WO2017170346A1 - 円偏光板及び画像表示装置 - Google Patents

円偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2017170346A1
WO2017170346A1 PCT/JP2017/012291 JP2017012291W WO2017170346A1 WO 2017170346 A1 WO2017170346 A1 WO 2017170346A1 JP 2017012291 W JP2017012291 W JP 2017012291W WO 2017170346 A1 WO2017170346 A1 WO 2017170346A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
film
image display
less
stretching
Prior art date
Application number
PCT/JP2017/012291
Other languages
English (en)
French (fr)
Inventor
孝央 小林
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN201780018791.2A priority Critical patent/CN109073806A/zh
Priority to JP2018509318A priority patent/JPWO2017170346A1/ja
Priority to US16/086,815 priority patent/US20190064413A1/en
Priority to KR1020187027523A priority patent/KR20180122644A/ko
Publication of WO2017170346A1 publication Critical patent/WO2017170346A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers

Definitions

  • the present invention relates to a circularly polarizing plate and an image display device.
  • the image of the image display device may be displayed by linearly polarized light.
  • the liquid crystal display device includes a liquid crystal cell and a linear polarizer
  • an image of the liquid crystal display device can be displayed by linearly polarized light that has passed through the linear polarizer.
  • a screen of an organic electroluminescence display device (hereinafter sometimes referred to as “organic EL display device” as appropriate) may be provided with a circularly polarizing plate for suppressing reflection of external light.
  • An image of an organic EL display device including a circularly polarizing plate can be displayed by linearly polarized light transmitted through a linear polarizer included in the circularly polarizing plate.
  • an image displayed by linearly polarized light becomes dark when viewed through polarized sunglasses and may not be visible.
  • the vibration direction of the linearly polarized light for displaying the image and the polarization absorption axis of the polarized sunglasses are parallel, the linearly polarized light cannot pass through the polarized sunglasses, so that the image cannot be visually recognized.
  • the vibration direction of linearly polarized light means the vibration direction of the electric field of linearly polarized light.
  • Patent Documents 1 and 2 The linearly polarized light that has passed through the linear polarizer is converted into circularly polarized light by the ⁇ / 4 plate. Since a part of this circularly polarized light can pass through the polarized sunglasses, the image can be viewed through the polarized sunglasses.
  • Techniques such as Patent Documents 3 to 7 are known.
  • the ⁇ / 4 plate is linearly polarized in a wide wavelength band. It is desirable to use a member that can convert the light into circularly polarized light.
  • the present inventor prepared a broadband ⁇ / 4 plate in which a ⁇ / 4 plate and a ⁇ / 2 plate are combined, and provided the broadband ⁇ / 4 plate in an image display device so that an image passed through polarized sunglasses could be transmitted. Tried to improve visibility.
  • the broadband ⁇ / 4 plate as described above is inferior in light resistance, and is colored when irradiated with light.
  • the present invention was devised in view of the above problems, and includes a circularly polarizing plate having a broadband ⁇ / 4 plate excellent in light resistance and capable of improving the visibility of an image viewed through polarized sunglasses; and the above circularly polarized light
  • An object of the present invention is to provide an image display device including a plate.
  • the present inventor in a circularly polarizing plate comprising a linear polarizer, a ⁇ / 2 plate and a ⁇ / 4 plate in this order, an intermediate layer containing an ultraviolet absorber as at least one of the ⁇ / 2 plate and the ⁇ / 4 plate.
  • an intermediate layer containing an ultraviolet absorber as at least one of the ⁇ / 2 plate and the ⁇ / 4 plate.
  • an image display device comprising an image display element, a circularly polarizing plate provided on the viewing side of the image display element,
  • the circularly polarizing plate includes a linear polarizer and a broadband ⁇ / 4 plate in this order from the image display element side
  • the broadband ⁇ / 4 plate includes a ⁇ / 2 plate and a ⁇ / 4 plate in this order from the linear polarizer side
  • At least one of the ⁇ / 2 plate and the ⁇ / 4 plate is a multilayer body including a first outer layer, an intermediate layer containing an ultraviolet absorber, and a second outer layer in this order
  • the light transmittance at a wavelength of 380 nm of the broadband ⁇ / 4 plate is 1.0% or less
  • the circularly-polarizing plate whose light transmittance in wavelength 390nm of the said broadband (lambda) / 4 board is 5.0% or less.
  • the thickness of the ⁇ / 2 plate is 25 ⁇ m or more and 45 ⁇ m or less
  • the thickness of the ⁇ / 4 plate is 10 ⁇ m or more and 60 ⁇ m or less
  • the intermediate layer is made of a thermoplastic resin containing the ultraviolet absorber,
  • the circularly polarizing plate according to any one of [1] to [3], wherein the amount of the ultraviolet absorber in the thermoplastic resin is 3 wt% to 20 wt%.
  • the angle formed by the slow axis of the ⁇ / 2 plate with respect to the polarization absorption axis of the linear polarizer
  • the angle formed by the slow axis of the ⁇ / 4 plate with respect to the polarization absorption axis of the linear polarizer is (2 ⁇ + 45 °) ⁇ 5 °, according to any one of [1] to [4].
  • Circular polarizing plate is 2 ⁇ + 45 °
  • An image display device comprising: an image display element; and the circularly polarizing plate according to any one of [1] to [8] provided on a viewing side of the image display element.
  • the image display element is a liquid crystal cell or an organic electroluminescence element.
  • a circularly polarizing plate including a broadband ⁇ / 4 plate having excellent light resistance and capable of improving the visibility of an image viewed through polarized sunglasses; and an image display device including the circularly polarizing plate.
  • FIG. 1 is a cross-sectional view schematically showing a circularly polarizing plate according to one embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing the relationship between a linear polarizer, a ⁇ / 2 plate, and a ⁇ / 4 plate in a circularly polarizing plate as an example of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing an example of a liquid crystal display device as an image display device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an example of an organic EL display device as an image display device according to an embodiment of the present invention.
  • the “long” film means a film having a length of 5 times or more, preferably 10 times or more, and specifically a roll.
  • the upper limit of the length of the long film is not particularly limited, and can be, for example, 100,000 times or less with respect to the width.
  • nx represents a refractive index in a direction (in-plane direction) perpendicular to the thickness direction of the film and giving the maximum refractive index.
  • ny represents the refractive index in the in-plane direction of the film and perpendicular to the nx direction.
  • d represents the thickness of the film.
  • the measurement wavelength is 590 nm unless otherwise specified.
  • the slow axis of the film represents the slow axis in the plane of the film.
  • the slanting direction of the long film indicates the in-plane direction of the film, which is neither parallel nor perpendicular to the width direction of the film.
  • the front direction of a surface means the normal direction of the surface, and specifically refers to the direction of the polar angle 0 ° and the azimuth angle 0 ° of the surface.
  • the directions of the elements “parallel”, “vertical”, and “orthogonal” include errors within a range that does not impair the effects of the present invention, for example, ⁇ 5 °, unless otherwise specified. You may go out.
  • polarizing plate “ ⁇ / 2 plate”, “ ⁇ / 4 plate” and “positive C plate” are not limited to rigid members, unless otherwise specified, for example, a resin film. A member having flexibility is also included.
  • the angles formed by the optical axes (polarization absorption axis, polarization transmission axis, slow axis, etc.) of each film in a member having a plurality of films are viewed from the thickness direction unless otherwise noted. Represents the angle of time.
  • FIG. 1 is a cross-sectional view schematically showing a circularly polarizing plate according to one embodiment of the present invention.
  • the circularly polarizing plate 100 includes a linear polarizer 110 and a broadband ⁇ / 4 plate 120 in this order.
  • the circularly polarizing plate 100 is provided on the viewing side of the image display element in an image display apparatus (not shown) including the image display element.
  • the circularly polarizing plate 100 is provided such that the linear polarizer 110 and the broadband ⁇ / 4 plate 120 are arranged in this order from the image display element side.
  • the image display device can display an image with circularly polarized light in a wide wavelength range. Therefore, the visibility of the image can be improved by suppressing the color of the image viewed through the polarized sunglasses from being changed by the inclination of the polarized sunglasses.
  • the tilt of the polarized sunglasses refers to the tilt in the direction in which the polarized sunglasses are rotated about the rotation axis perpendicular to the display surface of the image display device.
  • the broadband ⁇ / 4 plate 120 includes a ⁇ / 2 plate and a ⁇ / 4 plate 122 in this order from the linear polarizer 110 side.
  • the broadband ⁇ / 4 plate 120 can function as a ⁇ / 4 plate in a wide wavelength range.
  • the broadband ⁇ / 4 plate 120 is a multilayer body including a first outer layer, an intermediate layer containing an ultraviolet absorber, and a second outer layer in this order.
  • the broadband ⁇ / 4 plate has a light transmittance at a wavelength of 380 nm and a light transmittance at a wavelength of 390 nm that are not more than a predetermined value.
  • the broadband ⁇ / 4 plate 120 can obtain excellent light resistance, coloring due to light irradiation can be suppressed.
  • a linear polarizer is an optical member having a polarization transmission axis and a polarization absorption axis, absorbs linearly polarized light having a vibration direction parallel to the polarization absorption axis, and passes linearly polarized light having a vibration direction parallel to the polarization transmission axis. sell.
  • the light that displays an image passes through a broadband ⁇ / 4 plate in which the linearly polarized light that has passed through the linear polarizer further includes a combination of a ⁇ / 2 plate and a ⁇ / 4 plate. By doing so, it becomes circularly polarized light, goes out of the image display device, and is visually recognized by an observer.
  • a linear polarizer for example, a film of an appropriate vinyl alcohol polymer such as polyvinyl alcohol or partially formalized polyvinyl alcohol, dyeing treatment with dichroic substances such as iodine and dichroic dye, stretching treatment, crosslinking treatment
  • dichroic substances such as iodine and dichroic dye
  • stretching treatment crosslinking treatment
  • the film which performed appropriate processes, such as these by the appropriate order and system can be used.
  • the stretching process for producing a linear polarizer the film is stretched in the longitudinal direction, so that the obtained linear polarizer has a polarization absorption axis parallel to the longitudinal direction of the linear polarizer and the width of the linear polarizer.
  • a polarization transmission axis parallel to the direction can be developed.
  • This linear polarizer is preferably excellent in the degree of polarization.
  • the thickness of the linear polarizer is generally 5 ⁇ m to 80 ⁇ m, but is not limited thereto.
  • the linear polarizer is usually manufactured as a long film, and is cut from the long film so as to have a desired shape.
  • the polarization absorption axis of the linear polarizer is parallel to the longitudinal direction of the linear polarizer.
  • Bonding by the roll-to-roll method was obtained by feeding the film from a long film roll, transporting it, and performing a process of bonding with another film on the transport line.
  • the pasting of the aspect which uses a bonding thing as a winding roll is said.
  • the lamination using the roll-to-roll method does not require a complicated optical axis alignment process, unlike the case of laminating single-wafer films. Therefore, efficient bonding is possible.
  • the broadband ⁇ / 4 plate includes a combination of a ⁇ / 2 plate and a ⁇ / 4 plate.
  • This broadband ⁇ / 4 plate can exhibit a circularly polarized light conversion function for converting linearly polarized light transmitted through the linear polarizer into circularly polarized light in a wide wavelength range. Therefore, when the image display device including the circularly polarizing plate including the broadband ⁇ / 4 plate is viewed through the polarized sunglasses, the visibility of the image can be improved.
  • this broadband ⁇ / 4 plate includes a multilayer body including an intermediate layer containing an ultraviolet absorber as at least one of the ⁇ / 2 plate and the ⁇ / 4 plate, the light transmittance in the ultraviolet region is low. . Specifically, the light transmittance at a wavelength of 380 nm of the broadband ⁇ / 4 plate is usually 1.0% or less, preferably 0.8% or less, more preferably 0.5% or less. The light transmittance at a wavelength of 390 nm of the broadband ⁇ / 4 plate is usually 5.0% or less, preferably 4.0% or less, more preferably 3.0% or less.
  • the light transmittance at the wavelength 380 nm and the wavelength 390 nm of the broadband ⁇ / 4 plate is low as described above, the light resistance of the broadband ⁇ / 4 plate can be improved. Therefore, the broadband ⁇ / 4 plate is hardly colored even when irradiated with light.
  • the ultraviolet transmittance of the broadband ⁇ / 4 plate is low as described above, deterioration of the linear polarizer due to external light is suppressed, or when the circularly polarizing plate is provided in the image display device, the external light of the image display element. It is possible to suppress deterioration due to.
  • the outside light includes not only natural light such as sunlight but also artificial light such as ultraviolet rays used at the time of manufacturing the image display device.
  • the broadband ⁇ / 4 plate may further include an arbitrary layer in combination with the ⁇ / 2 plate and the ⁇ / 4 plate.
  • the optional layer include a pressure-sensitive adhesive layer or an adhesive layer for bonding a ⁇ / 2 plate and a ⁇ / 4 plate.
  • the in-plane retardation of the ⁇ / 2 plate can be appropriately set within a range where a broadband ⁇ / 4 plate can be realized by a combination of the ⁇ / 2 plate and the ⁇ / 4 plate.
  • the specific in-plane retardation of the ⁇ / 2 plate is preferably 240 nm or more, more preferably 250 nm or more, preferably 300 nm or less, more preferably 280 nm or less, and particularly preferably 265 nm or less. Since the ⁇ / 2 plate has such in-plane retardation, the ⁇ / 2 plate and the ⁇ / 4 plate can be combined to function as a broadband ⁇ / 4 plate.
  • the ⁇ / 2 plate can have chromatic dispersion characteristics such as forward chromatic dispersion characteristics, flat chromatic dispersion characteristics, and reverse chromatic dispersion characteristics.
  • the forward wavelength dispersion characteristic means a wavelength dispersion characteristic in which retardation increases as the wavelength becomes shorter.
  • the reverse wavelength dispersion characteristic means a wavelength dispersion characteristic in which the retardation becomes smaller as the wavelength becomes shorter.
  • the flat wavelength dispersion characteristic means a wavelength dispersion characteristic in which the retardation does not change regardless of the wavelength.
  • FIG. 2 is an exploded perspective view schematically showing the relationship among the linear polarizer 110, the ⁇ / 2 plate 121, and the ⁇ / 4 plate 122 in the circularly polarizing plate 100 as an example of the present invention.
  • a phantom line parallel to the polarization absorption axis A 110 of the linear polarizer 110 is indicated by a dashed line on the ⁇ / 2 plate 121 and the ⁇ / 4 plate 122.
  • the angle ⁇ formed by the slow axis A 121 of the ⁇ / 2 plate 121 with respect to the polarization absorption axis A 110 of the linear polarizer 110 is ⁇ / 2 plate 121 and ⁇ / 4 plate.
  • the broadband ⁇ / 4 plate 120 can be realized by the combination of 122.
  • the specific range of the angle ⁇ is preferably 15 ° ⁇ 5 °, more preferably 15 ° ⁇ 3 °, and particularly preferably 15 ° ⁇ 1 °.
  • the broadband ⁇ / 4 plate 120 including the combination of the ⁇ / 2 plate 121 and the ⁇ / 4 plate 122 stabilizes linearly polarized light in a wide wavelength range that has passed through the linear polarizer 110. Can be converted into circularly polarized light.
  • the angle ⁇ is in the above range, so that the ⁇ / 2 plate 121 and the linear polarizer 110 are bonded to each other by a roll Easy to do by the to-roll method.
  • the total light transmittance of the ⁇ / 2 plate is preferably 80% or more.
  • the light transmittance can be measured using a spectrophotometer (manufactured by JASCO Corporation, ultraviolet-visible near-infrared spectrophotometer “V-570”) in accordance with JIS K0115.
  • the haze of the ⁇ / 2 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the haze can be measured at five locations using “turbidity meter NDH-300A” manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS K7361-1997, and the average value obtained therefrom can be adopted.
  • the amount of the volatile component contained in the ⁇ / 2 plate is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, and further preferably 0.02% by weight or less, ideally zero. is there.
  • the volatile component is a substance having a molecular weight of 200 or less contained in a trace amount in the film, and examples thereof include a residual monomer and a solvent.
  • the amount of volatile components can be quantified by dissolving the film in chloroform and analyzing it by gas chromatography as the sum of the substances having a molecular weight of 200 or less contained in the film.
  • the saturated water absorption rate of the ⁇ / 2 plate is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
  • the saturated water absorption rate of the ⁇ / 2 plate is within the above range, it is possible to reduce a change with time in optical characteristics such as in-plane retardation.
  • the saturated water absorption is a value expressed as a percentage of the increased mass of the film specimen immersed in water at 23 ° C. for 24 hours with respect to the mass of the film specimen before immersion.
  • the ⁇ / 2 plate is preferably a multilayer body including a first outer layer, an intermediate layer containing an ultraviolet absorber, and a second outer layer in this order.
  • the first outer layer and the intermediate layer are usually in contact with each other without interposing another layer, and the intermediate layer and the second outer layer are interposing another layer between them. They are in touch. Since this multilayer body is provided with an intermediate layer containing an ultraviolet absorber, it is possible to weaken the ultraviolet rays transmitted through the multilayer body. Furthermore, since this multilayer body is provided with the first outer layer and the second outer layer on both sides of the intermediate layer, the bleed-out of the ultraviolet absorber can be suppressed.
  • the intermediate layer is usually made of a resin containing a polymer and an ultraviolet absorber.
  • a resin it is preferable to use a thermoplastic resin. Therefore, the intermediate layer is preferably a thermoplastic resin layer containing a thermoplastic polymer and an ultraviolet absorber.
  • thermoplastic polymer examples include polyolefins such as polyethylene and polypropylene; polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyarylene sulfides such as polyphenylene sulfide; polyvinyl alcohol; polycarbonate; polyarylate; cellulose ester polymer and polyether.
  • examples include sulfone; polysulfone; polyallyl sulfone; polyvinyl chloride; a polymer containing an alicyclic structure such as a norbornene polymer; a rod-like liquid crystal polymer. These polymers may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • the polymer may be a homopolymer or a copolymer.
  • a polymer containing an alicyclic structure is preferable because of excellent mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability, and lightness.
  • the polymer containing an alicyclic structure is a polymer in which the structural unit of the polymer contains an alicyclic structure.
  • the polymer containing an alicyclic structure may have an alicyclic structure in the main chain, may have an alicyclic structure in the side chain, and alicyclic in the main chain and the side chain. You may have a structure. Among these, from the viewpoint of mechanical strength and heat resistance, a polymer containing an alicyclic structure in the main chain is preferable.
  • alicyclic structure examples include a saturated alicyclic hydrocarbon (cycloalkane) structure and an unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structure.
  • cycloalkane saturated alicyclic hydrocarbon
  • cycloalkene unsaturated alicyclic hydrocarbon
  • cycloalkyne unsaturated alicyclic hydrocarbon
  • a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
  • the number of carbon atoms constituting the alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, particularly preferably per alicyclic structure. Is a range of 15 or less. By setting the number of carbon atoms constituting the alicyclic structure within this range, the mechanical strength, heat resistance and moldability of the resin containing the polymer containing the alicyclic structure are highly balanced.
  • the proportion of structural units having an alicyclic structure in a polymer containing an alicyclic structure is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more.
  • the ratio of the structural unit having an alicyclic structure in the polymer containing the alicyclic structure is within this range, the transparency and heat resistance of the resin containing the polymer containing the alicyclic structure are improved.
  • Examples of the polymer containing an alicyclic structure include a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, and hydrides thereof. Can be mentioned. Among these, norbornene-based polymers are more preferable because of their good transparency and moldability.
  • Examples of the norbornene-based polymer include a ring-opening polymer of a monomer having a norbornene structure and a hydrogenated product thereof; an addition polymer of a monomer having a norbornene structure and a hydrogenated product thereof.
  • Examples of a ring-opening polymer of a monomer having a norbornene structure include a ring-opening homopolymer of one kind of monomer having a norbornene structure and a ring-opening of two or more kinds of monomers having a norbornene structure. Examples thereof include a copolymer and a ring-opening copolymer of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith.
  • examples of the addition polymer of a monomer having a norbornene structure include an addition homopolymer of one kind of monomer having a norbornene structure and an addition copolymer of two or more kinds of monomers having a norbornene structure. And addition copolymers of a monomer having a norbornene structure and an arbitrary monomer copolymerizable therewith.
  • a hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure is particularly preferable from the viewpoints of moldability, heat resistance, low hygroscopicity, dimensional stability and lightness.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7. -Diene (common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4. 0.1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene), and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group. These substituents may be the same or different, and a plurality thereof may be bonded to the ring.
  • One type of monomer having a norbornene structure may be used alone, or two or more types may be used in combination at any ratio.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfonic acid group.
  • Examples of the monomer capable of ring-opening copolymerization with a monomer having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof; cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene; Derivatives thereof; and the like.
  • monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof
  • cyclic conjugated dienes such as cyclohexadiene and cycloheptadiene
  • Derivatives thereof and the like.
  • the monomer having a norbornene structure and a monomer capable of ring-opening copolymerization one type may be used alone, or two or more types may be used in combination at any ratio.
  • a ring-opening polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of a ring-opening polymerization catalyst.
  • Examples of monomers that can be copolymerized with a monomer having a norbornene structure include ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, and cyclohexene. And non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene; and the like.
  • ⁇ -olefin is preferable, and ethylene is more preferable.
  • the monomer which can carry out addition copolymerization with the monomer which has a norbornene structure may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.
  • An addition polymer of a monomer having a norbornene structure can be produced, for example, by polymerizing or copolymerizing a monomer in the presence of an addition polymerization catalyst.
