WO2014148261A1 - 光学積層体、偏光板複合体、液晶表示装置、及び製造方法 - Google Patents

光学積層体、偏光板複合体、液晶表示装置、及び製造方法 Download PDF

Info

Publication number
WO2014148261A1
WO2014148261A1 PCT/JP2014/055643 JP2014055643W WO2014148261A1 WO 2014148261 A1 WO2014148261 A1 WO 2014148261A1 JP 2014055643 W JP2014055643 W JP 2014055643W WO 2014148261 A1 WO2014148261 A1 WO 2014148261A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
retardation
retardation layer
polymer
film
Prior art date
Application number
PCT/JP2014/055643
Other languages
English (en)
French (fr)
Inventor
拓 波多野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015506691A priority Critical patent/JP6485348B2/ja
Publication of WO2014148261A1 publication Critical patent/WO2014148261A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to an optical laminate, a polarizing plate composite, a liquid crystal display device, an optical laminate manufacturing method, and a polarizing plate composite manufacturing method.
  • an optical layered body in which a plurality of retardation layers are combined may be used in combination with another member such as a polarizing plate in order to compensate for a viewing angle.
  • a stretched film obtained by stretching a long unstretched film formed of a resin and orienting molecules contained in the film can be easily produced, and is preferable.
  • Patent Documents 1 to 4 describe techniques for producing a retardation film having reverse wavelength dispersion as a stretched film.
  • the reverse wavelength dispersibility means the property that the retardation in the in-plane direction given to the light increases as the wavelength of the light transmitted through the retardation film becomes longer.
  • the retardation layer is also required to be thinner than before.
  • the stretch ratio is increased, the variation in the alignment direction increases, and as a result, performance such as viewing angle compensation can be insufficient.
  • the stretching ratio is simply increased in order to set the in-plane retardation Re to a desired value, the retardation Rth in the thickness direction does not become a desired value and the viewing angle compensation performance is often insufficient.
  • the retardation may change greatly when used for a long time at a high temperature, and such a change can be particularly noticeable when the stretch ratio is increased.
  • an object of the present invention is to provide an optical laminate that is thin, has high viewing angle compensation performance, and has excellent durability when used at high temperatures, a polarizing plate composite including the same, a liquid crystal display device, and a method for producing the same. It is to provide.
  • the present inventors have studied to solve the above-mentioned problems.
  • the retardation layer P1 made of a resin p1 in which polyphenylene ether and a polystyrene-based polymer having a predetermined structure are combined at a predetermined weight ratio, and an alicyclic ring
  • an optical laminate can be obtained by a combination with a retardation layer P2 made of a resin p2 containing a polymer having a formula structure.
  • the present inventor further found that such an optical laminate can be easily produced by a predetermined method including a step of co-extrusion of a plurality of resins including the resin p1.
  • the present invention has been completed based on such findings. That is, the present invention is as follows.
  • a retardation layer P1 made of a resin p1 containing a polyphenylene ether and a polystyrene polymer having a syndiotactic structure;
  • An optical laminate comprising a retardation layer P2 made of a resin p2 containing an alicyclic structure-containing polymer, In the resin p1, the weight ratio of the content of the polyphenylene ether / the content of the polystyrene polymer is larger than 25/75 and smaller than 35/65.
  • NZ coefficient NZ P1 of the retardation layer P1 is a NZ P1 ⁇ 0
  • an intersection angle between the slow axis of the retardation layer P1 and the slow axis of the retardation layer P2 is 0 ° ⁇ 10 °.
  • the optical laminated body as described.
  • a polarizing plate composite comprising the optical laminate according to any one of [1] to [5] and a polarizer.
  • the polarizing plate composite according to [6] wherein the slow axis of the optical laminate and the absorption axis of the polarizer are orthogonal to each other.
  • a liquid crystal display device comprising the polarizing plate composite according to [6] or [7] and a liquid crystal cell.
  • An in-plane switching mode liquid crystal display device including an incident side polarizer, a liquid crystal cell, and an output side polarizer in this order, The liquid crystal display device according to [5], further in a position between the incident-side polarizer and the liquid crystal cell, a position between the output-side polarizer and the liquid crystal cell, or both positions.
  • an optical laminate of The optical layered body is an in-plane switching mode liquid crystal display device in which the retardation layer P1 is disposed on the liquid crystal cell side.
  • a resin p1 comprising a polyphenylene ether and a polystyrene polymer having a syndiotactic structure, wherein the weight ratio of the content of the polyphenylene ether / the content of the polystyrene polymer is larger than 25/75 and smaller than 35/65; Coextruding the resin p3 containing a (meth) acrylic polymer to obtain a pre-stretching film PF (I); Stretching the pre-stretched film PF (I) to obtain a stretched multilayer film F (I) including the retardation layer P1 made of the resin p1 and the protective layer P3 made of the resin p3; Extruding the resin p2 containing the alicyclic structure-containing polymer to obtain a film PF (II) before stretching; Stretching the pre-stretched film PF (II) to obtain a film F (II)
  • the obtained optical layered body has a long shape including the retardation layer P1 having a long shape and the retardation layer P2 having a long shape,
  • the retardation layer P1 has a slow axis in its width direction,
  • the said retardation layer P2 is a manufacturing method as described in [10] or [11] which has a slow axis in the width direction.
  • optical laminate of the present invention, the polarizing plate composite of the present invention and the liquid crystal display device of the present invention are thin, have high viewing angle compensation performance, and are excellent in durability at high temperatures. Moreover, in the manufacturing method of this invention, such an optical laminated body and polarizing plate composite of this invention can be manufactured easily.
  • (meth) acryl means acryl, methacryl or a combination thereof.
  • (meth) acrylic acid means acrylic acid, methacrylic acid or a combination thereof.
  • (Meth) acrylate means acrylate, methacrylate or a combination thereof.
  • the MD direction (machine direction) is a film flow direction in the production line, and usually represents a direction that coincides with the longitudinal direction of a long film.
  • the TD direction (traverse direction) is a direction parallel to the film surface and perpendicular to the MD direction, and usually represents a direction that coincides with the width direction of a long film.
  • the measurement wavelength of refractive index and retardation is 550 nm.
  • the slow axis of the film or layer represents the in-plane slow axis unless otherwise specified.
  • the NZ coefficient represents (nx ⁇ nz) / (nx ⁇ ny).
  • nx represents the refractive index in the direction perpendicular to the thickness direction (in-plane direction) and gives the maximum refractive index
  • ny is the direction perpendicular to the thickness direction (in-plane direction) and is in the nx direction.
  • nz represents the refractive index in the thickness direction.
  • the optical layered body of the present invention includes a retardation layer P1 made of a resin p1 and a retardation layer P2 made of a resin p2.
  • the resin p1 includes a polyphenylene ether and a polystyrene-based polymer having a syndiotactic structure.
  • Polyphenylene ether usually has a positive intrinsic birefringence value
  • a polystyrene-based polymer having a syndiotactic structure usually has a negative intrinsic birefringence value.
  • the intrinsic birefringence value being positive means that the refractive index in the stretching direction is larger than the refractive index in the direction perpendicular to the stretching direction.
  • the negative intrinsic birefringence value means that the refractive index in the stretching direction is smaller than the refractive index in the direction perpendicular to the stretching direction.
  • the intrinsic birefringence value can also be calculated from the dielectric constant distribution.
  • Polyphenylene ether is a polymer having a structural unit formed by polymerizing phenylene ether or a phenylene ether derivative.
  • a polymer having a structural unit having a phenylene ether skeleton (hereinafter, appropriately referred to as “phenylene ether unit”) in the main chain is used as polyphenylene ether.
  • phenylene ether unit a polymer having a structural unit having a phenylene ether skeleton in the main chain
  • the benzene ring in the phenylene ether unit may have a substituent unless the effects of the present invention are significantly impaired.
  • polystyrene resin a polymer containing a phenylene ether unit represented by the following formula (I) is preferable.
  • each Q 1 independently represents a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, an aminoalkyl group, a hydrocarbonoxy group, or a halo.
  • a hydrocarbon oxy group (wherein the halogen atom and the oxygen atom are separated by at least two carbon atoms).
  • Q 1 is preferably an alkyl group or a phenyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • each Q 2 independently represents a hydrogen atom, a halogen atom, a lower alkyl group (for example, an alkyl group having 7 or less carbon atoms), a phenyl group, a haloalkyl group, a hydrocarbon oxy group, or a halocarbon.
  • a hydrogenoxy group (however, a group in which at least two carbon atoms are separated from the halogen atom and the oxygen atom). Among them, preferably a hydrogen atom Q 2.
  • the polyphenylene ether may be a homopolymer having one type of structural unit or a copolymer having two or more types of structural units.
  • the polymer containing the structural unit represented by the formula (I) is a homopolymer
  • preferred examples of the homopolymer include 2,6-dimethyl-1,4-phenylene ether units (“-( And a homopolymer having a structural unit represented by C 6 H 2 (CH 3 ) 2 —O) — ”.
  • the polymer containing the structural unit represented by the formula (I) is a copolymer
  • preferred examples of the copolymer include 2,6-dimethyl-1,4-phenylene ether units and 2,3 , 6-trimethyl-1,4-phenylene ether unit (a structural unit represented by “— (C 6 H (CH 3 ) 3 —O —) —”).
  • the polyphenylene ether may contain a structural unit other than the phenylene ether unit.
  • polyphenylene ether is a copolymer having phenylene ether units and other structural units.
  • the content of structural units other than the phenylene ether unit in the polyphenylene ether is preferably reduced to such an extent that the effects of the present invention are not significantly impaired.
  • the content of the phenylene ether unit in the polyphenylene ether is usually 50% by weight or more, preferably 70% by weight or more, more preferably 80% by weight or more.
  • Polyphenylene ether may be used alone or in combination of two or more at any ratio.
  • the weight average molecular weight of polyphenylene ether is usually 15,000 or more, preferably 25,000 or more, more preferably 35,000 or more, and usually 100,000 or less, preferably 85,000 or less, more preferably 70,000. It is as follows. By setting the weight average molecular weight to be equal to or higher than the lower limit of the above range, the strength of the retardation layer P1 can be increased. Moreover, by making it below the upper limit value, it becomes possible to improve the dispersibility of the polyphenylene ether and uniformly mix the polyphenylene ether and the styrene polymer at a high level.
  • weight average molecular weight a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) at a temperature of 135 ° C. using 1,2,4-trichlorobenzene as a solvent is adopted.
  • polyphenylene ether there is no limitation on the method for producing polyphenylene ether, and for example, it can be produced by the method described in JP-A-11-302529.
  • the polystyrene-based polymer is a polymer including a structural unit (hereinafter referred to as “styrene unit” as appropriate) formed by polymerizing a styrene compound.
  • styrene unit a structural unit formed by polymerizing a styrene compound.
  • styrene compounds include styrene and styrene derivatives.
  • styrene derivatives include those in which a substituent is substituted at the benzene ring or ⁇ -position of styrene.
  • styrene compounds include styrene; alkyl styrene such as methyl styrene and 2,4-dimethyl styrene; halogenated styrene such as chlorostyrene; halogen-substituted alkyl styrene such as chloromethyl styrene; alkoxy styrene such as methoxy styrene; Etc.
  • styrene having no substituent is preferable as the styrene compound.
  • a styrene compound may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polystyrene-based polymer contained in the resin p1 a polymer having a syndiotactic structure is used.
  • the polystyrene polymer has a syndiotactic structure means that the stereochemical structure of the polystyrene polymer has a syndiotactic structure.
  • the syndiotactic structure refers to a three-dimensional structure in which phenyl groups as side chains are alternately positioned in opposite directions in the Fischer projection formula with respect to a main chain formed of carbon-carbon bonds.
  • the tacticity (stericity) of the polystyrene polymer can be quantified by an isotope carbon nuclear magnetic resonance method ( 13 C-NMR method).
  • the tacticity measured by the 13 C-NMR method can be indicated by the abundance ratio of a plurality of consecutive structural units. Generally, for example, when there are two consecutive structural units, it is a dyad, when it is three, it is a triad, and when it is five, it is a pentad.
  • the polystyrene-based polymer having a syndiotactic structure usually has a syndiotacticity of 75% or more, preferably 85% or more in racemic dyad, or usually 30% or more in racemic pentad. It preferably means having a syndiotacticity of 50% or more. In any case, the upper limit of syndiotacticity can ideally be 100%.
  • polystyrene polymers include polystyrene, poly (alkyl styrene), poly (halogenated styrene), poly (halogenated alkyl styrene), poly (alkoxy styrene), poly (vinyl benzoate), and hydrogens thereof. And a copolymer thereof.
  • poly (alkyl styrene) examples include poly (methyl styrene), poly (ethyl styrene), poly (isopropyl styrene), poly (t-butyl styrene), poly (phenyl styrene), poly (vinyl naphthalene), poly ( Vinyl styrene).
  • poly (halogenated styrene) include poly (chlorostyrene), poly (bromostyrene), poly (fluorostyrene), and the like.
  • poly (halogenated alkylstyrene) examples include poly (chloromethylstyrene).
  • poly (alkoxystyrene) examples include poly (methoxystyrene) and poly (ethoxystyrene).
  • polystyrene polymers are polystyrene, poly (p-methylstyrene), poly (m-methylstyrene), poly (pt-butylstyrene), poly (p-chlorostyrene), poly ( m-chlorostyrene), poly (p-fluorostyrene), hydrogenated polystyrene, and copolymers containing these structural units.
  • the polystyrene polymer may be a homopolymer having only one type of structural unit, or may be a copolymer having two or more types of structural units.
  • the polystyrene polymer may be a copolymer containing two or more types of styrene units, and it is a copolymer containing a styrene unit and a structural unit other than the styrene unit. There may be.
  • the content of the structural unit other than the styrene unit in the polystyrene polymer is the effect of the present invention. Is preferably reduced to such an extent that it is not significantly impaired.
  • the content of styrene units in the polystyrene-based polymer is usually 80% by weight or more, preferably 83% by weight or more, and more preferably 85% by weight or more.
  • a desired retardation can be expressed in the produced retardation layer.
  • One type of polystyrene polymer may be used alone, or two or more types may be used in combination at any ratio.
  • the weight average molecular weight of the polystyrene polymer is usually 130,000 or more, preferably 140,000 or more, more preferably 150,000 or more, and usually 300,000 or less, preferably 270,000 or less, more preferably 250. , 000 or less. With such a weight average molecular weight, the glass transition temperature of the polystyrene polymer can be increased, and the heat resistance of the retardation layer can be stably improved.
  • the glass transition temperature of the polystyrene-based polymer is usually 85 ° C. or higher, preferably 90 ° C. or higher, more preferably 95 ° C. or higher.
  • the glass transition temperature of resin p1 can be raised effectively, and by extension, the heat resistance of a phase difference layer can be improved stably.
  • the glass transition temperature of the polystyrene-based polymer is usually 160 ° C. or lower, preferably 155 ° C. or lower, more preferably 150 ° C. or lower.
  • a polystyrene polymer having a syndiotactic structure polymerizes a styrene compound using, for example, a titanium compound and a condensation product of water and trialkylaluminum as a catalyst in an inert hydrocarbon solvent or in the absence of a solvent.
  • Poly (halogenated alkylstyrene) can be produced, for example, by the method described in JP-A-1-46912. Further, these hydrogenated polymers can be produced, for example, by the method described in JP-A-1-178505.
  • the weight ratio of the polyphenylene ether content / polystyrene polymer content is larger than 25/75 and smaller than 35/65.
  • the weight ratio of content of polyphenylene ether / polystyrene polymer is preferably 26/74 or more, more preferably 28/72 or more, preferably 34/66 or less, more preferably 32/68 or less. is there.
  • the resin p1 may contain components other than polyphenylene ether and polystyrene polymer.
  • the resin p1 may contain a polymer other than the polyphenylene ether and the polystyrene-based polymer described above.
  • the amount of the polymer other than polyphenylene ether and polystyrene polymer is preferably 15 parts by weight or less, more preferably 10 parts by weight or less, and more preferably 5 parts by weight or less, based on 100 parts by weight of the total amount of polyphenylene ether and polystyrene polymer. Is particularly preferred.
  • resin p1 may contain the compounding agent.
  • compounding agents are layered crystal compounds; fine particles; antioxidants, heat stabilizers, light stabilizers, weathering stabilizers, UV absorbers, near infrared absorbers and other stabilizers; plasticizers: dyes and pigments, etc. Colorants; antistatic agents; and the like.
  • a compounding agent may use one type and may use it combining two or more types by arbitrary ratios.
  • the amount of the compounding agent can be appropriately determined as long as the effects of the present invention are not significantly impaired. For example, it is a range in which the total light transmittance of the retardation layer can be maintained at 85% or more.
  • fine particles and ultraviolet absorbers are preferable in terms of improving flexibility and weather resistance.
  • fine particles for example, inorganic particles such as silicon dioxide, titanium dioxide, magnesium oxide, calcium carbonate, magnesium carbonate, barium sulfate, strontium sulfate; polymethyl acrylate, polymethyl methacrylate, polyacrylonitrile, cellulose acetate, cellulose acetate propionate
  • organic particles such as Among these, organic particles are preferable.
  • ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, acrylonitrile ultraviolet absorbers, triazine compounds, nickel complex compounds. And inorganic powders.
  • UV absorbers examples include 2,2′-methylenebis (4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol), 2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 2,2 ′, 4,4′-tetrahydroxybenzophenone, and 2,2′-methylenebis (4- ( 1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol.
  • the glass transition temperature of the resin p1 is preferably 115 ° C. or higher, more preferably 118 ° C. or higher, and even more preferably 120 ° C. or higher. Since the resin p1 contains a combination of polyphenylene ether and polystyrene polymer, the glass transition temperature can be increased as compared with a resin containing only a polystyrene polymer. Since the glass transition temperature is thus high, the relaxation of the orientation of the resin p1 can be reduced, so that a retardation layer having excellent heat resistance can be realized. Moreover, although there is no restriction
  • Resin p1 usually has a small haze. This is because polyphenylene ether and polystyrene polymer are excellent in dispersibility, so that polyphenylene ether and polystyrene polymer can be easily kneaded.
  • a specific haze range may be set according to the degree of transparency required for the retardation layer. For example, the haze value of the resin p1 at a thickness of 1 mm is usually 10% or less, preferably 5% or less, and ideally 0%.
  • the resin p2 includes an alicyclic structure-containing polymer.
  • the alicyclic structure-containing polymer is a polymer having an alicyclic structure in the repeating unit of the polymer, and has a polymer having an alicyclic structure in the main chain and an alicyclic structure in the side chain. Any of the polymers may be used.
  • An alicyclic structure containing polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Among these, a polymer containing an alicyclic structure in the main chain is preferable from the viewpoint of mechanical strength, heat resistance, and the like.
  • Examples of the alicyclic structure include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • a saturated alicyclic hydrocarbon cycloalkane
  • an unsaturated alicyclic hydrocarbon cycloalkene, cycloalkyne
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is in the range of 15 or less, the mechanical strength, heat resistance, and film formability are highly balanced, which is preferable.
