TW202016184A - 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置 - Google Patents

光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置 Download PDF

Info

Publication number
TW202016184A
TW202016184A TW108134640A TW108134640A TW202016184A TW 202016184 A TW202016184 A TW 202016184A TW 108134640 A TW108134640 A TW 108134640A TW 108134640 A TW108134640 A TW 108134640A TW 202016184 A TW202016184 A TW 202016184A
Authority
TW
Taiwan
Prior art keywords
optical film
film
polymer
thermoplastic
optical
Prior art date
Application number
TW108134640A
Other languages
English (en)
Other versions
TWI808262B (zh
Inventor
西岡寛哉
須田和哉
摺出寺浩成
Original Assignee
日商日本瑞翁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本瑞翁股份有限公司 filed Critical 日商日本瑞翁股份有限公司
Publication of TW202016184A publication Critical patent/TW202016184A/zh
Application granted granted Critical
Publication of TWI808262B publication Critical patent/TWI808262B/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/14Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一種光學薄膜,其係由包含降𦯉烯系聚合物之熱塑性降𦯉烯系樹脂所形成的光學薄膜,其中熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg滿足式(1),在對熱塑性降𦯉烯系樹脂以Tg+15℃施以自由端單軸延伸至1.5倍的情況下顯現之雙折射ΔnR 滿足式(2),光學薄膜的厚度方向之延遲Rth及光學薄膜的厚度d滿足式(3)。 (1)Tg≧110℃ (2)ΔnR ≧0.0025 (3)Rth/d≧3.5×10 3

