,其中該氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合經由再循環迴路連續地加入在方法步驟i)中的碳酸化反應中。
  3. 根據申請專利範圍第1或2項中任一項之方法,其中該方法不包含脫水步驟,以獲得所欲沉澱之碳酸鈣或沉澱之碳酸鈣溶液。
  4. 根據申請專利範圍第1或2項中任一項之方法,其中氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以不執行脫水步驟而足以提供成為最終產物之含有從10-75%(W/W)之無水物質(沉澱之碳酸鈣)之漿料的量加入。
  5. 根據申請專利範圍第1或2項中任一項之方法,其中該步驟i)之碳酸化反應係在介於5與100℃之間的溫度下開始。
  6. 根據申請專利範圍第1或2項中任一項之方法,其中 該方法步驟i)之碳酸化反應係在從10-50℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之漿料含有從30-35%(W/W)之具有膠狀方解石型態的沉澱之碳酸鈣的量加入。
  7. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從5-20℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從27-35%(W/W)之具有菱形方解石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  8. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從25-60℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有偏三角面體方解石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  9. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從25-60℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有針形方解石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  10. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從10-50℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從30-55%(W/W)之 具有膠狀方解石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  11. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從5-30℃之溫度下開始且在反應的最後三部分期間在低於30℃之溫度下執行,並且其中氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從30-55%(W/W)之具有稜形方解石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  12. 根據申請專利範圍第1或2項中任一項之方法,其中該方法步驟i)之碳酸化反應係在從30-80℃之溫度下開始,並且氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合係以足以提供成為最終產物之含有從10-45%(W/W)之具有針形霰石型態的沉澱之碳酸鈣晶體的漿料的量加入。
  13. 根據申請專利範圍第1或2項中任一項之方法,其中氧化鈣、石灰或無水氫氧化鈣或兩者中之任何組合具有75%或更多的固形物含量。
  14. 根據申請專利範圍第1或2項中任一項之方法,其中該步驟i)及ii)係在經由再循環迴路交互連接之反應容器中執行。
  15. 根據申請專利範圍第1或2項中任一項之方法,其中有一來自步驟i)之反應容器的自由溢流至步驟ii)之反應容器中。
  16. 根據申請專利範圍第2項之方法,其中該再循環迴路配備冷卻裝置、熱交換裝置或加熱裝置。
  17. 根據申請專利範圍第1或2項中任一項之方法,其中該步驟i)之反應容器具有2立方公尺或更大的容積。
  18. 根據申請專利範圍第1或2項中任一項之方法,其中該步驟ii)之反應容器具有50公升或更大的容積。
  19. 根據申請專利範圍第1或2項中任一項之方法,其中在方法步驟i)中的包含二氧化碳之氣體具有從5-35%之二氧化碳含量。
  20. 根據申請專利範圍第16項之方法,其中在步驟i)中的該二氧化碳量相當於每分鐘每一反應器從2-5氣體容積。
  21. 根據申請專利範圍第1或2項中任一項之方法,其中所加入的氧化鈣、石灰及/或無水氫氧化鈣,及/或氫氧化鈣具有15毫米或更小的顆粒尺寸。
  22. 根據申請專利範圍第1或2項中任一項之方法,其中所加入的氧化鈣、石灰及/或無水氫氧化鈣,及/或氫氧化鈣具有12毫米或更小的顆粒尺寸。
  23. 根據申請專利範圍第1或2項中任一項之方法,其中所加入的氧化鈣、石灰及/或無水氫氧化鈣,及/或氫氧化鈣具有10毫米或更小的顆粒尺寸。
  24. 根據申請專利範圍第1或2項中任一項之方法,其中所加入的氧化鈣、石灰及/或無水氫氧化鈣,及/或氫氧化鈣具有9毫米或更小的顆粒尺寸。
  25. 根據申請專利範圍第1或2項中任一項之方法,其中所加入的氧化鈣、石灰及/或無水氫氧化鈣,及/或氫氧化 鈣具有8毫米或更小的顆粒尺寸。
  26. 根據申請專利範圍第1或2項中任一項之方法,其中該方法包含加入一或多種具有降低反應中及最終產物中的黏度之能力的組份。
  27. 根據申請專利範圍第26項之方法,其中該具有降低反應中及最終產物中的黏度之能力的組份係選自由下列者所組成之群組:分散劑,諸如陰離子聚合物及鈣鹽。
  28. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用50千瓦/立方公尺或更小的能量強度混合。
  29. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用40千瓦/立方公尺或更小的能量強度混合。
  30. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用30千瓦/立方公尺或更小的能量強度混合。
  31. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用20千瓦/立方公尺或更小的能量強度混合。
  32. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用15千瓦/立方公尺或更小的能量強度混合。
  33. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用10千瓦/立方公尺或更小的 能量強度混合。
  34. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用9千瓦/立方公尺或更小的能量強度混合。