  • the hydrogenated product of the ring-opening polymer and the addition polymer described above is, for example, a carbon-carbon in a solution of the ring-opening polymer and the addition polymer in the presence of a hydrogenation catalyst containing a transition metal such as nickel or palladium. Unsaturated bonds can be produced by hydrogenation, preferably 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane- Having a 7,9-diyl-ethylene structure, and the amount of these structural units is 90% by weight or more based on the total structural units of the norbornene polymer, and the ratio of X to Y The ratio is preferably 100: 0 to 40:60 by weight ratio of X: Y.
  • the layer containing the norbornene-based polymer can be made long-term without dimensional change and excellent in optical property stability.
  • the weight average molecular weight (Mw) of the polymer contained in the intermediate layer is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, preferably 100,000 or less, more preferably Is 80,000 or less, particularly preferably 50,000 or less.
  • Mw weight average molecular weight
  • the molecular weight distribution (Mw / Mn) of the polymer contained in the intermediate layer is preferably 1.2 or more, more preferably 1.5 or more, particularly preferably 1.8 or more, preferably 3.5 or less. Preferably it is 3.0 or less, Most preferably, it is 2.7 or less.
  • Mn represents a number average molecular weight.
  • the aforementioned weight average molecular weight (Mw) and number average molecular weight (Mn) can be measured as polyisoprene or polystyrene equivalent weight average molecular weight by gel permeation chromatography using cyclohexane as a solvent.
  • toluene may be used as a solvent when the sample does not dissolve in cyclohexane.
  • the glass transition temperature of the polymer contained in the intermediate layer is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, particularly preferably 120 ° C. or higher, preferably 160 ° C. or lower, more preferably 150 ° C. or lower, particularly preferably. Is 140 ° C. or lower.
  • the durability of the multilayer body in a high temperature environment can be increased by setting the glass transition temperature of the polymer to be equal to or higher than the lower limit of the above range, and the stretching treatment can be easily performed by setting the glass transition temperature to be lower than the upper limit of the above range. .
  • the absolute value of the photoelastic coefficient of the polymer contained in the intermediate layer is preferably 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and particularly preferably 4 ⁇ 10 ⁇ 12 Pa. -1 or less.
  • the amount of the polymer in the resin contained in the intermediate layer is preferably 80.0% by weight or more, more preferably 82.0% by weight or more, particularly preferably 84.0% by weight or more, preferably 97.0% by weight. % Or less, more preferably 96.0% by weight or less, and particularly preferably 95.0% by weight or less.
  • the ultraviolet absorber a compound capable of absorbing ultraviolet rays can be used. By using the ultraviolet absorber, it is possible to impart the ability to prevent the transmission of ultraviolet rays to the multilayer body including the intermediate layer.
  • organic UV absorbers are preferable, for example, triazine UV absorbers, benzophenone UV absorbers, benzotriazole UV absorbers, acrylonitrile UV absorbers, salicylate UV absorbers, cyanoacrylate UV absorbers. Examples thereof include organic ultraviolet absorbers such as absorbers, azomethine ultraviolet absorbers, indole ultraviolet absorbers, naphthalimide ultraviolet absorbers, and phthalocyanine ultraviolet absorbers.
  • triazine-based ultraviolet absorber for example, a compound having a 1,3,5-triazine ring is preferable.
  • triazine-based ultraviolet absorbers include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, 2,4-bis And (2-hydroxy-4-butoxyphenyl) -6- (2,4-dibutoxyphenyl) -1,3,5-triazine.
  • Examples of such commercially available triazine ultraviolet absorbers include “Tinuvin 1577” manufactured by Ciba Specialty Chemicals, “LA-F70” and “LA-46” manufactured by ADEKA.
  • benzotriazole ultraviolet absorber examples include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2 -(3,5-di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazole-2 -Yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol, 2- [5-chloro (2H)- Benzotriazol-2-yl] -4-methyl-6- (tert-butyl) phenol, 2- (2H-benzotriazol-2-yl) -4,6-di- ert-Butylphenol, 2- (2H-benzotriazol-2-yl
  • Examples of the azomethine-based ultraviolet absorber include materials described in Japanese Patent No. 336697, and examples of commercially available products include “BONASORB UA-3701” manufactured by Orient Chemical Co., Ltd.
  • indole ultraviolet absorbers examples include materials described in Japanese Patent No. 2846091.
  • examples of commercially available products include “BONASORB UA-3911” and “BONASORB UA-3912” manufactured by Orient Chemical Co., Ltd. Etc.
  • Examples of the phthalocyanine-based ultraviolet absorber include materials described in Japanese Patent Nos. 4403257 and 3286905, and examples of commercially available products include “FDB001” and “FDB002” manufactured by Yamada Chemical Industries, Ltd. Or the like.
  • triazine-based UV absorbers azomethine-based UV absorbers, and indole-based UV absorbers are preferable, and triazine-based UV absorbers are particularly preferable in that UV absorption performance near 380 nm is excellent.
  • ultraviolet absorber one type may be used alone, or two or more types may be used in combination at any ratio.
  • the amount of the UV absorber in the resin contained in the intermediate layer is preferably 3% by weight or more, more preferably 4% by weight or more, particularly preferably 5% by weight or more, preferably 20% by weight or less, more preferably 18%. % By weight or less, particularly preferably 16% by weight or less.
  • the amount of the ultraviolet absorber is not less than the lower limit value of the above range, the ability of the multilayer body to prevent the transmission of ultraviolet rays can be particularly enhanced, and by being not more than the upper limit value of the above range, Transparency to visible light can be increased.
  • the resin contained in the intermediate layer may further contain optional components in combination with the polymer and the ultraviolet absorber.
  • optional components include colorants such as pigments and dyes; plasticizers; optical brighteners; dispersants; thermal stabilizers; light stabilizers; antistatic agents; antioxidants; .
  • colorants such as pigments and dyes; plasticizers; optical brighteners; dispersants; thermal stabilizers; light stabilizers; antistatic agents; antioxidants; .
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the method for producing the resin contained in the intermediate layer is arbitrary, and can be produced by mixing a polymer, an ultraviolet absorber, and optional components as necessary.
  • a resin is produced by kneading a polymer and an ultraviolet absorber at a temperature at which the polymer can be melted.
  • a twin screw extruder can be used for kneading.
  • the thickness of the intermediate layer is preferably set so that the ratio represented by “intermediate layer thickness” / “multilayer thickness” falls within a predetermined range.
  • the predetermined range is preferably 1/5 or more, more preferably 1/4 or more, particularly preferably 1/3 or more, preferably 80/82 or less, more preferably 79/82 or less, particularly preferably. 78/82 or less.
  • the ratio is equal to or higher than the lower limit value of the range, the ability of the multilayer body to prevent the transmission of ultraviolet rays can be particularly enhanced, and when the ratio is equal to or lower than the upper limit value of the range, the thickness of the multilayer body is reduced. Can be thin.
  • the first outer layer is usually made of a resin containing a polymer. As such a resin, it is preferable to use a thermoplastic resin. Therefore, the first outer layer is preferably a thermoplastic resin layer containing a thermoplastic polymer.
  • any polymer selected from the range described as the polymer contained in the resin contained in the intermediate layer can be used. Thereby, advantages similar to those described in the description of the intermediate layer can be obtained.
  • the polymer contained in the resin contained in the first outer layer it is preferable to use the same polymer as the polymer contained in the resin contained in the intermediate layer. Thereby, it is easy to increase the adhesive strength between the intermediate layer and the first outer layer, or to suppress the reflection of light at the interface between the intermediate layer and the first outer layer.
  • the amount of the polymer in the resin contained in the first outer layer is preferably 90.0 wt% to 100 wt%, more preferably 95.0 wt% to 100 wt%. By setting the amount of the polymer in the above range, the multilayer body can obtain sufficient heat resistance and transparency.
  • the resin contained in the first outer layer may contain an ultraviolet absorber, but the amount of the ultraviolet absorber in the resin contained in the first outer layer is preferably small, and the resin contained in the first outer layer is an ultraviolet absorber. It is more preferable not to contain. When the resin contained in the first outer layer does not contain an ultraviolet absorber, bleeding out of the ultraviolet absorber can be effectively suppressed.
  • the resin contained in the first outer layer may further contain an optional component in combination with the polymer.
  • an optional component the same component as mentioned as an arbitrary component which the resin contained in an intermediate
  • the thickness of the first outer layer is preferably set so that the ratio represented by “the thickness of the first outer layer” / “the thickness of the multilayer body” falls within a predetermined range.
  • the predetermined range is preferably 1/82 or more, more preferably 2/82 or more, particularly preferably 3/82 or more, preferably 1/3 or less, more preferably 1/4 or less, particularly preferably. 1/5 or less.
  • the second outer layer is usually made of a resin containing a polymer.
  • the resin contained in the second outer layer any resin selected from the range of resins described as the resin contained in the first outer layer can be used. Thereby, the same advantage as described in the description of the first outer layer can be obtained in the second outer layer.
  • the resin contained in the first outer layer and the resin contained in the second outer layer may be different resins, but are preferably the same resin. Among them, the resin contained in the first outer layer and the resin contained in the second outer layer are the same resin, so that the manufacturing cost of the multilayer body can be suppressed, or curling of the multilayer body can be suppressed. it can.
  • the thickness of the second outer layer can be any thickness selected from the range described as the thickness range of the first outer layer. Thereby, the same advantage as described in the explanation of the thickness of the first outer layer can be obtained. Especially, in order to suppress the curling of the multilayer body, it is preferable that the thickness of the second outer layer is the same as that of the first outer layer.
  • the thickness of the ⁇ / 2 plate is preferably 25 ⁇ m or more, more preferably 27 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 45 ⁇ m or less, more preferably 43 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the thickness of the ⁇ / 2 plate is equal to or greater than the lower limit value of the range, desired retardation can be exhibited, and when the thickness is equal to or less than the upper limit value of the range, the thickness can be reduced.
  • the production method of the ⁇ / 2 plate is arbitrary.
  • the ⁇ / 2 plate may be manufactured as a diagonally stretched film by a manufacturing method including, for example, subjecting a long pre-stretch film made of resin to one or more diagonal stretches.
  • oblique stretching refers to stretching a long film in an oblique direction. According to the manufacturing method including oblique stretching, the ⁇ / 2 plate can be easily manufactured.
  • the ⁇ / 2 plate is sequentially manufactured as a biaxially stretched film by a manufacturing method including further longitudinal stretching after the oblique stretching.
  • longitudinal stretching represents stretching a long film in the longitudinal direction.
  • a ⁇ / 2 plate is produced as a multilayer including the intermediate layer, the first outer layer and the second outer layer, the intermediate layer, the first outer layer and the second outer layer are each used as a film before stretching. It is preferable to use a film having a multilayer structure including corresponding layers.
  • the manufacturing method of the ⁇ / 2 plate according to this example includes (a) a first step of preparing a long unstretched film including layers corresponding to the intermediate layer, the first outer layer, and the second outer layer, b) a second step in which a long pre-stretch film is stretched in an oblique direction to obtain a long intermediate film; and (c) the intermediate film is freely uniaxially stretched in the longitudinal direction to form a long ⁇ / 2 plate. And a third step.
  • a long unstretched film is prepared.
  • the film before stretching can be produced, for example, by a production method including a step of forming a resin for forming an intermediate layer, a resin for forming a first outer layer, and a resin for forming a second outer layer into a film.
  • the resin molding method include a co-extrusion method and a co-casting method. Among these molding methods, the coextrusion method is preferable because it is excellent in production efficiency and hardly causes volatile components to remain in the film.
  • the manufacturing method using the co-extrusion method includes a step of co-extruding the resin.
  • the resin is extruded in the form of a layer in a molten state, and a resin layer for forming the first outer layer, a resin layer for forming the intermediate layer, and a resin layer for forming the second outer layer are formed.
  • examples of the resin extrusion method include a coextrusion T-die method, a coextrusion inflation method, and a coextrusion lamination method. Of these, the coextrusion T-die method is preferable.
  • the coextrusion T-die method includes a feed block method and a multi-manifold method, and the multi-manifold method is particularly preferable in that variation in thickness can be reduced.
  • the melting temperature of the extruded resin is preferably (Tg + 80 ° C.) or higher, more preferably (Tg + 100 ° C.) or higher, preferably (Tg + 180 ° C.) or lower, more preferably (Tg + 150 ° C.) or lower.
  • Tg represents the highest temperature among the glass transition temperatures of the polymers contained in the extruded resin.
  • the said melting temperature represents the melting temperature of resin in the extruder which has T-die, for example in the coextrusion T-die method.
  • the melting temperature of the extruded resin is not less than the lower limit value of the above range, the resin fluidity can be sufficiently increased to improve the moldability, and the deterioration of the resin can be suppressed by being not more than the upper limit value. it can.
  • the extrusion temperature can be appropriately selected according to the resin.
  • the temperature of the resin in the extruder can be Tg to (Tg + 100 ° C.) at the resin inlet, (Tg + 50 ° C.) to (Tg + 170 ° C.) at the extruder outlet, and the die temperature can be (Tg + 50 ° C.) to (Tg + 170 ° C.).
  • the arithmetic average roughness Ra of the die slip of the die is preferably 0 ⁇ m to 1.0 ⁇ m, more preferably 0 ⁇ m to 0.7 ⁇ m, and particularly preferably 0 ⁇ m to 0.5 ⁇ m.
  • the film-like molten resin extruded from a die slip is usually brought into close contact with a cooling roll, cooled and cured.
  • examples of the method for bringing the molten resin into close contact with the cooling roll include an air knife method, a vacuum box method, and an electrostatic contact method.
  • a resin layer for forming the first outer layer, a resin layer for forming the intermediate layer, and a resin layer for forming the second outer layer are provided in this order. A long unstretched film is obtained.
  • stretching is usually performed using a tenter stretching machine while continuously transporting the film before stretching in the longitudinal direction.
  • the tenter stretching machine has a plurality of grips each capable of gripping both ends in the film width direction of the film before stretching, and stretches the film before stretching in a predetermined direction with the grips in any direction. Stretching can be achieved.
  • the draw ratio in the second step is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 5.0 times or less, more preferably It is 4.0 times or less, particularly preferably 3.5 times or less.
  • the draw ratio in the second step is not less than the lower limit of the above range, the generation of wrinkles in the ⁇ / 2 plate can be suppressed, and the refractive index in the drawing direction can be increased.
  • the draw ratio is not more than the upper limit of the above range, the variation in the orientation angle of the ⁇ / 2 plate can be reduced, and the slow axis direction can be easily controlled.
  • the orientation angle refers to an angle formed by the slow axis of the film with respect to a certain reference direction. The orientation angle can be measured with a polarizing microscope or AXOSCAN (manufactured by Axometrics).
  • the stretching temperature in the second step is preferably (Tg-5 ° C.) or higher, more preferably (Tg-2 ° C.) or higher, particularly preferably Tg or higher, preferably (Tg + 40 ° C.) or lower, more preferably Is (Tg + 35 ° C.) or less, particularly preferably (Tg + 30 ° C.) or less.
  • the stretching temperature in the second step is within the above range, the molecules contained in the pre-stretching film can be reliably oriented, so that an intermediate film having desired optical characteristics can be easily obtained.
  • the intermediate film has a slow axis.
  • the slow axis of the intermediate film appears in the oblique direction of the intermediate film.
  • the intermediate film usually has a slow axis in the range of 5 ° to 85 ° with respect to the longitudinal direction.
  • the specific direction of the slow axis of the intermediate film is preferably set according to the direction of the slow axis of the ⁇ / 2 plate to be manufactured.
  • the orientation angle formed by the slow axis of the ⁇ / 2 plate obtained by the third step with respect to the longitudinal direction is larger than the orientation angle formed by the slow axis of the intermediate film with respect to the longitudinal direction.
  • the orientation angle formed by the slow axis of the intermediate film with respect to the longitudinal direction is preferably larger than the orientation angle formed by the slow axis of the ⁇ / 2 plate with respect to the longitudinal direction.
  • a third step is performed in which the intermediate film is freely uniaxially stretched in the longitudinal direction to obtain a long ⁇ / 2 plate.
  • free uniaxial stretching refers to stretching in a certain direction and applying no restraining force in directions other than the stretching direction. Therefore, the free uniaxial stretching in the longitudinal direction of the intermediate film shown in this example refers to stretching in the longitudinal direction performed without restraining the end portion in the width direction of the intermediate film.
  • Such stretching in the third step is usually performed using a roll stretching machine while continuously transporting the intermediate film in the longitudinal direction.
  • the stretching ratio in the third step is preferably smaller than the stretching ratio in (b) the second step.
  • the specific draw ratio in the third step is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 3.0 times or less, More preferably, it is 2.8 times or less, and particularly preferably 2.6 times or less.
  • the draw ratio in the third step is not less than the lower limit of the above range, wrinkles of the ⁇ / 2 plate can be suppressed.
  • the draw ratio is not more than the upper limit of the above range, the direction of the slow axis can be easily controlled.
  • the stretching temperature T2 in the third step is preferably higher than “T1-20 ° C.”, more preferably “T1-18 ° C.” or more, particularly preferably based on the stretching temperature T1 in the (b) second step. Is “T1-16 ° C.” or more, preferably lower than “T1 + 20 ° C.”, more preferably “T1 + 18 ° C.” or less, and particularly preferably “T1 + 16 ° C.” or less. (C) By setting the stretching temperature T2 in the third step within the above range, the in-plane retardation of the ⁇ / 2 plate can be effectively adjusted.
  • the method for manufacturing the ⁇ / 2 plate shown in the above example may be further modified.
  • the ⁇ / 2 plate manufacturing method may further include an optional step in addition to (a) the first step, (b) the second step, and (c) the third step.
  • Examples of such processes include a process of trimming both ends of the ⁇ / 2 plate, a step of providing a protective layer on the surface of the ⁇ / 2 plate, a chemical treatment and a physical treatment on the surface of the ⁇ / 2 plate, etc.
  • a step of performing a surface treatment is included.
  • a film obtained by stretching the film before stretching in an arbitrary direction may be used as the film before stretching.
  • the in-plane retardation of the ⁇ / 4 plate can be appropriately set within a range in which a broadband ⁇ / 4 plate can be realized by a combination of the ⁇ / 2 plate and the ⁇ / 4 plate.
  • the in-plane retardation of the ⁇ / 4 plate is preferably 110 nm or more, more preferably 118 nm or more, preferably 154 nm or less, more preferably 138 nm or less, and particularly preferably 128 nm or less. Since the ⁇ / 4 plate has such in-plane retardation, the ⁇ / 2 plate and the ⁇ / 4 plate can be combined to function as a broadband ⁇ / 4 plate.
  • the ⁇ / 4 plate can have wavelength dispersion characteristics such as forward wavelength dispersion characteristics, flat wavelength dispersion characteristics, and reverse wavelength dispersion characteristics.
  • a multilayer film in which a ⁇ / 4 plate having an angle ⁇ ⁇ / 4 with respect to a certain reference direction and a ⁇ / 2 plate having an angle ⁇ ⁇ / 2 with respect to the reference direction is combined with the formula C:
  • this multi-layer film has an in-plane letter of approximately 1 ⁇ 4 wavelength of the wavelength of the light passing through the multi-layer film in a wide wavelength range.
  • a broadband ⁇ / 4 plate capable of providing a foundation see JP 2007-004120 A).
  • the slow axis A 122 of the ⁇ / 4 plate 122 is It is preferable that a relationship close to that expressed by Formula C is satisfied between the ⁇ / 2 plate 121 and the slow axis A 121 .
  • the angle ⁇ formed by the slow axis A 122 of the ⁇ / 4 plate 122 with respect to the polarization absorption axis A 110 of the linear polarizer 110 is preferably (2 ⁇ + 45 °) ⁇ 5 °, more preferably ( 2 ⁇ + 45 °) ⁇ 3 °, particularly preferably (2 ⁇ + 45 °) ⁇ 1 °.
  • the angle ⁇ represents an angle formed by the slow axis A 121 of the ⁇ / 2 plate 121 with respect to the polarization absorption axis A 110 of the linear polarizer 110.
  • lambda / 4 direction slow axis A 122 of the plate 122 forms an angle ⁇ with respect to the polarization absorption axis A 110 of linear polarizer 110 is typically, lambda / 2 retardation axis A 121 is a linear polarizer 110 of the plate 121 This is the same as the direction that forms an angle ⁇ with respect to the polarization absorption axis A 110 of the lens.
  • the linear polarizer 110 when viewed from the thickness direction, when the slow axis A 121 of the ⁇ / 2 plate 121 makes an angle ⁇ in the clockwise direction with respect to the polarization absorption axis A 110 of the linear polarizer 110, the linear polarizer The slow axis A122 of the ⁇ / 4 plate 122 with respect to the polarization absorption axis A110 of 110 usually forms an angle ⁇ in the clockwise direction.
  • the linearly polarized light when viewed from the thickness direction, when the slow axis A 121 of the ⁇ / 2 plate 121 makes an angle ⁇ in the counterclockwise direction with respect to the polarization absorption axis A 110 of the linear polarizer 110, the linearly polarized light
  • the slow axis A 122 of the ⁇ / 4 plate 122 with respect to the polarization absorption axis A 110 of the child 110 usually forms an angle ⁇ in a counterclockwise direction.
  • the total light transmittance of the ⁇ / 4 plate is preferably 80% or more.
  • the haze of the ⁇ / 4 plate is preferably 5% or less, more preferably 3% or less, particularly preferably 1% or less, and ideally 0%.
  • the amount of the volatile component contained in the ⁇ / 4 plate is preferably 0.1% by weight or less, more preferably 0.05% by weight or less, still more preferably 0.02% by weight or less, and ideally zero. is there.
  • the amount of the volatile component By reducing the amount of the volatile component, the dimensional stability of the ⁇ / 4 plate can be improved, and the change with time in optical characteristics such as retardation can be reduced.
  • the saturated water absorption of the ⁇ / 4 plate is preferably 0.03% by weight or less, more preferably 0.02% by weight or less, particularly preferably 0.01% by weight or less, and ideally zero.
  • the saturated water absorption rate of the ⁇ / 4 plate is within the above range, a change with time in optical characteristics such as in-plane retardation can be reduced.
  • the ⁇ / 4 plate is preferably a resin film made of resin, and in particular, a multilayer body including a first outer layer, an intermediate layer containing an ultraviolet absorber, and a second outer layer in this order. More preferred.
  • the multilayer body applicable to the ⁇ / 4 plate any multilayer body selected from the range described as the multilayer body applicable to the ⁇ / 2 plate can be used.