Description

光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置
本發明係關於光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置。
以往已知由熱塑性樹脂所形成的光學薄膜。舉例而言,專利文獻1~5記載有由熱塑性降𦯉烯系樹脂所形成的光學薄膜。
『專利文獻』 《專利文獻1》:日本專利公開第2005-043740號公報 《專利文獻2》:日本專利公開第2006-235085號公報 《專利文獻3》:日本專利公開第2006-327112號公報 《專利文獻4》:日本專利公開第2008-114369號公報 《專利文獻5》:日本專利公開第2003-238705號公報
近年來,對用以應用於液晶顯示裝置等影像顯示裝置的光學薄膜,要求延遲之顯現性優異,尤其,要求厚度方向之延遲Rth的顯現性優異的薄膜。具體而言,要求該光學薄膜之單位厚度之厚度方向的延遲Rth為大的光學薄膜。作為使用以往之由熱塑性樹脂而成之薄膜來獲得單位厚度之厚度方向的延遲Rth為大的光學薄膜之方法,可考慮以高延伸倍率來延伸。然而,以高延伸倍率延伸而獲得之光學薄膜有定向角精度變低的傾向。
並且,影像顯示裝置有時會在各式各樣的環境下使用,例如可能會在高溫環境下使用。於是,對光學薄膜要求高耐熱性。據此,若著眼於厚度方向之延遲Rth,則要求即使在高溫環境下亦可抑制其厚度方向之延遲Rth的變化。
本發明係鑑於前述問題而首創者,其目的在於提供「係為由熱塑性降𦯉烯系樹脂所形成且單位厚度之厚度方向的延遲Rth為大的光學薄膜,定向角精度高,且可抑制在高溫環境下的厚度方向之延遲Rth的變化」的光學薄膜及其製造方法,以及包含前述光學薄膜的光學堆疊體及液晶顯示裝置。
本發明人為能解決前述問題而潛心研究。其結果,本發明人發現藉由使用具有指定範圍的玻璃轉移溫度Tg且在以指定條件延伸的情況下顯現指定雙折射ΔnR 者作為熱塑性降𦯉烯系樹脂,可製造單位厚度之厚度方向的延遲為大、定向角精度高且耐熱性優異的光學薄膜,進而完成本發明。
亦即,本發明包含下述內容。
[1]一種光學薄膜,其係由包含降𦯉烯系聚合物之熱塑性降𦯉烯系樹脂所形成的光學薄膜,其中 前述熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg滿足下述式(1), 在對前述熱塑性降𦯉烯系樹脂以Tg+15℃、1分鐘施以自由端單軸延伸至1.5倍的情況下顯現之雙折射ΔnR 滿足下述式(2), 前述光學薄膜的厚度方向之延遲Rth及前述光學薄膜的厚度d滿足下述式(3)。 (1)Tg≧110℃ (2)ΔnR ≧0.0025 (3)Rth/d≧3.5×10 3
[2]如[1]所記載之光學薄膜,其中前述降𦯉烯系聚合物的分子量分布為2.4以下。
[3]如[1]或[2]所記載之光學薄膜,其中前述降𦯉烯系聚合物選自由包含25重量%以上之四環十二烯系單體之單體的聚合物及其氫化物而成之群組, 前述四環十二烯系單體選自由四環十二烯及於四環十二烯之環鍵結有取代基之四環十二烯衍生物而成之群組。
[4]如[1]~[3]之任一項所記載之光學薄膜,其中前述光學薄膜的光彈性係數為8布如士特(Brewster)以下。
[5]如[1]~[4]之任一項所記載之光學薄膜,其中前述光學薄膜的面內延遲Re為40 nm以上且80 nm以下。
[6]一種光學薄膜的製造方法,其係如[1]~[5]之任一項所記載之光學薄膜的製造方法, 包含將前述熱塑性降𦯉烯系樹脂藉由擠製成形法或溶液鑄造法來成形。
[7]一種光學堆疊體,其具備如[1]~[5]之任一項所記載之光學薄膜與偏光板。
[8]一種液晶顯示裝置,其具備如[7]所記載之光學堆疊體。
根據本發明,可提供「係為由熱塑性降𦯉烯系樹脂所形成且單位厚度之厚度方向的延遲Rth為大的光學薄膜,定向角精度高,且可抑制在高溫環境下的厚度方向之延遲Rth的變化」的光學薄膜及其製造方法,以及包含前述光學薄膜的光學堆疊體及液晶顯示裝置。
以下揭示實施型態及示例物以詳細說明本發明。惟本發明並非受限於以下所揭示之實施型態及示例物者,在不脫離本發明之申請專利範圍及其均等之範圍的範圍內,得任意變更而實施。
在以下說明中,薄膜的面內延遲Re,除非另有註記,否則係由Re=(nx−ny)×d所示之值。並且,薄膜的厚度方向之延遲Rth,除非另有註記,否則係由Rth={[(nx+ny)/2]−nz}×d所示之值。於此,nx表示係為與薄膜的厚度方向垂直之方向(面內方向)且賦予最大折射率之方向的折射率。ny表示係為前述面內方向且與nx之方向正交之方向的折射率。nz表示厚度方向的折射率。d表示薄膜的厚度。量測波長,除非另有註記,否則為550 nm。
在以下說明中,所謂「長條狀」的薄膜,係謂具有相對於薄膜之幅寬為5倍以上之長度的薄膜,以具有10倍或其以上之長度為佳,具體上係謂具有可收捲成卷狀來儲存或搬運之程度之長度的薄膜。薄膜的長度相對於幅寬之比例的上限並不特別受限,但得做成例如100,000倍以下。
在以下說明中,所謂「偏光板」,除非另有註記,否則不僅包含剛性的部件,亦包含例如樹脂製之薄膜般具有可撓性的部件。
[1.光學薄膜的概要]
本發明之一實施型態相關之光學薄膜係由熱塑性降𦯉烯系樹脂所形成的薄膜。前述熱塑性降𦯉烯系樹脂包含降𦯉烯系聚合物。而且,本實施型態相關之光學薄膜滿足下述第一~第三要件。
第一,熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg滿足下述式(1)。 (1)Tg≧110℃
第二,熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 滿足下述式(2)。於此,評價雙折射表示在對某材料以較該材料之玻璃轉移溫度高15℃之延伸溫度、1分鐘施以自由端單軸延伸至1.5倍的情況下顯現之雙折射。 (2)ΔnR ≧0.0025
第三,光學薄膜的厚度方向之延遲Rth及光學薄膜的厚度d滿足下述式(3)。 (3)Rth/d≧3.5×10 3
滿足前述第一~第三要件的本實施型態相關之光學薄膜,如由式(3)所示單位厚度d之厚度方向的延遲Rth為大。並且,此光學薄膜可在高溫環境下抑制厚度方向之延遲Rth的變化。再者,此光學薄膜具有如前所述與厚度d相比為大的厚度方向之延遲Rth,同時可達成高定向角精度。
[2.熱塑性降𦯉烯系樹脂]
熱塑性降𦯉烯系樹脂係包含降𦯉烯系聚合物的熱塑性樹脂。降𦯉烯系聚合物係包含使降𦯉烯系單體聚合並視需求進一步進行氫化而獲得之結構的聚合物。據此,降𦯉烯系聚合物通常包含選自由使降𦯉烯系單體聚合而獲得之重複結構及將前述重複結構氫化而獲得之結構而成之群組之一者以上之結構。此種降𦯉烯系聚合物中,包含例如:降𦯉烯系單體的開環聚合物、降𦯉烯系單體與任意單體的開環共聚物以及此等之氫化物;降𦯉烯系單體的加成聚合物、降𦯉烯系單體與任意單體的加成共聚物以及此等之氫化物。並且,熱塑性降𦯉烯系樹脂所包含之降𦯉烯系聚合物可為1種,亦可為2種以上。
降𦯉烯系單體係於分子內包含降𦯉烯結構的單體。作為此降𦯉烯系單體,可列舉例如:雙環[2.2.1]庚-2-烯(俗名:降𦯉烯)、三環[4.3.0.12,5 ]癸-3,7-二烯(俗名:雙環戊二烯)、四環[4.4.0.12,5 .17,10 ]十二-3-烯(俗名:四環十二烯)等不含芳環結構的降𦯉烯系單體;5-苯基-2-降𦯉烯、5-(4-甲基苯基)-2-降𦯉烯、5-(1-萘基)-2-降𦯉烯、9-(2-降𦯉烯-5-基)咔唑等具有芳族取代基的降𦯉烯系單體;1,4-甲橋-1,4,4a,4b,5,8,8a,9a-八氫茀、1,4-甲橋-1,4,4a,9a-四氫茀(俗名:甲橋四氫茀)、1,4-甲橋-1,4,4a,9a-四氫二苯并呋喃、1,4-甲橋-1,4,4a,9a-四氫咔唑、1,4-甲橋-1,4,4a,9,9a,10-六氫蒽、1,4-甲橋-1,4,4a,9,10,10a-六氫菲等於稠環結構中包含降𦯉烯環結構與芳環結構的降𦯉烯系單體;以及此等化合物的衍生物(例如於環具有取代基者);等。
作為取代基,可列舉例如:甲基、乙基、丙基、異丙基等烷基;亞烷基;烯基;極性基;等。作為極性基,可列舉例如:雜原子或具有雜原子的原子團等。作為雜原子,可列舉例如:氧原子、氮原子、硫原子、矽原子、鹵素原子等。作為極性基之具體例,可列舉:氟基、氯基、溴基、碘基等鹵基;羧基;羰氧羰基;環氧基;羥基;氧基;烷氧基;酯基;矽醇基;矽基;胺基;硝醯基;碸基;氰基;醯胺基;醯亞胺基;等。取代基的數量可為1個,亦可為2個以上。並且,2個以上之取代基的種類可相同,亦可相異。惟在獲得飽和吸水率低且耐濕性優異之光學薄膜的觀點上,降𦯉烯系單體以極性基之量少為佳,以不具極性基為較佳。
降𦯉烯系單體可單獨使用1種,亦可以任意比率組合2種以上使用。
前述降𦯉烯系單體的具體之種類及聚合比,以可獲得具有期望之玻璃轉移溫度Tg及評價雙折射ΔnR 的熱塑性降𦯉烯系樹脂之方式選擇為符合期望。通常,降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性取決於成為該降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比。據此,藉由適度調整降𦯉烯系單體之種類及聚合比,可調整降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性,故可將包含此降𦯉烯系聚合物之熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 調整成滿足式(1)及式(2)。
在增大降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性而輕易獲得玻璃轉移溫度Tg及評價雙折射ΔnR 大的熱塑性降𦯉烯系樹脂之觀點上,以使用四環十二烯系單體作為降𦯉烯系單體為佳。據此,降𦯉烯系聚合物以選自由包含四環十二烯系單體之單體的聚合物及其氫化物而成之群組者為佳。此種降𦯉烯系聚合物通常包含選自由使四環十二烯系單體聚合而獲得之重複結構及將前述重複結構氫化而獲得之結構而成之群組之一者以上的結構(以下適時稱作「四環十二烯系結構」。)。
四環十二烯系單體表示選自由四環十二烯及四環十二烯衍生物而成之群組的單體。所謂四環十二烯衍生物,係具有於四環十二烯之環鍵結有取代基之結構的化合物。取代基的數量可為1個,亦可為2個以上。並且,2個以上之取代基的種類可相同,亦可相異。作為良佳之四環十二烯衍生物,可列舉例如:8-亞乙基四環[4.4.0.12,5 .17,10 ]十二-3-烯(俗名:亞乙基四環十二烯)、8-乙基四環[4.4.0.12,5 .17,10 ]十二-3-烯、8-乙氧基羰基四環[4.4.0.12,5 .17,10 ]十二-3-烯、8-甲基-8-甲氧基羰基四環[4.4.0.12,5 .17,10 ]十二-3-烯等。四環十二烯系單體可單獨使用1種,亦可組合2種以上使用。
相對於作為降𦯉烯系聚合物之原料的單體之總量100重量%,包含於其之四環十二烯系單體的比例(聚合比)以25重量%以上為佳,以27重量%以上為較佳,以29重量%以上為尤佳,且以60重量%以下為佳,以55重量%以下為較佳,以50重量%以下為尤佳。在四環十二烯系單體的聚合比位於前述範圍的情況下,可增大降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性,故易使熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 落在式(1)及式(2)的範圍。
通常源自某單體之重複結構(單體單元)在降𦯉烯系聚合物中的比例與此單體在所有單體中的比例(聚合比)一致。據此,通常四環十二烯系結構在降𦯉烯系聚合物中的比例與四環十二烯系單體相對於單體之總量的聚合比一致。因此,四環十二烯系結構相對於降𦯉烯系聚合物100重量%的比例以落於與前述四環十二烯系單體的聚合比相同的範圍為佳。
再者,在增大降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性而輕易獲得玻璃轉移溫度Tg及評價雙折射ΔnR 大的熱塑性降𦯉烯系樹脂之觀點上,以使用雙環戊二烯系單體作為降𦯉烯系單體為佳。據此,降𦯉烯系聚合物以選自由包含雙環戊二烯系單體之單體的聚合物及其氫化物而成之群組者為佳。此種降𦯉烯系聚合物通常包含選自由使雙環戊二烯系單體聚合而獲得之重複結構及將前述重複結構氫化而獲得之結構而成之群組之一者以上的結構(以下適時稱作「雙環戊二烯系結構」。)。
雙環戊二烯系單體表示選自由雙環戊二烯及雙環戊二烯衍生物而成之群組的單體。所謂雙環戊二烯衍生物,係具有於雙環戊二烯之環鍵結有取代基之結構的化合物。取代基的數量可為1個,亦可為2個以上。並且,2個以上之取代基的種類可相同,亦可相異。雙環戊二烯系單體可單獨使用1種,亦可組合2種以上使用。