  35. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用8千瓦/立方公尺或更小的能量強度混合。
  36. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用7千瓦/立方公尺或更小的能量強度混合。
  37. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用6千瓦/立方公尺或更小的能量強度混合。
  38. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用5千瓦/立方公尺或更小的能量強度混合。
  39. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用4千瓦/立方公尺或更小的能量強度混合。
  40. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用3千瓦/立方公尺或更小的能量強度混合。
  41. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用2千瓦/立方公尺或更小的能 量強度混合。
  42. 根據申請專利範圍第1或2項中任一項之方法,其中該反應容器之內容物係使用3-5千瓦/立方公尺的能量強度混合。
  43. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行30分鐘至24小時。
  44. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1-20小時。
  45. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1至15小時。
  46. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1至10小時。
  47. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1至5小時。
  48. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1至3小時。
  49. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行2-20小時。
  50. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行2至15小時。
  51. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行2至10小時。
  52. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行2至5小時。
  53. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行3至20小時。
  54. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行3至15小時。
  55. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行3至10小時。
  56. 根據申請專利範圍第1或2項中任一項之方法,其中允許該方法步驟i)之碳酸化反應進行1至6小時。
  57. 根據申請專利範圍第1或2項中任一項之方法,其中在方法步驟ii)中加入氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合之前,先允許該步驟i)之碳酸化進行5分鐘或更長。
  58. 根據申請專利範圍第1或2項中任一項之方法,其中氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合的加入係在方法步驟i)中之碳酸化反應的導電度於25℃下達到低於5-8mS之值時開始。
  59. 根據申請專利範圍第1或2項中任一項之方法,其中允許碳酸化繼續進行,直到於25℃下達到8或更低的pH為止。
  60. 根據申請專利範圍第1或2項中任一項之方法,其中允許繼續在該步驟1之碳酸化,直到10%或更多的鈣具有碳酸鈣形式為止。
  61. 根據申請專利範圍第1或2項中任一項之方法,其中氧化鈣係以足以在整個方法期間維持過剩的量加入。
  62. 根據申請專利範圍第1或2項中任一項之方法,其中該方法包含使用偏三角面體的沉澱之碳酸鈣的晶種材料,且其中該氣體包含二氧化碳,以及該氧化鈣、該石灰、該無水氫氧化鈣或三者中之任何該組合係以經調整之量及速度加入,以便維持方法步驟i)之碳酸化反應的溶液導電度介於1.0與7.0mS之間及允許聚集之稜形碳酸鈣的形成。
  63. 根據申請專利範圍第62項之方法,其中該氣體包含二氧化碳,以及該氧化鈣、該石灰、該無水氫氧化鈣或三者中之任何該組合係以經調整之量及速度加入,以便維持方法步驟i)之碳酸化反應的溶液導電度介於1.9與4.2mS之間。
  64. 根據申請專利範圍第62項之方法,其中該偏三角面體的沉澱之碳酸鈣的晶種材料具有介於0.9與3.0微米之間的平均球直徑。
  65. 根據申請專利範圍第62項之方法,其中該偏三角面體的沉澱之碳酸鈣的晶種材料具有從0.9至2.0微米的平均球直徑。
  66. 根據申請專利範圍第62項之方法,其中該晶種材料係藉由使氫氧化鈣的水漿料碳酸化而產生,該碳酸化反應係在介於18與52℃之間的溫度下開始,且其中視需要篩選氫氧化鈣,以便移除雜質及生石灰。
  67. 一種增加以氫氧化鈣的碳酸化所製備之沉澱之碳酸鈣產物的無水物質含量之方法,該方法包含並行且於二或更多個單獨的反應容器中執行下列步驟: i)使氫氧化鈣與包含二氧化碳之氣體接觸,以允許碳酸鈣的形成,及ii)使氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合加入氫氧化鈣與碳酸鈣之所得混合物的一部分中;以該方式允許在二或更多個反應容器之間的連續或不連續循環。
  68. 根據申請專利範圍第67項之方法,其包含將氧化鈣、石灰或無水氫氧化鈣或三者中之任何組合經由再循環迴路連續或不連續地加入方法步驟i)之該碳酸化反應中。
  69. 根據申請專利範圍第67或68項中任一項之方法,其中該方法不包含脫水步驟,以獲得所欲沉澱之碳酸鈣或沉澱之碳酸鈣溶液。
  70. 一種反應器系統,其包含:a)視需要之水入口,b)氣體入口,及c)再循環迴路,其包含加入氧化鈣、石灰、無水氫氧化鈣或三者中之任何組合之入口,及視需要之水入口。
  71. 一種根據申請專利範圍第70項之反應器系統之用途,其係用於製造沉澱之碳酸鈣。
TW097114096A 2007-04-20 2008-04-18 製造pcc之方法 TWI443067B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91296007P 2007-04-20 2007-04-20
EP07106613 2007-04-20