  • the same ones as described in the description of the multilayer body applicable as the ⁇ / 2 plate can be arbitrarily adopted. Thereby, the same advantage as described in the explanation of the ⁇ / 2 plate can be obtained in the ⁇ / 4 plate.
  • the thickness of the ⁇ / 4 plate is preferably 10 ⁇ m or more, more preferably 13 ⁇ m or more, particularly preferably 15 ⁇ m or more, preferably 60 ⁇ m or less, more preferably 58 ⁇ m or less, and particularly preferably 55 ⁇ m or less.
  • the thickness of the ⁇ / 4 plate is not less than the lower limit value of the above range, desired retardation can be expressed, and when the thickness is not more than the upper limit value of the above range, the thickness can be reduced.
  • the total thickness of the ⁇ / 2 and ⁇ / 4 plates is preferably set to a predetermined thickness or less.
  • the specific total thickness is preferably 100 ⁇ m or less, more preferably 85 ⁇ m or less, and particularly preferably 70 ⁇ m or less.
  • the lower limit of the total thickness is not particularly limited, but is preferably 35 ⁇ m or more, more preferably 40 ⁇ m or more, and particularly preferably 45 ⁇ m or more from the viewpoint of easily producing a broadband ⁇ / 4 plate having desired characteristics. It is.
  • the manufacturing method of the ⁇ / 4 plate is arbitrary.
  • the ⁇ / 4 plate can be produced as a stretched film, for example, by a production method including stretching a long, unstretched film made of resin.
  • the ⁇ / 4 plate is preferably produced as an obliquely stretched film by a production method including subjecting a long pre-stretched film to oblique stretching at least once. According to the manufacturing method including oblique stretching, the ⁇ / 4 plate can be easily manufactured.
  • a ⁇ / 4 plate is manufactured as a multilayer including an intermediate layer, a first outer layer, and a second outer layer
  • the intermediate layer, the first outer layer, and the second outer layer are each used as a film before stretching. It is preferable to use a film having a multilayer structure including corresponding layers.
  • the method for producing a ⁇ / 4 plate according to this example includes (d) a fourth step of preparing a long unstretched film including layers corresponding to the intermediate layer, the first outer layer, and the second outer layer, e) stretching a long pre-stretching film to obtain a long ⁇ / 4 plate.
  • a long unstretched film is prepared.
  • the film before stretching can be produced, for example, by the same method as in the first step (a) in the method for producing ⁇ / 2 plates.
  • stretching direction may be the longitudinal direction of the film or the width direction, but is preferably an oblique direction.
  • the stretching may be free uniaxial stretching in which no restraining force is applied in the direction other than the stretching direction, or may be stretching in which the restraining force is applied in the direction other than the stretching direction.
  • the draw ratio in the fifth step is preferably 1.1 times or more, more preferably 1.15 times or more, particularly preferably 1.2 times or more, preferably 3.0 times or less, more preferably It is 2.8 times or less, and particularly preferably 2.6 times or less.
  • the refractive index in the stretching direction can be increased by setting the stretching ratio in the fifth step to be equal to or higher than the lower limit of the above range. In addition, by setting it to the upper limit value or less, the slow axis direction of the ⁇ / 4 plate can be easily controlled.
  • the stretching temperature in the fifth step is preferably (Tg-5 ° C.) or higher, more preferably (Tg-2 ° C.) or higher, particularly preferably Tg or higher, preferably (Tg + 40 ° C.) or lower, more preferably Is (Tg + 35 ° C.) or less, particularly preferably (Tg + 30 ° C.) or less.
  • the method for manufacturing the ⁇ / 4 plate shown in the above example may be further modified.
  • the ⁇ / 4 plate manufacturing method may further include an optional step in addition to (d) the fourth step and (e) the fifth step.
  • a method of manufacturing a ⁇ / 4 plate includes a step of trimming both ends of the manufactured ⁇ / 4 plate, a step of providing a protective layer on the surface of the ⁇ / 4 plate, a chemical treatment on the surface of the ⁇ / 4 plate, and A step of performing a surface treatment such as a physical treatment may be included.
  • the manufacturing method of (lambda) / 4 board may include the process similar to the arbitrary processes of the manufacturing method of (lambda) / 2 board.
  • the circularly polarizing plate may include an arbitrary layer in addition to the elements described above.
  • an arbitrary layer for example, a protective film for protecting a linear polarizer; an adhesive layer or a pressure-sensitive adhesive layer for laminating films; a glass layer for suppressing film damage; a hard coat layer; An antireflection layer; an antifouling layer; an optical compensation layer such as a positive C plate for suppressing retardation changes that occur when observed from the tilt direction of the ⁇ / 4 plate.
  • the inclination direction of the ⁇ / 4 plate means a direction that is neither parallel nor perpendicular to the main surface of the ⁇ / 4 plate.
  • the polar angle of the main surface of the ⁇ / 4 plate is larger than 0 °. Point in a direction less than 90 °.
  • the circularly polarizing plate can be manufactured, for example, by bonding the linear polarizer, the ⁇ / 2 plate, and the ⁇ / 4 plate described above.
  • an adhesive or a pressure-sensitive adhesive may be used as necessary.
  • the order of laminating is arbitrary, but normally, after a ⁇ / 2 plate and a ⁇ / 4 plate are bonded together to produce a broadband ⁇ / 4 plate, the broadband ⁇ / 4 plate and a linear polarizer are combined.
  • a circularly polarizing plate is obtained by laminating.
  • a long linear polarizer having a polarization absorption axis in the longitudinal direction of the film, a ⁇ / 2 plate having a slow axis having an orientation angle of the angle ⁇ described above with respect to the longitudinal direction of the film, and a film A ⁇ / 4 plate having a slow axis that forms the orientation angle of the angle ⁇ described above with respect to the longitudinal direction is bonded to each other by a roll-to-roll method with the longitudinal direction of the films being parallel to each other, and a long circle
  • the method of manufacturing a polarizing plate is mentioned. According to such a manufacturing method, it is possible to easily manufacture a circularly polarizing plate.
  • the long circular polarizing plate manufactured in this way is usually cut out to have a desired size and provided in the image display device.
  • the image display device of the present invention includes an image display element and the circularly polarizing plate provided on the viewing side of the image display element. At this time, the circularly polarizing plate is provided so that the linear polarizer, the ⁇ / 2 plate, and the ⁇ / 4 plate are arranged in this order from the image display element side.
  • image display devices There are various types of image display devices depending on the type of image display element. Typical examples include a liquid crystal display device having a liquid crystal cell as an image display element, and an organic electroluminescence element as an image display element. (Hereinafter, it may be referred to as “organic EL element” as appropriate).
  • FIG. 3 is a cross-sectional view schematically showing an example of a liquid crystal display device 200 as an image display device according to an embodiment of the present invention.
  • the liquid crystal display device 200 includes a light source 210; a light source side linear polarizer 220; a liquid crystal cell 230 as an image display element; and a linear polarizer 110 as a viewing side linear polarizer, a ⁇ / 2 plate. 121 and a circularly polarizing plate 100 including a ⁇ / 4 plate 122 are provided in this order.
  • the liquid crystal display device 200 includes the ⁇ / 4 plate 122, the ⁇ / 2 plate 121, the linear polarizer 110, the liquid crystal cell 230, the light source side linear polarizer 220, and the light source 210 in this order from the viewing side.
  • a broadband ⁇ / 4 plate 120 that is emitted from a light source 210 and includes a light source side linear polarizer 220, a liquid crystal cell 230, a linear polarizer 110, and a ⁇ / 2 plate 121 and a ⁇ / 4 plate 122.
  • An image is displayed by the light passing through.
  • the light for displaying an image is linearly polarized when it passes through the linear polarizer 110, but is converted into circularly polarized light by passing through the broadband ⁇ / 4 plate 120. Therefore, in the liquid crystal display device 200, an image is displayed by circularly polarized light. Therefore, when the display surface 200U is viewed through polarized sunglasses, the image can be visually recognized.
  • the broadband ⁇ / 4 plate 120 converts linearly polarized light into circularly polarized light in a wide wavelength range, it is possible to suppress changes in luminance and chromaticity due to the tilt of the polarized sunglasses and achieve good visibility.
  • the broadband ⁇ / 4 plate 120 since at least one of the ⁇ / 2 plate 121 and the ⁇ / 4 plate 122 includes an intermediate layer (not shown) containing an ultraviolet absorber, the broadband ⁇ / 4 plate 120 is excellent in light resistance and is colored by light. Can be suppressed.
  • the liquid crystal cell 230 may be, for example, in-plane switching (IPS) mode, vertical alignment (VA) mode, multi-domain vertical alignment (MVA) mode, continuous spin wheel alignment (CPA) mode, hybrid alignment nematic (HAN) mode, twisted.
  • IPS in-plane switching
  • VA vertical alignment
  • MVA multi-domain vertical alignment
  • CPA continuous spin wheel alignment
  • HAN hybrid alignment nematic
  • a liquid crystal cell of any mode such as a nematic (TN) mode, a super twisted nematic (STN) mode, or an optically compensated bend (OCB) mode can be used.
  • FIG. 4 is a cross-sectional view schematically showing an example of an organic EL display device 300 as an image display device according to an embodiment of the present invention.
  • the organic EL display device 300 includes an organic EL element 310 as an image display element; a ⁇ / 4 plate 320; a linear polarizer 110, a ⁇ / 2 plate 121, and a ⁇ / 4 plate 122. Plate 100; are provided in this order. Therefore, the organic EL display device 300 includes the ⁇ / 4 plate 122, the ⁇ / 2 plate 121, the linear polarizer 110, the ⁇ / 4 plate 320, and the organic EL element 310 in this order from the viewing side.
  • the ⁇ / 4 plate 320 is usually provided in combination with the linear polarizer 110 to suppress glare of the display surface 300U due to reflection of external light. Specifically, only a part of the linearly polarized light passes through the linear polarizer 110 and then passes through the ⁇ / 4 plate 320 to become circularly polarized light. The circularly polarized light is reflected by a component (such as a reflective electrode (not shown) in the organic EL element 310) that reflects light in the display device, and passes through the ⁇ / 4 plate 320 again, thereby entering linearly polarized light.
  • a component such as a reflective electrode (not shown) in the organic EL element 3
  • the linearly polarized light has a vibration direction orthogonal to the vibration direction of the light and does not pass through the linear polarizer 110.
  • an antireflection function is achieved (for the principle of antireflection in an organic EL display device, see Japanese Patent Application Laid-Open No. 9-127858).
  • the organic EL display device 300 using a single member as the ⁇ / 4 plate 320 is shown, but as the ⁇ / 4 plate 320, a ⁇ / 2 plate and a ⁇ / 4 plate are used.
  • a combined broadband ⁇ / 4 plate may be used.
  • the ⁇ / 4 plate 120 which is emitted from the organic EL element 310 and includes the ⁇ / 4 plate 320, the linear polarizer 110, and the ⁇ / 2 plate 121 and the ⁇ / 4 plate 122, is provided.
  • An image is displayed by the light passing through. Therefore, the light for displaying an image is linearly polarized when it passes through the linear polarizer 110, but is converted into circularly polarized light by passing through the broadband ⁇ / 4 plate 120. Therefore, in the organic EL display device 300, an image is displayed by circularly polarized light. Therefore, when the display surface 300U is viewed through polarized sunglasses, the image can be visually recognized.
  • the broadband ⁇ / 4 plate 120 converts linearly polarized light into circularly polarized light in a wide wavelength range, it is possible to suppress changes in luminance and chromaticity due to the tilt of the polarized sunglasses and achieve good visibility.
  • the broadband ⁇ / 4 plate 120 since at least one of the ⁇ / 2 plate 121 and the ⁇ / 4 plate 122 includes an intermediate layer (not shown) containing an ultraviolet absorber, the broadband ⁇ / 4 plate 120 is excellent in light resistance and is colored by light. Can be suppressed.
  • the organic EL element 310 includes a transparent electrode layer, a light emitting layer, and an electrode layer in this order, and the light emitting layer can generate light when a voltage is applied from the transparent electrode layer and the electrode layer.
  • the material constituting the organic light emitting layer include polyparaphenylene vinylene-based, polyfluorene-based, and polyvinyl carbazole-based materials.
  • the light emitting layer may have a stack of layers having different emission colors or a mixed layer in which a different dye is doped in a certain dye layer.
  • the organic EL element 310 may include functional layers such as a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an equipotential surface forming layer, and a charge generation layer.
  • DCP refers to tricyclo [4.3.0.1 2,5 ] dec-3-ene
  • TCD refers to tetracyclo [4.4.0.1 2,5. . 1 7,10] dodeca-3 shows the end, as “MTF” is, tetracyclo [9.2.1.0 2,10. 0 3,8 ] tetradeca-3,5,7,12-tetraene.
  • the thickness of the entire film was measured with a snap gauge.
  • the thickness of the intermediate layer contained in the film was determined by measuring the light transmittance of the film having a wavelength of 390 nm using an ultraviolet-visible-near infrared spectrophotometer (“V-7200” manufactured by JASCO Corporation). Calculated from transmittance.
  • the first outer layer and the second outer layer are formed as layers having the same thickness, so the thickness of the first outer layer and the second outer layer is intermediate from the thickness of the entire film. Calculated by subtracting the thickness of the layer and dividing by 2.
  • SEM scanning electron microscope
  • Light resistance evaluation method A xenon lamp having an irradiance of 60 W / m 2 was emitted, and the film was irradiated with light for 500 hours. Thereafter, the film was visually observed, and the light resistance of the film was evaluated according to the following criteria based on whether or not coloring was observed. “Good”: The film is not colored after light irradiation. “Not possible”: The film is weakly colored after light irradiation. “Bad”: The film is strongly colored after light irradiation.
  • An organic EL display panel provided with an organic EL element was prepared.
  • a circularly polarizing plate was mounted on the display surface of this organic EL display panel.
  • the circularly polarizing plate was mounted with the linear polarizer and the broadband ⁇ / 4 plate in this order from the organic EL element side.
  • the organic EL display panel was displayed in white, and polarized sunglasses were worn from the front direction perpendicular to the display surface, and the display surface was visually observed.
  • Observation is performed by tilting the polarized sunglasses around the rotation axis perpendicular to the display surface, so that the angle formed between the polarized absorption axis of the polarized sunglasses and the polarized light absorption axis of the linear polarizer included in the circularly polarizing plate is 0 °.
  • the change was made in the range of ⁇ 360 °. From the observation results, the visibility of the image by the circularly polarizing plate was evaluated based on the following criteria. “Good”: No change in the color even when the polarized sunglasses are tilted at any angle. “Bad”: Even if the polarized sunglasses are tilted at any angle, there is a great change in color.
  • the obtained ring-opening polymerization reaction liquid was transferred to a pressure-resistant hydrogenation reactor, and 1.4 parts of diatomaceous earth-supported nickel catalyst (“T8400RL” manufactured by JGC Chemical Co., Ltd., nickel support rate 57%) and 167 parts of cyclohexane were added. The mixture was reacted at 180 ° C. and a hydrogen pressure of 4.6 MPa for 6 hours. By this hydrogenation reaction, a reaction solution containing a hydrogenated product of a ring-opening polymer was obtained.
  • the reaction solution was subjected to pressure filtration (“Fundaback filter” manufactured by Ishikawajima-Harima Heavy Industries Co., Ltd.) using Radiolite # 500 as a filter bed to remove the hydrogenation catalyst to obtain a colorless and transparent solution.
  • Radiolite # 500 as a filter bed to remove the hydrogenation catalyst to obtain a colorless and transparent solution.
  • 0.5 parts of antioxidant penentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] per 100 parts of the hydrogenated product, manufactured by Ciba Specialty Chemicals, Inc. Irganox 1010 ") was added to and dissolved in the resulting solution.
  • the mixture is filtered sequentially with a Zeta Plus filter 30H (Cuneau filter, pore size 0.5 ⁇ m to 1 ⁇ m), and further filtered with another metal fiber filter (Nichidai Corp., pore size 0.4 ⁇ m). Solids were removed. The hydrogenation rate of the hydrogenated product of the ring-opening polymer was 99.9%.
  • the solution obtained by the above filtration is treated at a temperature of 270 ° C. and a pressure of 1 kPa or less using a cylindrical concentrating dryer (manufactured by Hitachi, Ltd.). Volatile components were removed. And from the die
  • the hydrogenated ring-opening polymer constituting the pellet had a weight average molecular weight (Mw) of 38,000, a molecular weight distribution (Mw / Mn) of 2.5, and a glass transition temperature Tg of 126 ° C.
  • resin J1 is introduced as a resin for forming the first outer layer and the second outer layer, and melted, under the conditions of an extruder outlet temperature of 285 ° C. and an extruder gear pump rotation speed of 4 rpm, The multi-manifold die was supplied.
  • the first outer layer forming resin layer, the intermediate layer forming resin layer, and the second outer layer forming resin layer are discharged into a film shape including three layers.
  • Resins J1 and J2 were coextruded from the multi-manifold die at 280 ° C.
  • the discharged resins J1 and J2 are cast on a cooling roll whose temperature is adjusted to 150 ° C., and a first outer layer made of resin J1 (thickness 1 ⁇ m) / an intermediate layer made of resin J2 (thickness 63 ⁇ m) / resin
  • a pre-stretched film having a width of 1450 mm and a thickness of 65 ⁇ m composed of three layers of the second outer layer (thickness 1 ⁇ m) made of J1 was obtained. During the co-extrusion, the air gap amount was 50 mm. Further, edge pinning was adopted as a method for casting the molten film-like resin to a cooling roll. The width of the pre-stretched film thus obtained was adjusted to 1350 mm by trimming the 50 mm edge portions in the film width direction.
  • Table 1 shows the types of resins for forming the intermediate layer; the thicknesses of the intermediate layer, the first outer layer and the second outer layer; the stretching conditions for the oblique stretching process; and the stretching conditions for the longitudinal stretching process. . Except for the above, the ⁇ / 2 plates H2 to H5 were produced and evaluated in the same manner as in Production Example 6.
  • the resin J1 was extruded from a single layer die at 280 ° C. Then, the extruded resin J1 was cast on a cooling roll whose temperature was adjusted to 150 ° C., and a pre-stretching film having a width of 1450 mm and a thickness of 70 ⁇ m made of the resin J1 was obtained. During the co-extrusion, the air gap amount was 50 mm. Further, edge pinning was adopted as a method for casting the molten film-like resin to a cooling roll. The width of the pre-stretched film thus obtained was adjusted to 1350 mm by trimming the 50 mm edge portions in the film width direction.
  • Table 1 shows the types of resins for forming the intermediate layer; the thicknesses of the intermediate layer, the first outer layer and the second outer layer; the stretching conditions for the oblique stretching process; and the stretching conditions for the longitudinal stretching process. . Except for the above, the ⁇ / 2 plate H7 was manufactured and evaluated in the same manner as in Manufacturing Example 6.
  • resin J1 is introduced as a resin for forming the first outer layer and the second outer layer, and melted, under the conditions of an extruder outlet temperature of 285 ° C. and an extruder gear pump rotation speed of 4 rpm, The multi-manifold die was supplied.
  • the first outer layer forming resin layer, the intermediate layer forming resin layer, and the second outer layer forming resin layer are discharged into a film shape including three layers.
  • Resins J1 and J2 were coextruded from the multi-manifold die at 280 ° C.
  • the discharged resins J1 and J2 are cast on a cooling roll whose temperature is adjusted to 150 ° C., and a first outer layer made of resin J1 (thickness 2.5 ⁇ m) / an intermediate layer made of resin J2 (thickness 80 ⁇ m) / A film before stretching having a width of 1450 mm and a thickness of 85 ⁇ m consisting of three layers of the second outer layer (thickness: 2.5 ⁇ m) made of resin J1 was obtained.
  • the air gap amount was 50 mm. Further, edge pinning was adopted as a method for casting the molten film-like resin to a cooling roll. The width of the pre-stretched film thus obtained was adjusted to 1350 mm by trimming the 50 mm edge portions in the film width direction.
  • the resin J1 was extruded from a single layer die at 280 ° C. Then, the extruded resin J1 was cast on a cooling roll whose temperature was adjusted to 150 ° C., and a pre-stretched film made of the resin J1 and having a width of 1450 mm and a thickness of 80 ⁇ m was obtained. During the co-extrusion, the air gap amount was 50 mm. Further, edge pinning was adopted as a method for casting the molten film-like resin to a cooling roll. The width of the pre-stretched film thus obtained was adjusted to 1350 mm by trimming the 50 mm edge portions in the film width direction.
  • Example 1 Manufacture of broadband ⁇ / 4 plate
  • the ⁇ / 2 plate H1 and the ⁇ / 4 plate Q1 are arranged in parallel with each other so that the slow axis of the ⁇ / 2 plate H1 and the slow axis of the ⁇ / 4 plate Q1 intersect at 60 °.
  • a pressure sensitive adhesive (“CS9621” manufactured by Nitto Denko Corporation)
  • CS9621 manufactured by Nitto Denko Corporation
  • the light transmittance at a wavelength of 380 nm and the light transmittance at a wavelength of 390 nm of the obtained broadband ⁇ / 4 plate were measured by the method described above.
  • the light resistance of the broadband ⁇ / 4 plate was evaluated by the method described above.
  • the film longitudinal direction of the broadband ⁇ / 4 plate and the polarizing film are such that the slow axis of the ⁇ / 2 plate and the polarization absorption axis of the polarizing film form an angle of 15 ° when viewed from the thickness direction. This was performed so that the longitudinal direction of the film was parallel to the film.
  • the adhesive was cured by irradiating the adhesive with ultraviolet rays through a polarizing film to obtain a circularly polarizing plate comprising a linear polarizer, a ⁇ / 2 plate and a ⁇ / 4 plate in this order.
  • the obtained circularly polarizing plate was mounted on an organic EL display panel, and image visibility was evaluated by the method described above.
  • Example 2 A broadband ⁇ / 4 plate and a circularly polarizing plate were produced and evaluated in the same manner as in Example 1 except that the ⁇ / 2 plate and ⁇ / 4 plate used were changed as shown in Table 3.
  • a corona treatment was applied to one side of the ⁇ / 4 plate Q5.
  • the surface of the ⁇ / 4 plate Q5 that has been subjected to corona treatment and a long polarizing film as a linear polarizer (“HLC2-5618S” manufactured by Sanlitz, Inc., thickness 180 ⁇ m, transmission axis in the direction of 0 ° with respect to the width direction) Were attached to each other via an adhesive (LE-3000 series; manufactured by Hitachi Chemical Co., Ltd.).
  • the pasting was performed such that the slow axis of the ⁇ / 4 plate Q5 and the polarization absorption axis of the polarizing film form an angle of 45 ° when viewed from the thickness direction.
  • the adhesive was cured by irradiating the adhesive with ultraviolet rays through a polarizing film to obtain a circularly polarizing plate having a linear polarizer and a ⁇ / 4 plate in this order.
  • the obtained circularly polarizing plate was mounted on an organic EL display panel, and image visibility was evaluated by the method described above.
  • Comparative Example 1 using a circularly polarizing plate that does not include a broadband ⁇ / 4 plate, the evaluation result of image visibility is poor, and the visibility through polarized sunglasses is poor.
  • Comparative Example 2 where the broadband ⁇ / 4 plate does not have an intermediate layer containing an ultraviolet absorber in either the ⁇ / 2 plate or the ⁇ / 4 plate, the broadband ⁇ / 4 plate is inferior in light resistance, Coloring by irradiation occurs.
  • Comparative Example 3 in which the ⁇ / 2 plate and the ⁇ / 4 plate have an intermediate layer containing an ultraviolet absorber, the broadband ⁇ / 4 plate has a high light transmittance at a wavelength of 390 nm. Inferior in light resistance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