相對於作為降𦯉烯系聚合物之原料的單體之總量100重量%,包含於其之雙環戊二烯系單體的比例(聚合比)以50重量%以上為佳,以55重量%以上為較佳,以60重量%以上為尤佳,且以80重量%以下為佳,以75重量%以下為較佳,以70重量%以下為尤佳。在雙環戊二烯系單體的聚合比位於前述範圍的情況下,可增大降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性,故易使熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 落在式(1)及式(2)的範圍。
通常雙環戊二烯系結構在降𦯉烯系聚合物中的比例與雙環戊二烯系單體相對於單體之總量的聚合比一致。因此,雙環戊二烯系結構相對於降𦯉烯系聚合物100重量%的比例以落於與前述雙環戊二烯系單體的聚合比相同的範圍為佳。
尤其在將四環十二烯系單體及雙環戊二烯系單體組合而作為降𦯉烯系單體使用的情況下,此等之量的比以位於指定範圍為佳。具體而言,相對於四環十二烯系單體100重量份,雙環戊二烯系單體之量以100重量份以上為佳,以150重量份以上為較佳,以200重量份以上為尤佳,且以500重量份以下為佳,以450重量份以下為較佳,以400重量份以下為尤佳。據此,在降𦯉烯系聚合物中,相對於四環十二烯系結構100重量份,雙環戊二烯系結構之量以100重量份以上為佳,以150重量份以上為較佳,以200重量份以上為尤佳,且以500重量份以下為佳,以450重量份以下為較佳,以400重量份以下為尤佳。在前述量比位於前述範圍的情況下,可增大降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性,故易使熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 落在式(1)及式(2)的範圍。
在使用與降𦯉烯系單體共聚合的任意單體之情況下,此任意單體的種類在可獲得具有期望之玻璃轉移溫度Tg及評價雙折射ΔnR 的熱塑性降𦯉烯系樹脂之範圍內並無限制。作為能與降𦯉烯系單體開環共聚合的任意單體,可列舉例如:環己烯、環庚烯、環辛烯等單環烯烴類及其衍生物;環己二烯、環庚二烯等環狀共軛二烯及其衍生物;等。並且,作為能與降𦯉烯系單體加成共聚合的任意單體,可列舉例如:乙烯、丙烯、1-丁烯等碳數2~20的α-烯烴及此等之衍生物;環丁烯、環戊烯、環己烯等環烯烴及此等之衍生物;1,4-己二烯、4-甲基-1,4-己二烯、5-甲基-1,4-己二烯等非共軛二烯;等。任意單體可單獨使用1種,亦可組合2種以上使用。
作為降𦯉烯系聚合物,以包含使降𦯉烯系單體聚合並進一步進行氫化而獲得之結構的氫化物。此氫化物可為聚合物中之非芳香性的不飽和鍵經氫化者,可為聚合物中之芳香性的不飽和鍵經氫化者,亦可為聚合物中之非芳香性的不飽和鍵及芳香性的不飽和鍵兩者經氫化者。其中,以聚合物中之非芳香性的不飽和鍵及芳香性的不飽和鍵兩者經氫化的降𦯉烯系聚合物為佳。藉由使用如此經氫化的降𦯉烯系聚合物,可有效提高厚度方向之延遲Rth的顯現性,可減小光彈性係數。據此,變得能兼顧大的厚度方向之延遲Rth與低的光彈性係數。再者,通常可有效改善光學薄膜的機械性強度、耐濕性、耐熱性等特性。
降𦯉烯系聚合物的玻璃轉移溫度以110℃以上為佳,以112℃以上為較佳,以114℃以上為尤佳。藉由使用具有如此高的玻璃轉移溫度的降𦯉烯系聚合物,可抑制在高溫環境下之降𦯉烯系聚合物之定向的鬆弛。據此,可抑制在高溫環境下之光學薄膜的厚度方向之延遲Rth的變化。並且,包含「降𦯉烯系單體之種類及聚合比經調整成具有前述範圍之玻璃轉移溫度」之降𦯉烯系聚合物的薄膜,通常有由延伸所致之雙折射的顯現性為大的傾向,因此,易於增大光學薄膜的厚度方向之延遲Rth。降𦯉烯系聚合物的玻璃轉移溫度之上限並無特別的限制,但以180℃以下為佳,以170℃以下為較佳,以160℃以下為尤佳。在降𦯉烯系聚合物的玻璃轉移溫度為前述上限值以下的情況下,易於增大光學薄膜的厚度方向之延遲Rth。
降𦯉烯系聚合物的玻璃轉移溫度可使用微差掃描熱量分析計,依據JIS K 6911,以升溫速度10℃/分鐘的條件來量測。
降𦯉烯系聚合物的玻璃轉移溫度可藉由例如作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比來調整。
降𦯉烯系聚合物以具有大的雙折射顯現性為佳。據此,降𦯉烯系聚合物以具有大的評價雙折射為佳。詳細而言,降𦯉烯系聚合物的評價雙折射以0.0025以上為佳,以0.0026以上為較佳,以0.0027以上為尤佳。藉由使用具有如此大的評價雙折射的降𦯉烯系聚合物,即使延伸倍率低亦可使大的延遲顯現。據此,由於可以小的延伸倍率使光學薄膜顯現大的厚度方向之延遲Rth,故可有效改善光學薄膜的定向角精度。降𦯉烯系聚合物的評價雙折射之上限並無特別的限制,但以0.0050以下為佳,以0.0047以下為較佳,以0.0045以下為尤佳。在降𦯉烯系聚合物的評價雙折射為前述上限值以下的情況下,可輕易進行降𦯉烯系聚合物的製造。
降𦯉烯系聚合物的評價雙折射可藉由下述方法來量測。
將降𦯉烯系聚合物成形,獲得片材。對此片材施以自由端單軸延伸。所謂自由端單軸延伸,表示係為往一方向之延伸且在此延伸方向以外不對片材施加拘束力的延伸。前述自由端單軸延伸的延伸溫度,係較降𦯉烯系聚合物的玻璃轉移溫度高15℃的溫度。並且,延伸時間為1分鐘,自由端單軸延伸的延伸倍率為1.5倍。延伸後,在量測波長550 nm量測片材中央部的面內延遲,並將此面內延遲除以片材中央部的厚度,藉此可獲得評價雙折射。
降𦯉烯系聚合物的評價雙折射可藉由例如作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比,還有降𦯉烯系聚合物的分子量分布來調整。
降𦯉烯系聚合物的重量平均分子量Mw以10000~100000為佳,以15000~80000為較佳,以20000~60000為尤佳。在重量平均分子量位於前述範圍的情況下,光學薄膜的機械性強度及成形性可取得高度平衡。
降𦯉烯系聚合物的分子量分布Mw/Mn以2.4以下為佳,以2.35以下為較佳,以2.3以下為尤佳。在降𦯉烯系聚合物的分子量分布Mw/Mn位於前述範圍的情況下,可提高光學薄膜的接合強度,故可抑制光學薄膜的剝層。所謂分子量分布,係重量平均分子量與數量平均分子量之比,係由「重量平均分子量Mw/數量平均分子量Mn」所示。降𦯉烯系聚合物的分子量分布之下限通常為1.0以上。
降𦯉烯系聚合物的重量平均分子量及數量平均分子量可藉由使用環己烷作為溶析液的凝膠滲透層析法,以聚異戊二烯換算來量測。在降𦯉烯系聚合物不溶於環己烷的情況下,於前述凝膠滲透層析法中亦可使用甲苯作為溶析液。溶析液為甲苯時,可以聚苯乙烯換算來量測重量平均分子量及數量平均分子量。
降𦯉烯系聚合物的應力雙折射以2350×10 12 Pa 1 以上為佳,以2400×10 12 Pa 1 以上為較佳,以2550×10 12 Pa 1 以上為尤佳,且以3000×10 12 Pa 1 以下為佳,以2950×10 12 Pa 1 以下為較佳,以2800×10 12 Pa 1 以下為尤佳。在降𦯉烯系聚合物的應力雙折射為前述範圍的下限值以上之情況下,包含此降𦯉烯系聚合物的薄膜,有由延伸所致之雙折射的顯現性為大的傾向,因此,易於增大光學薄膜的厚度方向之延遲Rth。並且,在降𦯉烯系聚合物的應力雙折射為前述範圍的上限值以下之情況下,會變得易於控制光學薄膜的延遲Re及Rth,可抑制延遲之面內的參差。
降𦯉烯系聚合物的應力雙折射可以下述方法來量測。
將降𦯉烯系聚合物成形為片材狀,獲得片材。將此片材之兩端利用夾具固定之後,將指定重量(例如160 g)的重錘固定於一邊的夾具。隨後,於已設定成指定溫度(例如較降𦯉烯系聚合物的玻璃轉移溫度高5℃的溫度)之烘箱內,將未固定重錘之夾具定為起點,將片材懸掛指定時間(例如1小時)以進行延伸處理。將進行過延伸處理的片材緩慢冷卻回復至室溫。對於此片材,在量測波長650 nm量測片材中心部的面內延遲,並將此面內延遲除以片材中心部的厚度,藉此算出δn值。然後,將此δn值除以施加於片材的應力(在上述情況下係將指定重錘固定時所施加的應力),可求出應力雙折射。
降𦯉烯系聚合物的應力雙折射可藉由作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比來調整。
降𦯉烯系聚合物可藉由例如包含「將降𦯉烯系單體及視需求而使用之任意單體在適切之觸媒的存在下聚合」的製造方法來製造。並且,在製造氫化物作為降𦯉烯系聚合物的情況下,降𦯉烯系聚合物的製造方法亦可包含在前述聚合後,對於所獲得之聚合物在包含鎳、鈀、釕等過渡金屬之氫化觸媒的存在下使之接觸氫,以將碳―碳不飽和鍵氫化。
熱塑性降𦯉烯系樹脂所包含之降𦯉烯系聚合物的比例在可獲得滿足式(1)及式(2)之熱塑性降𦯉烯系樹脂的範圍內為任意。在活用降𦯉烯系聚合物的優異之特性的觀點上,熱塑性降𦯉烯系樹脂所包含之降𦯉烯系聚合物的比例以80重量%~100重量%為佳,以90重量%~100重量%為較佳,以95重量%~100重量%為尤佳。
熱塑性降𦯉烯系樹脂亦可包含降𦯉烯系聚合物以外的任意成分。作為任意成分,可列舉例如:紫外線吸收劑、抗氧化劑、熱穩定劑、光穩定劑、抗靜電劑、分散劑、氯清除劑、阻燃劑、結晶成核劑、強化劑、抗結塊劑、防霧劑、脫模劑、顏料、有機或無機的填料、中和劑、滑劑、分解劑、金屬減活劑、抗汙劑、抗菌劑等。任意成分可單獨使用1種,亦可以任意比率組合2種以上使用。
熱塑性降𦯉烯系樹脂具有滿足前述式(1)的玻璃轉移溫度Tg。詳細而言,熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg通常為110℃以上,以112℃以上為佳,以114℃以上為尤佳。藉由使用具有如此高的玻璃轉移溫度Tg的熱塑性降𦯉烯系樹脂,可抑制在高溫環境下之降𦯉烯系聚合物的定向之鬆弛。據此,可抑制在高溫環境下之光學薄膜的厚度方向之延遲Rth的變化。並且,包含「具有前述範圍之玻璃轉移溫度Tg」之熱塑性降𦯉烯系樹脂的薄膜,通常有由延伸所致之雙折射的顯現性為大的傾向,因此,易於增大光學薄膜的厚度方向之延遲Rth。熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg之上限並無特別的限制,但以180℃以下為佳,以170℃以下為較佳,以160℃以下為尤佳。在熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg為前述上限值以下的情況下,易於增大光學薄膜的厚度方向之延遲Rth。
熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg可使用微差掃描熱量分析計,依據JIS K 6911,以升溫速度10℃/分鐘的條件來量測。
熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg可藉由例如作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比以及降𦯉烯系聚合物的含率來調整。
熱塑性降𦯉烯系樹脂具有滿足前述式(2)的評價雙折射ΔnR 。詳細而言,熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 通常為0.0025以上,且0.0026以上為佳,以0.0027以上為尤佳。藉由使用具有如此大的評價雙折射ΔnR 的熱塑性降𦯉烯系樹脂,即使延伸倍率低亦可使大的延遲顯現。據此,由於可以小的延伸倍率使光學薄膜顯現大的厚度方向之延遲Rth,故可有效改善光學薄膜的定向角精度。熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 之上限並無特別的限制,但以0.0050以下為佳,以0.0047以下為較佳,以0.0045以下為尤佳。在熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 為前述上限值以下的情況下,可輕易進行熱塑性降𦯉烯系樹脂的製造。
熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 可藉由下述方法來量測。
將熱塑性降𦯉烯系樹脂成形,獲得片材。對此片材施以自由端單軸延伸。前述自由端單軸延伸的延伸溫度,係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg高15℃的溫度(亦即Tg+15℃)。並且,延伸時間為1分鐘,自由端單軸延伸的延伸倍率為1.5倍。延伸後,在量測波長550 nm量測片材中央部的面內延遲Re(a),並將此面內延遲Re(a)除以片材中央部的厚度T(a),藉此可獲得評價雙折射ΔnR
熱塑性降𦯉烯系樹脂的評價雙折射ΔnR 可藉由例如作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比、降𦯉烯系聚合物的分子量分布,還有降𦯉烯系聚合物的含率來調整。
熱塑性降𦯉烯系樹脂的應力雙折射CR 以2350×10 12 Pa 1 以上為佳,以2400×10 12 Pa 1 以上為較佳,以2550×10 12 Pa 1 以上為尤佳,且以3000×10 12 Pa 1 以下為佳,以2950×10 12 Pa 1 以下為較佳,以2800×10 12 Pa 1 以下為尤佳。在熱塑性降𦯉烯系樹脂的應力雙折射CR 為前述範圍的下限值以上之情況下,包含此熱塑性降𦯉烯系樹脂的薄膜,有由延伸所致之雙折射的顯現性為大的傾向,因此,易於增大光學薄膜的厚度方向之延遲Rth。並且,在熱塑性降𦯉烯系樹脂的應力雙折射CR 為前述範圍的上限值以下之情況下,會變得易於控制光學薄膜的延遲Re及Rth,可抑制延遲之面內的參差。