  • the proportion of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer may be appropriately selected according to the purpose of use, preferably 30% by weight or more, more preferably 50% by weight or more, Preferably it is 70 weight% or more, Most preferably, it is 90 weight% or more.
  • the ratio of the repeating unit having an alicyclic structure in the alicyclic structure-containing polymer is within this range, it is preferable from the viewpoint of the heat resistance of the retardation layer P2.
  • alicyclic structure-containing polymers examples include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Can be mentioned. Among these, norbornene-based polymers are preferable because of their good transparency and moldability.
  • Examples of the norbornene-based polymer include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof;
  • An addition polymer of a monomer having a norbornene structure, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof can be given.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. It is.
  • (co) polymer refers to a polymer and a copolymer.
  • the polymer having an alicyclic structure can be selected from known polymers disclosed in, for example, JP-A No. 2002-321302.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, the content of these repeating units being 90% by weight or more based on the total repeating units of the norbornene polymer, and the X content and the Y content
  • the ratio with respect to the ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
  • Examples of the monomer that gives the repeating unit X include a norbornene monomer having a structure in which a five-membered ring is bonded to a norbornene ring. More specific examples of such monomers include tricyclo [4.3.0.1 2,5 ] deca-3,7-diene (common name: dicyclopentadiene) and its derivatives (substituted on the ring). Group), and 7,8-benzotricyclo [4.3.0.1 0,5 ] dec-3-ene (common name: methanotetrahydrofluorene) and derivatives thereof. Examples of monomers that give repeat unit Y include tetracyclo [4.4.0.1 2,5 . 1 7,10 ] deca-3,7-diene (common name: tetracyclododecene) and its derivatives (having a substituent in the ring).
  • Examples of means for obtaining such a norbornene-based polymer include: a) a monomer charge ratio in copolymerization with a) a monomer that gives a repeating unit X and a monomer that gives a repeating unit Y; And a method of hydrogenating unsaturated bonds in the polymer as necessary, and b) a polymer having a repeating unit X, and The method of mixing the polymer which has unit Y with a desired ratio is mentioned.
  • the glass transition temperature of the alicyclic structure-containing polymer is preferably 115 ° C. or higher, more preferably 120 ° C. or higher. Moreover, although there is no restriction
  • the molecular weight of the alicyclic structure-containing polymer was measured by gel permeation chromatography (hereinafter abbreviated as “GPC”) using cyclohexane (toluene when the polymer is not dissolved) as a solvent.
  • the weight average molecular weight (Mw) in terms of polystyrene is usually 5,000 to 100,000, preferably 8,000 to 80,000, more preferably 10,000 to 50,000. When the weight average molecular weight is in such a range, the mechanical strength and moldability of the optical laminate are highly balanced, which is preferable.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the alicyclic structure-containing polymer is not particularly limited, but is preferably 1.0 to 10.0, more preferably 1.0 to 4. 0, even more preferably in the range of 1.2 to 3.5.
  • the alicyclic structure-containing polymer has a resin component (that is, oligomer component) having a molecular weight of 2,000 or less, preferably 5% by weight or less, more preferably 3% by weight or less, and still more preferably 2% by weight. It is as follows. When the amount of the oligomer component is large, when the resin laminate is stretched, fine irregularities are generated on the surface or thickness unevenness occurs, resulting in poor surface accuracy.
  • the selection of the polymerization catalyst and the hydrogenation catalyst, the reaction conditions such as polymerization and hydrogenation, the temperature conditions in the step of pelletizing the resin as a molding material, etc. may be optimized.
  • the component amount of the oligomer can be measured by gel permeation chromatography using cyclohexane (toluene when the polymer does not dissolve).
  • Resin p2 may contain an optional component other than the alicyclic structure-containing polymer as long as the effects of the present invention are not significantly impaired.
  • optional components include antioxidants, heat stabilizers, light stabilizers, UV absorbers, antistatic agents, dispersants, chlorine scavengers, flame retardants, crystallization nucleating agents, antiblocking agents, antifogging agents, Examples include release agents, pigments, organic or inorganic fillers, neutralizers, lubricants, decomposition agents, metal deactivators, antifouling agents, antibacterial agents and other resins, and thermoplastic elastomers.
  • the addition amount of an arbitrary component can be made into the range which does not impair the effect of this invention. Specifically, the addition amount of the optional component is usually 0 to 5 parts by weight, preferably 0 to 3 parts by weight with respect to 100 parts by weight of the alicyclic structure-containing polymer.
  • the optical layered body of the present invention includes a retardation layer P1 made of a resin p1 and a retardation layer P2 made of a resin p2.
  • Such a layer composed of the resins p1 and p2 and having properties as a retardation layer can be obtained by stretching and pasting each of the resin p1 layer and the resin p2 layer. . A specific manufacturing method will be described later.
  • NZ coefficient NZ P1 of the retardation layer P1 is NZ P1 ⁇ 0.
  • the retardation layer P1 having NZ P1 within the range can be easily obtained.
  • the NZ P1 is made within the range, it is possible to obtain an optical laminate having desired optical properties.
  • NZ coefficient NZ p2 retardation layer P2 may be a NZp2> 0.5.
  • the retardation Re at an incident angle of 0 ° and the retardation R 40 at an incident angle of 40 ° satisfy the relationship of 0.92 ⁇ R 40 /Re ⁇ 1.08. Satisfactory viewing angle compensation performance can be achieved by satisfying this relationship.
  • the optical laminated body of the present invention can be made into a thin optical laminated body while satisfying such a relationship by using the above-mentioned predetermined resin p1.
  • the retardation layer P1 has a small thickness and a small retardation Rth (P1) in the thickness direction in order to obtain a thin optical laminate having a high viewing angle compensation performance.
  • the thickness of the retardation layer P1 is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less. Although the minimum of thickness is not specifically limited, For example, it can be 5 micrometers or more.
  • the retardation Rth (P1) in the thickness direction of the retardation layer P1 is preferably ⁇ 50 nm or less, more preferably ⁇ 60 nm or less.
  • the lower limit of Rth (P1) is not particularly limited, but can be, for example, ⁇ 200 nm or more.
  • the retardation layer P1 having such a thinness and a small Rth (P1) can be easily obtained by using the predetermined layer described above as the resin p1.
  • the thickness of the retardation layer P2 can be 30 ⁇ m or less.
  • the lower limit of the thickness of the retardation layer P2 is not particularly limited, but may be, for example, 10 ⁇ m or more.
  • the direction retardation Rth (P2) preferably satisfies the following formulas (1) and (2).
  • fills Formula (1) and Formula (2) is obtained by using the predetermined thing mentioned above as resin p1 and resin p2, and extending
  • the variation of the in-plane retardation Re of the entire optical laminate of the present invention is preferably within 10 nm, more preferably within 5 nm, and even more preferably within 2 nm.
  • the variation of the in-plane retardation Re is when the front retardation at the time of light incident angle 0 ° (incident light beam and the surface of the laminate of the present invention are orthogonal) is measured in the width direction of the optical laminate ( That is, the difference between the maximum value and the minimum value of the measured front retardation value when the measurement is performed at a plurality of points on one line parallel to the width direction of the optical laminate.
  • the variation of the slow axis in the in-plane direction is preferably within ⁇ 5 °, more preferably within ⁇ 3 °, and further preferably within ⁇ 1 °.
  • the crossing angle between the slow axis of the retardation layer P1 and the slow axis of the retardation layer P2 is preferably 0 ° ⁇ 10 °, more preferably 0 ° ⁇ 5 °. Preferably there is.
  • the tear strength measured according to JIS K7128-1 is preferably 2 N / mm or more, more preferably 2.5 N / mm or more. By doing so, the optical layered body can be prevented from tearing when bonded to the polarizing plate, and the yield can be improved.
  • the upper limit of the tear strength is not particularly limited, but may be, for example, 50 N / mm or less.
  • the optical layered body of the present invention can be easily manufactured and highly compensated for birefringence. Therefore, the optical layered body can be used as a phase difference plate having excellent viewing angle dependency or by laminating a polarization separation layer on the optical layered body.
  • the improvement film can be widely applied to display devices such as liquid crystal display devices and organic EL display devices.
  • the optical layered body of the present invention can be manufactured by a manufacturing method including the following steps (i) to (v) (hereinafter simply referred to as “the manufacturing method of the present invention”).
  • the production method of the present invention further includes: Step (vi): A step of peeling off the protective layer P3 from the retardation layer P1. Can be included.
  • Resin p3 is a resin containing a (meth) acrylic polymer.
  • (Meth) acrylic polymer means a polymer of (meth) acrylic acid or a (meth) acrylic acid derivative.
  • examples of the (meth) acrylic polymer include homopolymers and copolymers such as acrylic acid, acrylic acid ester, acrylamide, acrylonitrile, methacrylic acid, and methacrylic acid ester. Since the (meth) acrylic polymer has high strength and is hard, the retardation layer P1 can be appropriately protected by the protective layer P3, so that breakage when the pre-stretching film PF (I) is stretched can be prevented.
  • (meth) acrylic polymer a polymer containing a structural unit formed by polymerizing (meth) acrylic acid ester is preferable.
  • (meth) acrylic acid esters include alkyl esters of (meth) acrylic acid. Among them, a structure derived from (meth) acrylic acid and an alkanol having 1 to 15 carbon atoms or a cycloalkanol is preferable, and a structure derived from an alkanol having 1 to 8 carbon atoms is more preferable. By reducing the number of carbon atoms as described above, the elongation at break of the optical laminate can be increased.
  • the acrylate ester include methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, sec-butyl acrylate, and t-acrylate.
  • methacrylic acid ester examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, sec-butyl methacrylate, methacrylic acid.
  • methacrylic acid examples thereof include t-butyl acid, n-hexyl methacrylate, n-octyl methacrylate, 2-ethylhexyl methacrylate, n-decyl methacrylate, and n-dodecyl methacrylate.
  • the (meth) acrylic acid ester may have a substituent such as a hydroxyl group or a halogen atom as long as the effects of the present invention are not significantly impaired.
  • a substituent such as a hydroxyl group or a halogen atom
  • Examples of (meth) acrylic acid ester having such a substituent include 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxymethacrylate.
  • Examples thereof include hydroxypropyl, 4-hydroxybutyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, glycidyl methacrylate and the like. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the (meth) acrylic polymer may be a polymer of only (meth) acrylic acid or (meth) acrylic acid derivatives, and can be copolymerized with (meth) acrylic acid or (meth) acrylic acid derivatives. Copolymers with various monomers may be used. Examples of the copolymerizable monomer include ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers other than (meth) acrylic acid esters, and ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers. Alkenyl aromatic monomer, conjugated diene monomer, non-conjugated diene monomer, carboxylic acid unsaturated alcohol ester, and olefin monomer. One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid ester monomers other than (meth) acrylic acid esters include dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate and the like. It is done.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer may be any of a monocarboxylic acid, a polyvalent carboxylic acid, a partial ester of a polyvalent carboxylic acid, and a polyvalent carboxylic acid anhydride. Specific examples thereof include crotonic acid, maleic acid, fumaric acid, itaconic acid, monoethyl maleate, mono-n-butyl fumarate, maleic anhydride, itaconic anhydride and the like.
  • alkenyl aromatic monomer examples include styrene, ⁇ -methylstyrene, methyl ⁇ -methylstyrene, vinyl toluene and divinylbenzene.
  • conjugated diene monomer examples include 1,3-butadiene, 2-methyl-1,3-butadiene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and 2-chloro-1. , 3-butadiene, cyclopentadiene and the like.
  • non-conjugated diene monomer examples include 1,4-hexadiene, dicyclopentadiene, ethylidene norbornene and the like.
  • carboxylic acid unsaturated alcohol ester monomer examples include vinyl acetate.
  • olefin monomer examples include ethylene, propylene, butene, pentene and the like.
  • the content of the structural unit formed by polymerizing (meth) acrylic acid or a (meth) acrylic acid derivative in the (meth) acrylic polymer Is preferably 50% by weight or more, more preferably 85% by weight or more, and particularly preferably 90% by weight or more.
  • a (meth) acrylic polymer may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • polymethacrylate is preferable, and polymethyl methacrylate is more preferable.
  • Resin p3 may contain rubber particles. By including the rubber particles, the flexibility of the resin p3 can be increased and the impact resistance can be improved. Moreover, since the unevenness
  • Examples of the rubber forming the rubber particles include acrylate polymer rubber, polymer rubber mainly composed of butadiene, and ethylene-vinyl acetate copolymer rubber.
  • Examples of the acrylate polymer rubber include those having butyl acrylate, 2-ethylhexyl acrylate, or the like as a main component of monomer units. Among these, acrylic acid ester polymer rubber mainly composed of butyl acrylate and polymer rubber mainly composed of butadiene are preferable.
  • the rubber particles may contain two or more kinds of rubber. Further, these rubbers may be mixed uniformly, but may be layered.
  • rubber particles in which rubber is layered include a core composed of a rubber elastic component obtained by grafting an alkyl acrylate such as butyl acrylate and styrene, and one or both of polymethyl methacrylate and methyl methacrylate and an alkyl acrylate. Examples thereof include particles in which a hard resin layer (shell) made of a polymer forms a layer with a core-shell structure.
  • the rubber particles preferably have a number average particle diameter of 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 0.3 ⁇ m or less, and 0.25 ⁇ m or less. Is more preferable. By setting the number average particle diameter within the above range, moderate unevenness can be formed on the surface of the protective layer P3, and the slipperiness of the laminate can be improved.
  • the amount of rubber particles is preferably 5 parts by weight or more and preferably 50 parts by weight or less with respect to 100 parts by weight of the (meth) acrylic polymer.
  • the resin p3 may contain components other than the (meth) acrylic polymer and the rubber particles as long as the effects of the present invention are not significantly impaired.
  • other polymers may be included in addition to the (meth) acrylic polymer.
  • the amount of the polymer other than the (meth) acrylic polymer in the resin p3 is preferably small.
  • the specific amount of the polymer other than the (meth) acrylic polymer is, for example, preferably 10 parts by weight or less, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the (meth) acrylic polymer, and 3 parts by weight or less. Is more preferable. Among these, it is particularly preferable that it is not contained at all.
  • the resin p3 may contain a compounding agent, for example.
  • a compounding agent the same example as the compounding agent which resin p1 may contain is mentioned.
  • a compounding agent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. Further, the amount of the compounding agent can be appropriately determined within a range that does not significantly impair the effects of the present invention.
  • the glass transition temperature of the resin p3 is usually 90 ° C. or higher, preferably 95 ° C. or higher, more preferably 100 ° C. or higher, and usually 145 ° C. or lower, preferably 140 ° C. or lower, more preferably 135 ° C. or lower.
  • the unstretched film PF (I) is a film obtained by coextrusion of the resin p1 and the resin p3, and is usually a multilayer film having layers of these resins.
  • the unstretched film PF (I) may include two or more layers of the resin p1, but usually includes only one layer.
  • the thickness of the layer of the resin p1 in the unstretched film PF (I) can be set to an appropriate thickness so that a desired retardation is exhibited after stretching.
  • the specific thickness of the layer of the resin p1 in the pre-stretched film PF (I) is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more from the viewpoint of obtaining sufficient retardation and mechanical strength. Flexibility and handling From the viewpoint of improving the property, the thickness is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the film PF (I) before stretching may include only one layer of the resin p3, but may include two or more layers.
  • the unstretched film PF (I) is prepared as a long film.
  • the film F (I) obtained by stretching the film and the optical laminate as a product can also be produced as a long film.
  • the term “long” means that the film has a length of at least 5 times the width, preferably 10 times or more, specifically a roll. It has a length enough to be wound up into a shape and stored or transported.
  • the upper limit of the magnification of the length with respect to the width is not particularly limited, it can be usually 5000 times or less.
  • a long film can be produced in a production line while being continuously conveyed in the longitudinal direction. For this reason, when manufacturing a phase difference film, part or all of each process can be performed in-line, so that the manufacturing can be performed easily and efficiently.
  • the thickness variation of the resin p1 layer is preferably 1 ⁇ m or less over the entire surface.
  • variation in the color tone of retardation film can be made small.
  • the color tone change after long-term use of the retardation film can be made uniform.
  • a polymer filter having an opening of 20 ⁇ m or less is provided in the extruder; Rotate the gear pump at 5 rpm or higher; (3) place an enclosure around the die; (4) make the air gap 200 mm or less; (5) perform edge pinning when casting the film on a chill roll; and (6)
  • a twin screw extruder or a double flight type single screw extruder may be used.
  • the layer thickness of the resin p1 is measured using a commercially available contact-type thickness meter, then the total thickness of the film is measured, then the thickness measurement part is cut and the cross section is observed with an optical microscope to obtain the thickness ratio of each layer, It can be calculated from the ratio. Moreover, the above operation is performed at regular intervals in the longitudinal direction and the width direction of the film, and the average value T ave and the variation of the thickness can be obtained.
  • the thickness variation ( ⁇ m) is the larger of T ave ⁇ T min and T max ⁇ T ave .
  • T ave represents the arithmetic average value of the measured values measured above
  • T max represents the maximum value of the measured thickness T
  • T min represents the minimum value.
  • Means for that purpose include (1) reducing the residual solvent of the resin used as a raw material; (2) pre-drying the resin before forming the pre-stretch film.
  • the preliminary drying is performed by a hot air dryer or the like in the form of pellets or the like.
  • the drying temperature is preferably 100 ° C. or more, and the drying time is preferably 2 hours or more.
  • Examples of specific methods of coextrusion of the resin p1 and the resin p3 include, for example, a coextrusion T-die method, a coextrusion inflation method, a coextrusion lamination method, and the like. preferable.
  • the coextrusion T-die method includes a feed block method and a multi-manifold method, but the multi-manifold method is particularly preferable in that variation in thickness can be reduced.
  • the melting temperature of the resin in the extruder having the T-die is preferably 80 ° C. higher than the glass transition temperature of the resin p1 and the resin p3, and a temperature higher by 100 ° C. It is more preferable to set it above, and it is preferable that the temperature be 180 ° C. or higher, and more preferable that the temperature be 150 ° C. or higher.
  • a sheet-like molten resin extruded from an opening of a die is brought into close contact with a cooling drum.
  • the method for bringing the molten resin into close contact with the cooling drum is not particularly limited, and examples thereof include an air knife method, a vacuum box method, and an electrostatic contact method.