Publications (2)

Publication Number Publication Date
TW200906727A TW200906727A (en) 2009-02-16
TWI443067B true TWI443067B (zh) 2014-07-01

Family

ID=38508721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114096A TWI443067B (zh) 2007-04-20 2008-04-18 製造pcc之方法

Country Status (20)

Country Link
US (1) US8778294B2 (zh)
EP (1) EP2144851B1 (zh)
JP (1) JP5409599B2 (zh)
KR (1) KR101196041B1 (zh)
CN (1) CN101668703B (zh)
AR (1) AR066092A1 (zh)
AU (1) AU2008241151B2 (zh)
BR (1) BRPI0810238A8 (zh)
CA (1) CA2686416C (zh)
CL (1) CL2008001107A1 (zh)
DK (1) DK2144851T3 (zh)
ES (1) ES2582388T3 (zh)
MX (1) MX2009011078A (zh)
PL (1) PL2144851T3 (zh)
PT (1) PT2144851T (zh)
RU (1) RU2436734C2 (zh)
SI (1) SI2144851T1 (zh)
TW (1) TWI443067B (zh)
UY (1) UY31031A1 (zh)
WO (1) WO2008128545A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JO3752B1 (ar) * 2011-06-10 2021-01-31 Schweitzer Mauduit Int Inc مواد تبغ تحتوي على جسيمات دقيقة من كربونات الكالسيوم غير متساوية القياس
ES2551603T3 (es) * 2011-06-21 2015-11-20 Omya International Ag Proceso para la producción de carbonato de calcio precipitado
BR112014006689B1 (pt) 2011-09-23 2018-11-21 Unilever N.V composição de cuidado oral
US10040694B2 (en) 2011-10-05 2018-08-07 Imerys Sa Precipitated calcium carbonate particles and use thereof
EP2599750B1 (de) 2011-11-29 2014-07-30 HF Biotec Berlin GmbH Verfahren und Anlage zur semikontinuierlichen Herstellung von kristallinem Calciumcarbonat
JP5893795B2 (ja) * 2012-03-23 2016-03-23 オムヤ インターナショナル アーゲー 偏三角面体状の沈降炭酸カルシウムを調製するための方法
KR101232635B1 (ko) * 2012-09-26 2013-02-13 한국지질자원연구원 스칼레노헤드럴 종의 침강성 탄산칼슘을 사용한 신문지 고지의 품질향상방법
EP2781557A1 (en) 2013-03-18 2014-09-24 Solvay Sa Precipitated calcium carbonate, a method for its manufacture and uses thereof
CN103601227A (zh) * 2013-09-11 2014-02-26 宜兴天力化工纳米科技有限公司 一种纳米碳酸钙的晶核预成反应器及其制备工艺
CA2925924C (en) 2013-10-24 2018-03-20 Calix Ltd Process and apparatus for manufacture of hydroxide slurry
WO2015134408A1 (en) 2014-03-03 2015-09-11 Blue Planet, Ltd. Alkali enrichment mediated co2 sequestration methods, and systems for practicing the same
WO2015164589A1 (en) 2014-04-23 2015-10-29 Calera Corporation Methods and systems for utilizing carbide lime or slag
EP3204145A4 (en) * 2014-10-09 2018-06-27 Blue Planet Ltd. Continuous carbon sequestration material production methods and systems for practicing the same
PT3221512T (pt) * 2014-11-19 2020-01-07 Omya Int Ag Método de produção de uma carga
EP3220742B1 (en) 2014-12-01 2019-02-20 Colgate-Palmolive Company Use of ozone to control bioburden in precipitated calcium carbonate slurry (pcc)
EP3245332A4 (en) * 2015-01-14 2018-09-05 Imerys USA, Inc. A controlled process for precipitating calcium carbonate
SE539437C2 (en) * 2015-03-31 2017-09-19 Stora Enso Oyj A method of producing filler from fractionated fly ash
EP3252010A1 (de) 2016-05-31 2017-12-06 HF Biotec Berlin GmbH Präzipitiertes calciumcarbonat (pcc) mit definierter korngrösse und korngrössenverteilung sowie verfahren zur herstellung desselben
KR20180058027A (ko) * 2016-11-23 2018-05-31 (주)포스코켐텍 입자 크기를 제어할 수 있는 탄산 칼슘의 제조방법
IT201800007993A1 (it) * 2018-08-09 2020-02-09 Greenbone Ortho Srl Impianto finalizzato alla trasformazione chimica di materiali nello stato 3d
EP3914651A4 (en) * 2019-01-23 2023-02-15 Blue Planet Systems Corporation CARBONATE AGGREGATE COMPOSITIONS AND PROCESSES FOR THEIR PREPARATION AND USE
CN110627100B (zh) * 2019-09-09 2022-04-01 建德华明科技有限公司 液相为连续相的碳化法生产微米级碳酸钙的二级串联方法
CN115443252A (zh) 2020-02-25 2022-12-06 艾瑞莱克公司 用于处理石灰以形成球霰石的方法和***
GB2613474A (en) 2020-06-30 2023-06-07 Arelac Inc Methods and systems for forming vaterite from calcined limestone using electric kiln