画像表示素子を備える画像表示装置において、前記画像表示素子の視認側に設けられる円偏光板であって、前記円偏光板が、前記画像表示素子側から、直線偏光子及び広帯域λ/4板を、この順に備え、前記広帯域λ/4板が、前記直線偏光子側から、λ/2板及びλ/4板を、この順に備え、前記λ/2板及び前記λ/4板の少なくとも一方が、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体であり、前記広帯域λ/4板の波長380nmでの光線透過率が、1.0%以下であり、前記広帯域λ/4板の波長390nmでの光線透過率が、5.0%以下である、円偏光板。

Description

円偏光板及び画像表示装置
 本発明は、円偏光板及び画像表示装置に関する。
 画像表示装置の画像は、直線偏光によって表示されることがある。例えば、液晶表示装置は、液晶セル及び直線偏光子を備えるので、液晶表示装置の画像は、前記の直線偏光子を通過した直線偏光によって表示されうる。また、例えば、有機エレクトロルミネッセンス表示装置(以下、適宜「有機EL表示装置」ということがある。)の画面には、外光の反射抑制のために円偏光板が設けられることがあり、このように円偏光板を備える有機EL表示装置の画像は、円偏光板が備える直線偏光子を透過した直線偏光によって表示されうる。
 前記のように直線偏光によって表示される画像は、偏光サングラスを通して見た場合には暗くなり、視認できないことがある。具体的には、画像を表示する直線偏光の振動方向と、偏光サングラスの偏光吸収軸とが平行であると、その直線偏光は偏光サングラスを通ることができないので、画像を視認できない。ここで、直線偏光の振動方向とは、直線偏光の電場の振動方向を意味する。
 そこで、前記の画像を視認可能とするために、画像表示装置の直線偏光子の視認側にλ/4板を設けることが提案されている(特許文献1及び2)。直線偏光子を通過した直線偏光は、λ/4板により、円偏光に変換される。この円偏光の一部は、偏光サングラスを通ることができるので、偏光サングラスを通して画像を視認することが可能となる。
 また、特許文献3~7のような技術が知られている。
特開平3-174512号公報 特開2005-352068号公報 特開2003-114325号公報 特開平11-183723号公報 特開2015-31753号公報 特開2015-45845号公報 特開2014-102440号公報
 本発明者の検討によれば、偏光サングラスを通して見る画像の色が偏光サングラスの傾きによって変化することを抑制して画像の視認性を高めるために、λ/4板として、広い波長帯域で直線偏光を円偏光に変換できる部材を用いることが望ましい。そこで、本発明者は、λ/4板とλ/2板とを組み合わせた広帯域λ/4板を用意し、この広帯域λ/4板を画像表示装置に設けて、偏光サングラスを通した画像の視認性を高めることを試みた。その結果、画像表示装置を表示面の正面方向から見た場合に、優れた視認性が実現された。ところが、前記のような広帯域λ/4板は、耐光性に劣っており、光の照射を受けると着色を生じていた。
 本発明は前記の課題に鑑みて創案されたものであって、耐光性に優れる広帯域λ/4板を備え、偏光サングラスを通して見る画像の視認性を改善できる円偏光板;及び、前記の円偏光板を備えた画像表示装置;を提供することを目的とする。
 本発明者は前記の課題を解決するべく鋭意検討した。その結果、本発明者は、直線偏光子、λ/2板及びλ/4板をこの順に備える円偏光板において、λ/2板及びλ/4板の少なくとも一方として紫外線吸収剤を含む中間層を備える複層体を採用し、且つ、λ/2板及びλ/4板を備える広帯域λ/4板の波長380nm及び390nmでの光線透過率を所定の範囲に収めることにより、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のとおりである。
 〔1〕 画像表示素子を備える画像表示装置において、前記画像表示素子の視認側に設けられる円偏光板であって、
 前記円偏光板が、前記画像表示素子側から、直線偏光子及び広帯域λ/4板を、この順に備え、
 前記広帯域λ/4板が、前記直線偏光子側から、λ/2板及びλ/4板を、この順に備え、
 前記λ/2板及び前記λ/4板の少なくとも一方が、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体であり、
 前記広帯域λ/4板の波長380nmでの光線透過率が、1.0%以下であり、
 前記広帯域λ/4板の波長390nmでの光線透過率が、5.0%以下である、円偏光板。
 〔2〕 前記λ/2板の厚みが、25μm以上45μm以下であり、
 前記λ/4板の厚みが、10μm以上60μm以下であり、
 前記λ/2及び前記λ/4板の合計厚みが、100μm以下である、〔1〕記載の円偏光板。
 〔3〕 「前記中間層の厚み」/「前記複層体の厚み」の比が、1/3~80/82である、〔1〕又は〔2〕記載の円偏光板。
 〔4〕 前記中間層が、前記紫外線吸収剤を含む熱可塑性樹脂からなり、
 前記熱可塑性樹脂における前記紫外線吸収剤の量が、3重量%~20重量%である、〔1〕~〔3〕のいずれか一項に記載の円偏光板。
 〔5〕 前記直線偏光子の偏光吸収軸に対して、前記λ/2板の遅相軸がなす角度を、αで表すとき、
 前記直線偏光子の偏光吸収軸に対して、前記λ/4板の遅相軸がなす角度が、(2α+45°)±5°である、〔1〕~〔4〕のいずれか一項に記載の円偏光板。
 〔6〕 前記直線偏光子の偏光吸収軸に対して、前記λ/2板の遅相軸がなす角度αが、15°±5°である、〔1〕~〔5〕のいずれか一項に記載の円偏光板。
 〔7〕 前記λ/4板が、斜め延伸フィルムである、〔1〕~〔6〕のいずれか一項に記載の円偏光板。
 〔8〕 前記λ/2板が、逐次二軸延伸フィルムである、〔1〕~〔7〕のいずれか一項に記載の円偏光板。
 〔9〕 画像表示素子と、前記画像表示素子の視認側に設けられた〔1〕~〔8〕のいずれか一項に記載の円偏光板とを備える、画像表示装置。
 〔10〕 前記画像表示素子が、液晶セル又は有機エレクトロルミネッセンス素子である、〔9〕記載の画像表示装置。
 本発明によれば、耐光性に優れる広帯域λ/4板を備え、偏光サングラスを通して見る画像の視認性を改善できる円偏光板;及び、前記の円偏光板を備えた画像表示装置;を提供できる。
図1は、本発明の一実施形態に係る円偏光板を模式的に示す断面図である。 図2は、本発明の一例としての円偏光板における直線偏光子、λ/2板及びλ/4板の関係を模式的に示す分解斜視図である。 図3は、本発明の一実施形態に係る画像表示装置としての液晶表示装置の一例を模式的に示す断面図である。 図4は、本発明の一実施形態に係る画像表示装置としての有機EL表示装置の一例を模式的に示す断面図である。
 以下、本発明について実施形態及び例示物を示して詳細に説明する。ただし、本発明は以下に示す実施形態及び例示物に限定されるものではなく、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。
 以下の説明において、「長尺」のフィルムとは、幅に対して、5倍以上の長さを有するフィルムをいい、好ましくは10倍若しくはそれ以上の長さを有し、具体的にはロール状に巻き取られて保管又は運搬される程度の長さを有するフィルムをいう。長尺のフィルムの長さの上限は、特に制限は無く、例えば、幅に対して10万倍以下としうる。
 以下の説明において、フィルムの面内レターデーションReは、別に断らない限り、Re=(nx-ny)×dで表される値である。ここで、nxは、フィルムの厚み方向に垂直な方向(面内方向)であって最大の屈折率を与える方向の屈折率を表す。nyは、フィルムの前記面内方向であってnxの方向に直交する方向の屈折率を表す。dは、フィルムの厚みを表す。測定波長は、別に断らない限り、590nmである。
 以下の説明において、フィルムの遅相軸とは、別に断らない限り、当該フィルムの面内における遅相軸を表す。
 以下の説明において、長尺のフィルムの斜め方向とは、別に断らない限り、そのフィルムの面内方向であって、そのフィルムの幅方向に平行でもなく垂直でもない方向を示す。
 以下の説明において、ある面の正面方向とは、別に断らない限り、当該面の法線方向を意味し、具体的には前記面の極角0°且つ方位角0°の方向を指す。
 以下の説明において、要素の方向が「平行」、「垂直」及び「直交」とは、別に断らない限り、本発明の効果を損ねない範囲内、例えば±5°の範囲内での誤差を含んでいてもよい。
 以下の説明において、「偏光板」、「λ/2板」、「λ/4板」及び「ポジティブCプレート」とは、別に断らない限り、剛直な部材だけでなく、例えば樹脂製のフィルムのように可撓性を有する部材も含む。
 以下の説明において、複数のフィルムを備える部材における各フィルムの光学軸(偏光吸収軸、偏光透過軸、遅相軸等)がなす角度は、別に断らない限り、前記のフィルムを厚み方向から見たときの角度を表す。
[1.概要]
 図1は、本発明の一実施形態に係る円偏光板を模式的に示す断面図である。
 図1に示すように、円偏光板100は、直線偏光子110及び広帯域λ/4板120を、この順に備える。この円偏光板100は、画像表示素子を備える画像表示装置(図示省略)において、画像表示素子の視認側に設けられるものである。円偏光板100が画像表示装置に設けられる場合、当該円偏光板100は、画像表示素子側から直線偏光子110及び広帯域λ/4板120がこの順に並ぶように設けられる。このように直線偏光子110と広帯域λ/4板120とを組み合わせることにより、画像表示装置は、広い波長範囲において円偏光による画像の表示が可能となる。そのため、偏光サングラスを通して見る画像の色が、偏光サングラスの傾きによって変化することを抑制して、画像の視認性を高めることができる。ここで、偏光サングラスの傾きとは、画像表示装置の表示面に垂直な回転軸を中心にして、偏光サングラスを回転させる方向での傾きをいう。
 また、広帯域λ/4板120は、直線偏光子110側から、λ/2板及121びλ/4板122を、この順に備える。このようにλ/2板及121びλ/4板122を組み合わせて備えることにより、広帯域λ/4板120は、広い波長範囲においてλ/4板としての機能を発揮することができる。
 さらに、λ/2板121及びλ/4板122の少なくとも一方は、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体である。そして、このように紫外線吸収剤を含む中間層を備えることにより、広帯域λ/4板は、波長380nmでの光線透過率、及び、波長390nmでの光線透過率が、所定値以下である。これにより、広帯域λ/4板120は、優れた耐光性を得られるので、光の照射による着色を抑制することができる。
[2.直線偏光子]
 直線偏光子は、偏光透過軸及び偏光吸収軸を有する光学部材であり、偏光吸収軸と平行な振動方向を有する直線偏光を吸収し、偏光透過軸と平行な振動方向を有する直線偏光を通過させうる。円偏光板を設けられた画像表示装置において、画像を表示する光は、この直線偏光子を通過した直線偏光が更にλ/2板及びλ/4板の組み合わせを含む広帯域λ/4板を通過することによって円偏光となって、画像表示装置の外へと出て行き、観察者によって視認される。
 直線偏光子としては、例えば、ポリビニルアルコール、部分ホルマール化ポリビニルアルコール等の適切なビニルアルコール系重合体のフィルムに、ヨウ素及び二色性染料等の二色性物質による染色処理、延伸処理、架橋処理等の適切な処理を適切な順序及び方式で施したフィルムを用いうる。通常、直線偏光子を製造するための延伸処理では、フィルムを長手方向に延伸するので、得られる直線偏光子においては当該直線偏光子の長手方向に平行な偏光吸収軸及び当該直線偏光子の幅方向に平行な偏光透過軸が発現しうる。この直線偏光子は、偏光度に優れるものが好ましい。直線偏光子の厚さは、5μm~80μmが一般的であるが、これに限定されない。
 直線偏光子は、通常、長尺のフィルムとして製造され、この長尺のフィルムから所望の形状となるように切り取られて使用される。長尺の直線偏光子を製造する場合、直線偏光子の偏光吸収軸は、当該直線偏光子の長手方向に平行であることが好ましい。これにより、長尺のλ/2板及び長尺のλ/4板と貼り合わせて円偏光板を製造する際に、長手方向を平行にすることで、光学軸を合わせることが可能である。そのため、長尺の直線偏光子、長尺のλ/2板及び長尺のλ/4板を、ロール・トゥ・ロール法により容易に貼り合わせることができる。
 ロール・トゥ・ロール法での貼り合わせとは、長尺状のフィルムのロールからフィルムを繰り出し、これを搬送し、搬送ライン上で他のフィルムとの貼り合わせの工程を行い、さらに得られた貼合物を巻き取りロールとする態様の貼り合わせをいう。ロール・トゥ・ロール法を用いた貼り合わせでは、枚葉のフィルムを貼り合わせる場合とは異なり、複雑な光学軸合わせの工程が不要である。そのため、効率の良い貼り合わせが可能である。
[3.広帯域λ/4板]
 広帯域λ/4板は、λ/2板及びλ/4板を組み合わせて備える。この広帯域λ/4板は、広い波長範囲において、直線偏光子を透過した直線偏光を円偏光に変換する円偏光変換機能を発揮しうる。そのため、この広帯域λ/4板を備える円偏光板を備える画像表示装置を偏光サングラスを通して見た場合に、画像の視認性を高めることができる。
 また、この広帯域λ/4板は、λ/2板及びλ/4板の少なくとも一方として、紫外線吸収剤を含む中間層を備える複層体を含んでいるので、紫外領域における光線透過率が低い。具体的には、広帯域λ/4板の波長380nmでの光線透過率は、通常1.0%以下、好ましくは0.8%以下、より好ましくは0.5%以下である。また、広帯域λ/4板の波長390nmでの光線透過率は、通常5.0%以下、好ましくは4.0%以下、より好ましくは3.0%以下である。
 広帯域λ/4板の波長380nm及び波長390nmでの光線透過率が前記のように低いことにより、広帯域λ/4板の耐光性を向上させることができる。そのため、広帯域λ/4板は、光の照射を受けても、着色を生じ難い。
 また、このように広帯域λ/4板の紫外線透過率が低いことにより、直線偏光子の外光による劣化を抑制したり、円偏光板を画像表示装置に設けた場合に画像表示素子の外光による劣化を抑制したりできる。ここで、外光には、日光等の自然光だけでなく、画像表示装置の製造時に用いられる紫外線等の人工の光を含む。
 広帯域λ/4板は、λ/2板及びλ/4板に組み合わせて、更に任意の層を備えていてもよい。任意の層としては、例えば、λ/2板とλ/4板とを貼り合わせるための粘着剤層又は接着剤層、などが挙げられる。
[4.λ/2板]
 〔4.1.λ/2板の特性〕
 λ/2板の面内レターデーションは、λ/2板及びλ/4板の組み合わせによって広帯域λ/4板が実現できる範囲で、適切に設定しうる。具体的なλ/2板の面内レターデーションは、好ましくは240nm以上、より好ましくは250nm以上であり、好ましくは300nm以下、より好ましくは280nm以下、特に好ましくは265nm以下である。λ/2板がこのような面内レターデーションを有することにより、λ/2板及びλ/4板を組み合わせて、広帯域λ/4板として機能させることができる。
 λ/2板は、順波長分散特性、フラット波長分散特性、及び逆波長分散特性等の波長分散特性を有しうる。順波長分散特性は、波長が短くなるに従って、レターデーションが大きくなる波長分散特性を意味する。また、逆波長分散特性は、波長が短くなるに従って、レターデーションが小さくなる波長分散特性を意味する。さらに、フラット波長分散特性は、波長に関係なく、レターデーションが変わらない波長分散特性を意味する。
 図2は、本発明の一例としての円偏光板100における直線偏光子110、λ/2板121及びλ/4板122の関係を模式的に示す分解斜視図である。図2において、λ/2板121及びλ/4板122には、直線偏光子110の偏光吸収軸A110に平行な仮想線を一点鎖線で示す。
 図2に示す例のように、直線偏光子110の偏光吸収軸A110に対して、λ/2板121の遅相軸A121がなす角度αは、λ/2板121及びλ/4板122の組み合わせによって広帯域λ/4板120が実現できる範囲で、任意に設定しうる。前記の角度αの具体的な範囲は、好ましくは15°±5°、より好ましくは15°±3°、特に好ましくは15°±1°である。角度αが前記範囲にあることにより、λ/2板121及びλ/4板122の組み合わせを含む広帯域λ/4板120が、直線偏光子110を通った広い波長範囲の直線偏光を、安定して円偏光に変換できる。また、特にλ/2板121と直線偏光子110がそれぞれ長尺状であれば、角度αが前記範囲にあることにより、λ/2板121と直線偏光子110との貼り合わせを、ロール・トゥ・ロール法によって行いやすい。
 λ/2板の全光線透過率は、好ましくは80%以上である。光線透過率は、JIS K0115に準拠して、分光光度計(日本分光社製、紫外可視近赤外分光光度計「V-570」)を用いて測定しうる。
 λ/2板のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。ここで、ヘイズは、JIS K7361-1997に準拠して、日本電色工業社製「濁度計 NDH-300A」を用いて、5箇所測定し、それから求めた平均値を採用しうる。
 λ/2板が含む揮発性成分の量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下であり、理想的にはゼロである。揮発性成分の量を少なくすることにより、λ/2板の寸法安定性が向上し、レターデーション等の光学特性の経時変化を小さくすることができる。
 ここで、揮発性成分とは、フィルム中に微量含まれる分子量200以下の物質であり、例えば、残留単量体及び溶媒などが挙げられる。揮発性成分の量は、フィルム中に含まれる分子量200以下の物質の合計として、フィルムをクロロホルムに溶解させてガスクロマトグラフィーによって分析することにより定量することができる。
 λ/2板の飽和吸水率は、好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下であり、理想的にはゼロである。λ/2板の飽和吸水率が前記範囲であると、面内レターデーション等の光学特性の経時変化を小さくすることができる。
 ここで、飽和吸水率は、フィルムの試験片を23℃の水中に24時間浸漬し、増加した質量の、浸漬前フィルム試験片の質量に対する百分率で表される値である。
 〔4.2.λ/2板の組成〕
 λ/2板は、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体であることが好ましい。この複層体において、通常は、第一外側層と中間層とは間に他の層を挟むことなく接しており、また、中間層と第二外側層とは間に他の層を挟むことなく接している。この複層体は、紫外線吸収剤を含む中間層を備えるので、当該複層体を透過する紫外線を弱めることができる。さらに、この複層体は、中間層の両側に第一外側層及び第二外側層を備えるので、紫外線吸収剤のブリードアウトを抑制できる。
 (中間層)
 中間層は、通常、重合体及び紫外線吸収剤を含む樹脂からなる。このような樹脂としては、熱可塑性樹脂を用いることが好ましい。よって、中間層は、熱可塑性の重合体と紫外線吸収剤とを含む熱可塑性樹脂の層であることが好ましい。
 熱可塑性の重合体としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリフェニレンサルファイド等のポリアリーレンサルファイド;ポリビニルアルコール;ポリカーボネート;ポリアリレート;セルロースエステル重合体、ポリエーテルスルホン;ポリスルホン;ポリアリルサルホン;ポリ塩化ビニル;ノルボルネン重合体等の、脂環式構造を含有する重合体;棒状液晶ポリマーなどが挙げられる。これらの重合体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。また、重合体は、単独重合体でもよく、共重合体でもよい。これらの中でも、機械特性、耐熱性、透明性、低吸湿性、寸法安定性及び軽量性に優れることから、脂環式構造を含有する重合体が好ましい。
 脂環式構造を含有する重合体は、その重合体の構造単位が脂環式構造を含有する重合体である。脂環式構造を含有する重合体は、主鎖に脂環式構造を有していてもよく、側鎖に脂環式構造を有していてもよく、主鎖及び側鎖に脂環式構造を有していてもよい。中でも、機械的強度及び耐熱性の観点から、主鎖に脂環式構造を含有する重合体が好ましい。
 脂環式構造としては、例えば、飽和脂環式炭化水素(シクロアルカン)構造、不飽和脂環式炭化水素(シクロアルケン、シクロアルキン)構造などが挙げられる。中でも、機械強度及び耐熱性の観点から、シクロアルカン構造及びシクロアルケン構造が好ましく、中でもシクロアルカン構造が特に好ましい。
 脂環式構造を構成する炭素原子数は、一つの脂環式構造あたり、好ましくは4個以上、より好ましくは5個以上であり、好ましくは30個以下、より好ましくは20個以下、特に好ましくは15個以下の範囲である。脂環式構造を構成する炭素原子数をこの範囲にすることにより、脂環式構造を含有する重合体を含む樹脂の機械強度、耐熱性及び成形性が高度にバランスされる。
 脂環式構造を含有する重合体における脂環式構造を有する構造単位の割合は、好ましくは55重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。脂環式構造を含有する重合体における脂環式構造を有する構造単位の割合がこの範囲にあると、脂環式構造を含有する重合体を含む樹脂の透明性及び耐熱性が良好となる。
 脂環式構造を含有する重合体としては、例えば、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物が挙げられる。これらの中でも、透明性及び成形性が良好であるので、ノルボルネン系重合体がより好ましい。
 ノルボルネン系重合体の例としては、ノルボルネン構造を有する単量体の開環重合体及びその水素添加物;ノルボルネン構造を有する単量体の付加重合体及びその水素添加物が挙げられる。また、ノルボルネン構造を有する単量体の開環重合体の例としては、ノルボルネン構造を有する1種類の単量体の開環単独重合体、ノルボルネン構造を有する2種類以上の単量体の開環共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との開環共重合体が挙げられる。さらに、ノルボルネン構造を有する単量体の付加重合体の例としては、ノルボルネン構造を有する1種類の単量体の付加単独重合体、ノルボルネン構造を有する2種類以上の単量体の付加共重合体、並びに、ノルボルネン構造を有する単量体及びこれと共重合しうる任意の単量体との付加共重合体が挙げられる。これらの中で、ノルボルネン構造を有する単量体の開環重合体の水素添加物は、成形性、耐熱性、低吸湿性、寸法安定性及び軽量性の観点から、特に好適である。
 ノルボルネン構造を有する単量体としては、例えば、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、およびこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。これらの置換基は、同一または相異なって、複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 極性基の種類としては、例えば、ヘテロ原子、またはヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン酸基などが挙げられる。
 ノルボルネン構造を有する単量体と開環共重合可能な単量体としては、例えば、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状共役ジエン及びその誘導体;などが挙げられる。ノルボルネン構造を有する単量体と開環共重合可能な単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ノルボルネン構造を有する単量体の開環重合体は、例えば、単量体を開環重合触媒の存在下に重合又は共重合することにより製造しうる。
 ノルボルネン構造を有する単量体と付加共重合可能な単量体としては、例えば、エチレン、プロピレン、1-ブテン等の炭素原子数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン等のシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン等の非共役ジエン;などが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。また、ノルボルネン構造を有する単量体と付加共重合可能な単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ノルボルネン構造を有する単量体の付加重合体は、例えば、単量体を付加重合触媒の存在下に重合又は共重合することにより製造しうる。
 上述した開環重合体及び付加重合体の水素添加物は、例えば、開環重合体及び付加重合体の溶液において、ニッケル、パラジウム等の遷移金属を含む水素添加触媒の存在下で、炭素-炭素不飽和結合を、好ましくは90%以上水素添加することによって製造しうる。
 ノルボルネン系重合体の中でも、構造単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの構造単位の量が、ノルボルネン系重合体の構造単位全体に対して90重量%以上であり、かつ、Xの割合とYの割合との比が、X:Yの重量比で100:0~40:60であるものが好ましい。このような重合体を用いることにより、当該ノルボルネン系重合体を含む層を、長期的に寸法変化がなく、光学特性の安定性に優れるものにできる。
 中間層に含まれる重合体の重量平均分子量(Mw)は、好ましくは10,000以上、より好ましくは15,000以上、特に好ましくは20,000以上であり、好ましくは100,000以下、より好ましくは80,000以下、特に好ましくは50,000以下である。重量平均分子量がこのような範囲にあるときに、樹脂の機械的強度および成型加工性が高度にバランスされる。
 中間層に含まれる重合体の分子量分布(Mw/Mn)は、好ましくは1.2以上、より好ましくは1.5以上、特に好ましくは1.8以上であり、好ましくは3.5以下、より好ましくは3.0以下、特に好ましくは2.7以下である。ここで、Mnは、数平均分子量を表す。分子量分布を前記範囲の下限値以上にすることにより、重合体の生産性を高め、製造コストを抑制できる。また、上限値以下にすることにより、低分子成分の量が小さくなるので、高温曝露時の緩和を抑制して、その重合体を含む層の安定性を高めることができる。
 前記の重量平均分子量(Mw)及び数平均分子量(Mn)は、溶媒としてシクロヘキサンを用いたゲル・パーミエーション・クロマトグラフィーにより、ポリイソプレンまたはポリスチレン換算の重量平均分子量として測定しうる。但し、前記のゲル・パーミエーション・クロマトグラフィーでは、試料がシクロヘキサンに溶解しない場合には、溶媒としてトルエンを用いてもよい。
 中間層に含まれる重合体のガラス転移温度は、好ましくは100℃以上、より好ましくは110℃以上、特に好ましくは120℃以上であり、好ましくは160℃以下、より好ましくは150℃以下、特に好ましくは140℃以下である。重合体のガラス転移温度を、前記範囲の下限値以上にすることにより高温環境下における複層体の耐久性を高めることができ、前記範囲の上限値以下にすることにより延伸処理を容易に行える。
 中間層に含まれる重合体の光弾性係数の絶対値は、好ましくは10×10-12Pa-1以下、より好ましくは7×10-12Pa-1以下、特に好ましくは4×10-12Pa-1以下である。これにより、複層体のレターデーションのバラツキを小さくすることができる。ここで、光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。
 中間層に含まれる樹脂における重合体の量は、好ましくは80.0重量%以上、より好ましくは82.0重量%以上、特に好ましくは84.0重量%以上であり、好ましくは97.0重量%以下、より好ましくは96.0重量%以下、特に好ましくは95.0重量%以下である。重合体の量を前記範囲に収めることにより、複層体の耐熱性及び透明性を高くできる。
 紫外線吸収剤としては、紫外線を吸収しうる化合物を用いうる。紫外線吸収剤を用いることにより、中間層を備える複層体に紫外線の透過を妨げる能力を付与できる。紫外線吸収剤としては、有機紫外線吸収剤が好ましく、例えば、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、アクリロニトリル系紫外線吸収剤、サリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、アゾメチン系紫外線吸収剤、インドール系紫外線吸収剤、ナフタルイミド系紫外線吸収剤、フタロシアニン系紫外線吸収剤等の有機紫外線吸収剤が挙げられる。
 トリアジン系紫外線吸収剤としては、例えば、1,3,5-トリアジン環を有する化合物が好ましい。トリアジン系紫外線吸収剤の具体例としては、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(へキシル)オキシ]-フェノール、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン等が挙げられる。このようなトリアジン系紫外線吸収剤の市販品としては、例えば、チバスペシャリティーケミカルズ社製「チヌビン1577」、ADEKA社製「LA-F70」、「LA-46」などが挙げられる。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-ベンゾトリアゾール-2-イル-4,6-ジ-tert-ブチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖および側鎖ドデシル)-4-メチルフェノール等が挙げられる。このようなトリアゾール系紫外線吸収剤の市販品としては、例えば、ADEKA社製「アデカスタブLA-31」、チバスペシャリティーケミカルズ社製「TINUVIN328」などが挙げられる。
 アゾメチン系紫外線吸収剤としては、例えば、特許第3366697号公報に記載の材料を例示することができ、市販品としては、例えば、オリエント化学社製「BONASORB UA-3701」などが挙げられる。
 インドール系紫外線吸収剤としては、例えば、特許第2846091号公報に記載の材料を例示することができ、市販品としては、例えば、オリエント化学社製「BONASORB UA-3911」、「BONASORB UA-3912」などが挙げられる。
 フタロシアニン系紫外線吸収剤としては、例えば、特許第4403257号公報、特許第3286905号公報に記載の材料を例示することができ、市販品としては、例えば、山田化学工業社製「FDB001」、「FDB002」などが挙げられる。
 これらの中でも、380nm付近における紫外線吸収性能が優れているという点で、トリアジン系紫外線吸収剤、アゾメチン系紫外線吸収剤及びインドール系紫外線吸収剤が好ましく、トリアジン系紫外線吸収剤が特に好ましい。
 紫外線吸収剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 中間層に含まれる樹脂における紫外線吸収剤の量は、好ましくは3重量%以上、より好ましくは4重量%以上、特に好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは18重量%以下、特に好ましくは16重量%以下である。紫外線吸収剤の量が、前記範囲の下限値以上であることにより、紫外線の透過を妨げる複層体の能力を特に高めることができ、前記範囲の上限値以下であることにより、複層体の可視光に対する透明性を高めることができる。
 中間層に含まれる樹脂は、重合体及び紫外線吸収剤に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、顔料、染料等の着色剤;可塑剤;蛍光増白剤;分散剤;熱安定剤;光安定剤;帯電防止剤;酸化防止剤;界面活性剤等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 中間層に含まれる樹脂の製造方法は、任意であり、重合体及び紫外線吸収剤、並びに必要に応じて任意の成分を混合することによって製造しうる。通常は、重合体及び紫外線吸収剤を、重合体が溶融しうる温度において混練することにより、樹脂を製造する。混練には、例えば、二軸押出機を用いうる。
 中間層の厚みは、「中間層の厚み」/「複層体の厚み」で表される比が、所定の範囲に収まるように設定することが好ましい。前記の所定の範囲は、好ましくは1/5以上、より好ましくは1/4以上、特に好ましくは1/3以上であり、好ましくは80/82以下、より好ましくは79/82以下、特に好ましくは78/82以下である。前記の比が、前記範囲の下限値以上であることにより、紫外線の透過を妨げる複層体の能力を特に高めることができ、前記範囲の上限値以下であることにより、複層体の厚みを薄くできる。
 (第一外側層)
 第一外側層は、通常、重合体を含む樹脂からなる。このような樹脂としては、熱可塑性樹脂を用いることが好ましい。よって、第一外側層は、熱可塑性の重合体を含む熱可塑性樹脂の層であることが好ましい。
 第一外側層に含まれる樹脂が含む重合体としては、中間層に含まれる樹脂が含む重合体として説明した範囲から選択される任意の重合体を用いうる。これにより、中間層の説明で記載したのと同様の利点を得ることができる。中でも、第一外側層に含まれる樹脂が含む重合体としては、中間層に含まれる樹脂が含む重合体と同一の重合体を用いることが好ましい。これにより、中間層と第一外側層との接着強度を高めたり、中間層と第一外側層との界面での光の反射を抑制したりし易い。
 第一外側層に含まれる樹脂における重合体の量は、好ましくは90.0重量%~100重量%、より好ましくは95.0重量%~100重量%である。重合体の量を前記範囲にすることにより、複層体が十分な耐熱性及び透明性を得られる。
 第一外側層に含まれる樹脂は、紫外線吸収剤を含みうるが、第一外側層に含まれる樹脂における紫外線吸収剤の量は少ないことが好ましく、第一外側層に含まれる樹脂は紫外線吸収剤を含まないことがより好ましい。第一外側層に含まれる樹脂が紫外線吸収剤を含まないことにより、紫外線吸収剤のブリードアウトを効果的に抑制することができる。
 第一外側層に含まれる樹脂は、重合体に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、中間層に含まれる樹脂が含みうる任意の成分として挙げたのと同様の成分が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 第一外側層の厚みは、「第一外側層の厚み」/「複層体の厚み」で表される比が、所定の範囲に収まるように設定することが好ましい。前記の所定の範囲は、好ましくは1/82以上、より好ましくは2/82以上、特に好ましくは3/82以上であり、好ましくは1/3以下、より好ましくは1/4以下、特に好ましくは1/5以下である。前記の比が、前記範囲の下限値以上であることにより、中間層に含まれる紫外線吸収剤のブリードアウトを効果的に抑制でき、前記範囲の上限値以下であることにより、複層体の厚みを薄くできる。
 (第二外側層)
 第二外側層は、通常、重合体を含む樹脂からなる。第二外側層に含まれる樹脂としては、第一外側層に含まれる樹脂として説明した樹脂の範囲から選択される任意の樹脂を用いうる。これにより、第一外側層の説明に記載したのと同様の利点を、第二外側層においても得ることができる。
 第一外側層に含まれる樹脂と、第二外側層に含まれる樹脂とは、異なる樹脂であってもよいが、同一の樹脂であることが好ましい。中でも、第一外側層に含まれる樹脂と、第二外側層に含まれる樹脂とが同一の樹脂であることにより、複層体の製造コストを抑制したり、複層体のカールを抑制したりできる。
 第二外側層の厚みは、第一外側層の厚みの範囲として説明した範囲から選択される任意の厚みにしうる。これにより、第一外側層の厚みの説明で記載したのと同様の利点を得ることができる。中でも、複層体のカールを抑制するためには、第二外側層の厚みは、第一外側層と同一にすることが好ましい。
 〔4.3.λ/2板の厚み〕
 λ/2板の厚みは、好ましくは25μm以上、より好ましくは27μm以上、特に好ましくは30μm以上であり、好ましくは45μm以下、より好ましくは43μm以下、特に好ましくは40μm以下である。λ/2板の厚みが、前記範囲の下限値以上であることにより所望のレターデーションの発現ができ、また、前記範囲の上限値以下であることにより薄膜化ができる。
 〔4.4.λ/2板の製造方法〕
 λ/2板の製造方法は任意である。λ/2板は、例えば、樹脂からなる長尺の延伸前フィルムに1回以上の斜め延伸を施すことを含む製造方法により、斜め延伸フィルムとして製造してもよい。ここで「斜め延伸」とは、長尺のフィルムを斜め方向に延伸することを表す。斜め延伸を含む製造方法によれば、λ/2板を容易に製造することができる。
 さらに、λ/2板は、前記の斜め延伸の後で更に縦延伸を施すことを含む製造方法により、逐次二軸延伸フィルムとして製造することが好ましい。ここで「縦延伸」とは、長尺のフィルムを長手方向に延伸することを表す。このような斜め延伸と縦延伸との組み合わせを行うことにより、直線偏光子とロール・トゥ・ロール法による貼り合わせが可能なλ/2板を製造し易い。
 また、中間層、第一外側層及び第二外側層を含む複層体としてλ/2板を製造する場合には、延伸前フィルムとして、中間層、第一外側層及び第二外側層それぞれに対応する層を含む複層構造のフィルムを用いることが好ましい。
 以下、λ/2板の好ましい製造方法の一例を、説明する。この例に係るλ/2板の製造方法は、(a)中間層、第一外側層及び第二外側層それぞれに対応する層を含む長尺の延伸前フィルムを用意する第一工程と、(b)長尺の延伸前フィルムを斜め方向に延伸して、長尺の中間フィルムを得る第二工程と、(c)中間フィルムを長手方向に自由一軸延伸して、長尺のλ/2板を得る第三工程とを含む。
 (a)第一工程では、長尺の延伸前フィルムを用意する。延伸前フィルムは、例えば、中間層形成用の樹脂、第一外側層形成用の樹脂、及び、第二外側層形成用の樹脂をフィルム状に成形する工程を含む製造方法により、製造しうる。樹脂の成形方法としては、例えば、共押出法及び共流延法などが挙げられる。これらの成形方法の中でも、共押出法は、製造効率に優れ、フィルム中に揮発性成分を残留させ難いので、好ましい。
 共押出法を用いた製造方法は、樹脂を共押し出しする工程を含む。共押出法においては、樹脂は、溶融状態で層状に押し出され、第一外側層形成用の樹脂の層、中間層形成用の樹脂の層、及び、第二外側層形成用の樹脂の層を形成する。この際、樹脂の押出方法としては、例えば、共押出Tダイ法、共押出インフレーション法、共押出ラミネーション法等が挙げられる。中でも、共押出Tダイ法が好ましい。共押出Tダイ法には、フィードブロック方式及びマルチマニホールド方式があり、厚みのばらつきを少なくできる点で、マルチマニホールド方式が特に好ましい。
 共押出法において、押し出される樹脂の溶融温度は、好ましくは(Tg+80℃)以上、より好ましくは(Tg+100℃)以上であり、好ましくは(Tg+180℃)以下、より好ましくは(Tg+150℃)以下である。ここで「Tg」は、押し出される樹脂に含まれる重合体のガラス転移温度のうち、最も高い温度を表す。また、前記の溶融温度は、例えば共押出Tダイ法においては、Tダイを有する押出機における樹脂の溶融温度を表す。押し出される樹脂の溶融温度が、前記範囲の下限値以上であることより、樹脂の流動性を十分に高めて成形性を良好にでき、また、上限値以下であることにより、樹脂の劣化を抑制できる。
 押出温度は、樹脂に応じて適切に選択しうる。例えば、押出機内における樹脂の温度は、樹脂投入口ではTg~(Tg+100℃)、押出機出口では(Tg+50℃)~(Tg+170℃)、ダイス温度は(Tg+50℃)~(Tg+170℃)としうる。
 さらに、ダイのダイスリップの算術平均粗さRaは、好ましくは0μm~1.0μm、より好ましくは0μm~0.7μm、特に好ましくは0μm~0.5μmである。ダイスリップの算術平均粗さを前記範囲に収めることにより、延伸前フィルムのスジ状の欠陥を抑制することが容易となる。
 共押出法では、通常、ダイスリップから押し出されたフィルム状の溶融樹脂を冷却ロールに密着させて冷却し、硬化させる。この際、溶融樹脂を冷却ロールに密着させる方法としては、例えば、エアナイフ方式、バキュームボックス方式、静電密着方式などが挙げられる。
 前記のように樹脂をフィルム状に成形することにより、第一外側層形成用の樹脂の層、中間層形成用の樹脂の層、及び、第二外側層形成用の樹脂の層をこの順に備える長尺の延伸前フィルムが得られる。
 (a)第一工程で長尺の延伸前フィルムを用意した後で、(b)その長尺の延伸前フィルムを斜め方向に延伸して中間フィルムを得る第二工程を行なう。第二工程では、通常、延伸前フィルムを長手方向に連続的に搬送しながら、テンター延伸機を用いて延伸を行なう。テンター延伸機は、延伸前フィルムのフィルム幅方向の両端部をそれぞれ把持しうる複数個の把持子を有し、この把持子で延伸前フィルムを所定の方向に延伸することにより、任意の方向への延伸を達成しうる。
 (b)第二工程における延伸倍率は、好ましくは1.1倍以上、より好ましくは1.15倍以上、特に好ましくは1.2倍以上であり、好ましくは5.0倍以下、より好ましくは4.0倍以下、特に好ましくは3.5倍以下である。(b)第二工程における延伸倍率が前記範囲の下限値以上であることにより、λ/2板におけるシワの発生を抑制でき、また、延伸方向の屈折率を大きくできる。また、延伸倍率が前記範囲の上限値以下であることにより、λ/2板の配向角のバラツキを小さくすることができ、遅相軸方向を容易に制御できる。ここで、配向角とは、ある基準方向に対してそのフィルムの遅相軸がなす角度をいう。配向角は、偏光顕微鏡又はAXOSCAN(Axometrics社製)で測定しうる。
 (b)第二工程における延伸温度は、好ましくは(Tg-5℃)以上、より好ましくは(Tg-2℃)以上、特に好ましくはTg以上であり、好ましくは(Tg+40℃)以下、より好ましくは(Tg+35℃)以下、特に好ましくは(Tg+30℃)以下である。(b)第二工程における延伸温度が前記の範囲であることにより、延伸前フィルムに含まれる分子を確実に配向させることができるので、所望の光学特性を有する中間フィルムが容易に得られる。
 (b)第二工程で延伸されたことによって、中間フィルムに含まれる分子は配向している。そのため、中間フィルムは、遅相軸を有する。(b)第二工程では、斜め方向へ延伸が行なわれるので、中間フィルムの遅相軸は、中間フィルムの斜め方向に発現する。具体的には、中間フィルムは、その長手方向に対して、通常5°~85°の範囲に遅相軸を有する。
 中間フィルムの遅相軸の具体的な方向は、製造したいλ/2板の遅相軸の方向に応じて設定することが好ましい。通常は、(c)第三工程により得られるλ/2板の遅相軸がその長手方向に対してなす配向角は、中間フィルムの遅相軸がその長手方向に対してなす配向角よりも小さくなる。そのため、中間フィルムの遅相軸がその長手方向に対してなす配向角は、λ/2板の遅相軸がその長手方向に対してなす配向角よりも大きくすることが好ましい。
 (b)第二工程の後で、(c)中間フィルムを長手方向に自由一軸延伸して、長尺のλ/2板を得る第三工程を行なう。ここで自由一軸延伸とは、ある一方向への延伸であって、延伸される方向以外の方向に拘束力を加えないことをいう。よって、本例に示す中間フィルムの長手方向への自由一軸延伸は、中間フィルムの幅方向の端部を拘束しないで行なう長手方向への延伸のことをいう。(c)第三工程でのこのような延伸は、通常、中間フィルムを長手方向に連続的に搬送しながら、ロール延伸機を用いて行なわれる。
 (c)第三工程における延伸倍率は、(b)第二工程における延伸倍率よりも小さくすることが好ましい。これにより、斜め方向に遅相軸を有するλ/2板において、シワの発生を抑制しながら延伸を行うことが可能となる。斜め方向への延伸及び長手方向への自由一軸延伸をこの順に行なうことと、(c)第三工程における延伸倍率を(b)第二工程における延伸倍率よりも小さくすることとの組み合わせにより、長手方向に対して小さい角度方向に遅相軸を有するλ/2板を容易に製造できる。
 (c)第三工程における具体的な延伸倍率は、好ましくは1.1倍以上、より好ましくは1.15倍以上、特に好ましくは1.2倍以上であり、好ましくは3.0倍以下、より好ましくは2.8倍以下、特に好ましくは2.6倍以下である。(c)第三工程における延伸倍率が前記範囲の下限値以上であることにより、λ/2板のシワを抑制できる。また、延伸倍率が前記範囲の上限値以下であることにより、遅相軸の方向を容易に制御することが可能となる。
 (c)第三工程における延伸温度T2は、(b)第二工程における延伸温度T1を基準として、好ましくは「T1-20℃」より高く、より好ましくは「T1-18℃」以上、特に好ましくは「T1-16℃」以上であり、好ましくは「T1+20℃」より低く、より好ましくは「T1+18℃」以下、特に好ましくは「T1+16℃」以下である。(c)第三工程における延伸温度T2を前記の範囲にすることにより、λ/2板の面内レターデーションを効果的に調節することができる。
 前記の例に示したλ/2板の製造方法は、更に変更して実施してもよい。
 例えば、λ/2板の製造方法は、(a)第一工程、(b)第二工程及び(c)第三工程以外に、更に任意の工程を有していてもよい。そのような工程としては、例えば、λ/2板の両端部をトリミングする工程、λ/2板の表面に保護層を設ける工程、λ/2板の表面に化学的処理及び物理的処理等の表面処理を施す工程が挙げられる。
 また、例えば、延伸前フィルムとして、延伸前フィルムを任意の方向に延伸したフィルムを用いてもよい。このように、(b)第二工程に供する前に延伸前フィルムを延伸する方法としては、例えば、ロール方式、フロート方式の縦延伸法、テンター延伸機を用いた横延伸法などを用いうる。
[5.λ/4板]
 〔5.1.λ/4板の特性〕
 λ/4板の面内レターデーションは、λ/2板及びλ/4板の組み合わせによって広帯域λ/4板が実現できる範囲で、適切に設定しうる。具体的なλ/4板の面内レターデーションは、好ましくは110nm以上、より好ましくは118nm以上であり、好ましくは154nm以下、より好ましくは138nm以下、特に好ましくは128nm以下である。λ/4板がこのような面内レターデーションを有することにより、λ/2板及びλ/4板を組み合わせて、広帯域λ/4板として機能させることができる。
 λ/4板は、順波長分散特性、フラット波長分散特性、及び逆波長分散特性等の波長分散特性を有しうる。
 一般に、ある基準方向に対して角度θλ/4をなすλ/4板と、前記基準方向に対して角度θλ/2をなすλ/2板とを組み合わせた複層フィルムが、式C:「θλ/4=2θλ/2+45°」を満たす場合、この複層フィルムは、広い波長範囲において当該複層フィルムを通過する光にその光の波長の略1/4波長の面内レターデーションを与えうる広帯域λ/4板となる(特開2007-004120号公報参照)。
 よって、図2に示すように、λ/2板121及びλ/4板122の組み合わせによって広帯域λ/4板120の機能を発揮させる観点から、λ/4板122の遅相軸A122は、λ/2板121の遅相軸A121との間に、前記式Cで表されるのに近い関係を満たすことが好ましい。具体的には、直線偏光子110の偏光吸収軸A110に対して、λ/4板122の遅相軸A122がなす角度βは、好ましくは(2α+45°)±5°、より好ましくは(2α+45°)±3°、特に好ましくは(2α+45°)±1°である。ここで、角度αは、直線偏光子110の偏光吸収軸A110に対して、λ/2板121の遅相軸A121がなす角度を表す。
 λ/4板122の遅相軸A122が直線偏光子110の偏光吸収軸A110に対して角度βをなす向きは、通常、λ/2板121の遅相軸A121が直線偏光子110の偏光吸収軸A110に対して角度αをなす向きと同じである。したがって、例えば、厚み方向から見た場合、直線偏光子110の偏光吸収軸A110に対してλ/2板121の遅相軸A121が時計回りの向きで角度αをなすときには、直線偏光子110の偏光吸収軸A110に対してλ/4板122の遅相軸A122は、通常、時計回りの向きで角度βをなす。また、例えば、厚み方向から見た場合、直線偏光子110の偏光吸収軸A110に対してλ/2板121の遅相軸A121が反時計回りの向きで角度αをなすときには、直線偏光子110の偏光吸収軸A110に対してλ/4板122の遅相軸A122は、通常、反時計回りの向きで角度βをなす。
 λ/4板の全光線透過率は、好ましくは80%以上である。
 λ/4板のヘイズは、好ましくは5%以下、より好ましくは3%以下、特に好ましくは1%以下であり、理想的には0%である。
 λ/4板が含む揮発性成分の量は、好ましくは0.1重量%以下、より好ましくは0.05重量%以下、さらに好ましくは0.02重量%以下であり、理想的にはゼロである。揮発性成分の量を少なくすることにより、λ/4板の寸法安定性が向上し、レターデーション等の光学特性の経時変化を小さくすることができる。
 λ/4板の飽和吸水率は、好ましくは0.03重量%以下、さらに好ましくは0.02重量%以下、特に好ましくは0.01重量%以下であり、理想的にはゼロである。λ/4板の飽和吸水率が前記範囲であると、面内レターデーション等の光学特性の経時変化を小さくすることができる。
 〔5.2.λ/4板の組成〕
 λ/4板は、樹脂からなる樹脂フィルムであることが好ましく、特に、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体であることがより好ましい。このようにλ/4板に適用しうる複層体としては、λ/2板として適用しうる複層体として説明した範囲から選択される任意の複層体を用いうる。よって、λ/4板としての複層体の中間層に含まれる樹脂、第一外側層に含まれる樹脂、第二外側層に含まれる樹脂、「中間層の厚み」/「複層体の厚み」で表される比などの事項については、λ/2板として適用しうる複層体の説明において記載したのと同様のものを、任意に採用しうる。これにより、λ/2板の説明で記載したのと同様の利点を、λ/4板においても得ることができる。
 〔5.3.λ/4板の厚み〕
 λ/4板の厚みは、好ましくは10μm以上、より好ましくは13μm以上、特に好ましくは15μm以上であり、好ましくは60μm以下、より好ましくは58μm以下、特に好ましくは55μm以下である。λ/4板の厚みが、前記範囲の下限値以上であることにより所望のレターデーションの発現ができ、また、前記範囲の上限値以下であることにより薄膜化ができる。
 また、λ/2及びλ/4板の合計厚みは、所定の厚み以下に設定することが好ましい。具体的な合計厚みは、好ましくは100μm以下、より好ましくは85μm以下、特に好ましくは70μm以下である。λ/2及びλ/4板の合計厚みをこのように薄くすることにより、画像表示装置の薄型化ができる。前記の合計厚みの下限は、特段の制限は無いが、所望の特性を有する広帯域λ/4板の製造を容易に行う観点から、好ましくは35μm以上、より好ましくは40μm以上、特に好ましくは45μm以上である。
 〔5.4.λ/4板の製造方法〕
 λ/4板の製造方法は任意である。λ/4板は、例えば、樹脂からなる長尺の延伸前フィルムに延伸を施すことを含む製造方法により、延伸フィルムとして製造しうる。特に、λ/4板は、長尺の延伸前フィルムに1回以上の斜め延伸を施すことを含む製造方法により、斜め延伸フィルムとして製造することが好ましい。斜め延伸を含む製造方法によれば、λ/4板を容易に製造することができる。また、中間層、第一外側層及び第二外側層を含む複層体としてλ/4板を製造する場合には、延伸前フィルムとして、中間層、第一外側層及び第二外側層それぞれに対応する層を含む複層構造のフィルムを用いることが好ましい。
 以下、λ/4板の好ましい製造方法の一例を、説明する。この例に係るλ/4板の製造方法は、(d)中間層、第一外側層及び第二外側層それぞれに対応する層を含む長尺の延伸前フィルムを用意する第四工程と、(e)長尺の延伸前フィルムを延伸して、長尺のλ/4板を得る第五工程と、を含む。
 (d)第四工程では、長尺の延伸前フィルムを用意する。延伸前フィルムは、例えば、λ/2板の製造方法における(a)第一工程と同様の方法により、製造しうる。(d)第四工程において(a)第一工程と同様の方法によって延伸前フィルムを製造することにより、(a)第一工程と同様の利点を(d)第四工程でも得られる。
 (d)第四工程で長尺の延伸前フィルムを用意した後で、(e)その長尺の延伸前フィルムを延伸してλ/4板を得る第五工程を行なう。第五工程では、通常、延伸前フィルムを長手方向に連続的に搬送しながら、延伸を行なう。この際、延伸方向は、フィルムの長手方向でもよく、幅方向でもよいが、斜め方向であることが好ましい。また、延伸は、延伸方向以外に拘束力の加わらない自由一軸延伸であってもよく、延伸方向以外にも拘束力が加わる延伸であってもよい。これらの延伸は、ロール延伸機、テンター延伸機等の任意の延伸機を用いて行いうる。
 (e)第五工程における延伸倍率は、好ましくは1.1倍以上、より好ましくは1.15倍以上、特に好ましくは1.2倍以上であり、好ましくは3.0倍以下、より好ましくは2.8倍以下、特に好ましくは2.6倍以下である。(e)第五工程における延伸倍率を前記範囲の下限値以上にすることにより、延伸方向の屈折率を大きくできる。また、上限値以下にすることにより、λ/4板の遅相軸方向を容易に制御することができる。
 (e)第五工程における延伸温度は、好ましくは(Tg-5℃)以上、より好ましくは(Tg-2℃)以上、特に好ましくはTg以上であり、好ましくは(Tg+40℃)以下、より好ましくは(Tg+35℃)以下、特に好ましくは(Tg+30℃)以下である。(e)第五工程における延伸温度を前記の範囲にすることにより、延伸前フィルムに含まれる分子を確実に配向させることができるので、所望の光学特性を有するλ/4板を容易に得ることができる。
 前記の例に示したλ/4板の製造方法は、更に変更して実施してもよい。例えば、λ/4板の製造方法は、(d)第四工程及び(e)第五工程以外に、更に任意の工程を有していてもよい。例えば、λ/4板の製造方法は、製造されたλ/4板の両端部をトリミングする工程、λ/4板の表面に保護層を設ける工程、λ/4板の表面に化学的処理及び物理的処理等の表面処理を施す工程を含んでいてもよい。また、λ/4板の製造方法は、λ/2板の製造方法の任意の工程と同様の工程を含んでいてもよい。
[6.任意の層]
 円偏光板は、上述した要素以外に、任意の層を備えていてもよい。任意の層としては、例えば、直線偏光子を保護するための保護フィルム;フィルム同士を貼り合わせるための接着剤層又は粘着剤層;フィルムの傷付きを抑制するためのガラス層;ハードコート層;反射防止層;防汚層;λ/4板の傾斜方向から観察した際に生じるレターデーション変化を抑制するためのポジティブCプレートのような光学補償層等が挙げられる。前記ポジティブCプレートは、正面方向ではレターデーションがゼロであるが、傾斜方向の傾きとともにλ/4板のレターデーション変化を打ち消すようにレターデーションが変化するもので、屈折率がnx=ny<nzの関係を満たすものをいう。ここで、λ/4板の傾斜方向とは、λ/4板の主面に平行でも垂直でもない方向を意味し、具体的にはλ/4板の主面の極角が0°より大きく90°より小さい範囲の方向を指す。
[7.円偏光板の製造方法]
 円偏光板は、例えば、上述した直線偏光子、λ/2板及びλ/4板を貼り合わせることにより、製造しうる。貼り合わせには、必要に応じて、接着剤又は粘着剤を用いてもよい。貼り合わせの順番は、任意であるが、通常は、λ/2板及びλ/4板を貼り合わせて広帯域λ/4板を製造した後で、この広帯域λ/4板と直線偏光子とを貼り合わせて円偏光板を得る。
 好適な例としては、フィルム長手方向に偏光吸収軸を有する長尺の直線偏光子と、フィルム長手方向に対して上述した角度αの配向角をなす遅相軸を有するλ/2板と、フィルム長手方向に対して上述した角度βの配向角をなす遅相軸を有するλ/4板とを、それらのフィルム長手方向を平行にしてロール・トゥ・ロール法によって貼り合わせて、長尺の円偏光板を製造する方法が挙げられる。このような製造方法によれば、円偏光板を簡単に製造することが可能である。こうして製造された長尺の円偏光板は、通常、所望の寸法になるように切り出されて、画像表示装置に設けられる。
[8.画像表示装置]
 本発明の画像表示装置は、画像表示素子と、この画像表示素子の視認側に設けられた前記の円偏光板とを備える。この際、円偏光板は、画像表示素子側から、直線偏光子、λ/2板及びλ/4板がこの順に並ぶように設けられる。
 画像表示装置としては、画像表示素子の種類に応じて様々なものがあるが、代表的な例としては、画像表示素子として液晶セルを備える液晶表示装置、及び、画像表示素子として有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」ということがある。)を備える有機エレクトロルミネッセンス表示装置が挙げられる。
 図3は、本発明の一実施形態に係る画像表示装置としての液晶表示装置200の一例を模式的に示す断面図である。
 図3に示すように、液晶表示装置200は、光源210;光源側直線偏光子220;画像表示素子としての液晶セル230;並びに、視認側直線偏光子としての直線偏光子110、λ/2板121、及びλ/4板122を備える円偏光板100;を、この順に備える。よって、液晶表示装置200は、視認側から、λ/4板122、λ/2板121、直線偏光子110、液晶セル230、光源側直線偏光子220及び光源210を、この順に備える。
 液晶表示装置200においては、光源210から発せられ、光源側直線偏光子220、液晶セル230、直線偏光子110、並びに、λ/2板121及びλ/4板122を備える広帯域λ/4板120を通過した光によって、画像が表示される。画像を表示する光は、直線偏光子110を通過した時点では直線偏光であるが、広帯域λ/4板120を通過することによって円偏光に変換される。したがって、前記の液晶表示装置200では、円偏光によって画像が表示されるので、偏光サングラスを通して表示面200Uを見た場合に、画像を視認することが可能である。この際、広帯域λ/4板120が、広い波長範囲において直線偏光を円偏光に変換するので、偏光サングラスの傾きによる輝度及び色度の変化を抑制して、良好な視認性を達成できる。また、λ/2板121及びλ/4板122の少なくとも一方が、紫外線吸収剤を含む中間層(図示せず)を備えるので、広帯域λ/4板120は耐光性に優れ、光による着色を抑制できる。
 液晶セル230は、例えば、インプレーンスイッチング(IPS)モード、バーチカルアラインメント(VA)モード、マルチドメインバーチカルアラインメント(MVA)モード、コンティニュアスピンホイールアラインメント(CPA)モード、ハイブリッドアラインメントネマチック(HAN)モード、ツイステッドネマチック(TN)モード、スーパーツイステッドネマチック(STN)モード、オプチカルコンペンセイテッドベンド(OCB)モードなど、任意のモードの液晶セルを用いうる。
 図4は、本発明の一実施形態に係る画像表示装置としての有機EL表示装置300の一例を模式的に示す断面図である。
 図4に示すように、有機EL表示装置300は、画像表示素子としての有機EL素子310;λ/4板320;直線偏光子110、λ/2板121及びλ/4板122を備える円偏光板100;を、この順に備える。よって、有機EL表示装置300は、視認側から、λ/4板122、λ/2板121、直線偏光子110、λ/4板320及び有機EL素子310を、この順に備える。
 有機EL表示装置300において、λ/4板320は、通常、直線偏光子110との組み合わせによって、外光の反射による表示面300Uのぎらつきを抑制するために設けられる。具体的には、装置外部から入射した光は、その一部の直線偏光のみが直線偏光子110を通過し、次にそれがλ/4板320を通過することにより円偏光となる。円偏光は、表示装置内の光を反射する構成要素(有機EL素子310中の反射電極(図示せず)等)により反射され、再びλ/4板320を通過することにより、入射した直線偏光の振動方向と直交する振動方向を有する直線偏光となり、直線偏光子110を通過しなくなる。これにより、反射防止の機能が達成される(有機EL表示装置における反射防止の原理は、特開平9-127885号公報参照)。ここで、図4に示す例ではλ/4板320として単一の部材を用いた有機EL表示装置300を示したが、λ/4板320としては、λ/2板及びλ/4板を組み合わせた広帯域λ/4板を用いてもよい。
 前記の有機EL表示装置300においては、有機EL素子310から発せられ、λ/4板320、直線偏光子110、並びに、λ/2板121及びλ/4板122を備える広帯域λ/4板120を通過した光によって、画像が表示される。よって、画像を表示する光は、直線偏光子110を通過した時点では直線偏光であるが、広帯域λ/4板120を通過することによって円偏光に変換される。したがって、前記の有機EL表示装置300では、円偏光によって画像が表示されるので、偏光サングラスを通して表示面300Uを見た場合に、画像を視認することが可能である。この際、広帯域λ/4板120が、広い波長範囲において直線偏光を円偏光に変換するので、偏光サングラスの傾きによる輝度及び色度の変化を抑制して、良好な視認性を達成できる。また、λ/2板121及びλ/4板122の少なくとも一方が、紫外線吸収剤を含む中間層(図示せず)を備えるので、広帯域λ/4板120は耐光性に優れ、光による着色を抑制できる。
 有機EL素子310は、透明電極層、発光層及び電極層をこの順に備え、透明電極層及び電極層から電圧を印加されることにより発光層が光を生じうる。有機発光層を構成する材料の例としては、ポリパラフェニレンビニレン系、ポリフルオレン系、およびポリビニルカルバゾール系の材料を挙げることができる。また、発光層は、複数の発光色が異なる層の積層体、あるいはある色素の層に異なる色素がドーピングされた混合層を有していてもよい。さらに、有機EL素子310は、正孔注入層、正孔輸送層、電子注入層、電子輸送層、等電位面形成層、電荷発生層等の機能層を備えていてもよい。
 以下、実施例を示して本発明について具体的に説明する。ただし、本発明は以下に示す実施例に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。以下の説明において、量を表す「%」及び「部」は、別に断らない限り、重量基準である。また、以下に説明する操作は、別に断らない限り、常温常圧大気中において行った。
 以下の説明において、「DCP」とは、トリシクロ[4.3.0.12,5]デカ-3-エンを示し、「TCD」とは、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンを示し、「MTF」とは、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエンを示す。
[評価方法]
 〔フィルムの配向角θの測定方法〕
 フィルムの遅相軸の方向を、位相差計(王子計測社製「KOBRA-21ADH」)を用いて測定して、その遅相軸がフィルム長手方向に対してなす配向角θを求めた。
 〔フィルムの面内レターデーションReの測定方法〕
 フィルムの面内レターデーションは、位相差計(王子計測社製「KOBRA-21ADH」)を用いて、測定波長590nmにおいて測定した。
 〔フィルムに含まれる各層の厚みの測定方法〕
 フィルム全体の厚みは、スナップゲージにて測定した。
 また、フィルムに含まれる中間層の厚みは、紫外可視近赤外分光光度計(日本分光社製「V-7200」)を用いて波長390nmのフィルムの光線透過率を測定し、得られた光線透過率から計算した。さらに、後述する実施例及び比較例においては、第一外側層及び第二外側層は同じ厚みの層として形成したので、第一外側層及び第二外側層の厚みは、フィルム全体の厚みから中間層の厚みを引き算し、2で割ることにより、計算した。第一外側層及び第二外側層が異なる厚みの層として形成されている場合には、フィルムの断面を走査型電子顕微鏡(SEM)で観察することにより、第一外側層及び第二外側層の厚みを測定しうる。
 〔光線透過率の測定方法〕
 波長380nm及び390nmでのフィルムの光線透過率は、紫外可視近赤外分光光度計(日本分光社製「V-7200」)を用いて測定した。
 〔耐光性の評価方法〕
 放射照度60W/mのキセノンランプを発光させて、フィルムに500時間、光を照射した。その後、フィルムを目視により観察して、着色が見られるか否かに基づいて、下記の基準でフィルムの耐光性を評価した。
 「良」:光の照射後に、フィルムに着色が見られない。
 「不可」:光の照射後に、フィルムに弱い着色が見られる。
 「不良」:光の照射後に、フィルムに強い着色が見られる。
 〔画像視認性の評価方法〕
 有機EL素子を備える有機EL表示パネルを用意した。この有機EL表示パネルの表示面に、円偏光板を実装した。この際、円偏光板は、有機EL素子側から直線偏光子及び広帯域λ/4板がこの順となる向きで、実装した。有機EL表示パネルを白表示にして、表示面に垂直な正面方向から、偏光サングラスを装着して表示面を目視観察した。観察は、表示面に垂直な回転軸を中心にして偏光サングラスを回すように傾けることで、偏光サングラスの偏光吸収軸と円偏光板が備える直線偏光子の偏光吸収軸とがなす角度を0°~360°の範囲で変化させながら行った。観察の結果から、下記の基準に基づいて、円偏光板による画像の視認性を評価した。
 「良」:偏光サングラスをどのような角度で傾けても、色味の変化が無い。
 「不良」:偏光サングラスをどのような角度に傾けても、大きな色味の変化がある。
[製造例1.樹脂J1の製造]
 窒素で置換した反応器に、DCP、TCD及びMTFの混合物(DCP/TCD/MTF=55/40/5重量比)7部;並びに、シクロヘキサン1600部を加えた。前記のDCP、TCD及びMTFの混合物の量は、重合に使用するモノマー全量に対して1重量%である。さらに、反応器に、トリ-i-ブチルアルミニウム0.55部、イソブチルアルコール0.21部、反応調整剤としてジイソプロピルエーテル0.84部、及び、分子量調節剤として1-ヘキセン3.24部を添加した。ここに、シクロヘキサンを溶媒とする濃度0.65%の六塩化タングステン溶液24.1部を添加して、55℃で10分間攪拌した。次いで、反応系を55℃に保持しながら、DCP、TCD及びMTFの混合物(DCP/TCD/MTF=55/40/5重量比)693部と、シクロヘキサンを溶媒とする濃度0.65%の六塩化タングステン溶液48.9部とを、それぞれ系内に150分かけて連続的に滴下した。その後、30分間反応を継続し、重合を終了した。これにより、シクロヘキサン中に開環重合体を含む開環重合反応液を得た。重合終了後、ガスクロマトグラフィーにより測定したモノマーの重合転化率は、重合終了時で100%であった。
 得られた開環重合反応液を耐圧性の水素化反応器に移送し、ケイソウ土担持ニッケル触媒(日揮化学社製「T8400RL」、ニッケル担持率57%)1.4部及びシクロヘキサン167部を加え、180℃、水素圧4.6MPaで6時間反応させた。この水素添加反応により、開環重合体の水素添加物を含む反応溶液を得た。この反応溶液を、ラジオライト#500を濾過床として、圧力0.25MPaで加圧濾過(石川島播磨重工社製「フンダバックフィルター」)して水素化触媒を除去し、無色透明な溶液を得た。
 次いで前記水素添加物100部あたり0.5部の酸化防止剤(ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、チバ・スペシャルティ・ケミカルズ社製「イルガノックス1010」)を、得られた溶液に添加して溶解させた。次いで、ゼータープラスフィルター30H(キュノーフィルター社製、孔径0.5μm~1μm)にて順次濾過し、さらに別の金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して、微小な固形分を除去した。開環重合体の水素添加物の水素添加率は、99.9%であった。
 次いで、上記の濾過により得られた溶液を、円筒型濃縮乾燥器(日立製作所社製)を用いて、温度270℃、圧力1kPa以下で処理することにより、溶液から、溶媒であるシクロヘキサン及びその他の揮発成分を除去した。そして、濃縮機に直結したダイから、溶液に含まれていた固形分を溶融状態でストランド状に押出し、冷却して、開環重合体の水素添加物からなる樹脂J1のペレットを得た。ペレットを構成する開環重合体の水素添加物の重量平均分子量(Mw)は38,000、分子量分布(Mw/Mn)は2.5、ガラス転移温度Tgは126℃であった。
[製造例2.樹脂J2の製造]
 乾燥させた脂環式構造を含有する重合体(日本ゼオン社製、ガラス転移温度126℃)100部と、ベンゾトリアゾール系紫外線吸収剤(ADEKA社製「LA-31」)7.0部とを、二軸押出機により混合した。次いで、その混合物を、押出機に接続されたホッパーへ投入し、単軸押出機へ供給して溶融押し出して、樹脂J2を得た。樹脂J2における紫外線吸収剤の含有量は、7.0重量%である。
[製造例3.樹脂J3の製造]
 脂環式構造を含有する重合体100部に対するベンゾトリアゾール系紫外線吸収剤の量を、12.0部に変更したこと以外は、製造例2と同様にして、紫外線吸収剤を12.0重量%含む樹脂J3を製造した。
[製造例4.樹脂J4の用意]
 脂環式構造を含有する重合体(日本ゼオン社製「ZEONOR1600」;ガラス転移温度163℃)を、樹脂J4として用意した。
[製造例5.樹脂J5の製造]
 脂環式構造を含有する重合体100部に対するベンゾトリアゾール系紫外線吸収剤の量を、9.0部に変更したこと以外は、製造例2と同様にして、紫外線吸収剤を9.0重量%含む樹脂J5を製造した。
[製造例6.実施例1用のλ/2板H1の製造]
 (延伸前フィルムの製造)
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、中間層形成用の樹脂として樹脂J2を導入し、溶融させて、押出機出口温度280℃、押出機のギヤポンプの回転数10rpmの条件で、ダイスリップの表面粗さRaが0.1μmであるマルチマニホールドダイに供給した。
 他方、目開き3μmのリーフディスク形状のポリマーフィルターを備える、単軸押出機(スクリューの直径D=50mm、スクリューの長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、第一外側層及び第二外側層形成用の樹脂として樹脂J1を導入し、溶融させて、押出機出口温度285℃、押出機のギヤポンプの回転数4rpmの条件で、前記のマルチマニホールドダイに供給した。
 次いで、第一外側層形成用の樹脂の層、中間層形成用の樹脂の層、及び、第二外側層形成用の樹脂の層の3層を含むフィルム状に吐出されるように、前記の樹脂J1及びJ2を、マルチマニホールドダイから280℃で共押し出しした。そして、吐出された樹脂J1及びJ2を、150℃に温度調整された冷却ロールにキャストして、樹脂J1からなる第一外側層(厚み1μm)/樹脂J2からなる中間層(厚み63μm)/樹脂J1からなる第二外側層(厚み1μm)の3層からなる、幅1450mm、厚み65μmの延伸前フィルムを得た。前記の共押し出しの際、エアギャップ量は50mmにした。また、溶融状態のフィルム状の樹脂を冷却ロールにキャストする方法としては、エッジピニングを採用した。こうして得られた延伸前フィルムのフィルム幅方向の両端部50mmずつをトリミングにより除いて、幅を1350mmに調整した。
 (斜め延伸)
 前記の延伸前フィルムを、長手方向に連続的に搬送しながら、フィルム端部を把持する把持子を備えたテンター延伸機を用いて、延伸温度130℃、延伸倍率1.7倍で斜め方向に延伸する斜め延伸処理を行って、中間フィルムを得た。得られた中間フィルムの配向角θ、面内レターデーションRe、及び、各層の厚みを測定した。
 (縦延伸)
 前記の中間フィルムを、長手方向に連続的に搬送しながら、フィルム長手方向に、延伸温度125℃、延伸倍率1.5倍で延伸する縦延伸処理を行って、長尺のλ/2板H1を得た。得られたλ/2板H1の配向角θ、面内レターデーションRe、及び、各層の厚みを測定した。
[製造例7~10.実施例2~5用のλ/2板H2~H5の製造]
 中間層形成用の樹脂の種類;中間層、第一外側層及び第二外側層の厚み;斜め延伸処理の延伸条件;並びに、縦延伸処理の延伸条件;を、表1に示すように変更した。以上の事項以外は、製造例6と同様にして、λ/2板H2~H5の製造及び評価を行った。
[製造例11.比較例2用のλ/2板H6の製造]
 (延伸前フィルムの製造)
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、樹脂J1を導入し、溶融させて、押出機出口温度280℃、押出機のギヤポンプの回転数10rpmの条件で、ダイスリップの表面粗さRaが0.1μmである単層ダイに供給した。
 次いで、前記の樹脂J1を、単層ダイから280℃で押し出した。そして、押し出された樹脂J1を、150℃に温度調整された冷却ロールにキャストして、樹脂J1からなる、幅1450mm、厚み70μmの延伸前フィルムを得た。前記の共押し出しの際、エアギャップ量は50mmにした。また、溶融状態のフィルム状の樹脂を冷却ロールにキャストする方法としては、エッジピニングを採用した。こうして得られた延伸前フィルムのフィルム幅方向の両端部50mmずつをトリミングにより除いて、幅を1350mmに調整した。
 (斜め延伸)
 前記の延伸前フィルムを、長手方向に連続的に搬送しながら、フィルム端部を把持する把持子を備えたテンター延伸機を用いて、延伸温度133℃、延伸倍率1.47倍で斜め方向に延伸する斜め延伸処理を行って、中間フィルムを得た。得られた中間フィルムの配向角θ、面内レターデーションRe、及び、各層の厚みを測定した。
 (縦延伸)
 前記の中間フィルムを、長手方向に連続的に搬送しながら、フィルム長手方向に、延伸温度125℃、延伸倍率1.4倍で延伸する縦延伸処理を行って、長尺のλ/2板H6を得た。得られたλ/2板H6の配向角θ、面内レターデーションRe、及び、厚みを測定した。
[製造例12.比較例3用のλ/2板H7の製造]
 中間層形成用の樹脂の種類;中間層、第一外側層及び第二外側層の厚み;斜め延伸処理の延伸条件;並びに、縦延伸処理の延伸条件;を、表1に示すように変更した。以上の事項以外は、製造例6と同様にして、λ/2板H7の製造及び評価を行った。
[製造例13.実施例1用のλ/4板Q1の製造]
 (延伸前フィルムの製造)
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、中間層形成用の樹脂として樹脂J2を導入し、溶融させて、押出機出口温度280℃、押出機のギヤポンプの回転数10rpmの条件で、ダイスリップの表面粗さRaが0.1μmであるマルチマニホールドダイに供給した。
 他方、目開き3μmのリーフディスク形状のポリマーフィルターを備える、単軸押出機(スクリューの直径D=50mm、スクリューの長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、第一外側層及び第二外側層形成用の樹脂として樹脂J1を導入し、溶融させて、押出機出口温度285℃、押出機のギヤポンプの回転数4rpmの条件で、前記のマルチマニホールドダイに供給した。
 次いで、第一外側層形成用の樹脂の層、中間層形成用の樹脂の層、及び、第二外側層形成用の樹脂の層の3層を含むフィルム状に吐出されるように、前記の樹脂J1及びJ2を、マルチマニホールドダイから280℃で共押し出しした。そして、吐出された樹脂J1及びJ2を、150℃に温度調整された冷却ロールにキャストして、樹脂J1からなる第一外側層(厚み2.5μm)/樹脂J2からなる中間層(厚み80μm)/樹脂J1からなる第二外側層(厚み2.5μm)の3層からなる、幅1450mm、厚み85μmの延伸前フィルムを得た。前記の共押し出しの際、エアギャップ量は50mmにした。また、溶融状態のフィルム状の樹脂を冷却ロールにキャストする方法としては、エッジピニングを採用した。こうして得られた延伸前フィルムのフィルム幅方向の両端部50mmずつをトリミングにより除いて、幅を1350mmに調整した。
 (斜め延伸)
 前記の延伸前フィルムを、長手方向に連続的に搬送しながら、フィルム端部を把持する把持子を備えたテンター延伸機を用いて、延伸温度136℃、延伸倍率4.7倍で斜め方向に延伸する斜め延伸処理を行って、長尺のλ/4板Q1を得た。得られたλ/4板Q1の配向角θ、面内レターデーションRe、及び、各層の厚みを測定した。
[製造例14~17.実施例2~5及び比較例1用のλ/2板Q2~Q5の製造]
 中間層形成用の樹脂の種類;中間層、第一外側層及び第二外側層の厚み;及び、斜め延伸処理の延伸条件;を、表2に示すように変更した。以上の事項以外は、製造例13と同様にして、λ/4板Q2~Q5の製造及び評価を行った。
[製造例18.比較例2用のλ/4板Q6の製造]
 (延伸前フィルムの製造)
 目開き3μmのリーフディスク形状のポリマーフィルターを備える、ダブルフライト型単軸押出機(スクリューの直径D=50mm、スクリューの有効長さLとスクリューの直径Dとの比L/D=32)を用意した。この単軸押出機に、樹脂J1を導入し、溶融させて、押出機出口温度280℃、押出機のギヤポンプの回転数10rpmの条件で、ダイスリップの表面粗さRaが0.1μmである単層ダイに供給した。
 次いで、前記の樹脂J1を、単層ダイから280℃で押し出した。そして、押し出された樹脂J1を、150℃に温度調整された冷却ロールにキャストして、樹脂J1からなる、幅1450mm、厚み80μmの延伸前フィルムを得た。前記の共押し出しの際、エアギャップ量は50mmにした。また、溶融状態のフィルム状の樹脂を冷却ロールにキャストする方法としては、エッジピニングを採用した。こうして得られた延伸前フィルムのフィルム幅方向の両端部50mmずつをトリミングにより除いて、幅を1350mmに調整した。
 (斜め延伸)
 前記の延伸前フィルムを、長手方向に連続的に搬送しながら、フィルム端部を把持する把持子を備えたテンター延伸機を用いて、延伸温度180℃、延伸倍率4.7倍で斜め方向に延伸する斜め延伸処理を行って、長尺のλ/4板Q6を得た。得られたλ/4板Q6の配向角θ、面内レターデーションRe、及び、各層の厚みを測定した。
[製造例19.比較例3用のλ/2板Q7の製造]
 中間層形成用の樹脂の種類;中間層、第一外側層及び第二外側層の厚み;及び、斜め延伸処理の延伸条件;を、表2に示すように変更した。以上の事項以外は、製造例13と同様にして、λ/4板Q7の製造及び評価を行った。
[実施例1]
 (広帯域λ/4板の製造)
 λ/2板H1及びλ/4板Q1を、λ/2板H1の遅相軸とλ/4板Q1の遅相軸とが60°で交わるように、互いのフィルム長手方向を平行にして、粘着剤(日東電工社製「CS9621」)を用いて貼り合わせて、長尺の広帯域λ/4板を製造した。得られた広帯域λ/4板の波長380nmでの光線透過率、及び、波長390nmでの光線透過率を、上述した方法で測定した。また、広帯域λ/4板の耐光性を、上述した方法で評価した。
 (円偏光板の製造)
 広帯域λ/4板のλ/2板側の表面に、コロナ処理を施した。広帯域λ/4板のコロナ処理を施した面と、直線偏光子としての長尺の偏光フィルム(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に対して0°の方向に透過軸を有する)の一方の面とを、粘接着剤(LE-3000シリーズ;日立化成社製)を介して貼り合わせた。前記の貼り合わせは、λ/2板の遅相軸と偏光フィルムの偏光吸収軸とが、厚み方向から見て15°の角度をなすように、広帯域λ/4板のフィルム長手方向と偏光フィルムのフィルム長手方向とが平行となるように、行った。その後、偏光フィルムを通して粘接着剤に紫外線を照射して硬化させて、直線偏光子、λ/2板及びλ/4板をこの順に備える円偏光板を得た。得られた円偏光板を有機EL表示パネルに実装して、上述した方法で、画像視認性を評価した。
[実施例2~5]
 使用するλ/2板及びλ/4板を、表3に示すように変更したこと以外は、実施例1と同様にして、広帯域λ/4板及び円偏光板の製造及び評価を行った。
[比較例1]
 λ/4板Q5の波長380nmでの光線透過率、及び、波長390nmでの光線透過率を、上述した方法で測定した。また、λ/4板Q5の耐光性を、上述した方法で評価した。
 λ/4板Q5の片面に、コロナ処理を施した。λ/4板Q5のコロナ処理を施した面と、直線偏光子としての長尺の偏光フィルム(サンリッツ社製「HLC2-5618S」、厚さ180μm、幅方向に対して0°の方向に透過軸を有する)の一方の面とを、粘接着剤(LE-3000シリーズ;日立化成社製)を介して貼り合わせた。前記の貼り合わせは、λ/4板Q5の遅相軸と偏光フィルムの偏光吸収軸とが、厚み方向から見て45°の角度をなすように、行った。その後、偏光フィルムを通して粘接着剤に紫外線を照射して硬化させて、直線偏光子及びλ/4板をこの順に備える円偏光板を得た。得られた円偏光板を有機EL表示パネルに実装して、上述した方法で、画像視認性を評価した。
[比較例2及び3]
 使用するλ/2板及びλ/4板を、表3に示すように変更したこと以外は、実施例1と同様にして、広帯域λ/4板及び円偏光板の製造及び評価を行った。
[結果]
 製造例6~12で製造したλ/2板H1~H7の製造条件及び構成を、下記の表1に示す。また、製造例13~19で製造したλ/4板Q1~Q7の製造条件及び構成を、下記の表2に示す。さらに、実施例1~5及び比較例1~3の結果を、下記の表3に示す。
 下記の表において、略称の意味は、以下のとおりである。
 「UVA濃度」:中間層における紫外線吸収剤の濃度。
 「外側層厚み」:第一外側層及び第二外側層それぞれの厚み。
 「Re」:面内レターデーション。
 「配向角θ」:フィルム長手方向に対して遅相軸がなす角度。円偏光板とした場合に、直線偏光子の偏光吸収軸に対して遅相軸がなす角度に相当する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[検討]
 広帯域λ/4板を備えない円偏光板を用いた比較例1では、画像視認性の評価結果が不良であり、偏光サングラスを通した視認性に劣る。
 また、広帯域λ/4板がλ/2板及びλ/4板のいずれにも紫外線吸収剤を含む中間層を有さない比較例2では、広帯域λ/4板の耐光性に劣り、光の照射による着色が生じる。さらに、λ/2板及びλ/4板が紫外線吸収剤を含む中間層を有する比較例3でも、広帯域λ/4板の波長390nmでの光線透過率が高いことから、広帯域λ/4板は耐光性に劣る。
 これに対し、実施例1~5では、耐光性及び画像視認性の両方において優れた結果が得られている。よって、本発明により、耐光性に優れる広帯域λ/4板を備え、偏光サングラスを通して見る画像の視認性を改善できる円偏光板を実現できることが確認された。
 100 円偏光板
 110 直線偏光子
 120 広帯域λ/4板
 121 λ/2板
 122 λ/4板
 200 液晶表示装置
 210 光源
 220 光源側直線偏光子
 230 液晶セル
 300 有機EL表示装置
 310 有機EL素子
 320 λ/4板

Claims (10)

  1.  画像表示素子を備える画像表示装置において、前記画像表示素子の視認側に設けられる円偏光板であって、
     前記円偏光板が、前記画像表示素子側から、直線偏光子及び広帯域λ/4板を、この順に備え、
     前記広帯域λ/4板が、前記直線偏光子側から、λ/2板及びλ/4板を、この順に備え、
     前記λ/2板及び前記λ/4板の少なくとも一方が、第一外側層、紫外線吸収剤を含む中間層、及び、第二外側層を、この順に備える複層体であり、
     前記広帯域λ/4板の波長380nmでの光線透過率が、1.0%以下であり、
     前記広帯域λ/4板の波長390nmでの光線透過率が、5.0%以下である、円偏光板。
  2.  前記λ/2板の厚みが、25μm以上45μm以下であり、
     前記λ/4板の厚みが、10μm以上60μm以下であり、
     前記λ/2及び前記λ/4板の合計厚みが、100μm以下である、請求項1記載の円偏光板。
  3.  「前記中間層の厚み」/「前記複層体の厚み」の比が、1/3~80/82である、請求項1又は2記載の円偏光板。
  4.  前記中間層が、前記紫外線吸収剤を含む熱可塑性樹脂からなり、
     前記熱可塑性樹脂における前記紫外線吸収剤の量が、3重量%~20重量%である、請求項1~3のいずれか一項に記載の円偏光板。
  5.  前記直線偏光子の偏光吸収軸に対して、前記λ/2板の遅相軸がなす角度を、αで表すとき、
     前記直線偏光子の偏光吸収軸に対して、前記λ/4板の遅相軸がなす角度が、(2α+45°)±5°である、請求項1~4のいずれか一項に記載の円偏光板。
  6.  前記直線偏光子の偏光吸収軸に対して、前記λ/2板の遅相軸がなす角度αが、15°±5°である、請求項1~5のいずれか一項に記載の円偏光板。
  7.  前記λ/4板が、斜め延伸フィルムである、請求項1~6のいずれか一項に記載の円偏光板。
  8.  前記λ/2板が、逐次二軸延伸フィルムである、請求項1~7のいずれか一項に記載の円偏光板。
  9.  画像表示素子と、前記画像表示素子の視認側に設けられた請求項1~8のいずれか一項に記載の円偏光板とを備える、画像表示装置。
  10.  前記画像表示素子が、液晶セル又は有機エレクトロルミネッセンス素子である、請求項9記載の画像表示装置。
PCT/JP2017/012291 2016-03-30 2017-03-27 円偏光板及び画像表示装置 WO2017170346A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780018791.2A CN109073806A (zh) 2016-03-30 2017-03-27 圆偏振片和图像显示装置
JP2018509318A JPWO2017170346A1 (ja) 2016-03-30 2017-03-27 円偏光板及び画像表示装置
US16/086,815 US20190064413A1 (en) 2016-03-30 2017-03-27 Circularly polarizing plate and image display device
KR1020187027523A KR20180122644A (ko) 2016-03-30 2017-03-27 원편광판 및 화상 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-067090 2016-03-30
JP2016067090 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170346A1 true WO2017170346A1 (ja) 2017-10-05

Family

ID=59965552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012291 WO2017170346A1 (ja) 2016-03-30 2017-03-27 円偏光板及び画像表示装置

Country Status (5)

Country Link
US (1) US20190064413A1 (ja)
JP (1) JPWO2017170346A1 (ja)
KR (1) KR20180122644A (ja)
CN (1) CN109073806A (ja)
WO (1) WO2017170346A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149047A (zh) * 2018-06-05 2020-05-12 株式会社Lg化学 层合体和包括其的液晶显示装置
CN111201484A (zh) * 2018-06-05 2020-05-26 株式会社Lg化学 堆叠体和包括其的液晶显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180088808A (ko) * 2015-11-30 2018-08-07 니폰 제온 가부시키가이샤 복층 필름, 제조 방법, 원 편광판, 반사 방지 필름 및 유기 일렉트로루미네센스 표시 장치
CN112433286A (zh) * 2019-08-26 2021-03-02 陕西坤同半导体科技有限公司 一种偏光片、显示装置
KR20240003567A (ko) * 2022-07-01 2024-01-09 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114325A (ja) * 2001-10-03 2003-04-18 Nitto Denko Corp 積層1/4波長板、円偏光板及びこれを用いた液晶表示装置、ならびにその製造方法
WO2009139260A1 (ja) * 2008-05-15 2009-11-19 日東電工株式会社 映像鑑賞設備
JP2011137954A (ja) * 2009-12-28 2011-07-14 Nippon Zeon Co Ltd 積層フィルム、円偏光板、積層フィルムの製造方法、円偏光板の製造方法、および液晶表示装置
JP2015125436A (ja) * 2013-12-27 2015-07-06 大日本印刷株式会社 光学フィルム、画像表示装置、及び光学フィルムの製造方法
JP2016012134A (ja) * 2014-06-27 2016-01-21 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法及び表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100834332B1 (ko) * 2004-12-02 2008-06-02 닛토덴코 가부시키가이샤 광학 보상층 부착 편광판 및 그것을 사용한 화상 표시 장치
US9116390B2 (en) * 2012-08-27 2015-08-25 Microsoft Technology Licensing, Llc Touch sensing liquid crystal display compatible with linearly polarized sunglasses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114325A (ja) * 2001-10-03 2003-04-18 Nitto Denko Corp 積層1/4波長板、円偏光板及びこれを用いた液晶表示装置、ならびにその製造方法
WO2009139260A1 (ja) * 2008-05-15 2009-11-19 日東電工株式会社 映像鑑賞設備
JP2011137954A (ja) * 2009-12-28 2011-07-14 Nippon Zeon Co Ltd 積層フィルム、円偏光板、積層フィルムの製造方法、円偏光板の製造方法、および液晶表示装置
JP2015125436A (ja) * 2013-12-27 2015-07-06 大日本印刷株式会社 光学フィルム、画像表示装置、及び光学フィルムの製造方法
JP2016012134A (ja) * 2014-06-27 2016-01-21 三星電子株式会社Samsung Electronics Co.,Ltd. 光学フィルム、その製造方法及び表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149047A (zh) * 2018-06-05 2020-05-12 株式会社Lg化学 层合体和包括其的液晶显示装置
CN111201484A (zh) * 2018-06-05 2020-05-26 株式会社Lg化学 堆叠体和包括其的液晶显示装置
EP3671333A4 (en) * 2018-06-05 2020-08-12 Lg Chem, Ltd. LAMINATE AND LIQUID CRYSTAL DISPLAY DEVICE INCLUDING THIS
JP2020535463A (ja) * 2018-06-05 2020-12-03 エルジー・ケム・リミテッド 積層体およびこれを含む液晶表示装置
US11275266B2 (en) 2018-06-05 2022-03-15 Lg Chem, Ltd. Laminate and liquid crystal display device comprising same
CN111201484B (zh) * 2018-06-05 2022-10-11 株式会社Lg化学 堆叠体和包括其的液晶显示装置

Also Published As

Publication number Publication date
JPWO2017170346A1 (ja) 2019-02-14
US20190064413A1 (en) 2019-02-28
KR20180122644A (ko) 2018-11-13
CN109073806A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6702193B2 (ja) 長尺の円偏光板、長尺の広帯域λ/4板、並びに、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置の、製造方法
WO2017170346A1 (ja) 円偏光板及び画像表示装置
WO2016043124A1 (ja) 円偏光板、広帯域λ/4板、及び、有機エレクトロルミネッセンス表示装置
JP6870223B2 (ja) 有機el表示装置
WO2007129464A1 (ja) 光学部品の複屈折の波長依存性を補正する方法、光学部品、およびそれらを用いて得られた表示装置
CN107076902B (zh) 圆偏振片及其制造方法、宽频带λ/4波片、有机电致发光显示装置、以及液晶显示装置
JP6451645B2 (ja) 延伸フィルムの製造方法
JP6806135B2 (ja) 延伸フィルム、及び円偏光板
JP7463965B2 (ja) 光学フィルム及びその製造方法、光学積層体並びに液晶表示装置
WO2017150375A1 (ja) 画像表示装置
JP2021092786A (ja) 光学積層体及びその製造方法、偏光板、並びに、有機el表示装置
JP2016212171A (ja) 光学積層体、円偏光板及び有機エレクトロルミネッセンス表示装置
JP7405013B2 (ja) 長尺の円偏光板、長尺の広帯域λ/4板、有機エレクトロルミネッセンス表示装置、及び、液晶表示装置
JP7322889B2 (ja) 成形体及びその製造方法
JP6825654B2 (ja) 円偏光板の製造方法及び光学積層体の製造方法
JP2021086038A (ja) 積層体及び円偏光板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509318

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187027523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774883

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17774883

Country of ref document: EP

Kind code of ref document: A1