  • the number of cooling drums is not particularly limited, but is usually two or more. Examples of the arrangement method of the cooling drum include, but are not limited to, a linear type, a Z type, and an L type. Further, the way of passing the molten resin extruded from the opening of the die through the cooling drum is not particularly limited.
  • the temperature of the cooling drum is preferably (Tg + 30) ° C. or less, more preferably (Tg-5) ° C. to (Tg ⁇ ), where Tg is the glass transition temperature of the resin in the layer that is extruded from the die and contacts the drum. 45) Set to a range of ° C. By doing so, problems such as slipping and scratches can be prevented.
  • a stretched multilayer film F (I) including a retardation layer P1 made of a resin p1 and a protective layer P3 made of a resin p3 is obtained. Since the protective layer P3 having a high strength is provided in contact with the retardation layer P1 having a relatively low strength, the stretching can be executed without causing breakage due to the stretching. Further, since the retardation layer P1 is protected by the protective layer P3, the components of the retardation layer P1 do not cause bleed-out at the boundary between the retardation layer P1 and the protective layer P3. Therefore, since the optical laminate can be stably produced in-line, it is possible to efficiently produce a long optical laminate.
  • Examples of the stretching operation include a method of uniaxial stretching in the longitudinal direction using a difference in peripheral speed between rolls (longitudinal uniaxial stretching); a method of uniaxial stretching in the width direction using a tenter (lateral uniaxial stretching); A method of sequentially performing uniaxial stretching and lateral uniaxial stretching (sequential biaxial stretching); a method of stretching in an oblique direction with respect to the longitudinal direction of the film before stretching (oblique stretching);
  • the film temperature during stretching is preferably Tg ⁇ 20 to Tg + 20 ° C., more preferably Tg ⁇ 5 to Tg + 5 ° C., where the glass transition temperature of the resin p1 is Tg (° C.).
  • the draw ratio can be, for example, 1.5 to 8.0 times.
  • the number of stretching may be one time or two or more times.
  • the pre-stretched film PF (I) may be preheated before being stretched.
  • the means for heating the pre-stretched film include an oven-type heating device, a radiation heating device, or immersion in a liquid. Of these, an oven-type heating device is preferable.
  • the heating temperature in the preheating step is usually a stretching temperature of ⁇ 40 ° C. or more, preferably a stretching temperature of ⁇ 30 ° C. or more, and usually a stretching temperature of + 20 ° C. or less, preferably a stretching temperature of + 15 ° C. or less.
  • the stretching temperature means the set temperature of the heating device.
  • the obtained optical layered body may be subjected to immobilization treatment.
  • the temperature in the fixing treatment is usually room temperature or higher, preferably “stretching temperature ⁇ 40 ° C.” or higher, and usually “stretching temperature + 30 ° C.” or lower, preferably “stretching temperature + 20 ° C.” or lower.
  • other films such as a mat layer, a hard coat layer, an antireflection layer, and an antifouling layer may be bonded together in order to protect the optical laminate and improve the handleability.
  • step (iii) the resin p2 is extruded to obtain a pre-stretching film PF (II).
  • the extrusion temperature can be appropriately selected according to the glass transition temperature of the resin p2.
  • the thickness of the film PF (II) before stretching can be appropriately adjusted so that the thickness of the retardation layer P2 after stretching becomes a desired thickness.
  • the film PF (II) before stretching is usually prepared as a long film as well as the film PF (I) before stretching.
  • step (iv) the unstretched film PF (II) is stretched to obtain the film F (II) of the retardation layer P2. Stretching can usually be performed by uniaxial stretching.
  • the specific method of stretching is not particularly limited, and the same method as that described in step (ii) can be adopted.
  • the stretching temperature in step (iv) is preferably between (Tg-30 ° C) and (Tg + 60 ° C), more preferably (Tg-10 ° C) to (Tg + 50 ° C), where Tg is the glass transition temperature of the resin p2. Temperature range.
  • the draw ratio is usually 1.01 to 30 times, preferably 1.01 to 10 times, more preferably 1.01 to 5 times.
  • the stretching conditions in step (iv) can be appropriately adjusted so that the obtained optical laminate has a desired retardation.
  • Step (v) In the step (v), the retardation layer P1 and the retardation layer P2 are bonded. That is, the stretched multilayer film F (I) and the film F (II) are bonded in such a manner that the retardation layer P1 and the retardation layer P2 are bonded. Therefore, for example, when the protective layer P3 exists on both surfaces of the stretched multilayer film F (I), bonding is performed after peeling at least one of them.
  • Bonding in the step (v) can be performed using an appropriate bonding means such as an adhesive or a pressure-sensitive adhesive.
  • an adhesive or a pressure-sensitive adhesive include acrylic, silicone, polyester, polyurethane, polyether, rubber, and the like. Among these, an acrylic type is preferable from the viewpoint of heat resistance and transparency.
  • Bonding in step (v) can be performed by roll-to-roll. That is, the long stretched multilayer film F (I) and the long film F (II) are respectively unwound, and the operation of applying an adhesive or a pressure-sensitive adhesive and bonding are continuously performed. A paste can be obtained. Efficient manufacture can be performed by bonding of this aspect.
  • the crossing angle between the slow axis of the retardation layer P1 and the slow axis of the retardation layer P2 in the stretched composite film (I) is preferably 0 ⁇ 10 °. Preferably, it is performed so as to be 0 ° ⁇ 5 °. In the bonding at such an angle, in the stretching in the step (ii) and the step (iv), stretching is performed so that each slow axis with respect to the longitudinal direction of the long film is in a predetermined direction, and the step (v) Can be achieved by performing roll-to-roll bonding.
  • the present invention is not limited to this, and the stretched composite film F (I) and the film F (II) may be bonded at an angle that does not align the longitudinal direction so that the slow axes are aligned.
  • Step (vi) In the step (vi), the protective layer P3 is peeled from the retardation layer P1.
  • Step (vi) can be performed at any feasible stage. For example, it can be performed at any stage from the end of step (ii) to the end of step (v). Or it can also carry out after bonding the optical laminated body of this invention with another member (polarizing plate etc.).
  • the protective layer P3 By providing the protective layer P3, good stretching can be performed without causing breakage, but the protective layer P3 may not be necessary in the use of the optical laminate. In that case, by performing the step (vi), it is possible to obtain a thin optical laminate while realizing good stretching.
  • the optical laminate obtained by the production method of the present invention may have a long shape.
  • Such an optical layered body may include a layer having a long shape as the retardation layer P1, and a layer having a long shape as the retardation layer P2.
  • Such an optical laminate is prepared by preparing a film PF (I) before stretching and a film PF (II) before stretching as long films, and stretching them to stretch the multilayered film F (I) and the film F (II). ) Can be obtained as long films, and these can be used in step (v) for roll-to-roll bonding.
  • the retardation layer P1 has a slow axis in its width direction, and the retardation layer P2 also has a slow phase in its width direction. It is preferable to have an axis.
  • Such an optical layered body can be preferably used as a viewing angle compensation layer of a polarizing plate.
  • the polarizing plate composite of the present invention includes the optical laminate of the present invention and a polarizer.
  • a polarizer for example, a film made of a suitable vinyl alcohol-based polymer according to the prior art such as polyvinyl alcohol or partially formalized polyvinyl alcohol, a dyeing treatment with a dichroic substance made of iodine or a dichroic dye, a stretching treatment
  • an appropriate treatment such as a crosslinking treatment can be performed in an appropriate order and method, and an appropriate material that transmits linearly polarized light when natural light is incident can be used. In particular, those excellent in light transmittance and degree of polarization are preferable.
  • the thickness of the polarizer is generally 5 to 80 ⁇ m, but is not limited thereto.
  • the polarizer may be provided on either the retardation layer P1 side or the retardation layer P2 side of the optical laminate of the present invention, but is preferably provided on the retardation layer P2 side.
  • the polarizer may be provided in direct contact with the retardation layer P1 or the retardation layer P2, but may be provided through another layer.
  • a normal polarizing plate has a structure composed of a polarizer and a protective layer provided on one or both sides of the polarizer, so that the polarizer has the retardation layer P1 or retardation layer P2 via the protective layer. It may be provided above.
  • an appropriate transparent film can be used as a material for the protective layer.
  • a film made of a polymer excellent in transparency, mechanical strength, thermal stability, moisture shielding property, etc. is preferably used.
  • the polymer include acetate resins such as triacetyl cellulose, polyester resins, polyether sulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, polymer resins having an alicyclic structure, Acrylic resins and the like can be mentioned.
  • acetate resins or polymer resins having an alicyclic structure are preferable from the viewpoint of low birefringence.
  • the thickness of the protective layer is arbitrary, but is generally 500 ⁇ m or less, preferably 5 to 300 ⁇ m, particularly preferably 5 to 150 ⁇ m for the purpose of reducing the thickness of the polarizing plate.
  • the polarizer or the polarizing plate can be provided by bonding onto the retardation layer P2 via an adhesive or pressure-sensitive adhesive layer.
  • the adhesive or pressure-sensitive adhesive include acrylic, silicone, polyester, polyurethane, polyether, rubber, and the like. Among these, an acrylic type is preferable from the viewpoint of heat resistance and transparency.
  • the slow axis of the optical laminate and the transmission axis of the polarizer are preferably parallel or orthogonal.
  • Such a polarizing plate composite is prepared by preparing a long optical laminate and a polarizing plate in which the direction of the slow axis and the transmission axis with respect to the longitudinal direction is in a desired state, and laminating them by roll-to-roll. Can be manufactured efficiently.
  • the thickness of the polarizing plate composite of the present invention is usually 100 to 700 ⁇ m, preferably 200 to 600 ⁇ m.
  • the optical laminate of the present invention and the polarizing plate composite of the present invention can be preferably used as a component of a liquid crystal display device.
  • the optical layered body of the present invention can be provided on one or both sides of a liquid crystal cell of a liquid crystal display device.
  • an embodiment in which the optical laminate is disposed between the polarizing plate and the liquid crystal cell; or an embodiment in which the optical laminate is disposed on the surface of the polarizing plate opposite to the liquid crystal cell is exemplified.
  • the optical laminate and polarizing plate laminate of the present invention are long, they can be cut into an appropriate size and then incorporated into a liquid crystal display device.
  • the liquid crystal display device of the present invention is formed with a suitable structure according to the prior art, such as a transmissive type, a reflective type, or a transmissive / reflective type in which a polarizing plate is arranged on one or both sides of a liquid crystal cell.
  • a suitable structure such as a transmissive type, a reflective type, or a transmissive / reflective type in which a polarizing plate is arranged on one or both sides of a liquid crystal cell.
  • the liquid crystal modes used in the liquid crystal cell include TN (Twisted Nematic) type, STN (Super Twisted Nematic) type, HAN (Hybrid Alignment Nematic) type, VA (Vertical Alignment), MVA (Multi-type Inlet). Plane Switching) type, OCB (Optical Compensated Bend) type, and the like.
  • the liquid crystal display device of the present invention is an IPS mode liquid crystal display device including an incident side polarizer, a liquid crystal cell, and an output side polarizer in this order, and at least one of the incident side polarizer and the output side polarizer.
  • the optical laminate of the present invention is provided between the liquid crystal cell and the liquid crystal cell.
  • the crossing angle between the slow axis of the retardation layer P1 and the slow axis of the retardation layer P2 is 0 ° ⁇ 10 °
  • the retardation layer P1 of the optical laminate is a liquid crystal cell. It is particularly preferred that they are arranged on the side. By having such a configuration, the adhesiveness between the retardation layer and the polarizer can be increased.
  • Example 1 (1-1. Pellets of resin p1) Syndiotactic polystyrene (“130-ZC” manufactured by Idemitsu Kosan Co., Ltd., glass transition temperature 98 ° C., crystallization temperature 140 ° C.) 70% by weight and poly (2,6-dimethyl-1,4-phenylene oxide) (Aldrich catalog) No. 18242-7) 30% by weight was kneaded with a twin screw extruder to obtain transparent resin p1 pellets. The obtained resin p1 had a glass transition temperature of 125 ° C.
  • pellets of impact-resistant polymethyl methacrylate resin p3 (“SUMIPEX HT55X” manufactured by Sumitomo Chemical Co., Ltd.) were put into another uniaxial extruder equipped with a double flight type screw and melted.
  • the melted 290 ° C. resin p1 is passed through a polymer filter in the form of a leaf disk having a mesh size of 10 ⁇ m to one manifold of a multi-manifold die (die slip surface roughness Ra: 0.1 ⁇ m).
  • a polymer filter having a leaf disk shape of 10 ⁇ m.
  • Resin p1 and resin p3 were simultaneously extruded from the multi-manifold die at 280 ° C. to form a film.
  • the film-shaped molten resin thus formed was cast on a cooling roll adjusted to a surface temperature of 110 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to form a layer made of resin p1 (thickness 26 ⁇ m) ) And a layer made of resin p3 (thickness: 65 ⁇ m) to obtain a film PF (I) before stretching having a thickness of 91 ⁇ m.
  • NZ P1 ⁇ 1.0
  • Re (P1) 60 nm
  • Rth (P1) ⁇ 90 nm.
  • a single-layer film forming apparatus was prepared. Pellets of norbornene polymer p3 (“ZEONOR1420” manufactured by Nippon Zeon Co., Ltd., glass transition temperature 140 ° C.) are charged into a single-screw extruder equipped with a double-flight screw of a film forming apparatus and melted at 260 ° C. The film was formed into a film with a die (surface roughness Ra of die slip: 0.1 ⁇ m) adjusted to 260 ° C. through a 10 ⁇ m leaf disk-shaped polymer filter.
  • ZEONOR1420 manufactured by Nippon Zeon Co., Ltd., glass transition temperature 140 ° C.
  • the film-shaped molten resin thus formed was cast on a cooling roll adjusted to a surface temperature of 120 ° C., and then passed between two cooling rolls adjusted to a surface temperature of 50 ° C. to give a film PF (II )
  • the obtained unstretched film PF (II) was uniaxially stretched by 3.0 times in the TD direction using a simultaneous biaxial stretching machine (manufactured by Toyo Seiki Co., Ltd.) at 140 ° C. equal to the glass transition temperature of the norbornene resin.
  • the magnification in the MD direction was 1.0
  • a film F (II) of the retardation layer P2 having Re 90 nm, Rth 80 nm, and thickness 20 ⁇ m was obtained.
  • the in-plane retardation Re (P2) and the thickness direction retardation Rth (P2) of the retardation layer P2 were measured.
  • Re (P2) 90 nm
  • Rth (P2) 80 nm.
  • Optical laminated body with protective layer The surface on the phase difference layer P1 side of the stretched multilayer film F (I) obtained in (1-3) and one surface of the film F (II) obtained in (1-4) were bonded. The pasting was performed through an optical transparent adhesive sheet (“LUCIACS CS9621T” manufactured by Nitto Denko Corporation) so that the slow axes of the retardation layers P1 and P2 are in the same direction. As a result, an optical laminate F (III) with a protective layer having a layer configuration of (protective layer P3) / (retardation layer P1) / (adhesive sheet layer) / (retardation layer P2) was obtained. The protective layer P3 of the multilayer body F (III) was in a state where it could be peeled off from the retardation layer P1.
  • a part of the obtained laminate F (III) is cut out, and from this, the protective layer P3 is peeled off, and this has a layer configuration of (retardation layer P1) / (adhesive sheet layer) / (retardation layer P2)
  • the sample was heated in an oven at 80 ° C. for 500 hours, and then Re was measured again. As a result, it was 149 nm.
  • the polarizing plate composite has a layer structure of (retardation layer P1) / (adhesive sheet layer) / (retardation layer P2) / (adhesive sheet) / (polarizing plate).
  • the part of (P1) / (adhesive sheet layer) / (retardation layer P2) comprised the optical laminated body of this invention.
  • the contrast of the obtained polarizing plate composite was evaluated by the method described above.
  • Example 2 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate a polarizing plate composite and its components.
  • In the production of pellets of resin p1 in (1-1), the addition amounts of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) were changed to 74 wt% and 26 wt%, respectively. did.
  • the obtained resin p1 had a glass transition temperature of 120 ° C.
  • the stretching temperature was changed to 120 ° C. which is equal to the glass transition temperature of the resin p1.
  • the thickness of the resin p1 during the extrusion of the resin p1 and the resin p3 was adjusted.
  • the values of Re (P1) and Rth (P1) were set to the same values as in Example 1 (60 nm and ⁇ 90 nm) by stretching at the same stretching ratio as in Example 1.
  • the thickness of the retardation layer P1 was 8 ⁇ m.
  • Example 3 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate a polarizing plate composite and its components.
  • In the production of pellets of resin p1 in (1-1), the addition amounts of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) were changed to 66 wt% and 34 wt%, respectively. did.
  • the obtained resin p1 had a glass transition temperature of 132 ° C.
  • the stretching temperature was changed to 132 ° C. which is equal to the glass transition temperature of the resin p1.
  • the thickness of the resin p1 during the extrusion of the resin p1 and the resin p3 was adjusted.
  • the values of Re (P1) and Rth (P1) were set to the same values as in Example 1 (60 nm and ⁇ 90 nm) by stretching at the same stretching ratio as in Example 1.
  • the thickness of the retardation layer P1 was 15 ⁇ m.
  • Example 1 Comparative Example 1 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate a polarizing plate composite and its components.
  • In the production of pellets of resin p1 in (1-1), the addition amount of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) was changed to 100% by weight and 0% by weight, respectively. did.
  • the obtained resin p1 had a glass transition temperature of 98 ° C.
  • the stretching temperature was changed to 98 ° C. which is equal to the glass transition temperature of the resin p1.
  • the thickness of the resin p1 during the extrusion of the resin p1 and the resin p3 was adjusted.
  • the values of Re (P1) and Rth (P1) were set to the same values as in Example 1 (60 nm and ⁇ 90 nm) by stretching at the same stretching ratio as in Example 1.
  • the thickness of the retardation layer P1 was 5 ⁇ m.
  • Example 2 (Comparative Example 2) Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate a polarizing plate composite and its components.
  • In the production of pellets of resin p1 in (1-1), the addition amounts of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) were changed to 85% by weight and 15% by weight, respectively. did.
  • the obtained resin p1 had a glass transition temperature of 112 ° C.
  • the stretching temperature was changed to 112 ° C. which is equal to the glass transition temperature of the resin p1.
  • the thickness of the resin p1 during the extrusion of the resin p1 and the resin p3 was adjusted.
  • the values of Re (P1) and Rth (P1) were set to the same values as in Example 1 (60 nm and ⁇ 90 nm) by stretching at the same stretching ratio as in Example 1.
  • the thickness of the retardation layer P1 was 7 ⁇ m.
  • Example 3 Except for the following changes, the same operation as in Example 1 was performed to obtain and evaluate a polarizing plate composite and its components. ⁇ In the production of pellets of resin p1 in (1-1), the addition amount of syndiotactic polystyrene and poly (2,6-dimethyl-1,4-phenylene oxide) was changed to 62% by weight and 38% by weight, respectively. did. The obtained resin p1 had a glass transition temperature of 138 ° C. In the production of the stretched multilayer film F (I) of (1-3), the stretching temperature was changed to 138 ° C. which is equal to the glass transition temperature of the resin p1.
  • the thickness of the resin p1 during the extrusion of the resin p1 and the resin p3 was adjusted.
  • the values of Re (P1) and Rth (P1) were set to the same values as in Example 1 (60 nm and ⁇ 90 nm) by stretching at the same stretching ratio as in Example 1.
  • the thickness of the retardation layer P1 was 20 ⁇ m.
  • Table 1 shows the evaluation results of Examples and Comparative Examples.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂p1からなる位相差層P1と、脂環式構造含有重合体を含む樹脂p2からなる位相差層P2とを備える光学積層体であって、前記樹脂p1において、前記ポリフェニレンエーテルの含有量/前記ポリスチレン系重合体の含有量の重量比が、25/75より大きく、且つ35/65より小さく、前記位相差層P1のNZ係数NZP1が、NZP1<0であり、前記光学積層体の入射角0°におけるレターデーションReと入射角40°におけるレターデーションR40とが0.92≦R40/Re≦1.08の関係を満たす、光学積層体;並びにその製造方法、及びそれを含む偏光板複合体。