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227325A (ja) * 1985-07-26 1987-02-05 Yahashi Kogyo Kk 針状粒子炭酸カルシウムの生成方法
JPH02137720A (ja) * 1988-11-16 1990-05-28 Mitsubishi Mining & Cement Co Ltd 沈降性炭酸カルシウムの製造方法
EP0633864A1 (en) * 1992-04-03 1995-01-18 Minerals Technologies, Inc. Clustered precipitated calcium carbonate particles
US6022517A (en) 1996-09-05 2000-02-08 Minerals Technologies Inc. Acicular calcite and aragonite calcium carbonate
FI105471B (fi) 1997-09-08 2000-08-31 Fp Pigments Oy Menetelmä kalsiumkarbonaattipartikkelien valmistamiseksi
KR100497114B1 (ko) 1996-10-14 2005-06-29 에프피-피그멘츠 오와이 침강 탄산칼슘 및 이의 제조 방법
EP0953544B1 (en) * 1996-12-09 2006-10-18 Nippon Paper Industries Co., Ltd. Processes for preparing calcium carbonate
US6156286A (en) * 1997-05-21 2000-12-05 Imerys Pigments, Inc. Seeding of aragonite calcium carbonate and the product thereof
FI105470B (fi) 1997-09-08 2000-08-31 Fp Pigments Oy Menetelmä ja laitteisto saostetun kalsiumkarbonaatin tuottamiseksi
FI106114B (fi) 1998-01-19 2000-11-30 Fp Pigments Oy Menetelmä synteettisen kalsiumkarbonaatin valmistamiseksi ja modifioimiseksi
GB9802999D0 (en) * 1998-02-13 1998-04-08 Ecc Int Ltd Production of products containing precipitated calcium carbonate
US6451268B1 (en) * 1999-04-16 2002-09-17 Minerals Technologies Inc. Method and apparatus for continuous gas liquid reactions
US6143065A (en) * 1999-07-12 2000-11-07 J. M. Huber Corporation Precipitated calcium carbonate product having improved brightness and method of preparing the same
CA2401899A1 (en) 2000-03-06 2001-09-13 3P Technologies Ltd. Precipitated aragonite and a process for producing it
FR2809718A1 (fr) * 2000-05-31 2001-12-07 Carboxyque Francaise Procede de recuperation d'un metal sous forme de carbonate ou d'hydrogenocarbonate
US6623555B1 (en) 2000-06-01 2003-09-23 Jukka P. Haverinen Composite precipitated calcium carbonate/silicon compound pigment and method of making same
JP5107493B2 (ja) * 2000-09-28 2012-12-26 奥多摩工業株式会社 炭酸カルシウムの製造方法
US7048900B2 (en) * 2001-01-31 2006-05-23 G.R. International, Inc. Method and apparatus for production of precipitated calcium carbonate and silicate compounds in common process equipment
CN1639066A (zh) * 2002-06-18 2005-07-13 密执安特种矿石公司 沉淀碳酸钙的制备方法及所制备的产品
US20050089466A1 (en) 2003-10-27 2005-04-28 Degenova Mark G. Methods and apparatus for producing precipitated calcium carbonate
US20070148078A1 (en) 2003-12-16 2007-06-28 Skuse David R Method and system for growing larger precipitated calcium carbonate crystals
FI120032B (fi) * 2004-07-13 2009-06-15 Fp Pigments Oy Menetelmä ja laite kalsiumkarbonaattituotteen valmistamiseksi, tuote ja sen käyttö
JP2007098307A (ja) * 2005-10-05 2007-04-19 Fujikasui Engineering Co Ltd 循環型炭酸ガス固定化システム
JP2008043923A (ja) * 2006-08-21 2008-02-28 Toyo Denka Kogyo Co Ltd 反応装置及び反応生成物の製造方法