熱塑性降𦯉烯系樹脂的應力雙折射CR 可以下述方法來量測。
將熱塑性降𦯉烯系樹脂成形為片材狀,獲得片材。將此片材之兩端利用夾具固定之後,將指定重量(例如160 g)的重錘固定於一邊的夾具。隨後,於已設定成指定溫度(例如較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg高5℃的溫度)之烘箱內,將未固定重錘之夾具定為起點,將片材懸掛指定時間(例如1小時)以進行延伸處理。將進行過延伸處理的片材緩慢冷卻回復至室溫。對於此片材,在量測波長650 nm量測片材中心部的面內延遲Re(b),並將此面內延遲Re(b)除以片材中心部的厚度T(b)[mm],藉此算出δn值。然後,將此δn值除以施加於片材的應力(在上述情況下係將指定重錘固定時所施加的應力),可求出應力雙折射CR
熱塑性降𦯉烯系樹脂的應力雙折射CR 可藉由作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比,還有降𦯉烯系聚合物的含率來調整。
[3.光學薄膜的特性]
本實施型態相關之光學薄膜係由於上所述之熱塑性降𦯉烯系樹脂所形成的薄膜,其厚度方向之延遲Rth及厚度d滿足前述式(3)。詳細而言,比Rth/d通常為3.5×10 3 以上,且以3.7×10 3 以上為較佳,以4.0×10 3 以上為尤佳。如此,本實施型態相關之光學薄膜可增大單位厚度d之厚度方向的延遲Rth。據此,在薄化厚度d的同時,能增大厚度方向之延遲Rth。比Rth/d的上限並無特別的限制,但在有效抑制光學薄膜的剝層之觀點上,以8.0×10 3 以下為佳,以6.0×10 3 以下為較佳。
降𦯉烯系聚合物的玻璃轉移溫度及雙折射顯現性通常取決於成為該降𦯉烯系聚合物之材料的降𦯉烯系單體之種類及聚合比。據此,包含此降𦯉烯系聚合物之熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 與成為降𦯉烯系聚合物之材料的降𦯉烯系單體之種類及聚合比有相關性。據此,熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg及評價雙折射ΔnR 通常反映了此熱塑性降𦯉烯系樹脂所包含之作為降𦯉烯系聚合物之原料的降𦯉烯系單體之種類及聚合比。根據本發明人的研究,已明白如此包含降𦯉烯系聚合物的熱塑性降𦯉烯系樹脂,由延伸所致之厚度方向之延遲Rth的顯現性優異,所述降𦯉烯系聚合物,採用以具有指定範圍的玻璃轉移溫度Tg及評價雙折射ΔnR 之方式選擇的種類及量的降𦯉烯系單體。據此,具有如上所述之高的Rth/d的光學薄膜能使用包含於上已述之降𦯉烯系聚合物的熱塑性降𦯉烯系樹脂做成延伸薄膜來製造。
本實施型態相關之光學薄膜的光彈性係數以小為佳。光學薄膜之具體的光彈性係數以8布如士特以下為佳,以7布如士特以下為較佳,以6布如士特以下為尤佳。於此,1布如士特=1×10 13 cm2 /dyn。在光學薄膜的光彈性係數小的情況下,此光學薄膜即使產生翹曲亦不易在延遲等光學特性產生變化。據此,在將光學薄膜設置於液晶顯示裝置的情況下,可抑制起因於光學薄膜之翹曲的漏光發生。所謂漏光,係謂在將液晶顯示裝置設成黑顯示狀態的情況下,應遮蔽之光線自畫面外漏而畫面變亮的現象。光彈性係數之下限並無特別的限制,但以0.5布如士特以上為佳,以1.0布如士特以上為較佳,以1.5布如士特以上為尤佳。
光學薄膜的光彈性係數可利用橢圓偏光儀來量測。
具有小的光彈性係數的光學薄膜,舉例而言,可藉由使用「包含經氫化之降𦯉烯系聚合物」的熱塑性降𦯉烯系樹脂來實現。
本實施型態相關之光學薄膜可達成高定向角精度。具體而言,光學薄膜在與其厚度方向垂直的面內方向上具有慢軸。而且,光學薄膜可抑制此慢軸之方向的參差。因此,由於可抑制作為慢軸相對於基準方向所夾之角度的定向角θ之參差,故可達成高定向角精度。定向角精度高的光學薄膜在設置於液晶顯示裝置的情況下,可使畫面的輝度、對比等顯示特性在面內均勻。
光學薄膜的定向角精度可藉由定向角θ的標準差θσ來評價。光學薄膜之定向角θ的標準差θσ愈小愈好。具體而言,光學薄膜之定向角θ的標準差θσ以0°~0.15°為佳,以0°~0.14°為較佳,以0°~0.13°為尤佳。
光學薄膜之定向角θ的標準差θσ可藉由下述方法來量測。
將光學薄膜之慢軸相對於某基準方向所夾之角度的絕對值量測為定向角θ。此量測在光學薄膜之幅寬方向上之間隔為50 mm、長度方向上之間隔為10 m的多個量測位置進行。然後,自此等量測結果可計算定向角θ的標準差θσ。
通常,光學薄膜係使用熱塑性降𦯉烯系樹脂來製造為延伸薄膜。並且,由於熱塑性降𦯉烯系樹脂之雙折射的顯現性優異,故為使滿足式(3)之程度之大的延遲顯現而要求的延伸倍率為小。因此,在將光學薄膜製造為由熱塑性降𦯉烯系樹脂所形成之延伸薄膜時,可減小延伸倍率。藉由延伸倍率為如此之小,前述光學薄膜可達成高定向角精度。
本實施型態相關之光學薄膜的耐熱性優異。具體而言,光學薄膜可抑制在高溫環境下之厚度方向之延遲Rth的變化。耐熱性優異的光學薄膜可適用於可能會在高溫環境下使用的液晶顯示裝置。
光學薄膜的耐熱性可藉由透過在高溫環境下之耐久試驗獲得之厚度方向之延遲Rth的變化率來評價。舉例而言,在量測光學薄膜之厚度方向的延遲Rth0之後,對此光學薄膜進行在85℃之環境下儲存500小時的耐久試驗。耐久試驗之後,量測光學薄膜之厚度方向的延遲Rth1。然後,將透過耐久試驗獲得之光學薄膜之厚度方向之延遲的變化量Rth0-Rth1除以耐久試驗前之光學薄膜之厚度方向的延遲Rth0,可計算其變化率。根據本實施型態相關之光學薄膜,以可將前述厚度方向之延遲Rth的變化率做成3%以下為佳。
光學薄膜所包含之熱塑性降𦯉烯系樹脂具有高的玻璃轉移溫度Tg。據此,即使在高溫環境下,熱塑性降𦯉烯系樹脂所包含之降𦯉烯系聚合物之分子亦不易發生定向鬆弛。因此,可如前所述抑制在高溫環境下之厚度方向之延遲Rth的變化。
本實施型態相關之光學薄膜以具有高耐濕性為佳。據此,光學薄膜以可抑制在高濕度環境下之厚度方向之延遲Rth的變化為佳。耐濕性優異的光學薄膜可適用於可能會在高濕度環境下使用的液晶顯示裝置。
光學薄膜的耐濕性可藉由透過在高濕度環境下之耐久試驗獲得之厚度方向之延遲Rth的變化率來評價。舉例而言,在量測光學薄膜之厚度方向的延遲Rth0之後,對此光學薄膜進行在60℃、濕度90%之環境下儲存500小時的耐久試驗。耐久試驗之後,量測光學薄膜之厚度方向的延遲Rth2。然後,將透過耐久試驗獲得之光學薄膜之厚度方向之延遲的變化量Rth0-Rth2除以耐久試驗前之光學薄膜之厚度方向的延遲Rth0,可計算其變化率。根據本實施型態,以可將前述厚度方向之延遲Rth的變化率做成3%以下為佳。
降𦯉烯系聚合物以耐濕性優異為佳,故光學薄膜易於抑制濕氣的入侵。據此,即使在高濕度環境下,光學薄膜所包含之降𦯉烯系聚合物之分子亦不易發生定向鬆弛。因此,可如前所述抑制在高濕度環境下之厚度方向之延遲Rth的變化。
本實施型態相關之光學薄膜以具有低吸水率為佳。舉例而言,在浸漬於23℃的水中24小時的情況下之光學薄膜之重量基準的吸水率,以0%~0.15%為佳,以0%~0.10%為較佳,以0%~0.05%為尤佳。在具有如此之低的吸水率的情況下,光學薄膜可具有如前所述優異的耐濕性。
本實施型態相關之光學薄膜以可抑制剝層為佳。據此,光學薄膜在對偏光板等薄膜使用接合劑進行貼合的情況下,可使光學薄膜不易剝下。有鑑於包含降𦯉烯系聚合物之以往的延伸薄膜一般容易發生剝層,本實施型態相關之光學薄膜可抑制剝層一事,係該光學薄膜之優異的優點之一。
本實施型態相關之光學薄膜的面內延遲Re因應該光學薄膜之用途而為任意。若要揭示具體的範圍,光學薄膜的面內延遲Re以40 nm以上為佳,以45 nm以上為較佳,以50 nm以上為尤佳,且以80 nm以下為佳,以75 nm以下為較佳,以70 nm以下為尤佳。在光學薄膜的面內延遲Re為前述範圍之下限值以上的情況下,易於優化延遲的顯現性。並且,在光學薄膜的面內延遲Re為前述範圍之上限值以下的情況下,可抑制延遲在面內的參差。面內延遲Re得因影像顯示裝置之設計而自上述範圍內適當選擇。
本實施型態相關之光學薄膜之厚度方向的延遲Rth因應該光學薄膜之用途而為任意。若要揭示具體的範圍,光學薄之厚度方向的延遲Rth以100 nm以上為佳,以120 nm以上為較佳,以150 nm以上為尤佳,且以400 nm以下為佳,以380 nm以下為較佳,以360 nm以下為尤佳。在光學薄膜之厚度方向的延遲Rth為前述範圍之下限值以上的情況下,可提高影像顯示裝置之斜向的對比。並且,在光學薄膜之厚度方向的延遲Rth為前述範圍之上限值以下的情況下,可抑制厚度方向的延遲Rth及定向角在面內的參差。厚度方向的延遲Rth得因影像顯示裝置之設計而自上述範圍內適當選擇。
本實施型態相關之光學薄膜以具有高的全光線穿透率為佳。光學薄膜之具體的全光線穿透率以85%~100%為佳,以87%~100%為較佳,以90%~100%為尤佳。全光線穿透率得使用市售的分光光度計在波長400 nm以上且700 nm以下的範圍量測。
本實施型態相關之光學薄膜就提高組裝有堆疊薄膜的液晶顯示裝置之影像鮮明性的觀點而言,以霧度小為佳。光學薄膜的霧度以1%以下為佳,以0.8%以下為較佳,以0.5%以下為尤佳。霧度得依據JIS K7361-1997使用濁度計來量測。
本實施型態相關之光學薄膜以薄為佳。藉由使用於上已述之熱塑性降𦯉烯系樹脂,即使光學薄膜薄,亦可獲得大的厚度方向的延遲Rth。並且,在光學薄膜薄的情況下,可抑制光學薄膜的翹曲,故可減小由翹曲所致之延遲等光學特性的變化。據此,在將光學薄膜設置於液晶顯示裝置的情況下,可抑制起因於光學薄膜之翹曲的漏光發生。光學薄膜之具體的厚度d以120 μm以下為佳,以100 μm以下為較佳,以80 μm以下為尤佳。厚度d的下限並無特別限制,但在抑制剝層的觀點上,以20 μm以上為佳,以30 μm以上為較佳,以40 μm以上為尤佳。
[4.光學薄膜的製造方法]
於上已述之光學薄膜,舉例而言,可藉由包含「將熱塑性降𦯉烯系樹脂成形以獲得樹脂薄膜的工序」以及「將此樹脂薄膜延伸的工序」的製造方法來製造。為了與延伸後獲得的光學薄膜有所區別,以下將延伸前的樹脂薄膜適時稱作「延伸前薄膜」。
在將熱塑性降𦯉烯系樹脂成形以獲得延伸前薄膜的工序中,對成形方法並無限制。作為成形方法,可列舉例如:擠製成形法、溶液鑄造法、吹脹成形法等。其中,以擠製成形法及溶液鑄造法為佳,以擠製成形法為尤佳。
準備好延伸前薄膜後,進行將此延伸前薄膜延伸的工序。藉由此延伸,可使薄膜中之降𦯉烯系聚合物之分子定向,故可獲得具有於上已述之光學特性的光學薄膜。在將延伸前薄膜延伸的工序中的延伸條件,在可獲得期望之光學薄膜的範圍內,可任意設定。
延伸前薄膜之延伸的態樣,舉例而言,可為沿1方向進行延伸的單軸延伸,亦可為沿不平行之2方向進行延伸的雙軸延伸。並且,雙軸延伸可為同時進行往2方向之延伸的同時雙軸延伸,亦可為在進行往其中一方向之延伸後進行往另一方向之延伸的逐次雙軸延伸。此等之中,就易於製造厚度方向之延遲Rth大的光學薄膜之觀點而言,以雙軸延伸為佳,以逐次雙軸延伸為較佳。
延伸前薄膜的延伸方向得任意設定。舉例而言,在延伸前薄膜為長條狀之薄膜的情況下,延伸方向可為縱向,可為橫向,亦可為斜向。所謂縱向,表示長條狀之薄膜的長度方向,所謂橫向,表示長條狀之薄膜的幅寬方向,所謂斜向,表示與長條狀之薄膜的長度方向既不平行亦不垂直的方向。
延伸前薄膜的延伸倍率以1.4以上為佳,以1.5以上為較佳,且以2.2以下為佳,以2.1以下為較佳。在延伸倍率為前述範圍之下限值以上的情況下,可輕易獲得厚度方向之延遲Rth大的光學薄膜。並且,在延伸倍率為前述範圍之上限值以下的情況下,可輕易提高光學薄膜的定向角精度。在進行雙軸延伸的情況下,以由往其中一方向之延伸的延伸倍率與往另一方向之延伸的延伸倍率之積所示之整體的延伸倍率落於前述範圍為佳。
延伸前薄膜的延伸溫度以Tg℃以上為佳,以Tg+5℃以上為較佳,且以Tg+40℃以下為佳,以Tg+30℃以下為較佳。在延伸溫度為前述範圍的情況下,易於使光學薄膜的厚度均勻。
在前述製造方法中,如上所述可藉由將延伸前薄膜延伸來獲得光學薄膜,但前述製造方法亦可更包含任意工序。
舉例而言,前述製造方法亦可包含將光學薄膜修整的工序、對光學薄膜施以表面處理的工序等。
[5.光學堆疊體]
本發明之一實施型態相關之光學堆疊體具備於上已述之光學薄膜與偏光板。由於光學薄膜即使厚度方向之延遲Rth大亦可薄化厚度,故可薄化光學堆疊體,抑制光學堆疊體的翹曲。並且,由於光學薄膜具有高定向角精度,故可使光學堆疊體的光學特性在面內均勻。再者,由於光學薄膜具有高耐熱性,故光學堆疊體亦可具有高的耐熱性。此種光學堆疊體可合適適用於液晶顯示裝置等影像顯示裝置。
作為偏光板,得使用例如具備偏光件層的薄膜。作為偏光件層,得使用例如對適切之乙烯醇系聚合物的薄膜以適切之順序及方式施以適切之處理者。作為此種乙烯醇系聚合物之例,可列舉聚乙烯醇及部分縮甲醛化聚乙烯醇。作為薄膜的處理之例,可列舉:透過碘及二色性染料等二色性物質的染色處理、延伸處理及交聯處理。偏光件層係得吸收具有與吸收軸平行之振動方向的直線偏光者,尤以偏光度優異者為佳。偏光件層的厚度一般為5 μm~80 μm,但不受限於此。
偏光板為了保護偏光件層,亦可於偏光件層之一側或兩側具備保護薄膜層。作為保護薄膜層,得使用任意透明薄膜層。其中,以透明性、機械性強度、熱穩定性、水分遮蔽性等優異之樹脂的薄膜層為佳。作為此種樹脂之例,可列舉:三乙酸纖維素等乙酸酯樹脂、聚酯樹脂、聚醚碸樹脂、聚碳酸酯樹脂、聚醯胺樹脂、聚醯亞胺樹脂、聚烯烴樹脂、熱塑性降𦯉烯系樹脂、(甲基)丙烯酸樹脂等。在雙折射小這點上,以乙酸酯樹脂、熱塑性降𦯉烯系樹脂、(甲基)丙烯酸樹脂為佳,就透明性、低吸濕性、尺寸穩定性、輕量性等的觀點而言,以熱塑性降𦯉烯系樹脂為尤佳。
前述偏光板,舉例而言,可將偏光件層與保護薄膜層貼合而製造。貼合時,亦可視需求使用接合劑。
光學堆疊體亦可更包含任意部件組合於光學薄膜及偏光板。舉例而言,光學堆疊體亦可具備用以將光學薄膜與偏光板貼合的接合層。
光學堆疊體的厚度並無特別的限制,但以30 μm以上為佳,以50 μm以上為較佳,且以150 μm以下為佳,以130 μm以下為較佳。
[6.液晶顯示裝置]
本發明之一實施型態相關之液晶顯示裝置具備於上已述之光學堆疊體。如上所述,由於光學堆疊體所具備之光學薄膜可薄化,故光學堆疊體不易發生翹曲。據此,可抑制由在翹曲之部分中的光學薄膜之光學特性的變化所致之漏光發生。前述翹曲一般容易發生在液晶顯示裝置之畫面的角落,但在本實施型態相關之液晶顯示裝置中,能抑制此種在角落之漏光。並且,由於光學薄膜可具有高定向角精度,故本實施型態相關之液晶顯示裝置可使畫面的輝度、對比等顯示特性在畫面之面內均勻。再者,由於光學薄膜具有高耐熱性,故本實施型態相關之液晶顯示裝置可抑制在高溫環境下之顯示特性的變化。
通常,液晶顯示裝置具備液晶單元,於此液晶單元之至少單側具備光學堆疊體。其中,光學堆疊體以設置成液晶單元、光學薄膜及觀看側偏光件依序排列為佳。在此種構造中,光學薄膜可作為視角補償薄膜發揮功能。
液晶單元得使用例如:平面切換(IPS)模式、垂直排列(VA)模式、多區域垂直排列(MVA)模式、連續焰火狀排列(CPA)模式、混合排列向列(HAN)模式、扭轉向列(TN)模式、超扭轉向列(STN)模式、光學補償彎曲(OCB)模式等任意模式之液晶單元。
『實施例』
以下揭示實施例以具體說明本發明。惟本發明並非受限於以下實施例者,在不脫離本發明之申請專利範圍及其均等之範圍的範圍內,得任意變更而實施。
在以下說明中,表示量的「%」及「份」,除非另有註記,否則係重量基準。以下操作,除非另有註記,否則在常溫常壓大氣中進行。
[I.聚合物之物性值的量測方法及計算方法]
(聚合物之重量平均分子量Mw、數量平均分子量Mn及分子量分布Mw/Mn的量測方法)
聚合物之重量平均分子量Mw及數量平均分子量Mn,藉由以環己烷作為溶析液之凝膠滲透層析法(GPC)來量測,求得為標準聚異戊二烯換算值。
作為標準聚異戊二烯,使用東曹公司製標準聚異戊二烯(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)。
量測係將3支東曹公司製管柱(TSKgelG5000HXL、TSKgelG4000HXL及TSKgelG2000HXL)串聯使用,在流速1.0 mL/分鐘、樣本注入量100 μL、管柱溫度40℃的條件下進行。
分子量分布Mw/Mn,使用藉由上述方法量測之重量平均分子量Mw及數量平均分子量Mn的量測值來算出。
(玻璃轉移溫度Tg的量測方法)
玻璃轉移溫度Tg,使用微差掃描熱量分析計(SII NanoTechnology Inc.製「DSC6220」),依據JIS K 6911,在升溫速度10℃/分鐘的條件下量測。
(評價雙折射ΔnR 的量測方法)
將樹脂成形為長50 mm×寬100 mm×厚100 μm的片材狀,獲得樣本片材。對此樣本片材,使用附有恆溫槽之拉伸試驗機(Instron Japan Company Limited公司製「5564型」),施以自由端單軸延伸。此延伸的條件如同下述。 延伸溫度:Tg+15℃ 夾頭間距:65 mm 延伸倍率:1.5倍(延伸距離32.5 mm) 延伸時間:1分鐘 延伸速度:32.5 mm/分鐘
進行延伸處理之後,將經延伸之樣本片材回復至室溫,獲得量測試樣。
對於此量測試樣,使用相位差計(AXOMETRICS公司製「AXOSCAN」),在量測波長550 nm量測出量測試樣之中心部的面內延遲Re(a)[nm]。並且,量測出量測試樣之前述中心部的厚度T(a)[mm]。使用此等量測值Re(a)及T(a),藉由下述式(X1)計算樹脂的評價雙折射ΔnR 。 ΔnR =Re(a)×(1/T(a))×10 6 (X1)
(應力雙折射CR 的量測方法)
將樹脂成形為長35 mm×寬10 mm×厚1 mm的片材狀,獲得樣本片材。將此樣本片材之兩端利用夾具固定之後,將160 g之重錘固定於一邊的夾具。隨後,於已將溫度設定成樹脂之玻璃轉移溫度(Tg)+5℃之烘箱內,將未固定重錘之夾具定為起點,將樣本片材懸掛1小時以進行延伸處理。之後,將樣本片材緩慢冷卻回復至室溫,獲得量測試樣。
對於此量測試樣,使用雙折射計(Photonic Lattice, Inc.製「WPA-100」),在量測波長650 nm量測出量測試樣之中心部的面內延遲Re(b)[nm]。並且,量測出量測試樣之前述中心部的厚度T(b)[mm]。使用此等量測值Re(b)及T(b),藉由下述式(X2)算出δn值。 δn=Re(b)×(1/T(b))×10−6 (X2)
使用該δn值及施加於樣本之應力F,藉由下述式(X3)算出應力雙折射CR 。 CR =δn/F (X3)
[II.光學薄膜之特性的評價方法]
(光學薄膜之光彈性係數的量測方法)
光學薄膜之光彈性係數,利用橢圓偏光儀來量測。
(光學薄膜之定向角精度的評價方法)
將慢軸相對於光學薄膜之長度方向所夾之角度的絕對值量測為定向角θ。此量測使用偏光顯微鏡(奧林巴斯公司製之偏光顯微鏡「BX51」)來進行。並且,以光學薄膜之幅寬方向上之間隔為50 mm、長度方向上之間隔為10 m在多個量測位置進行前述定向角θ的量測。計算此等量測結果之標準差θσ,作為定向角精度的評價指標。定向角θ的標準差θσ小者,定向角θ之參差小而為佳。
(光學薄膜之剝層的評價方法)
準備由包含降𦯉烯系聚合物之樹脂所形成的未延伸薄膜(日本瑞翁公司製「Zeonor Film」,厚度100 μm,樹脂之玻璃轉移溫度160℃,未施以延伸處理者)作為被黏體。對作為量測對象薄膜之光學薄膜的單面及前述未延伸薄膜的單面施以電暈處理。使接合劑(TOYOCHEM CO., LTD.製之UV接合劑CRB系列)附著於光學薄膜之施以電暈處理之面及未延伸薄膜之施以電暈處理之面兩者。將附著有接合劑之面彼此貼合。之後,使用無電極UV照射裝置(賀利氏公司製),對接合劑進行紫外線照射,以使接合劑固化。前述紫外線照射使用D燈泡作為燈源,在尖峰照度100 mW/cm2 、積分光量3000 mJ/cm2 的條件下進行。藉此,獲得具有未延伸薄膜/接合劑層/光學薄膜之層體構造的樣本薄膜。
對於所獲得之樣本薄膜,以下述程序實施90度剝離試驗。
將樣本薄膜裁切成15 mm之幅寬,獲得薄膜片。使用黏合劑,將此薄膜片的光學薄膜側之面貼合於載玻片的表面。此時,作為黏合劑,使用雙面黏合膠帶(日東電工公司製,型號「CS9621」)。將薄膜片所包含之未延伸薄膜夾在高性能型數位測力計(IMADA公司製「ZP-5N」)之末端,沿載玻片之表面的法線方向以300 mm/分鐘之速度牽拉此未延伸薄膜,量測牽拉之力的大小作為剝離強度。剝離強度的評價藉由以下評價基準來進行。 良:1.0 N/15 mm以上 不良:未達1.0 N/15 mm
(光學薄膜的延遲Rth、Re及厚度d的量測方法,以及Rth/d的評價方法)
光學薄膜之厚度方向的延遲Rth及面內延遲Re,使用相位差計(AXOMETRICS公司製「AXOSCAN」)在量測波長550 nm量測。
光學薄膜的厚度d利用卡規(Mitutoyo公司製「ID-C112BS」)來量測。
將量測到之厚度方向的延遲Rth除以厚度d,算出Rth/d。
(85℃、500小時過後之光學薄膜之厚度方向之延遲Rth之變化率的評價方法)
於後述耐久試驗之前,量測光學薄膜之厚度方向的延遲Rth0。之後,對光學薄膜進行在85℃之環境下儲存500小時的耐久試驗。耐久試驗之後,量測光學薄膜之厚度方向的延遲Rth1。自此等量測值Rth0及Rth1,藉由下述式(X4)計算透過耐久試驗獲得之光學薄膜之厚度方向之延遲的變化率(Rth變化率)。 Rth變化率(%)=[(Rth0-Rth1)/Rth0]×100   (X4)
前述Rth變化率愈小,表示光學薄膜的耐熱性愈優異。於是,藉由下述評價基準評價所求得之Rth變化率。 良:Rth變化率為3%以下。 不良:Rth變化率大於3%。
(60℃、濕度90%、500小時過後之光學薄膜之厚度方向之延遲Rth之變化率的評價方法)
於後述耐久試驗之前,量測光學薄膜之厚度方向的延遲Rth0。之後,對光學薄膜進行在60℃、濕度90%之環境下儲存500小時的耐久試驗。耐久試驗之後,量測光學薄膜之厚度方向的延遲Rth2。自此等量測值Rth0及Rth2,藉由下述式(X5)計算透過耐久試驗獲得之光學薄膜之厚度方向之延遲的變化率(Rth變化率)。 Rth變化率(%)=[(Rth0-Rth2)/Rth0]×100   (X5)
前述Rth變化率愈小,表示光學薄膜的耐熱性及耐濕性愈優異。於是,藉由下述評價基準評價所求得之Rth變化率。 良:Rth變化率為3%以下。 不良:Rth變化率大於3%。
(光學薄膜之吸水率的量測方法)
切割光學薄膜之一部分以準備試片(尺寸:100 mm×100 mm),量測此試片之重量w0。之後,將此試片浸漬於23℃的水中24小時。浸漬後,量測試片之重量w1。然後,算出因浸漬而增加之試片之重量w1-w0相對於浸漬前之試片之重量w0的比例(w1-w0)/w0,作為吸水率(%)。吸水率以小者為佳。
[III.液晶顯示裝置之特性的評價方法]
(角落不均勻的評價)
進行將液晶顯示裝置在85℃之環境下儲存100小時的耐久試驗。之後,將液晶顯示裝置之畫面設成黑顯示狀態,以目視確認畫面周邊之漏光(角落不均勻)的有無。 良:完全看不到畫面周邊的漏光。 不良:畫面周邊的漏光明顯。
[實施例1]
(1-1)開環聚合物的製造:
於已將內部氮氣置換之玻璃製反應容器,將相對於後敘述之單體之合計100重量份為200份之已脫水的環己烷、1-己烯0.75 mol%、二異丙醚0.15 mol%及三異丁基鋁0.44 mol%,在室溫下置入反應器並混合。之後,在保持45℃的同時,將作為單體之四環十二烯(TCD)29重量份、雙環戊二烯(DCPD)68重量份及降𦯉烯(NB)3重量份與六氯化鎢(0.65重量%甲苯溶液)0.02 mol%,耗費2小時並行連續添加於反應器而聚合。隨後,於聚合溶液加入異丙醇0.2 mol%使聚合觸媒鈍化,以使聚合反應終止。在前述說明中,由單位「mol%」所示之量皆為將單體之合計量定為100 mol%之值。所獲得之降𦯉烯系開環聚合物的重量平均分子量Mw為2.8×104 ,分子量分布(Mw/Mn)為2.1。並且,單體轉成聚合物的轉化率為100%。
(1-2)藉由氫化之降𦯉烯系聚合物的製造:
隨後,將包含在前述工序(1-1)中獲得之開環聚合物的反應溶液300份移至附有攪拌器之高壓釜,添加矽藻土承載鎳觸媒(日揮化學公司製「T8400RL」,鎳承載率57%)3份,在氫壓4.5 MPa、160℃下進行氫化反應4小時。
氫化反應結束後,將所獲得之溶液以RADIOLITE#500作為濾床在壓力0.25 MPa加壓過濾(石川島播磨重工公司製「FUNDABAC過濾機」),去除氫化觸媒,獲得無色透明的溶液。將所獲得之溶液注入大量的異丙醇中,使作為開環聚合物之氫化物的降𦯉烯系聚合物沉澱。將已沉澱之降𦯉烯系聚合物濾出之後,每降𦯉烯系聚合物100份,添加溶解有抗氧化劑〔肆{3-[3,5-二(三級丁基)-4-羥基苯基]丙酸}新戊四醇酯(Ciba Specialty Chemicals公司製,製品名「Irganox(註冊商標)1010」)〕0.1份的二甲苯溶液2.0份。隨後,利用真空乾燥機(220℃、1 Torr)使之乾燥6小時,獲得熱塑性降𦯉烯系樹脂。降𦯉烯系聚合物的重量平均分子量為4.0×104 ,分子量分布Mw/Mn為2.3。
以於上已述之方法量測所獲得之熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg、評價雙折射ΔnR 及應力雙折射CR 。熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg為110℃,評價雙折射ΔnR 為0.0030,應力雙折射CR 為2600×10 12 Pa 1
(1-3)延伸前薄膜的製造:
將在前述工序(1-2)中獲得之熱塑性降𦯉烯系樹脂放入雙軸擠製機,藉由熱熔融擠製成形,成形為股狀的成形體。使用股線切割機將此成形體細切,獲得熱塑性降𦯉烯系樹脂的顆粒。
將此顆粒在100℃乾燥5小時。之後,利用常法將該顆粒供給至擠製機,在250℃使之熔融。然後,將已熔融之熱塑性降𦯉烯系樹脂自模具排出至冷卻滾筒上,獲得厚度110 μm的長條狀之延伸前薄膜。
(1-4)光學薄膜的製造:
準備在輥間使用懸浮方式的縱向延伸機。使用此縱向延伸機,將前述延伸前薄膜沿縱向延伸1.26倍,獲得中間薄膜。使用縱向延伸機之前述延伸的延伸溫度為120℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
之後,將前述中間薄膜供給至使用拉幅法的橫向延伸機,調整拉取張力與拉幅鏈張力,同時沿橫向延伸1.43倍,獲得作為雙軸延伸薄膜的長條狀之光學薄膜。使用橫向延伸機之前述延伸的延伸溫度為120℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。所獲得之光學薄膜,面內延遲Re為60 nm,厚度方向的延遲Rth為320 nm,厚度d為65 μm。
對於所獲得之光學薄膜,藉由於上已述之方法來進行評價。
(1-5)光學堆疊體的製造:
準備厚度65 μm的未延伸聚乙烯醇薄膜(維尼綸薄膜,平均聚合度約2400,皂化度99.9莫耳%)作為長條狀之原料薄膜。中介導輥將此原料薄膜沿長邊方向連續運送,同時對該薄膜進行在30℃浸漬於純水1分鐘的潤脹處理以及在32℃浸漬於染色溶液(以莫耳比1:23包含碘及碘化鉀的染色劑溶液,染色劑濃度為1.2 mmol/L)2分鐘的染色處理,使薄膜吸附碘。之後,將薄膜在35℃以硼酸3%水溶液清洗30秒鐘。之後,在57℃於包含硼酸3%及碘化鉀5%的水溶液中,將薄膜延伸為6.0倍。之後,在35℃於包含碘化鉀5%及硼酸1.0%的水溶液中,對薄膜進行補色處理。之後,在60℃使薄膜乾燥2分鐘,獲得厚度23 μm的長條狀之偏光件層。利用紫外線可見光分光光度計(日本分光公司製「V-7100」)量測此偏光件層的偏光度,結果為99.996%。
將丙烯酸樹脂(住友化學公司製「SUMIPEX HT55X」)供給至具備T字模的熱熔融擠製薄膜成形機。自T字模擠製丙烯酸樹脂,將丙烯酸樹脂成形為薄膜狀。藉此,獲得由丙烯酸樹脂所形成之厚度40 μm的長條狀之保護薄膜層。
對所獲得之保護薄膜層之其中一面施以電暈處理。之後,對已施以電暈處理的保護薄膜層之面塗布紫外線固化型接合劑(ADEKA公司製「ARKLS KRX-7007」),形成接合層。中介此接合層,使用夾送輥貼合偏光件層與保護薄膜層。之後隨即利用UV照射裝置對接合層進行750 mJ/cm2 的紫外線照射,使接合層固化。藉此,獲得具有偏光件層/接合層(厚度2 μm)/保護薄膜層之層體構造的長條狀之偏光板。
對光學薄膜之其中一面施以電暈處理。之後,對已施以電暈處理的光學薄膜之面塗布紫外線固化型接合劑(ADEKA公司製「ARKLS KRX-7007」),形成接合層。中介此接合層,使用夾送輥貼合偏光板與光學薄膜。之後隨即利用UV照射裝置對接合層進行750 mJ/cm2 的紫外線照射,使接合層固化。貼合係以光學薄膜的慢軸與偏光件層的吸收軸自厚度方向觀看成為垂直的方式進行。由此,獲得具有光學薄膜/接合層/偏光件層/接合層/保護薄膜層之層體構造的長條狀之光學堆疊體。
(1-6)VA型液晶顯示裝置的製造:
準備VA型的液晶顯示裝置(Panasonic公司製之40型電視「TH-40AX700」)。此液晶顯示裝置具備貼合於液晶單元之玻璃面的觀看側之偏光板。自液晶顯示裝置剝下此觀看側之偏光板。之後,將由前述工序(1-5)製造的長條狀之光學堆疊體裁切為液晶顯示裝置之適切之大小,並將光學薄膜側之面貼合於液晶單元的玻璃面,製造試驗用之VA型液晶顯示裝置。前述貼合係以「液晶顯示裝置原本具備之觀看側之偏光板的吸收軸之方向」與「新貼合於液晶單元之光學堆疊體之偏光件層的吸收軸之方向」一致的方式進行。
對於所獲得之液晶顯示裝置,以於上已述之方法來進行評價。
[實施例2]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)31重量份、雙環戊二烯(DCPD)68重量份及降𦯉烯(NB)1重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.28倍,將橫向的延伸倍率變更為1.48倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為122.5℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[實施例3]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)29重量份、雙環戊二烯(DCPD)68重量份及亞乙基四環十二烯(ETD)3重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.27倍,將橫向的延伸倍率變更為1.44倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為124℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[實施例4]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)31重量份、雙環戊二烯(DCPD)68重量份及亞乙基四環十二烯(ETD)1重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.30倍,將橫向的延伸倍率變更為1.50倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為125℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[實施例5]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)30重量份及雙環戊二烯(DCPD)70重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.256倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為125.5℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[比較例1]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)31重量份、雙環戊二烯(DCPD)68重量份及降𦯉烯(NB)1重量份。再來,將在前述工序(1-1)中的聚合溫度變更為55℃。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.25倍,將橫向的延伸倍率變更為1.45倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為122℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[比較例2]
將在前述工序(1-1)中使用之單體的組合變更為四環十二烯(TCD)5重量份、雙環戊二烯(DCPD)80重量份及亞乙基四環十二烯(ETD)15重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.35倍,將橫向的延伸倍率變更為1.55倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為114℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[比較例3]
將在前述工序(1-1)中使用之單體的組合變更為甲橋四氫茀(MTF)10重量份、四環十二烯(TCD)40重量份及雙環戊二烯(DCPD)50重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.60倍,將橫向的延伸倍率變更為1.80倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為138℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[比較例4]
將在前述工序(1-1)中使用之單體的組合變更為甲橋四氫茀(MTF)10重量份、四環十二烯(TCD)40重量份及雙環戊二烯(DCPD)50重量份。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.20倍,將橫向的延伸倍率變更為1.40倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為138℃,其係較熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行熱塑性降𦯉烯系樹脂、光學薄膜及液晶顯示裝置的製造及評價。
[比較例5]
除了使用四環十二烯(TCD)50重量份及8-甲基四環十二烯(MTD)50重量份作為單體以外,進行與實施例1的工序(1-1)相同的操作,獲得開環聚合物。開環聚合物的重量平均分子量Mw為4.0×104 ,分子量分布Mw/Mn為2.0。單體轉成聚合物的轉化率為100%。
將包含如此獲得之開環聚合物的聚合反應溶液300份移至附有攪拌器之高壓釜,添加矽藻土承載鎳觸媒(日揮化學公司製「T8400RL」,鎳承載率57%)3份,在氫壓4.5 MPa、160℃下進行氫化反應4小時。
氫化反應結束後,將所獲得之溶液以RADIOLITE#500作為濾床在壓力0.25 MPa加壓過濾(石川島播磨重工公司製「FUNDABAC過濾機」),去除氫化觸媒,獲得無色透明的溶液。將所獲得之溶液注入大量的異丙醇中,使聚合物沉澱。將已沉澱之聚合物濾出之後,利用真空乾燥機(220℃、1 Torr)使之乾燥6小時,獲得前述開環聚合物之氫化物。該開環聚合物之氫化物的玻璃轉移溫度Tg為158℃。
將此開環聚合物之氫化物28重量份、順丁烯二酸酐10重量份及過氧化二異丙苯基3重量份溶解於三級丁基苯130重量份,並在140℃使之反應6小時。將所獲得之反應生成物溶液注入甲醇中,使反應生成物凝聚。利用真空乾燥機(220℃、1Torr)使此凝聚物乾燥6小時,獲得順丁烯二酸改質開環聚合物氫化物。以下有時將此順丁烯二酸改質開環聚合物氫化物稱作「極性COP」。極性COP的順丁烯二酸基含率為25莫耳%。
在前述工序(1-3)中,使用前述極性COP作為延伸前薄膜之材料的樹脂。
在前述工序(1-4)中,將縱向的延伸倍率變更為1.62倍,將橫向的延伸倍率變更為1.82倍。並且,在前述工序(1-4)中,將縱向及橫向的延伸溫度變更為180℃,其係較順丁烯二酸改質開環聚合物氫化物的玻璃轉移溫度Tg還高10℃的溫度(Tg+10℃)。
除了以上事項以外,藉由與實施例1相同的操作,進行光學薄膜及液晶顯示裝置的製造及評價。
[結果]
前述實施例及比較例的結果揭示於下述表1及表2。在下述表1及表2中,簡稱的意義如同下述。 單體欄的「T」:四環十二烯(TCD)。 單體欄的「D」:雙環戊二烯(DCPD)。 單體欄的「N」:降𦯉烯(NB)。 單體欄的「E」:亞乙基四環十二烯(ETD)。 單體欄的「M」:甲橋四氫茀(MTF)。 Rth變化率(85℃):透過在85℃之環境下儲存500小時的耐久試驗獲得之光學薄膜之厚度方向之延遲的變化率。 Rth變化率(60℃90%):透過在60℃、濕度90%之環境下儲存500小時的耐久試驗獲得之光學薄膜之厚度方向之延遲之變化率。
『表1』 [表1.實施例的結果]
Figure 108134640-A0304-0001
『表2』 [表2.比較例的結果]
Figure 108134640-A0304-0002
[參考例1.針對剝離強度之量測方法的妥當性]
進行實驗,評價是否可謂「在於上已述之實施例及比較例中採用之剝離強度的量測方法係反映了在被黏體為偏光板的情況下之剝離強度的評價者」。
藉由與日本專利公開第2005-70140號公報之實施例1所記載之方法相同的方法,準備偏光薄膜及接合劑。並且,準備在本申請案之實施例1中獲得之光學薄膜作為量測對象薄膜。對此光學薄膜之單面施以電暈處理,將此電暈處理面中介接合劑貼合於偏光薄膜之其中一表面。於偏光薄膜之另一表面,中介接合劑貼合三乙酸纖維素薄膜。之後,在80℃使之乾燥7分鐘,使接合劑固化,獲得樣本薄膜。對於所獲得之樣本薄膜,進行與於上已述之(光學薄膜之剝層的評價方法)中者相同的90度剝離試驗。其結果,可獲得與本申請案實施例1中獲得之值同樣的剝離強度之值。
由此結果可確認到,透過在於上已述之實施例及比較例中採用之剝離強度的量測方法獲得之剝離強度的量測結果,係反映了在被黏體為偏光板的情況下之剝離強度的評價者。
無。
無。
無。

Claims (8)

  1. 一種光學薄膜,其係由包含降𦯉烯系聚合物之熱塑性降𦯉烯系樹脂所形成的光學薄膜,其中前述熱塑性降𦯉烯系樹脂的玻璃轉移溫度Tg滿足下述式(1), 在對前述熱塑性降𦯉烯系樹脂以Tg+15℃、1分鐘施以自由端單軸延伸至1.5倍的情況下顯現之雙折射ΔnR 滿足下述式(2), 前述光學薄膜的厚度方向之延遲Rth及前述光學薄膜的厚度d滿足下述式(3): (1)Tg≧110℃, (2)ΔnR ≧0.0025, (3)Rth/d≧3.5×10 3
  2. 如請求項1所述之光學薄膜,其中前述降𦯉烯系聚合物的分子量分布為2.4以下。
  3. 如請求項1所述之光學薄膜,其中前述降𦯉烯系聚合物選自由包含25重量%以上之四環十二烯系單體之單體的聚合物及其氫化物而成之群組,前述四環十二烯系單體選自由四環十二烯及於四環十二烯之環鍵結有取代基之四環十二烯衍生物而成之群組。
  4. 如請求項1所述之光學薄膜,其中前述光學薄膜的光彈性係數為8布如士特(Brewster)以下。
  5. 如請求項1所述之光學薄膜,其中前述光學薄膜的面內延遲Re為40 nm以上且80 nm以下。
  6. 一種光學薄膜的製造方法,其係如請求項1至5之任一項所述之光學薄膜的製造方法,包含將前述熱塑性降𦯉烯系樹脂藉由擠製成形法或溶液鑄造法來成形。
  7. 一種光學堆疊體,其具備如請求項1至5之任一項所述之光學薄膜與偏光板。
  8. 一種液晶顯示裝置,其具備如請求項7所述之光學堆疊體。
TW108134640A 2018-09-28 2019-09-25 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置 TWI808262B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185184 2018-09-28
JP2018185184 2018-09-28

Publications (2)

Publication Number Publication Date
TW202016184A true TW202016184A (zh) 2020-05-01
TWI808262B TWI808262B (zh) 2023-07-11

Family

ID=69950099

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134640A TWI808262B (zh) 2018-09-28 2019-09-25 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置

Country Status (5)

Country Link
JP (1) JP7463965B2 (zh)
KR (1) KR20210070272A (zh)
CN (1) CN112703435B (zh)
TW (1) TWI808262B (zh)
WO (1) WO2020066899A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115677879A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 环烯烃共聚物制备用催化剂、环烯烃共聚物的制备方法、环烯烃共聚物及其应用
CN115073664B (zh) * 2022-07-04 2023-11-28 广东新华粤石化集团股份公司 一种具有光学各向异性环烯烃聚合物膜及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899511B2 (ja) 2001-04-27 2007-03-28 Jsr株式会社 熱可塑性ノルボルネン系樹脂系光学用フィルム
JP4337454B2 (ja) 2003-07-24 2009-09-30 日本ゼオン株式会社 光学補償フィルム、光学補償フィルムの製造方法、光学積層体及び液晶表示装置
JP4843943B2 (ja) * 2004-10-01 2011-12-21 Jsr株式会社 熱可塑性樹脂組成物、光学フィルムおよび位相差フィルム
JP4525381B2 (ja) 2005-02-23 2010-08-18 日本ゼオン株式会社 延伸ポリオレフィンフィルムの製造方法
JP2006327112A (ja) 2005-05-27 2006-12-07 Nippon Zeon Co Ltd 延伸フィルムの製法
JP2008114369A (ja) 2006-10-31 2008-05-22 Nippon Zeon Co Ltd 延伸フィルムの製造方法及び用途
JP5375043B2 (ja) * 2007-11-30 2013-12-25 Jsr株式会社 積層光学フィルムの製造方法、積層光学フィルムおよびその用途
WO2014148261A1 (ja) * 2013-03-18 2014-09-25 日本ゼオン株式会社 光学積層体、偏光板複合体、液晶表示装置、及び製造方法
JP2015100984A (ja) * 2013-11-25 2015-06-04 日本ゼオン株式会社 積層体及び偏光板
JPWO2017150375A1 (ja) 2016-02-29 2018-12-20 日本ゼオン株式会社 画像表示装置
KR20170130648A (ko) 2016-05-18 2017-11-29 삼성디스플레이 주식회사 표시 장치

Also Published As

Publication number Publication date
CN112703435B (zh) 2023-03-24
TWI808262B (zh) 2023-07-11
CN112703435A (zh) 2021-04-23
KR20210070272A (ko) 2021-06-14
JP7463965B2 (ja) 2024-04-09
WO2020066899A1 (ja) 2020-04-02
JPWO2020066899A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
KR101814252B1 (ko) 위상차층 부착 편광판 및 화상 표시 장치
KR101354361B1 (ko) 적층 편광 필름, 위상차 필름, 및 액정 표시 장치
WO2016047465A1 (ja) 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置
JP7184133B2 (ja) 位相差フィルム及びその製造方法
WO2017170346A1 (ja) 円偏光板及び画像表示装置
TW202016184A (zh) 光學薄膜及其製造方法、光學堆疊體以及液晶顯示裝置
US20090082536A1 (en) Cyclic olefin-based copolymer, film, and polarizing plate and liquid crystal display device including the same
TWI672215B (zh) 延伸膜之製造方法、長條偏光膜以及液晶顯示裝置
JP7140124B2 (ja) 光学フィルム及びその製造方法
WO2017150375A1 (ja) 画像表示装置
JP7322889B2 (ja) 成形体及びその製造方法
TWI794524B (zh) 光學薄膜、光學堆疊體及液晶顯示裝置
KR20230169171A (ko) 위상차층 부착 편광판
TW202248013A (zh) 光學薄膜及其製造方法,以及偏光薄膜
JP2023091457A (ja) 位相差フィルム、偏光板および画像表示装置
TW202331313A (zh) 附相位差層之偏光板及包含該附相位差層之偏光板之圖像顯示裝置
TW202141085A (zh) 附抗反射層的圓偏光板及使用該附抗反射層的圓偏光板的影像顯示裝置
TW202100605A (zh) 延伸薄膜及其製造方法
CN116520476A (zh) 光学层叠体及图像显示装置
JP2006301522A (ja) 位相差フィルムの製造方法及び位相差フィルム
JP2005077450A (ja) 光学積層体、光学素子、及び液晶表示装置