Description

光学積層体、偏光板複合体、液晶表示装置、及び製造方法
 本発明は、光学積層体、偏光板複合体、液晶表示装置、光学積層体の製造方法、及び偏光板複合体の製造方法に関する。
 液晶表示装置等の表示装置において、例えば視野角の補償のために、複数枚の位相差層を組み合わせた光学積層体が、偏光板などの他の部材と組み合わせて用いられることがある。位相差層としては、樹脂によって形成された長尺の延伸前フィルムを延伸し、当該フィルムに含まれる分子を配向させて得られる延伸フィルムが、簡便に製造でき、好ましい。
 位相差層として用いるための延伸フィルムについては、従来から多くの検討がなされている。例えば、特許文献1~4のような技術が知られている。このうち、特許文献1~3では、延伸フィルムとして、逆波長分散性を有する位相差フィルムを製造する技術が記載されている。ここで、逆波長分散性とは、位相差フィルムを透過する光の波長が長くなるにつれて、その光に与えられる面内方向のレターデーションが大きくなる性質のことを意味する。
国際公開第2010/074166号 特開2011-113004号公報 特開2010-78905号公報 特開平7-266414号公報
 近年、液晶表示装置等の表示装置において、装置の厚みを薄型化する要求が更に高くなっている。このため、位相差層も、従来よりも更に薄くすることが求められている。
 ところが、薄いフィルムにおいて高い位相差を発現させようとすると、延伸倍率を高める必要が生じる。延伸倍率を高めると、配向方向のバラツキが大きくなり、その結果、視野角補償等の性能が不十分となりうる。また、面内方向のレターデーションReを所望の値にするために単に延伸倍率を高めると、厚み方向のレターデーションRthが所望の値とならず視野角補償性能が不十分となることが多い。さらに、従来の延伸フィルムでは、高温で長時間使用するとレターデーションが大きく変化する場合があり、そのような変化は、延伸倍率を大きくした場合特に顕著に現れうる。
 従って、本発明の目的は、薄く、視野角補償性能が高く、且つ高温での使用における耐久性に優れた光学積層体、それを含む偏光板複合体及び液晶表示装置、並びにそれらの製造方法を提供することにある。
 本発明者らは前記の課題を解決するべく検討した結果、ポリフェニレンエーテルと、所定の構造を有するポリスチレン系重合体とを所定の重量比で組み合わせた樹脂p1からなる位相差層P1と、脂環式構造含有重合体を含む樹脂p2からなる位相差層P2との組み合わせにより、そのような光学積層体を得ることができることを見出した。本発明者はさらに、そのような光学積層体は、樹脂p1を含む複数の樹脂の共押し出しの工程を含む所定の方法により容易に製造しうることを見出した。本発明は、かかる知見に基づき完成したものである。
 すなわち、本発明は以下の通りである。
〔1〕 ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂p1からなる位相差層P1と、
 脂環式構造含有重合体を含む樹脂p2からなる位相差層P2とを備える光学積層体であって、
 前記樹脂p1において、前記ポリフェニレンエーテルの含有量/前記ポリスチレン系重合体の含有量の重量比が、25/75より大きく、且つ35/65より小さく、
 前記位相差層P1のNZ係数NZP1が、NZP1<0であり、
 前記光学積層体の入射角0°におけるレターデーションReと入射角40°におけるレターデーションR40とが0.92≦R40/Re≦1.08の関係を満たす、光学積層体。
〔2〕 前記位相差層P1の面内レターデーションRe(P1)及び厚み方向レターデーションRth(P1)、並びに前記位相差層P2の面内レターデーションRe(P2)及び厚み方向レターデーションRth(P2)が、下記式(1)及び式(2):
 Re(P1)+Re(P2)≧100nm   式(1)
 -50nm≦Rth(P1)+Rth(P2)≦50nm   式(2)
 を満たす、〔1〕に記載の光学積層体。
〔3〕 前記位相差層P1の厚さが15μm以下であり、厚み方向のレターデーションRth(P1)が-50nm以下である、〔1〕又は〔2〕に記載の光学積層体。
〔4〕 前記ポリフェニレンエーテルの重量平均分子量が15,000~100,000であり、
 前記ポリスチレン系重合体の重量平均分子量が130,000~300,000である、〔1〕~〔3〕のいずれか1項に記載の光学積層体。
〔5〕 前記位相差層P1の遅相軸と、前記位相差層P2の遅相軸との交差角が、0°±10°である、〔1〕~〔4〕のいずれか1項に記載の光学積層体。
〔6〕 〔1〕~〔5〕のいずれか1項に記載の光学積層体と、偏光子とを備える、偏光板複合体。
〔7〕 前記光学積層体の遅相軸と、前記偏光子の吸収軸とが直交する、〔6〕に記載の偏光板複合体。
〔8〕 〔6〕又は〔7〕に記載の偏光板複合体と、液晶セルとを備える、液晶表示装置。
〔9〕 入射側偏光子、液晶セル、出射側偏光子をこの順に備えるインプレーンスイッチングモードの液晶表示装置であって、
 前記液晶表示装置はさらに、前記入射側偏光子と前記液晶セルとの間の位置、前記出射側偏光子と前記液晶セルとの間の位置、またはこれらの両方の位置において、〔5〕に記載の光学積層体を備え、
 前記光学積層体は、前記位相差層P1が前記液晶セル側に配置されている、インプレーンスイッチングモードの液晶表示装置。
〔10〕 〔1〕~〔5〕のいずれか1項に記載の光学積層体の製造方法であって、
 ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含み、前記ポリフェニレンエーテルの含有量/前記ポリスチレン系重合体の含有量の重量比が25/75より大きく、且つ35/65より小さい樹脂p1と、(メタ)アクリル重合体を含む樹脂p3とを共押し出しして、延伸前フィルムPF(I)を得る工程と、
 前記延伸前フィルムPF(I)を延伸し、前記樹脂p1からなる位相差層P1及び前記樹脂p3からなる保護層P3を含む延伸複層フィルムF(I)を得る工程と、
 脂環式構造含有重合体を含む樹脂p2を押し出して、延伸前フィルムPF(II)を得る工程と、
 前記延伸前フィルムPF(II)を延伸し、位相差層P2のフィルムF(II)を得る工程と、
 前記位相差層P1と前記位相差層P2とを貼合する工程と
 を有する製造方法。
〔11〕 前記位相差層P1から前記保護層P3を剥離する工程をさらに含む、〔10〕に記載の製造方法。
〔12〕 得られる前記光学積層体が、長尺の形状を有する前記位相差層P1及び長尺の形状を有する前記位相差層P2を含む、長尺の形状を有し、
 前記位相差層P1は、その幅方向に遅相軸を有し、
 前記位相差層P2は、その幅方向に遅相軸を有する、〔10〕又は〔11〕に記載の製造方法。
〔13〕 〔12〕に記載の製造方法で得られる長尺の光学積層体と、長尺の偏光子とをロールトゥーロールで貼合する工程を有する、長尺の偏光板複合体の製造方法。
 本発明の光学積層体並びにそれを含む本発明の偏光板複合体及び本発明の液晶表示装置は、薄く、視野角補償性能が高く、且つ高温での使用における耐久性に優れる。また、本発明の製造方法では、そのような本発明の光学積層体及び偏光板複合体を容易に製造しうる。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施してもよい。
 以下の説明において、(メタ)アクリルといった表現は、アクリル、メタクリル又はこれらの組み合わせを意味する。例えば、(メタ)アクリル酸とは、アクリル酸、メタクリル酸又はこれらの組み合わせを意味する。また、(メタ)アクリレートとは、アクリレート、メタクリレート又はこれらの組み合わせを意味する。
 以下の説明において、MD方向(machine direction)は、製造ラインにおけるフィルムの流れ方向であり、通常は長尺のフィルムの長手方向に一致する方向を表す。さらに、TD方向(traverse direction)は、フィルム面に平行な方向であって、MD方向に垂直な方向であり、通常は長尺のフィルムの幅方向に一致する方向を表す。
 以下の説明において、別に断らない限り、屈折率及びレターデーションの測定波長は550nmである。また、フィルム又は層の遅相軸とは、別に断らない限り、面内の遅相軸を表す。
 以下の説明において、NZ係数は、(nx-nz)/(nx-ny)を表す。ここでnxは厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表し、nyは厚み方向に垂直な方向(面内方向)であってnxの方向に垂直な方向の屈折率を表し、nzは厚み方向の屈折率を表す。
 [1.光学積層体]
 本発明の光学積層体は、樹脂p1からなる位相差層P1と、樹脂p2からなる位相差層P2とを備える。
 [1-1.樹脂p1]
 樹脂p1は、ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む。ポリフェニレンエーテルは通常正の固有複屈折値を有し、シンジオタクチック構造を有するポリスチレン系重合体は通常負の固有複屈折値を有する。ここで、固有複屈折値が正であるとは、延伸方向の屈折率が延伸方向に垂直な方向の屈折率よりも大きくなることを意味する。また、固有複屈折値が負であるとは、延伸方向の屈折率が延伸方向に垂直な方向の屈折率よりも小さくなることを意味する。固有複屈折値は、誘電率分布から計算することもできる。
 ポリフェニレンエーテルは、フェニレンエーテル又はフェニレンエーテル誘導体を重合して形成される構造単位を有する重合体である。通常は、フェニレンエーテル骨格を有する構造単位(以下、適宜「フェニレンエーテル単位」という。)を主鎖に有する重合体を、ポリフェニレンエーテルとして用いる。ただし、フェニレンエーテル単位におけるベンゼン環には、本発明の効果を著しく損なわない限り、置換基を有していてもよい。
 中でも、ポリフェニレンエーテルとしては、下記式(I)で表されるフェニレンエーテル単位を含む重合体が好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(I)において、Qは、それぞれ独立に、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、アミノアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしてはアルキル基及びフェニル基が好ましく、特に炭素数1以上4以下のアルキル基がより好ましい。
 式(I)において、Qは、それぞれ独立に、水素原子、ハロゲン原子、低級アルキル基(例えば炭素数7個以下のアルキル基)、フェニル基、ハロアルキル基、炭化水素オキシ基、または、ハロ炭化水素オキシ基(ただし、そのハロゲン原子と酸素原子とを少なくとも2つの炭素原子が分離している基)を表す。中でも、Qとしては水素原子が好ましい。
 ポリフェニレンエーテルは、1種類の構造単位を有する単独重合体(ホモポリマー)であってもよく、2種類以上の構造単位を有する共重合体(コポリマー)であってもよい。
 式(I)で表される構造単位を含む重合体が単独重合体である場合、当該単独重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位(「-(C(CH-O)-」で表される構造単位)を有する単独重合体が挙げられる。
 式(I)で表される構造単位を含む重合体が共重合体である場合、当該共重合体の好ましい例を挙げると、2,6-ジメチル-1,4-フェニレンエーテル単位と2,3,6-トリメチル-1,4-フェニレンエーテル単位(「-(CH(CH-O-)-」で表される構造単位)と組み合わせて有するランダム共重合体が挙げられる。
 また、ポリフェニレンエーテルは、フェニレンエーテル単位以外の構造単位を含んでいてもよい。この場合、ポリフェニレンエーテルは、フェニレンエーテル単位とそれ以外の構造単位とを有する共重合体となる。ただし、ポリフェニレンエーテルにおけるフェニレンエーテル単位以外の構造単位の含有量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリフェニレンエーテルにおけるフェニレンエーテル単位の含有量は、通常50重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上である。
 ポリフェニレンエーテルは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリフェニレンエーテルの重量平均分子量は、通常15,000以上、好ましくは25,000以上、より好ましくは35,000以上であり、通常100,000以下、好ましくは85,000以下、より好ましくは70,000以下である。重量平均分子量を、前記範囲の下限値以上にすることにより位相差層P1の強度を高めることができる。また、上限値以下にすることにより、ポリフェニレンエーテルの分散性を高めてポリフェニレンエーテルとスチレン系重合体とを高いレベルで均一に混合することが可能となる。
 ここで、重量平均分子量は、1,2,4-トリクロロベンゼンを溶媒として温度135℃でゲルパーミエーションクロマトグラフィー(GPC)で測定した、標準ポリスチレン換算の値を採用する。
 ポリフェニレンエーテルの製造方法に制限は無く、例えば、特開平11-302529号公報に記載の方法により製造しうる。
 ポリスチレン系重合体は、スチレン類化合物を重合して形成される構造単位(以下、適宜「スチレン類単位」という。)を含む重合体である。スチレン類化合物の例としては、スチレン及びスチレン誘導体が挙げられる。スチレン誘導体の例としては、スチレンのベンゼン環またはα位に置換基が置換したものが挙げられる。
 スチレン類化合物の例を挙げると、スチレン;メチルスチレン、2,4-ジメチルスチレン等のアルキルスチレン;クロロスチレン等のハロゲン化スチレン;クロロメチルスチレン等のハロゲン置換アルキルスチレン;メトキシスチレン等のアルコキシスチレン;などが挙げられる。中でもスチレン類化合物としては、置換基を有しないスチレンが好ましい。また、スチレン類化合物は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 樹脂p1が含むポリスチレン系重合体としては、シンジオタクチック構造を有するものを用いる。ここで、ポリスチレン系重合体がシンジオタクチック構造を有する、とは、ポリスチレン系重合体の立体化学構造がシンジオタクチック構造となっていることをいう。また、シンジオタクチック構造とは、炭素-炭素結合で形成される主鎖に対して、側鎖であるフェニル基が、フィッシャー投影式において、交互に反対方向に位置する立体構造のことをいう。
 ポリスチレン重合体のタクティシティー(tacticity:立体規則性)は、同位体炭素による核磁気共鳴法(13C-NMR法)により定量されうる。13C-NMR法により測定されるタクティシティーは、連続する複数個の構成単位の存在割合により示すことができる。一般に、例えば、連続する構成単位が2個の場合はダイアッド、3個の場合はトリアッド、5個の場合はペンタッドとなる。この場合、前記シンジオタクチック構造を有するポリスチレン系重合体とは、ラセミダイアッドで通常75%以上、好ましくは85%以上のシンジオタクティシティーを有するか、若しくは、ラセミペンタッドで通常30%以上、好ましくは50%以上のシンジオタクティシティーを有することをいう。どの場合も、シンジオタクティシティーの上限は、理想的には100%としうる。
 ポリスチレン系重合体の例としては、ポリスチレン、ポリ(アルキルスチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、及びこれらの水素化重合体、並びにこれらの共重合体が挙げられる。
 ポリ(アルキルスチレン)としては、例えばポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(イソピルスチレン)、ポリ(t-ブチルスチレン)、ポリ(フェニルスチレン)、ポリ(ビニルナフタレン)、ポリ(ビニルスチレン)などが挙げられる。
 ポリ(ハロゲン化スチレン)としては、例えば、ポリ(クロロスチレン)、ポリ(ブロモスチレン)、ポリ(フルオロスチレン)などが挙げられる。
 ポリ(ハロゲン化アルキルスチレン)としては、例えば、ポリ(クロロメチルスチレン)などが挙げられる。
 ポリ(アルコキシスチレン)としては、例えば、ポリ(メトキシスチレン)、ポリ(エトキシスチレン)などが挙げられる。
 これらのうち特に好ましいポリスチレン系重合体としては、ポリスチレン、ポリ(p-メチルスチレン)、ポリ(m-メチルスチレン)、ポリ(p-t-ブチルスチレン)、ポリ(p-クロロスチレン)、ポリ(m-クロロスチレン)、ポリ(p-フルオロスチレン)、水素化ポリスチレン、及びこれらの構造単位を含む共重合体が挙げられる。
 また、ポリスチレン系重合体は、1種類の構造単位のみを有する単独重合体であってもよく、2種類以上の構造単位を有する共重合体であってもよい。また、ポリスチレン系重合体が共重合体である場合、2種類以上のスチレン類単位を含む共重合体であってもよく、スチレン類単位とスチレン類単位以外の構造単位とを含む共重合体であってもよい。ただし、ポリスチレン系重合体がスチレン類単位とスチレン類単位以外の構造単位とを含む共重合体である場合、ポリスチレン系重合体中のスチレン類単位以外の構造単位の含有量は、本発明の効果を著しく損なわない程度に少なくすることが好ましい。具体的には、ポリスチレン系重合体におけるスチレン類単位の含有量は、通常80重量%以上、好ましくは83重量%以上、より好ましくは85重量%以上である。通常は、スチレン類単位の量をこのような範囲にすることで、製造される位相差層に所望のレターデーションを発現させることができる。
 ポリスチレン系重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ポリスチレン系重合体の重量平均分子量は、通常130,000以上、好ましくは140,000以上、より好ましくは150,000以上であり、通常300,000以下、好ましくは270,000以下、より好ましくは250,000以下である。このような重量平均分子量とすると、ポリスチレン系重合体のガラス転移温度を高めて、位相差層の耐熱性を安定して改善することができる。
 ポリスチレン系重合体のガラス転移温度は、通常85℃以上、好ましくは90℃以上、より好ましくは95℃以上である。このようにポリスチレン系重合体のガラス転移温度を高めることにより、樹脂p1のガラス転移温度を効果的に高め、ひいては位相差層の耐熱性を安定して改善することができる。また、光学積層体の製造を安定して容易に行う観点から、ポリスチレン系重合体のガラス転移温度は、通常160℃以下、好ましくは155℃以下、より好ましくは150℃以下である。
 シンジオタクチック構造を有するポリスチレン系重合体は、例えば、不活性炭化水素溶媒中又は溶媒の不存在下において、チタン化合物及び水とトリアルキルアルミニウムの縮合生成物を触媒として、スチレン類化合物を重合することにより製造しうる(特開昭62-187708号公報参照)。また、ポリ(ハロゲン化アルキルスチレン)については、例えば、特開平1-46912号公報に記載の方法により製造しうる。さらに、これらの水素化重合体は、例えば特開平1-178505号公報記載の方法により製造しうる。
 樹脂p1において、ポリフェニレンエーテルの含有量/ポリスチレン系重合体の含有量の重量比は、25/75より大きく、且つ35/65より小さい。ポリフェニレンエーテルの含有量/ポリスチレン系重合体の含有量の重量比は、好ましくは26/74以上、より好ましくは28/72以上であり、好ましくは34/66以下、より好ましくは32/68以下である。
 ポリフェニレンエーテルとポリスチレン系重合体との比率を前記範囲内とすることにより、薄く、且つ視野角補償性能が高い光学積層体を得ることができる。
 本発明の効果を著しく損なわない限り、樹脂p1は、ポリフェニレンエーテル及びポリスチレン系重合体以外の成分を含んでいてもよい。
 例えば、樹脂p1は、上述したポリフェニレンエーテル及びポリスチレン系重合体以外にも重合体を含んでいてもよい。ポリフェニレンエーテル及びポリスチレン系重合体以外の重合体の量は、ポリフェニレンエーテル及びポリスチレン系重合体の合計量を100重量部として、15重量部以下が好ましく、10重量部以下がより好ましく、5重量部以下が特に好ましい。
 また、例えば、樹脂p1は、配合剤を含んでいてもよい。配合剤の例を挙げると、層状結晶化合物;微粒子;酸化防止剤、熱安定剤、光安定剤、耐候安定剤、紫外線吸収剤、近赤外線吸収剤等の安定剤;可塑剤:染料及び顔料等の着色剤;帯電防止剤;などが挙げられる。また、配合剤は、1種類を用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 配合剤の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。例えば位相差層の全光線透過率を85%以上に維持できる範囲である。
 上述した中でも、配合剤としては、可撓性及び耐候性を向上させることができる点で、微粒子及び紫外線吸収剤が好ましい。
 微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸ストロンチウムなどの無機粒子;ポリメチルアクリレート、ポリメチルメタクリレート、ポリアクリロニトリル、セルロースアセテート、セルロースアセテートプロピオネートなどの有機粒子が挙げられる。中でも、有機粒子が好ましい。
 紫外線吸収剤としては、例えば、オキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体などが挙げられる。好適な紫外線吸収剤の例としては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノンが挙げられ、特に好適なものとしては、2,2’-メチレンビス(4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノールが挙げられる。
 樹脂p1のガラス転移温度は、好ましくは115℃以上、より好ましくは118℃以上、さらにより好ましくは120℃以上である。樹脂p1はポリフェニレンエーテル及びポリスチレン系重合体を組み合わせて含むので、ポリスチレン系重合体のみを含む樹脂と比べて、ガラス転移温度を高めることができる。ガラス転移温度がこのように高いことにより、樹脂p1の配向緩和を低減することができるので、耐熱性に優れた位相差層を実現できる。また、樹脂p1のガラス転移温度の上限に特に制限は無いが、通常は200℃以下である。
 樹脂p1は、通常、ヘイズが小さい。これは、ポリフェニレンエーテル及びポリスチレン系重合体の分散性が優れるために、ポリフェニレンエーテルとポリスチレン系重合体とを容易に混練できるからである。具体的なヘイズの範囲は、位相差層に求められる透明性の程度に応じて設定してもよい。例えば厚み1mmでの樹脂p1のヘイズの値は、通常10%以下、好ましくは5%以下であり、理想的には0%である。
 [1-2.樹脂p2]
 樹脂p2は、脂環式構造含有重合体を含む。
 脂環式構造含有重合体は、重合体の繰り返し単位中に脂環式構造を有する重合体であり、主鎖に脂環式構造を有する重合体、及び、側鎖に脂環式構造を有する重合体のいずれを用いてもよい。脂環式構造含有重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、機械的強度、耐熱性などの観点から、主鎖に脂環式構造を含有する重合体が好ましい。
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度、耐熱性などの観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲であるときに、機械強度、耐熱性、及びフィルムの成形性が高度にバランスされ、好適である。
 脂環式構造含有重合体中の、脂環式構造を有する繰り返し単位の割合は、使用目的に応じて適宜選択してもよく、好ましくは30重量%以上、より好ましくは50重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造含有重合体中の脂環式構造を有する繰り返し単位の割合がこの範囲にあると、位相差層P2の耐熱性の観点から好ましい。
 脂環式構造含有重合体の例としては、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体、及び、これらの水素化物を挙げることができる。これらの中で、ノルボルネン系重合体は、透明性及び成形性が良好なため、好適である。
 ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体、若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体、又はそれらの水素化物;ノルボルネン構造を有する単量体の付加重合体、若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体、又はそれらの水素化物を挙げることができる。これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適である。ここで「(共)重合体」とは、重合体及び共重合体のことをいう。
 また、脂環式構造を有する重合体は、例えば特開2002-321302号公報に開示されている公知の重合体から選択しうる。
 ノルボルネン系重合体の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系重合体の繰り返し単位全体に対して90重量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる光学積層体を得ることができる。
 繰り返し単位Xを与える単量体の例としては、ノルボルネン環に五員環が結合した構造を有するノルボルネン系単量体が挙げられる。そのような単量体のより具体的な例としては、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)及びその誘導体(環に置換基を有するもの)、並びに7,8-ベンゾトリシクロ[4.3.0.10,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)及びその誘導体が挙げられる。
 繰り返し単位Yを与える単量体の例としては、テトラシクロ[4.4.0.12,5.17,10]デカ-3,7-ジエン(慣用名:テトラシクロドデセン)及びその誘導体(環に置換基を有するもの)が挙げられる。
 このようなノルボルネン系重合体を得る手段の例としては、具体的にはa)繰り返し単位Xを与える単量体及び繰り返し単位Yを与える単量体との共重合において、単量体の仕込み比を適宜制御し、上記好ましいX:Yの重量比の重合体を得、さらに必要に応じて重合体中の不飽和結合を水素化する方法、及びb)繰り返し単位Xを有する重合体と、繰り返し単位Yを有する重合体とを、所望の割合で混合する方法が挙げられる。
 脂環式構造含有重合体のガラス転移温度は、好ましくは115℃以上、より好ましくは120℃以上である。また、脂環式構造含有重合体のガラス転移温度の上限に特に制限は無いが、好ましくは200℃以下である。このような範囲のガラス転移温度とすることにより、樹脂p2の配向緩和を低減することができるので、耐熱性に優れた位相差層を実現できる。
 脂環式構造含有重合体の分子量は、溶媒としてシクロヘキサン(重合体が溶解しない場合はトルエン)を用いたゲル・パーミエーション・クロマトグラフィー(以下、「GPC」と略す。)で測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常5,000~100,000、好ましくは8,000~80,000、より好ましくは10,000~50,000である。重量平均分子量がこのような範囲にあるときに、光学積層体の機械的強度及び成形加工性が高度にバランスされ好適である。
 脂環式構造含有重合体の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は特に制限されないが、好ましくは1.0~10.0、より好ましくは1.0~4.0、さらにより好ましくは1.2~3.5の範囲である。
 脂環式構造含有重合体は、その分子量2,000以下の樹脂成分(すなわち、オリゴマー成分)の含有量が好ましくは5重量%以下、より好ましくは3重量%以下、さらにより好ましくは2重量%以下である。オリゴマー成分の量が多いと樹脂積層体を延伸する際に、表面に微細な凹凸が発生したり、厚さムラを生じたりして面精度が悪くなる。
 オリゴマー成分の量を低減するためには、重合触媒や水素化触媒の選択、重合、水素化などの反応条件、樹脂を成形用材料としてペレット化する工程における温度条件、などを最適化すればよい。オリゴマーの成分量は、シクロヘキサン(重合体が溶解しない場合はトルエン)を用いたゲル・パーミエーション・クロマトグラフィーによって測定することができる。
 樹脂p2は、本発明の効果を著しく損なわない限り、脂環式構造含有重合体以外にも任意成分を含んでいてもよい。任意成分の例としては、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、ブロッキング防止剤、防曇剤、離型剤、顔料、有機又は無機の充填材、中和剤、滑剤、分解剤、金属不活性化剤、汚染防止材、抗菌剤やその他の樹脂、及び熱可塑性エラストマーを挙げることができる。任意成分の添加量は、本発明の効果を損なわない範囲としうる。具体的には、任意成分の添加量は、脂環式構造含有重合体100重量部に対して、通常0~5重量部、好ましくは0~3重量部である。
 [1-3.光学積層体の性質等]
 本発明の光学積層体は、樹脂p1からなる位相差層P1と、樹脂p2からなる位相差層P2とを備える。このような、樹脂p1及びp2からなる層であって位相差層としての性質を有する層は、樹脂p1の層及び樹脂p2の層のそれぞれを延伸してから貼合することにより得ることができる。具体的な製造方法は後述する。
 位相差層P1のNZ係数NZP1は、NZP1<0である。樹脂p1として上に述べた所定のものを用いることにより、NZP1が当該範囲内である位相差層P1を容易に得ることができる。NZP1を当該範囲内とすることにより、所望の光学的性質を有する光学積層体を得ることができる。
 一方位相差層P2のNZ係数NZp2は、NZp2>0.5としうる。
 本発明の光学積層体は、その入射角0°におけるレターデーションReと入射角40°におけるレターデーションR40とが0.92≦R40/Re≦1.08の関係を満たす。当該関係を満たすことにより、良好な視野角補償性能を達成することができる。本発明の光学積層体は、樹脂p1として上記所定のものを用いることにより、このような関係を満たしながら、且つ薄い光学積層体としうる。
 位相差層P1は、厚さが薄く、且つ厚み方向のレターデーションRth(P1)が小さいものであることが、薄く且つ視野角補償性能が高い光学積層体を得る上で好ましい。具体的には、位相差層P1の厚さは、好ましくは15μm以下、より好ましくは12μm以下である。厚さの下限は、特に限定されないが、例えば5μm以上とすることができる。
 位相差層P1の厚み方向のレターデーションRth(P1)は、好ましくは-50nm以下、より好ましくは-60nm以下である。Rth(P1)の下限は、特に限定されないが、例えば-200nm以上とすることができる。
 このような薄さ、及び小さいRth(P1)を有する位相差層P1は、樹脂p1として上に述べた所定のものを用いることにより容易に得ることができる。
 一方位相差層P2の厚みは、30μm以下としうる。位相差層P2の厚みの下限は、特に限定されないが、例えば10μm以上としうる。
 本発明の光学積層体においては、前記位相差層P1の面内レターデーションRe(P1)及び厚み方向レターデーションRth(P1)、並びに前記位相差層P2の面内レターデーションRe(P2)及び厚み方向レターデーションRth(P2)が、下記式(1)及び式(2)を満たすことが好ましい。
 Re(P1)+Re(P2)≧100nm   式(1)
 -50nm≦Rth(P1)+Rth(P2)≦50nm   式(2)
 位相差層P1及びP2のレターデーションが式(1)及び式(2)を満たすことにより、良好な視野角補償性能を達成することができる。本願においては、樹脂p1及び樹脂p2として上に述べた所定のものを用い、さらにこれらを別々に延伸してから貼合することにより、式(1)及び式(2)を満たす光学積層体を容易に製造しうる。
 本発明の光学積層体全体の面内リターデーションReのバラツキは、好ましくは10nm以内、より好ましくは5nm以内、さらにより好ましくは2nm以内である。面内リターデーションReのバラツキを、前記範囲にすることにより、液晶表示装置用の位相差フィルムとして用いた場合に表示品質を良好なものにすることが可能になる。ここで、面内リターデーションReのバラツキは、光入射角0°(入射光線と本発明の積層体表面が直交する状態)の時の正面リターデーションを光学積層体の幅方向に測定したとき(即ち、光学積層体の幅方向に平行な1本の線上の複数の点において測定を行ったとき)の、その正面リターデーション測定値の最大値と最小値との差である。
 本発明の光学積層体は、面内方向の遅相軸のバラツキが±5°以内であることが好ましく、±3°以内であることがより好ましく、±1°以内であることがさらに好ましい。
 面内方向の遅相軸のばらつきを上記範囲にすることにより、本発明の光学積層体を位相差フィルムとして、偏光板と貼り合わせて液晶表示装置に用いた際に、色むらや色ぬけのない良好な液晶表示を提供することができる。
 遅相軸のバラツキは、遅相軸を数点測定したときの測定値の算術平均値に対する各測定値のばらつきとする。
 本発明の光学積層体においては、位相差層P1の遅相軸と、位相差層P2の遅相軸との交差角が、好ましくは0°±10°、より好ましくは0°±5°であることが好ましい。
 遅相軸の交差角を上記範囲になるように積層することにより、光学積層体を液晶表示装置に組み込んだ際、光漏れを低減すると共に、視野角補償性能を良好なものにすることが可能になる。
 本発明の光学積層体において、JIS K7128-1に準拠して測定される引裂き強度が好ましくは2N/mm以上、さらに好ましくは2.5N/mm以上である。こうすることにより、光学積層体が偏光板と貼りあわせる際に裂けないようにすることができ、歩留まりを向上できる。引裂き強度の上限は、特に限定されないが、例えば50N/mm以下としうる。
 本発明の光学積層体は、容易に製造が可能で、複屈折の高度な補償が可能なので、視野角依存性に優れる位相差板として、またはこの光学積層体に偏光分離層を積層して輝度向上フィルムとして、液晶表示装置、有機EL表示装置などの表示装置に広く応用可能である。
 [1-4.光学積層体の製造方法]
 本発明の光学積層体は、下記工程(i)~(v)を含む製造方法(以下、単に「本発明の製造方法」という)によって製造しうる。
 工程(i):樹脂p1と、(メタ)アクリル重合体を含む樹脂p3とを共押し出しして、延伸前フィルムPF(I)を得る工程。
 工程(ii):延伸前フィルムPF(I)を延伸し、樹脂p1からなる位相差層P1及び樹脂p3からなる保護層P3を含む延伸複層フィルムF(I)を得る工程。
 工程(iii):脂環式構造含有重合体を含む樹脂p2を押し出して、延伸前フィルムPF(II)を得る工程。
 工程(iv):延伸前フィルムPF(II)を延伸し、位相差層P2のフィルムF(II)を得る工程。
 工程(v):位相差層P1と位相差層P2とを貼合する工程。
 本発明の製造方法は、さらに、
 工程(vi):位相差層P1から保護層P3を剥離する工程。
 を含みうる。
 [1-5.樹脂p3]
 樹脂p3は、(メタ)アクリル重合体を含む樹脂である。(メタ)アクリル重合体とは、(メタ)アクリル酸又は(メタ)アクリル酸誘導体の重合体を意味する。(メタ)アクリル重合体としては、例えば、アクリル酸、アクリル酸エステル、アクリルアミド、アクリロニトリル、メタクリル酸およびメタクリル酸エステルなどの単独重合体及び共重合体が挙げられる。(メタ)アクリル重合体は強度が高く硬いため、保護層P3によって位相差層P1を適切に保護できるので、延伸前フィルムPF(I)を延伸する際の破断を防止できる。
 (メタ)アクリル重合体としては、(メタ)アクリル酸エステルを重合して形成される構造単位を含む重合体が好ましい。(メタ)アクリル酸エステルとしては、例えば(メタ)アクリル酸のアルキルエステルが挙げられる。なかでも、(メタ)アクリル酸と炭素数1~15のアルカノール又はシクロアルカノールから誘導される構造のものが好ましく、炭素数1~8のアルカノールから誘導される構造のものがより好ましい。炭素数を前記のように小さくすることにより、光学積層体の破断時の伸びを大きくすることができる。
 アクリル酸エステルの具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸sec-ブチル、アクリル酸t-ブチル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸n-オクチル、アクリル酸2-エチルヘキシル、アクリル酸n-デシル、アクリル酸n-ドデシルなどが挙げられる。
 また、メタクリル酸エステルの具体例としては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル、メタクリル酸n-ヘキシル、メタクリル酸n-オクチル、メタクリル酸2-エチルヘキシル、メタクリル酸n-デシル、メタクリル酸n-ドデシルなどが挙げられる。
 さらに、前記の(メタ)アクリル酸エステルは、本発明の効果を著しく損なわない範囲であれば、例えば水酸基、ハロゲン原子などの置換基を有していてもよい。そのような置換基を有する(メタ)アクリル酸エステルの例としては、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、メタクリル酸3-クロロ-2-ヒドロキシプロピル、メタクリル酸グリシジルなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、(メタ)アクリル重合体は、(メタ)アクリル酸又は(メタ)アクリル酸誘導体のみの重合体であってもよく、(メタ)アクリル酸又は(メタ)アクリル酸誘導体とこれに共重合可能な単量体との共重合体でもよい。共重合可能な単量体としては、例えば、(メタ)アクリル酸エステル以外のα,β-エチレン性不飽和カルボン酸エステル単量体、並びに、α,β-エチレン性不飽和カルボン酸単量体、アルケニル芳香族単量体、共役ジエン単量体、非共役ジエン単量体、カルボン酸不飽和アルコールエステル、およびオレフィン単量体などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 (メタ)アクリル酸エステル以外のα,β-エチレン性不飽和カルボン酸エステル単量体の具体例としては、フマル酸ジメチル、フマル酸ジエチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジメチルなどが挙げられる。
 α,β-エチレン性不飽和カルボン酸単量体は、モノカルボン酸、多価カルボン酸、多価カルボン酸の部分エステル及び多価カルボン酸無水物のいずれでもよい。その具体例としては、クロトン酸、マレイン酸、フマル酸、イタコン酸、マレイン酸モノエチル、フマル酸モノn-ブチル、無水マレイン酸、無水イタコン酸などが挙げられる。
 アルケニル芳香族単量体の具体例としては、スチレン、α-メチルスチレン、メチルα-メチルスチレン、ビニルトルエンおよびジビニルベンゼンなどが挙げられる。
 共役ジエン単量体の具体例としては、1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン、2-クロル-1,3-ブタジエン、シクロペンタジエンなどが挙げられる。
 非共役ジエン単量体の具体例としては、1,4-ヘキサジエン、ジシクロペンタジエン、エチリデンノルボルネンなどが挙げられる。
 カルボン酸不飽和アルコールエステル単量体の具体例としては、酢酸ビニルなどが挙げられる。
 オレフィン単量体の具体例としては、エチレン、プロピレン、ブテン、ペンテンなどが挙げられる。
 (メタ)アクリル重合体が共重合可能な単量体を含む場合、当該(メタ)アクリル重合体における(メタ)アクリル酸又は(メタ)アクリル酸誘導体を重合して形成される構造単位の含有量は、好ましくは50重量%以上、より好ましくは85重量%以上、特に好ましくは90重量%以上である。
 また、(メタ)アクリル重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 これらの(メタ)アクリル重合体のうち、ポリメタクリレートが好ましく、中でもポリメチルメタクリレートがより好ましい。
 樹脂p3は、ゴム粒子を含んでいてもよい。ゴム粒子を含むことにより、樹脂p3の可撓性を高め、耐衝撃性を向上させることができる。また、ゴム粒子によって保護層P3の表面に凹凸が形成され、当該保護層P3の表面における接触面積が減少するので、通常は、保護層P3の表面の滑り性を高めることができる。
 ゴム粒子を形成するゴムとしては、例えば、アクリル酸エステル重合体ゴム、ブタジエンを主成分とする重合体ゴム、エチレン-酢酸ビニル共重合体ゴム等が挙げられる。アクリル酸エステル重合体ゴムとしては、例えば、ブチルアクリレート、2-エチルヘキシルアクリレート等を単量体単位の主成分とするものが挙げられる。これらの中でも、ブチルアクリレートを主成分としたアクリル酸エステル重合体ゴム及びブタジエンを主成分とする重合体ゴムが好ましい。
 また、ゴム粒子には、2種類以上のゴムが含まれていてもよい。また、それらのゴムは、均一に混ぜ合わせられていてもよいが、層状になったものであってもよい。ゴムが層状になったゴム粒子の例としては、ブチルアクリレート等のアルキルアクリレートとスチレンとをグラフト化したゴム弾性成分からなるコアと、ポリメチルメタクリレート及びメチルメタクリレートの一方又は両方とアルキルアクリレートとの共重合体からなる硬質樹脂層(シェル)とが、コア-シェル構造で層を形成している粒子が挙げられる。
 ゴム粒子は、数平均粒子径が、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、0.3μm以下であることが好ましく、0.25μm以下であることがより好ましい。数平均粒子径を前記範囲内とすることにより、保護層P3の表面に適度な凹凸を形成して、積層体の滑り性を向上させることができる。
 ゴム粒子の量は、(メタ)アクリル重合体100重量部に対して、好ましくは5重量部以上であり、好ましくは50重量部以下である。ゴム粒子の量を前記範囲内とすることにより積層体の耐衝撃性を高めてハンドリング性を向上させることができる。
 また、樹脂p3は、本発明の効果を著しく損なわない限り、(メタ)アクリル重合体及びゴム粒子以外の成分を含んでいてもよい。例えば、(メタ)アクリル重合体以外に他の重合体を含んでいてもよい。ただし、本発明の利点を顕著に発揮させる観点からは、樹脂p3において(メタ)アクリル重合体以外の重合体の量は少ないことが好ましい。(メタ)アクリル重合体以外の重合体の具体的な量は、例えば(メタ)アクリル重合体100重量部に対して、10重量部以下が好ましく、5重量部以下がより好ましく、3重量部以下が更に好ましい。中でも、全く含まないことが特に好ましい。
 また、樹脂p3は、例えば配合剤などを含んでいてもよい。配合剤の例としては、樹脂p1が含んでいてもよい配合剤と同様の例が挙げられる。なお、配合剤は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、配合剤の量は、本発明の効果を著しく損なわない範囲で適宜定めることができる。
 樹脂p3のガラス転移温度は、通常90℃以上、好ましくは95℃以上、より好ましくは100℃以上であり、通常145℃以下、好ましくは140℃以下、より好ましくは135℃以下である。樹脂p3のガラス転移温度を前記範囲の下限値以上にすることにより樹脂ペレットを高温で乾燥する時のブロッキングを抑制できるので、水分の混入を防止でき、また、上限値以下にすることにより溶融押出で成形する際の温度を低くでき、フィルムに異物が混入することを防止できる。
 [1-6.工程(i):延伸前フィルムPF(I)]
 延伸前フィルムPF(I)は、樹脂p1と樹脂p3とを共押し出しして得られるフィルムであり、通常、これらの樹脂の層を有する複層構造のフィルムである。延伸前フィルムPF(I)は、樹脂p1の層を2層以上備えていてもよいが、通常は1層だけを備える。
 延伸前フィルムPF(I)における樹脂p1の層の厚みは、延伸後に所望のレターデーションが発現するように適切な厚みに設定しうる。延伸前フィルムPF(I)における樹脂p1の層の具体的な厚みは、十分なレターデーション及び機械的強度を得る観点からは、好ましくは10μm以上、より好ましくは20μm以上であり、柔軟性及びハンドリング性を良好にする観点からは、好ましくは200μm以下、より好ましくは100μm以下である。
 延伸前フィルムPF(I)は、樹脂p3の層を1層のみ備えていてもよいが、2層以上備えていてもよい。
 また通常、延伸前フィルムPF(I)は、長尺のフィルムとして用意される。延伸前フィルムを長尺のフィルムとすることにより、それを延伸したフィルムF(I)、及び製品たる光学積層体も長尺のフィルムとして製造することができる。ここで、フィルムが「長尺」とは、その幅に対して、少なくとも5倍以上の長さを有するものをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するものをいう。幅に対する長さの倍率の上限は、特に限定されないが、通常5000倍以下としうる。長尺のフィルムは製造ラインにおいて、長手方向に連続的に搬送しながら製造工程を行なうことができる。このため、位相差フィルムを製造する場合に、各工程の一部または全部をインラインで行うことが可能であるので、製造を簡便且つ効率的に行なうことができる。
 延伸前フィルムPF(I)において、樹脂p1の層の厚みのばらつきは全面で1μm以下であることが好ましい。これにより、位相差フィルムの色調のばらつきを小さくできる。また、位相差フィルムの長期使用後の色調変化を均一にできるようになる。
 樹脂p1の層の厚みのばらつきを全面で1μm以下とするためには、例えば共押出成形法を用いる場合には、(1)押出機内に目開きが20μm以下のポリマーフィルターを設ける;(2)ギヤポンプを5rpm以上で回転させる;(3)ダイス周りに囲い手段を配置する;(4)エアギャップを200mm以下とする;(5)フィルムを冷却ロール上にキャストする際にエッジピニングを行う;および(6)押出機として二軸押出機又はスクリュー形式がダブルフライト型の単軸押出機を用いる;を行うようにしてもよい。
 樹脂p1の層の厚みは、市販の接触式厚み計を用いて、フィルムの総厚を測定し、次いで厚み測定部分を切断し断面を光学顕微鏡で観察して、各層の厚み比を求めて、その比率より計算できる。また以上の操作をフィルムの長手方向及び幅方向において一定間隔毎に行い、厚みの平均値Taveおよびばらつきを求めることができる。
 ここで、厚みのばらつき(μm)は、Tave-Tmin、及びTmax-Taveのうちの大きい方をいう。また、Taveは上記で測定した測定値の算術平均値を表し、Tmaxは測定した厚みTの内の最大値を表し、Tminは最小値を表す。
 また、延伸前フィルムPF(I)中の残留溶剤の含有量は少なくすることが好ましい。そのための手段としては、(1)原料となる樹脂の残留溶剤を少なくする;(2)延伸前フィルムを成形する前に樹脂を予備乾燥する;などの手段が挙げられる。予備乾燥は、例えば樹脂をペレットなどの形態にして、熱風乾燥機などで行われる。乾燥温度は100℃以上が好ましく、乾燥時間は2時間以上が好ましい。予備乾燥を行うことにより、延伸前フィルムに含まれる残留溶剤を低減させることができ、さらに押し出されたシート状の樹脂の発泡を防ぐことができる。
 樹脂p1と樹脂p3との共押し出しの具体的な方法の例としては、例えば、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等が挙げられるが、なかでも共押出Tダイ法が好ましい。また、共押出Tダイ法にはフィードブロック方式およびマルチマニホールド方式があるが、厚さのばらつきを少なくできる点でマルチマニホールド方式が特に好ましい。
 共押出Tダイ法を採用する場合、Tダイを有する押出機における樹脂の溶融温度は、樹脂p1及び樹脂p3のガラス転移温度よりも、80℃高い温度以上にすることが好ましく、100℃高い温度以上にすることがより好ましく、また、180℃高い温度以下にすることが好ましく、150℃高い温度以下にすることがより好ましい。押出機での溶融温度を前記範囲の下限値以上にすることにより樹脂の流動性を十分に高くでき、上限値以下とすることにより樹脂が劣化を防止できる。
 押出成形法ではダイスの開口部から押出されたシート状の溶融樹脂を冷却ドラムに密着させる。溶融樹脂を冷却ドラムに密着させる方法は、特に制限されず、例えば、エアナイフ方式、バキュームボックス方式、静電密着方式などが挙げられる。
 冷却ドラムの数は特に制限されないが、通常は2本以上である。また、冷却ドラムの配置方法としては、例えば、直線型、Z型、L型などが挙げられるが特に制限されない。またダイスの開口部から押出された溶融樹脂の冷却ドラムへの通し方も特に制限されない。
 冷却ドラムの温度により、押出されたシート状の樹脂の冷却ドラムへの密着具合が変化する。冷却ドラムの温度を上げると密着はよくなるが、温度を上げすぎるとシート状の樹脂が冷却ドラムから剥がれずに、ドラムに巻きつく不具合が発生するおそれがある。そのため、冷却ドラムの温度は、好ましくはダイスから押し出されてドラムに接触する層の樹脂のガラス転移温度をTgとすると、(Tg+30)℃以下、さらに好ましくは(Tg-5)℃~(Tg-45)℃の範囲にする。そうすることにより滑りやキズなどの不具合を防止することができる。
 [1-7.工程(ii):延伸複層フィルムF(I)]
 延伸前フィルムPF(I)を延伸することにより、樹脂p1からなる位相差層P1及び樹脂p3からなる保護層P3を含む延伸複層フィルムF(I)が得られる。比較的強度が低い位相差層P1に接して、強度が高い保護層P3が設けられているので、延伸による破断を生じることなく延伸を実行できる。また、位相差層P1が保護層P3で保護されるため、位相差層P1と保護層P3との境界においては位相差層P1の成分がブリードアウトを生じることはない。したがって、インラインで光学積層体を安定的に製造できるので、長尺の光学積層体の効率的な製造が可能になる。
 延伸の操作としては、例えば、ロール間の周速の差を利用して長手方向に一軸延伸する方法(縦一軸延伸);テンターを用いて幅方向に一軸延伸する方法(横一軸延伸);縦一軸延伸と横一軸延伸とを順に行う方法(逐次二軸延伸);延伸前フィルムの長手方向に対して斜め方向に延伸する方法(斜め延伸);等を採用してもよい。
 延伸する際のフィルム温度は、樹脂p1のガラス転移温度をTg(℃)とすると、Tg-20~Tg+20℃であることが好ましく、Tg-5~Tg+5℃であることがより好ましい。また、延伸倍率は、例えば1.5~8.0倍としうる。延伸の回数は、1回でもよく、2回以上であってもよい。
 また、延伸前フィルムPF(I)から延伸複層フィルムF(I)を製造する際には、上述した以外の工程を行ってもよい。
 例えば、延伸される前に延伸前フィルムPF(I)に対して予熱処理を施してもよい。延伸前フィルムを加熱する手段としては、例えば、オーブン型加熱装置、ラジエーション加熱装置、又は液体中に浸すことなどが挙げられる。中でもオーブン型加熱装置が好ましい。予熱工程における加熱温度は、通常は延伸温度-40℃以上、好ましくは延伸温度-30℃以上であり、通常は延伸温度+20℃以下、好ましくは延伸温度+15℃以下である。なお延伸温度とは、加熱装置の設定温度を意味する。
 また、例えば、得られた光学積層体に対して固定化処理を施してもよい。固定処理における温度は、通常は室温以上、好ましくは「延伸温度-40℃」以上であり、通常「延伸温度+30℃」以下、好ましくは「延伸温度+20℃」以下である。
 さらに、必要に応じて、光学積層体の保護及び取り扱い性の向上のため、例えばマット層、ハードコート層、反射防止層、防汚層等の他のフィルムを貼り合せてもよい。
 [1-8.工程(iii)及び(iv):延伸前フィルムPF(II)及びフィルムF(II)]
 工程(iii)では、樹脂p2を押し出して、延伸前フィルムPF(II)を得る。押し出し温度は、樹脂p2のガラス転移温度に応じて適宜選択され得る。延伸前フィルムPF(II)の厚さは、延伸後の位相差層P2の厚さが所望の厚さとなるよう適宜調整し得る。延伸前フィルムPF(I)同様延伸前フィルムPF(II)も、通常、長尺のフィルムとして用意される。
 工程(iv)では、延伸前フィルムPF(II)を延伸し、位相差層P2のフィルムF(II)を得る。延伸は、通常、一軸延伸により行ないうる。延伸の具体的な方法は特に制限はなく、工程(ii)で挙げた方法と同様の方法を採用し得る。
 工程(iv)における延伸温度は、樹脂p2のガラス転移温度をTgとすると、好ましくは(Tg-30℃)から(Tg+60℃)の間、より好ましくは(Tg-10℃)から(Tg+50℃)の温度範囲である。また、延伸倍率は、通常1.01~30倍、好ましくは1.01~10倍、より好ましくは1.01~5倍である。工程(iv)における延伸条件は、得られる光学積層体が所望の位相差を有するように適宜調整しうる。
 [1-9.工程(v)]
 工程(v)では、位相差層P1と位相差層P2とを貼合する。即ち、延伸複層フィルムF(I)とフィルムF(II)とを、位相差層P1と位相差層P2とが貼合するような態様で貼合する。従って、例えば延伸複層フィルムF(I)の両面に保護層P3が存在する場合には、それらのうち少なくとも一方を剥離してから貼合を行う。
 工程(v)における貼合は、接着剤や粘着剤等の適宜な接着手段を用いて行いうる。接着剤又は粘着剤としては、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等が挙げられる。これらの中でも、耐熱性や透明性等の観点から、アクリル系のものが好ましい。
 工程(v)における貼合は、ロールトゥーロールで行いうる。即ち、長尺の延伸複層フィルムF(I)と、長尺のフィルムF(II)とを、それぞれ繰り出し、接着剤又は粘着剤の塗布、貼合の操作を連続的に行い、長尺の貼合物を得ることができる。かかる態様の貼合により、効率的な製造を行いうる。
 工程(v)における貼合は、延伸複合フィルム(I)中の位相差層P1の遅相軸と、位相差層P2の遅相軸との交差角が、好ましくは0°±10°、より好ましくは0°±5°となるように行う。
 このような角度の貼合は、工程(ii)及び工程(iv)の延伸において、長尺のフィルムの長手方向に対するそれぞれの遅相軸が所定の方向となるよう延伸を行い、工程(v)でロールトゥーロールの貼合を行うことにより達成しうる。但しこれには限られず、延伸複合フィルムF(I)とフィルムF(II)とを、長手方向を揃えない角度で貼合して、遅相軸を揃えるよう製造を行ってもよい。
 [1-10.工程(vi)]
 工程(vi)では、位相差層P1から保護層P3を剥離する。工程(vi)は、実行可能な任意の段階において行ないうる。例えば、工程(ii)の終了後から、工程(v)の終了後までの任意の段階において行いうる。または、本発明の光学積層体を、他の部材(偏光板等)と貼合した後に行うこともできる。前述のとおり、保護層P3を設けることにより、破断を生じること無く良好な延伸を実行できるが、光学積層体の使用においては、保護層P3が不要である場合がある。その場合、工程(vi)を行うことにより、良好な延伸を実現しながら、且つ薄い光学積層体を得ることができる。
 本発明の製造方法により得られる光学積層体は、長尺の形状を有するものとしうる。このような光学積層体は、位相差層P1として長尺の形状を有する層を含み、且つ位相差層P2として長尺の形状を有する層を含むものとしうる。このような光学積層体は、延伸前フィルムPF(I)及び延伸前フィルムPF(II)を長尺のフィルムとして用意し、これらを延伸して延伸複層フィルムF(I)及びフィルムF(II)を長尺のフィルムとして得て、これらを工程(v)においてロールトゥーロールの貼合に用いることにより製造しうる。
 長尺の形状を有する光学積層体を製造する場合、かかる長尺の光学積層体において、位相差層P1がその幅方向に遅相軸を有し、位相差層P2もその幅方向に遅相軸を有することが好ましい。このような態様の光学積層体は、偏光板の視野角補償層として好ましく用いうる。
 [2.偏光板複合体]
 本発明の偏光板複合体は、前記本発明の光学積層体と、偏光子とを備える。
 偏光子としては、例えばポリビニルアルコールや部分ホルマール化ポリビニルアルコール等の従来に準じた適宜なビニルアルコール系ポリマーよりなるフィルムに、ヨウ素や二色性染料等よりなる二色性物質による染色処理、延伸処理、架橋処理等の適宜な処理を適宜な順序や方式で施したもので、自然光を入射させると直線偏光を透過する適宜なものを用いることができる。特に、光透過率や偏光度に優れるものが好ましい。偏光子の厚さは、5~80μmが一般的であるが、これに限定されない。
 偏光子は、前記本発明の光学積層体の位相差層P1側および位相差層P2側のいずれに設けられていてもよいが、位相差層P2側に設けられることが好ましい。偏光子は位相差層P1または位相差層P2上に直接接して設けられていてもよいが、他の層を介して設けられていてもよい。例えば、通常の偏光板は、偏光子と、その片面又は両面に設けられた保護層とからなる構造を有するので、偏光子は、かかる保護層を介して、位相差層P1または位相差層P2上に設けられていてもよい。
 保護層の素材としては、適宜な透明フィルムを用いることができる。中でも、透明性や機械的強度、熱安定性や水分遮蔽性等に優れるポリマーからなるフィルム等が好ましく用いられる。そのポリマーとしては、トリアセチルセルロースの如きアセテート系樹脂やポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、脂環式構造を有する重合体樹脂、アクリル系樹脂等があげられるが、中でも複屈折が小さい点で、アセテート系樹脂又は脂環式構造を有する重合体樹脂が好ましく、透明性、低吸湿性、寸法安定性、軽量性などの観点から、脂環式構造を有する重合体樹脂が特に好ましい。
 保護層の厚さは、任意であるが一般には偏光板の薄型化などを目的に500μm以下、好ましくは5~300μm、特に好ましくは5~150μmである。
 偏光子又は偏光板は、接着剤又は粘着剤の層を介して、位相差層P2上に貼合することにより設けうる。接着剤又は粘着剤としては、例えば、アクリル系、シリコーン系、ポリエステル系、ポリウレタン系、ポリエーテル系、ゴム系等が挙げられる。これらの中でも、耐熱性や透明性等の観点から、アクリル系のものが好ましい。
 偏光板複合体において、光学積層体の遅相軸と偏光子の透過軸とが、平行若しくは直交となることが好ましい。このような偏光板複合体は、長手方向に対する遅相軸及び透過軸の向きが所望の状態となった長尺の光学積層体及び偏光板を調製し、これらをロールトゥーロールで貼り合わせることにより、効率的に製造しうる。
 本発明の偏光板複合体の厚さは、通常100~700μm、好ましくは200~600μmである。
 [3.用途:液晶表示装置]
 本発明の光学積層体及び本発明の偏光板複合体は、液晶表示装置の構成要素として好ましく用いうる。例えば、本発明の光学積層体を、液晶表示装置の液晶セルの一方又は両方の面側に設けることができる。具体的には、偏光板と液晶セルとの間に光学積層体を配置する態様;又は偏光板の液晶セルと反対側の面上に光学積層体を配置する態様が挙げられる。本発明の光学積層体及び偏光板積層体は、長尺のものである場合、適当な大きさに裁断してから液晶表示装置に組み込みうる。
 本発明の液晶表示装置は、偏光板を液晶セルの片側又は両側に配置してなる透過型や反射型、あるいは透過・反射両用型等の従来に準じた適宜な構造を有するものとして形成することができる。液晶セルに使用する液晶モードとしては、TN(Twisted Nematic)型、STN(Super Twisted Nematic)型、HAN(Hybrid Alignment Nematic)型、VA(Vertical Alignment)、MVA(Multiple Vertical Alignment)型、IPS(In Plane Switching)型、OCB(Optical Compensated Bend)型、などが挙げられる。
 好ましい例において、本発明の液晶表示装置は、入射側偏光子、液晶セル、出射側偏光子をこの順に備えるIPSモードの液晶表示装置であって、入射側偏光子および出射側偏光子の少なくとも一方と液晶セルの間に、前記本発明の光学積層体を備える。この例において、光学積層体において位相差層P1の遅相軸と位相差層P2の遅相軸との交差角が0°±10°であり、且つ光学積層体の位相差層P1が液晶セル側に配置されていることが、特に好ましい。このような構成を有することにより、位相差層と偏光子との接着性を高いものとできる。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下に示す実施例に限定されるものではなく、本発明の特許請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 また、以下の説明において、量を表す「%」及び「部」は、別に断らない限り重量基準である。
 さらに、以下に説明する操作は、別に断らない限り、常温及び常圧の条件において行った。
 [評価方法の説明]
 (1)ガラス転移温度
 JIS K7121に基づいて示差走査熱量分析法(DSC)を用いて20℃/分で昇温して測定した。
 (2)フィルム又は積層体の厚さ
 フィルム又は積層体の断面を光学顕微鏡で観察して測定した。積層体については各層毎に測定した。
 (3)レターデーション及びNZ係数
 AXOMETRICS社製「AxoScan」を用いて、測定波長550nmにおいて測定した。
 (4)コントラスト
 タブレットデバイス(商品名「iPad」、第2世代、アップル社製)のLCDパネルから偏光板、位相差フィルムを除去し、その代わりに評価する偏光板複層体を、光学用透明粘着シート(日東電工社製「LUCIACS CS9621T」)を介して貼合した。
 装置を起動し、明表示、暗表示での輝度を、方位角0~360°、極角0~80°の範囲で、それぞれ5°刻みで走査し、測定した。
 各視野角での測定値について、明表示の輝度を暗表示の輝度で除したものを、その視野角でのコントラストとし、上記視野角走査範囲内で最低のものを、コントラストの指標とした。
 (実施例1)
 (1-1.樹脂p1のペレット)
 シンジオタクチックポリスチレン(出光興産社製「130-ZC」、ガラス転移温度98℃、結晶化温度140℃)70重量%とポリ(2,6-ジメチル-1,4-フェニレンオキサイド)(アルドリッチ社カタログNo.18242-7)30重量%とを2軸押出機で混錬し、透明な樹脂p1のペレットを得た。得られた樹脂p1のガラス転移温度は125℃であった。
 (1-2.延伸前フィルムPF(I))
 二種二層の共押出成形用のフィルム成形装置を準備し、樹脂p1のペレットを、ダブルフライト型のスクリューを備えた一方の一軸押出機に投入して、溶融させた。
 耐衝撃性ポリメチルメタクリレート樹脂p3(住友化学社製「スミペックスHT55X」)のペレットをダブルフライト型のスクリューを備えたもう一方の一軸押出機に投入して、溶融させた。
 溶融された290℃の樹脂p1を目開き10μmのリーフディスク形状のポリマーフィルターを通してマルチマニホールドダイ(ダイスリップの表面粗さRa:0.1μm)の一方のマニホールドに、溶融された260℃の樹脂p3を目開き10μmのリーフディスク形状のポリマーフィルターを通してもう一方のマニホールドに、それぞれ供給した。
 樹脂p1および樹脂p3を該マルチマニホールドダイから280℃で同時に押し出しフィルム状に成形した。成形されたフィルム状溶融樹脂を表面温度110℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、樹脂p1からなる層(厚さ26μm)と樹脂p3からなる層(厚さ65μm)とからなる、厚さ91μmの延伸前フィルムPF(I)を得た。
 (1-3.延伸複層フィルムF(I))
 得られた延伸前フィルムPF(I)を、樹脂p1のガラス転移温度と等しい125℃で、同時二軸延伸機(東洋精機社製)を用いてMD方向に2.0倍、TD方向に1.3倍、同時二軸延伸し、樹脂p1からなる位相差層P1及び前記樹脂p3からなる保護層P3を含み、Re60nm、Rth-90nmの延伸複層フィルムF(I)を得た。位相差層P1と保護層P3とは剥離可能であり、位相差層P1の厚みは10μm、P3層の厚みは25μmであった。
 得られたフィルムF(I)の一部を切り出し、これから、保護層P3を剥離して試料を得た。この試料の、位相差層P1のNZ係数NZP1、面内レターデーションRe(P1)、及び厚み方向レターデーションRth(P1)を測定した。その結果、NZP1=-1.0、Re(P1)=60nm、Rth(P1)=-90nmであった。
 (1-4.フィルムF(II))
 単層のフィルム成形装置を用意した。ノルボルネン系重合体p3(日本ゼオン社製「ZEONOR1420」、ガラス転移温度140℃)のペレットを、フィルム成形装置のダブルフライト型のスクリューを備えた一軸押出機に投入して260℃で溶融し、目開き10μmのリーフディスク形状のポリマーフィルターを通して260℃に温調されたダイ(ダイスリップの表面粗さRa:0.1μm)でフィルム状に成形した。
 成形されたフィルム状溶融樹脂を表面温度120℃に調整された冷却ロールにキャストし、次いで表面温度50℃に調整された2本の冷却ロール間に通して、厚み60μmの延伸前フィルムPF(II)を得た。
 得られた延伸前フィルムPF(II)を、ノルボルネン系樹脂のガラス転移温度と等しい140℃で、同時二軸延伸機(東洋精機社製)を用いてTD方向に3.0倍で一軸延伸(MD方向の倍率は1.0倍)し、Re90nm、Rth80nm、厚み20μmの位相差層P2のフィルムF(II)を得た。
 得られたフィルムF(II)を試料とし、位相差層P2の面内レターデーションRe(P2)、及び厚み方向レターデーションRth(P2)を測定した。その結果、Re(P2)=90nm、Rth(P2)=80nmであった。
 (1-5.保護層付き光学積層体)
 (1-3)で得た延伸複層フィルムF(I)の位相差層P1側の面と、(1-4)で得たフィルムF(II)の一方の面とを貼合した。貼合は、光学用透明粘着シート(日東電工社製「LUCIACS CS9621T」)を介して、位相差層P1及びP2の遅相軸が同じ方向となるように行った。これにより、(保護層P3)/(位相差層P1)/(粘着シート層)/(位相差層P2)の層構成を有する、保護層付き光学積層体F(III)を得た。積層体F(III)の保護層P3は、位相差層P1から剥離可能な状態であった。
 得られた積層体F(III)の一部を切り出し、これから、保護層P3を剥離し、(位相差層P1)/(粘着シート層)/(位相差層P2)の層構成を有する、本発明の光学積層体の試料を得た。この試料の、入射角0°におけるレターデーションReと入射角40°におけるレターデーションR40とを測定したところ、Re=150nm、R40=145nmであった。
 さらに、当該試料を、80℃のオーブン中で500時間加温し、その後再びReを測定したところ、149nmであった。
 (1-6.偏光板複合体)
 (1-5)で得た保護層付き光学積層体F(III)の位相差層P2側の面と、偏光板(サンリッツ社製、LLC2-5618)とを、貼合した。貼合は、光学用透明粘着シート(日東電工社製「LUCIACS CS9621T」)を介して、積層体F(III)の遅相軸と偏光板の吸収軸とが直交するように行った。その後に、積層体F(III)の保護層P3を剥離して、偏光板複合体を得た。偏光板複合体は、(位相差層P1)/(粘着シート層)/(位相差層P2)/(粘着シート)/(偏光板)の層構成を有し、これらのうち、(位相差層P1)/(粘着シート層)/(位相差層P2)の部分が、本発明の光学積層体を構成していた。
 得られた偏光板複合体について、前記の方法でコントラストを評価した。
 (実施例2)
 下記の通りの変更を行った他は、実施例1と同一の操作を行い、偏光板複合体及びその構成要素を得て、評価した。
 ・(1-1)の樹脂p1のペレットの製造で、シンジオタクチックポリスチレン及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の添加量を、それぞれ74重量%及び26重量%に変更した。得られた樹脂p1のガラス転移温度は120℃であった。
 ・(1-3)の延伸複層フィルムF(I)の製造で、延伸温度を、樹脂p1のガラス転移温度と等しい120℃に変更した。さらに、(1-2)の延伸前フィルムPF(I)の製造で、樹脂p1および樹脂p3の押し出しの際の、樹脂p1の厚みを調整した。当該調整により、実施例1で行ったのと同じ延伸倍率による延伸で、Re(P1)及びRth(P1)の値を、実施例1と同じ値(60nm及び-90nm)とした。位相差層P1の厚みは8μmであった。
 (実施例3)
 下記の通りの変更を行った他は、実施例1と同一の操作を行い、偏光板複合体及びその構成要素を得て、評価した。
 ・(1-1)の樹脂p1のペレットの製造で、シンジオタクチックポリスチレン及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の添加量を、それぞれ66重量%及び34重量%に変更した。得られた樹脂p1のガラス転移温度は132℃であった。
 ・(1-3)の延伸複層フィルムF(I)の製造で、延伸温度を、樹脂p1のガラス転移温度と等しい132℃に変更した。さらに、(1-2)の延伸前フィルムPF(I)の製造で、樹脂p1および樹脂p3の押し出しの際の、樹脂p1の厚みを調整した。当該調整により、実施例1で行ったのと同じ延伸倍率による延伸で、Re(P1)及びRth(P1)の値を、実施例1と同じ値(60nm及び-90nm)とした。位相差層P1の厚みは15μmであった。
 (比較例1)
 下記の通りの変更を行った他は、実施例1と同一の操作を行い、偏光板複合体及びその構成要素を得て、評価した。
 ・(1-1)の樹脂p1のペレットの製造で、シンジオタクチックポリスチレン及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の添加量を、それぞれ100重量%及び0重量%に変更した。得られた樹脂p1のガラス転移温度は98℃であった。
 ・(1-3)の延伸複層フィルムF(I)の製造で、延伸温度を、樹脂p1のガラス転移温度と等しい98℃に変更した。さらに、(1-2)の延伸前フィルムPF(I)の製造で、樹脂p1および樹脂p3の押し出しの際の、樹脂p1の厚みを調整した。当該調整により、実施例1で行ったのと同じ延伸倍率による延伸で、Re(P1)及びRth(P1)の値を、実施例1と同じ値(60nm及び-90nm)とした。位相差層P1の厚みは5μmであった。
 (比較例2)
 下記の通りの変更を行った他は、実施例1と同一の操作を行い、偏光板複合体及びその構成要素を得て、評価した。
 ・(1-1)の樹脂p1のペレットの製造で、シンジオタクチックポリスチレン及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の添加量を、それぞれ85重量%及び15重量%に変更した。得られた樹脂p1のガラス転移温度は112℃であった。
 ・(1-3)の延伸複層フィルムF(I)の製造で、延伸温度を、樹脂p1のガラス転移温度と等しい112℃に変更した。さらに、(1-2)の延伸前フィルムPF(I)の製造で、樹脂p1および樹脂p3の押し出しの際の、樹脂p1の厚みを調整した。当該調整により、実施例1で行ったのと同じ延伸倍率による延伸で、Re(P1)及びRth(P1)の値を、実施例1と同じ値(60nm及び-90nm)とした。位相差層P1の厚みは7μmであった。
 (比較例3)
 下記の通りの変更を行った他は、実施例1と同一の操作を行い、偏光板複合体及びその構成要素を得て、評価した。
 ・(1-1)の樹脂p1のペレットの製造で、シンジオタクチックポリスチレン及びポリ(2,6-ジメチル-1,4-フェニレンオキサイド)の添加量を、それぞれ62重量%及び38重量%に変更した。得られた樹脂p1のガラス転移温度は138℃であった。
 ・(1-3)の延伸複層フィルムF(I)の製造で、延伸温度を、樹脂p1のガラス転移温度と等しい138℃に変更した。さらに、(1-2)の延伸前フィルムPF(I)の製造で、樹脂p1および樹脂p3の押し出しの際の、樹脂p1の厚みを調整した。当該調整により、実施例1で行ったのと同じ延伸倍率による延伸で、Re(P1)及びRth(P1)の値を、実施例1と同じ値(60nm及び-90nm)とした。位相差層P1の厚みは20μmであった。
 実施例及び比較例の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 [検討]
 表1に示される結果から明らかな通り、実施例1~3においては、ポリフェニレンエーテル:シンジオタクチックポリスチレン系重合体の比率が本願発明の要件を満たさない比較例1~3に比べて、優れた評価結果が得られた。具体的には、厚さが薄く、80℃×500時間の処理によるReの低下が少なく、且つコントラストの良好な表示装置を構成し得た。

Claims (13)

  1.  ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含む樹脂p1からなる位相差層P1と、
     脂環式構造含有重合体を含む樹脂p2からなる位相差層P2とを備える光学積層体であって、
     前記樹脂p1において、前記ポリフェニレンエーテルの含有量/前記ポリスチレン系重合体の含有量の重量比が、25/75より大きく、且つ35/65より小さく、
     前記位相差層P1のNZ係数NZP1が、NZP1<0であり、
     前記光学積層体の入射角0°におけるレターデーションReと入射角40°におけるレターデーションR40とが0.92≦R40/Re≦1.08の関係を満たす、光学積層体。
  2.  前記位相差層P1の面内レターデーションRe(P1)及び厚み方向レターデーションRth(P1)、並びに前記位相差層P2の面内レターデーションRe(P2)及び厚み方向レターデーションRth(P2)が、下記式(1)及び式(2):
     Re(P1)+Re(P2)≧100nm   式(1)
     -50nm≦Rth(P1)+Rth(P2)≦50nm   式(2)
     を満たす、請求項1に記載の光学積層体。
  3.  前記位相差層P1の厚さが15μm以下であり、厚み方向のレターデーションRth(P1)が-50nm以下である、請求項1又は2に記載の光学積層体。
  4.  前記ポリフェニレンエーテルの重量平均分子量が15,000~100,000であり、
     前記ポリスチレン系重合体の重量平均分子量が130,000~300,000である、請求項1~3のいずれか1項に記載の光学積層体。
  5.  前記位相差層P1の遅相軸と、前記位相差層P2の遅相軸との交差角が、0°±10°である、請求項1~4のいずれか1項に記載の光学積層体。
  6.  請求項1~5のいずれか1項に記載の光学積層体と、偏光子とを備える、偏光板複合体。
  7.  前記光学積層体の遅相軸と、前記偏光子の吸収軸とが直交する、請求項6に記載の偏光板複合体。
  8.  請求項6又は7に記載の偏光板複合体と、液晶セルとを備える、液晶表示装置。
  9.  入射側偏光子、液晶セル、出射側偏光子をこの順に備えるインプレーンスイッチングモードの液晶表示装置であって、
     前記液晶表示装置はさらに、前記入射側偏光子と前記液晶セルとの間の位置、前記出射側偏光子と前記液晶セルとの間の位置、またはこれらの両方の位置において、請求項5に記載の光学積層体を備え、
     前記光学積層体は、前記位相差層P1が前記液晶セル側に配置されている、インプレーンスイッチングモードの液晶表示装置。
  10.  請求項1~5のいずれか1項に記載の光学積層体の製造方法であって、
     ポリフェニレンエーテル及びシンジオタクチック構造を有するポリスチレン系重合体を含み、前記ポリフェニレンエーテルの含有量/前記ポリスチレン系重合体の含有量の重量比が25/75より大きく、且つ35/65より小さい樹脂p1と、(メタ)アクリル重合体を含む樹脂p3とを共押し出しして、延伸前フィルムPF(I)を得る工程と、
     前記延伸前フィルムPF(I)を延伸し、前記樹脂p1からなる位相差層P1及び前記樹脂p3からなる保護層P3を含む延伸複層フィルムF(I)を得る工程と、
     脂環式構造含有重合体を含む樹脂p2を押し出して、延伸前フィルムPF(II)を得る工程と、
     前記延伸前フィルムPF(II)を延伸し、位相差層P2のフィルムF(II)を得る工程と、
     前記位相差層P1と前記位相差層P2とを貼合する工程と
     を有する製造方法。
  11.  前記位相差層P1から前記保護層P3を剥離する工程をさらに含む、請求項10に記載の製造方法。
  12.  得られる前記光学積層体が、長尺の形状を有する前記位相差層P1及び長尺の形状を有する前記位相差層P2を含む、長尺の形状を有し、
     前記位相差層P1は、その幅方向に遅相軸を有し、
     前記位相差層P2は、その幅方向に遅相軸を有する、請求項10又は11に記載の製造方法。
  13.  請求項12に記載の製造方法で得られる長尺の光学積層体と、長尺の偏光子とをロールトゥーロールで貼合する工程を有する、長尺の偏光板複合体の製造方法。
PCT/JP2014/055643 2013-03-18 2014-03-05 光学積層体、偏光板複合体、液晶表示装置、及び製造方法 WO2014148261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015506691A JP6485348B2 (ja) 2013-03-18 2014-03-05 光学積層体、偏光板複合体、液晶表示装置、及び製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013055426 2013-03-18
JP2013-055426 2013-03-18

Publications (1)

Publication Number Publication Date
WO2014148261A1 true WO2014148261A1 (ja) 2014-09-25

Family

ID=51579950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055643 WO2014148261A1 (ja) 2013-03-18 2014-03-05 光学積層体、偏光板複合体、液晶表示装置、及び製造方法

Country Status (3)

Country Link
JP (1) JP6485348B2 (ja)
TW (1) TW201437032A (ja)
WO (1) WO2014148261A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703435A (zh) * 2018-09-28 2021-04-23 日本瑞翁株式会社 光学膜及其制造方法、光学层叠体以及液晶显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232873A (ja) * 2006-02-28 2007-09-13 Teijin Ltd 積層偏光フィルム、位相差フィルム、および液晶表示装置
WO2010035720A1 (ja) * 2008-09-29 2010-04-01 日本ゼオン株式会社 光学フィルム及び液晶表示装置
JP2010217870A (ja) * 2009-02-23 2010-09-30 Sumitomo Chemical Co Ltd 複合偏光板およびそれを用いたipsモード液晶表示装置
JP2011113004A (ja) * 2009-11-30 2011-06-09 Nippon Zeon Co Ltd 位相差フィルム
WO2012090791A1 (ja) * 2010-12-28 2012-07-05 日本ゼオン株式会社 位相差フィルム積層体及び位相差フィルム積層体の製造方法
JP2013190757A (ja) * 2012-03-15 2013-09-26 Nippon Zeon Co Ltd 光学フィルム、及び光学フィルムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232873A (ja) * 2006-02-28 2007-09-13 Teijin Ltd 積層偏光フィルム、位相差フィルム、および液晶表示装置
WO2010035720A1 (ja) * 2008-09-29 2010-04-01 日本ゼオン株式会社 光学フィルム及び液晶表示装置
JP2010217870A (ja) * 2009-02-23 2010-09-30 Sumitomo Chemical Co Ltd 複合偏光板およびそれを用いたipsモード液晶表示装置
JP2011113004A (ja) * 2009-11-30 2011-06-09 Nippon Zeon Co Ltd 位相差フィルム
WO2012090791A1 (ja) * 2010-12-28 2012-07-05 日本ゼオン株式会社 位相差フィルム積層体及び位相差フィルム積層体の製造方法
JP2013190757A (ja) * 2012-03-15 2013-09-26 Nippon Zeon Co Ltd 光学フィルム、及び光学フィルムの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703435A (zh) * 2018-09-28 2021-04-23 日本瑞翁株式会社 光学膜及其制造方法、光学层叠体以及液晶显示装置

Also Published As

Publication number Publication date
TW201437032A (zh) 2014-10-01
JPWO2014148261A1 (ja) 2017-02-16
JP6485348B2 (ja) 2019-03-20

Similar Documents

Publication Publication Date Title
JP7067600B2 (ja) 円偏光板、広帯域λ/4板及びその製造方法、並びに、有機エレクトロルミネッセンス表示装置
JP6168045B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、並びに位相差フィルムの製造方法
US9285525B2 (en) Organic EL display device
JP6729550B2 (ja) 位相差板及び位相差板の製造方法
WO2018159297A1 (ja) 光学異方性積層体、円偏光板、及び画像表示装置
JP5316421B2 (ja) 延伸フィルム、その製造方法、及び液晶表示装置
CN111868582B (zh) 光学各向异性层叠体、偏振片及图像显示装置
WO2015072486A1 (ja) 位相差フィルムの製造方法
JP2011039343A (ja) 位相差板の製造方法、位相差板、および偏光板
JP5891870B2 (ja) 光学フィルム、及び光学フィルムの製造方法
JP6303275B2 (ja) 位相差フィルム積層体、位相差フィルム積層体の製造方法、位相差フィルム、製造方法、及び用途
JP6485348B2 (ja) 光学積層体、偏光板複合体、液晶表示装置、及び製造方法
JP2010266723A (ja) 位相差フィルムの製造方法、位相差フィルム、円偏光フィルム、円偏光板、および液晶表示装置
JP2013011725A (ja) 複層フィルム及び複層フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14768534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015506691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14768534

Country of ref document: EP

Kind code of ref document: A1