Also Published As

Publication number Publication date
BRPI0810238A8 (pt) 2017-05-09
JP2010524813A (ja) 2010-07-22
EP2144851B1 (en) 2016-04-13
KR20100007871A (ko) 2010-01-22
SI2144851T1 (sl) 2016-07-29
MX2009011078A (es) 2009-12-07
US8778294B2 (en) 2014-07-15
TW200906727A (en) 2009-02-16
US20100135891A1 (en) 2010-06-03
RU2436734C2 (ru) 2011-12-20
CN101668703A (zh) 2010-03-10
UY31031A1 (es) 2008-11-28
EP2144851A1 (en) 2010-01-20
JP5409599B2 (ja) 2014-02-05
PL2144851T3 (pl) 2016-10-31
ES2582388T3 (es) 2016-09-12
AU2008241151B2 (en) 2012-08-09
CA2686416A1 (en) 2008-10-30
DK2144851T3 (en) 2016-08-01
CN101668703B (zh) 2011-10-05
CL2008001107A1 (es) 2008-10-24
BRPI0810238A2 (pt) 2014-10-29
PT2144851T (pt) 2016-07-14
WO2008128545A1 (en) 2008-10-30
KR101196041B1 (ko) 2012-10-31
AU2008241151A1 (en) 2008-10-30
RU2009142301A (ru) 2011-05-27
CA2686416C (en) 2016-01-19
AR066092A1 (es) 2009-07-22

Similar Documents

Publication Publication Date Title
TWI443067B (zh) 製造pcc之方法
CN101774623B (zh) 一种米粒状超细活性碳酸钙的工业化制备方法
CN101544390B (zh) 一种制备纳米碳酸钙的方法
CN108928844B (zh) 规整性立方形碳酸钙的制备方法
US6156286A (en) Seeding of aragonite calcium carbonate and the product thereof
CN100450932C (zh) 一种纳米碳酸钙的碳化工艺方法
CN105836781B (zh) 一种生产纳米碳酸钙的碳化活化一体化装置及方法
CN103693667B (zh) 一种棒状轻质碳酸钙及其制备方法
CN108083314A (zh) 一种米粒状轻质碳酸钙的制备方法
CN102701255A (zh) 高浓度碳化生产球形纳米碳酸钙的方法
CN109867986A (zh) 一种高分子改性的纳米碳酸钙新产品系列
CN114291835B (zh) 一种大小立方分散沉淀碳酸钙的制备方法
CN109689574A (zh) 无定形碳酸钙的生产
CN101914312B (zh) 涂料用纳米级活性碳酸钙制备方法
CN108793217A (zh) 一种球簇状形轻质碳酸钙的制备方法
JP2019043809A (ja) アラゴナイト型軽質炭酸カルシウム及びその製造方法
CN101913640B (zh) 微细活性碳酸钙制备方法
CN105417564A (zh) 一种花瓣片状碳酸钙晶体的制备方法
CN102796414A (zh) 类轻质碳酸钙、活性类轻质碳酸钙及其制备方法和用途
CN113800547A (zh) 一种消化-碳化装置及碳酸钙纳米包覆工艺
Ma et al. Bubble-Liquid Membrane Method for Preparing Spherical Calcium Carbonate Nanoparticles
JP2005170733A (ja) ホタテ貝殻由来の軽質炭酸カルシウムの製造方法
JPH05345684A (ja) 高吸油性炭酸カルシウムの製造方法
CN117699841A (zh) 一种单分散纳米碳酸钙粉体的制备方法
JPH033605B2 (zh)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees