TW201830586A - 記憶體裝置及半導體裝置 - Google Patents

記憶體裝置及半導體裝置 Download PDF

Info

Publication number
TW201830586A
TW201830586A TW107113575A TW107113575A TW201830586A TW 201830586 A TW201830586 A TW 201830586A TW 107113575 A TW107113575 A TW 107113575A TW 107113575 A TW107113575 A TW 107113575A TW 201830586 A TW201830586 A TW 201830586A
Authority
TW
Taiwan
Prior art keywords
transistor
film
oxide semiconductor
potential
oxide
Prior art date
Application number
TW107113575A
Other languages
English (en)
Other versions
TWI698959B (zh
Inventor
山崎舜平
小山潤
Original Assignee
日商半導體能源研究所股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商半導體能源研究所股份有限公司 filed Critical 日商半導體能源研究所股份有限公司
Publication of TW201830586A publication Critical patent/TW201830586A/zh
Application granted granted Critical
Publication of TWI698959B publication Critical patent/TWI698959B/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/70Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates the floating gate being an electrode shared by two or more components
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C14/00Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down
    • G11C14/0009Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell
    • G11C14/0018Digital stores characterised by arrangements of cells having volatile and non-volatile storage properties for back-up when the power is down in which the volatile element is a DRAM cell whereby the nonvolatile element is an EEPROM element, e.g. a floating gate or metal-nitride-oxide-silicon [MNOS] transistor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0433Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and one or more separate select transistors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Non-Volatile Memory (AREA)

Abstract

提供一種能夠長時間固持資料的記憶體裝置。記憶體裝置包含記憶元件及電晶體,電晶體用作為切換元件,用以控制記憶元件中的電荷之供應、儲存、及釋出。電晶體包含用以控制臨界電壓之第二閘極電極以及一般閘極電極。此外,由於電晶體的主動層包含氧化物半導體,所以,電晶體的關閉狀態電流相當低。在記憶體裝置中,未藉由高電壓以將電荷注入至絕緣膜圍繞的浮動閘極,而是藉由經過關閉狀態電流相當低的電晶體來控制記憶元件的電荷量,以儲存資料。

Description

記憶體裝置及半導體裝置
本發明係關於非依電性半導體記憶體裝置。特別是,本發明係關於用以固持資料的記憶胞(cell)之結構。
半導體記憶體裝置的實例(於下文中簡稱為記憶體裝置)包含歸類為依電性記憶體之動態隨機存取記憶體(DRAM)及靜態隨機存取記憶體(SRAM);歸類為非依電性記憶體之遮罩式唯讀記憶體(ROM)、可抺除可程式化唯讀記憶體(EPROM)、電子可抺除可程式化唯讀記憶體(EEPROM)、快閃記憶體、及鐵電記憶體;等等。大部份這些使用單晶半導體基板形成的記憶體已進入實用。在這些半導體記憶體中,快閃記憶體在市場上可取得且主要被使用於例如USB記憶體及記憶卡等可攜式儲存媒體。其理由在於快閃記憶體可以抗物理撞擊且由於它們是可以重複地寫入及抹除資料並能在無電源下固持資料之非依電性記憶體而能便於使用。
關於快閃記憶體,有多個記憶胞串聯的反及 (NAND)快閃記憶體以及多個記憶胞以矩陣形式配置的反或(NOR)快閃記憶體。每一個快閃記憶體具有用作為每一個記憶胞中的記憶元件之電晶體。此外,用作為記憶元件的電晶體在閘極電極與用作為主動層的半導體膜之間具有稱為浮動閘極的電極,用以累積電荷。浮動閘極中的電荷累積使得資料能夠被保存。
參考文獻1及2均揭示包含形成於玻璃基板之上的浮動閘極之薄膜電晶體。
〔參考文獻〕
參考文獻1:日本公開專利申請案號6-021478
參考文獻2:日本公開專利申請案號2005-322899
一般而言,在寫入資料時施加至非依電性記憶體中的記憶元件之電壓的絕對值約為20V,傾向於高出比施加至依電性記憶體中的記憶元件之電壓的絕對值。在能夠重複地改寫資料的快閃記憶體之情況中,在資料抹除與資料寫入時,需要將高電壓施加至用作為記憶元件的電晶體。。因此,當快閃記憶體在例如資料寫入及資料抹除等操作時耗電高,這防礙包含快閃記憶體用作為記憶體裝置的電子裝置的耗電降低。特別是,在快閃記憶體用於例如相機或蜂巢式電話等可攜式電子裝置的情況中,高耗電造成短的連續操作時間等缺點。
此外,雖然快閃記憶體是非依電性記憶體,但是,資料會因少量電荷的洩漏而喪失。因此,資料固持週期迄今約為5至10年,且希望實現能夠確保更長的資料固持週期之快閃記憶體。
此外,雖然快閃記憶體能夠重複地寫入及抹拭資料,所以,當電荷被累積於浮動閘極中時閘極絕緣膜容易因穿隧電流而劣化。因此,在一個記憶元件中的資料改寫頻率最多為約數萬至數十萬次,希望實現改寫資料次數能夠高於數萬至數十萬次之快閃記憶體。
慮及這些問題,本發明之目的在於提供耗電降低的記憶體裝置及包含記憶體裝置的半導體裝置。本發明的目的在於提供能夠更長時間地固持資料之記憶體裝置及包含記憶體裝置的半導體裝置。本發明的目的在於提供資料改寫頻率增加的記憶體裝置及包含記憶體裝置的半導體裝置。
根據本發明的一個實施例之記憶體裝置包含記憶元件及電晶體,電晶體用作為用以控制記憶元件中的電荷供應、儲存、及釋出之切換元件。在記憶體裝置中,並非藉由高電壓以將電荷注入絕緣膜圍繞的浮動閘極,而是經由關閉狀態電流相當低的電晶體以控制記憶元件中的電荷量,而儲存資料。
具體而言,電晶體的能帶隙比矽的能帶矽還寬,並且,電晶體的通道形成區包含本質載子密度係低於矽的本質載子密度之半導體材料。藉由包含具有上述特徵的半導體材料之通道形成區,以實現關閉狀態電流相當低的電晶 體。關於此半導體材料,舉例而言,使用能帶隙約為矽的能帶隙的三倍寬之氧化物半導體、碳化矽、氮化鎵、等等。包含所述半導體材料的電晶體比包含例如矽或鎵等一般半導體材料的電晶體具有更低的關閉狀態電流。
此外,用作為切換元件的電晶體除了包含一般閘極電極之外還包含第二閘極電極,用以控制臨界電壓。電晶體可為任何電晶體,只要是絕緣閘極型場效電晶體即可。具體而言,電晶體包含第一閘極電極、第二閘極電極、位於第一閘極電極與第二閘極電極之間的半導體膜、位於第一閘極電極與半導體膜之間的第一絕緣膜、位於第二閘極電極與半導體膜之間的第二絕緣膜、以及連接至半導體膜的源極電極和汲極電極。藉由此結構,能夠調整臨界電壓,以致於藉由控制源極電極與第二閘極電極之間的電位差來降低電晶體的關閉狀態電流。
當用作為切換元件的電晶體的關閉狀態電流顯著地降低時,在資料固持週期(固持週期)中,防止累積於記憶元件中的電荷經由電晶體而洩漏出。
注意,藉由降低例如用作為電子供體(施體)的氫或濕氣等雜質以及降低氧缺陷而取得的高度純化的氧化物半導體(純化的氧化物半導體)是本徵的(i型的)半導體或實質上本徵的半導體。因此,包含氧化物半導體的電晶體具有相當低的關閉狀態電流之特徵。具體而言,以二次離子質譜儀(SIMS)測量的高度純化的氧化物半導體中的氫濃度為5×1019/cm3或更低,較佳為5×1018/cm3或 更低,又較佳為5×1017/cm3或更低,仍然又較佳為1×1016/cm3或更低。此外,以霍爾效應測量量到的氧化物半導體的載子密度小於1×1014/cm3,較佳為小於1×1012/cm3,又較佳為小於1×1011/cm3。此外,氧化物半導體的能帶隙是2eV或更多,較佳為2.5eV或更多,又較佳為3eV或更多。藉由使用充份地降低例如濕氣或氫等雜質濃度以及藉由降低氧缺陷而取得之高度純化的氧化物半導體膜,能夠降低電晶體的關閉狀態電流。
此處,說明氧化物半導體膜中的氫濃度的分析。以二次離子質譜儀(SIMS)來測量氧化物半導體膜中的氫濃度。已知原理上難以用SIMS取得樣品表面附近或不同材料形成的堆疊膜之間的介面附近的精準資料。因此,在以SIMS分析厚度方向上膜的氫濃度之分佈的情況中,使用值未大幅改變且取得幾乎相同的值之膜的區域中的平均值作為氫濃度。此外,在膜的厚度小的情況中,由於彼此相鄰的膜之氫濃度的影響,所以,在某些情況中無法發現可以取得實質上相同值的區域。在該情況中,使用膜的區域中的氫濃度的最大值或最小值作為膜的氫濃度。此外,在具有最大值的山狀峰值或是具有最小值的谷狀峰值未存在於膜的區域中的情況中,使用轉折點的值作為氫濃度。
具體而言,不同實驗證明包含高度純化的氧化物半導體膜用作為主動層的電晶體的低關閉狀態電流。舉例而言,即使當元件具有1×106μm的通道寬度及10μm的通道長度時,關閉狀態電流仍然可以小於或等於半導體參數分 析儀的測量極限,亦即,在1至10V的源極電極與汲極電極之間的電壓(汲極電壓)下小於或等於1×10-13A。在該情況中,看到對應於關閉狀態電流除以電晶體的通道寬度而取得的值小於或等於100zA/μm。此外,電容器及電晶體彼此連接,且使用流進或流出電容器的電荷由電晶體控制之電路,測量關閉狀態電流密度。在測量中,以高度純化的氧化物半導體用於電晶體的主動區,並且,從每單位小時電容器的電荷量改變,測量電晶體的關閉狀態密度。結果,看到在電晶體的源極電極與汲極電極之間的電壓為3V的情況中,取得每微米數十攸安培(yA/μm)的較低關閉狀態電流密度。因此,在根據本發明的一個實施例之半導體裝置中,包含高度純化的氧化物半導體用作為主動層之電晶體的關閉狀態電流密度視源極電極與汲極電極之間的電壓而為100yA/μm或更低,較佳為10yA/μm或更低,又較佳為1yA/μm或更低。因此,包含高度純化的氧化物半導體膜用作為主動層之電晶體具有比包含結晶矽之電晶體更加低的關閉狀態電流。
注意,關於氧化物半導體,較佳使用含有銦(In)或鋅(Zn)的氧化物半導體、更佳含有In和Ga的氧化物半導體或是含有In和Zn的氧化物半導體。為了取得本徵的(i型)氧化物半導體膜,稍後說明的脫水或脫氫是有效的。關於使用於降低包含氧化物半導體的電晶體的電特徵變化之穩定物,較佳又含有鎵(Ga)。較佳含有錫(Sn)作為穩定物。較佳含有鉿(Hf)作為穩定物。較佳含有鋁 (Al)作為穩定物。
關於其它穩定物,可以含有例如鑭(La)、鈰(Ce)、鐠(Pr)、釹(Nd)、釤(Sm)、銪(Eu)、釓(Gd)、鋱(Tb)、鏑(Dy)、鈥(Ho)、鉺(Er)、銩(Tm)、鐿(Yb)、或鎦(Lu)等一或多種的類鑭元素。
關於氧化物半導體,舉例而言,可以使用氧化銦;氧化錫;氧化鋅;例如以In-Zn為基礎的氧化物、以Sn-Zn為基礎的氧化物、以Al-Zn為基礎的氧化物、以Zn-Mg為基礎的氧化物、以Sn-Mg為基礎的氧化物、以In-Mg為基礎的氧化物、或以In-Ga為基礎的氧化物等二成份金屬氧化物;例如以In-Ga-Zn為基礎的氧化物(也稱為IGZO)、以In-Al-Zn為基礎的氧化物、以In-Sn-Zn為基礎的氧化物、以Sn-Ga-Zn為基礎的氧化物、以Al-Ga-Zn為基礎的氧化物、以Sn-Al-Zn為基礎的氧化物、以In-Hf-Zn為基礎的氧化物、以In-La-Zn為基礎的氧化物、以In-Ce-Zn為基礎的氧化物、以In-Pr-Zn為基礎的氧化物、以In-Nd-Zn為基礎的氧化物、以In-Sm-Zn為基礎的氧化物、以In-Eu-Zn為基礎的氧化物、以In-Gd-Zn為基礎的氧化物、以In-Tb-Zn為基礎的氧化物、以In-Dy-Zn為基礎的氧化物、以In-Ho-Zn為基礎的氧化物、以In-Er-Zn為基礎的氧化物、以In-Tm-Zn為基礎的氧化物、以In-Yb-Zn為基礎的氧化物、或以In-Lu-Zn為基礎的氧化物等三成分金屬氧化物;或是,例如以In-Sn-Ga-Zn為基礎的 氧化物、以In-Hf-Ga-Zn為基礎的氧化物、以In-Al-Ga-Zn為基礎的氧化物、以In-Sn-Al-Zn為基礎的氧化物、以In-Sn-Hf-Zn為基礎的氧化物、或以In-Hf-Al-Zn為基礎的氧化物等四成分金屬氧化物。氧化物半導體可以包含矽。
注意,舉例而言,以In-Ga-Zn為基礎的氧化物意指含有In、Ga、及Zn的氧化物,但是,對於In、Ga、及Zn的比例並無特別限定。此外,以In-Ga-Zn-O為基礎的氧化物可以含有In、Ga、及Zn以外的金屬元素。當無電場且關閉狀態電流充分降低時,以In-Ga-Zn-O為基礎的氧化物具有足夠高的電阻。此外,由於具有高場效遷移率,所以以In-Ga-Zn-O為基礎的氧化物適用於記憶體裝置或半導體裝置中使用的半導體材料。
或者,可以使用以化學式InMO3(ZnO)m(m>0)表示的材料作為氧化物半導體。此處,M代表選自Ga、Al、Mn、或Co的其中之一或更多個金屬元素。舉例而言,M可為Ga、Ga及Al、Ga及Fe、Ga及Ni、Ga及Mn、Ga及Co、等等。可以使用以化學式In3SnO5(ZnO)n(n>0,n是整數)表示的材料作為氧化物半導體。注意,上述成分係衍生自晶體結構且僅為舉例說明。
舉例而言,使用原子比為In:Ga:Zn=1:1:1(=1/3:1/3:1/3)或In:Ga:Zn=2:2:1(=2/5:2/5:1/5)之以In-Ga-Zn為基礎的氧化物、或是原子比接近上述原子比的氧化物。或者,較佳使用原子比為In:Sn:Zn=1:1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3 (=1/3:1/6:1/2)、或In:Sn:Zn=2:1:5(=1/4:1/8:5/8)之以In-Sn-Zn為基礎的氧化物、或是原子比接近上述原子比的氧化物。
但是,不限於上述材料,可以根據所需的半導體特徵(例如,遷移率、臨界電壓、及變異)而使用具有適當成分的材料。為了取得所需半導體特徵,較佳的是將載子密度、雜質濃度、缺陷密度、金屬元素與氧之間的原子比、原子間距離、密度、等等設定在適當值。
使用關閉狀態電流低的電晶體作為用以儲存累積於記憶元件中的電荷之切換元件,因而可以防止電荷從記憶元件洩漏。因此,能夠提供能夠長時間固持資料的記憶體裝置以及包含記憶體裝置的半導體裝置。
此外,對記憶元件寫入及讀取資料所需的電壓幾乎由用作為切換元件的電晶體的操作電壓來予以決定。因此,能夠提供操作電壓比習知的快閃記憶體的操作電壓大幅降低之記憶體裝置、以及包含記憶裝置的半導體裝置。
再者,由於相較於習知的快閃記憶體,能夠抑制導因於穿隧電流之閘極絕緣膜劣化,所以,能夠提供資料改寫頻率增加的記憶體裝置及包含記憶體裝置的半導體裝置。
100‧‧‧記憶胞
101‧‧‧電晶體
102‧‧‧電容器
103‧‧‧電晶體
104‧‧‧電晶體
110‧‧‧基板
111‧‧‧閘極電極
112‧‧‧絕緣膜
113‧‧‧氧化物半導體膜
114‧‧‧源極電極
115‧‧‧汲極電極
116‧‧‧絕緣膜
117‧‧‧閘極電極
118‧‧‧絕緣膜
120‧‧‧線
121‧‧‧線
150‧‧‧第二字線驅動電路
151‧‧‧電晶體
152‧‧‧電容器
200‧‧‧胞陣列
260‧‧‧電晶體
261‧‧‧電晶體
262‧‧‧運算放大器
300‧‧‧胞陣列
550‧‧‧RF標籤
551‧‧‧天線電路
552‧‧‧積體電路
553‧‧‧電源電路
554‧‧‧解調變電路
555‧‧‧調變電路
556‧‧‧調節器
557‧‧‧算術電路
558‧‧‧記憶體裝置
559‧‧‧升壓電路
700‧‧‧基板
701‧‧‧絕緣膜
702‧‧‧半導體膜
703‧‧‧閘極絕緣膜
704‧‧‧雜質區
705‧‧‧掩罩
706‧‧‧開口
707‧‧‧閘極電極
708‧‧‧導電膜
709‧‧‧雜質區
710‧‧‧通道形成區
711‧‧‧雜質區
712‧‧‧絕緣膜
713‧‧‧絕緣膜
714‧‧‧閘極電極
715‧‧‧閘極絕緣膜
716‧‧‧氧化物半導體膜
717‧‧‧開口
718‧‧‧開口
719‧‧‧導電膜
720‧‧‧導電膜
721‧‧‧閘極絕緣膜
722‧‧‧閘極電極
723‧‧‧導電膜
724‧‧‧絕緣膜
725‧‧‧開口
726‧‧‧佈線
727‧‧‧絕緣膜
751‧‧‧記憶體裝置
752‧‧‧連接器
753‧‧‧介面
754‧‧‧發光二極體
755‧‧‧控制器
756‧‧‧印刷電路板
757‧‧‧覆蓋材料
800‧‧‧記憶體裝置
801‧‧‧胞陣列
802‧‧‧驅動電路
803‧‧‧電路
804‧‧‧第一字線驅動電路
805‧‧‧位元線驅動電路
806‧‧‧控制電路
807‧‧‧解碼器
808‧‧‧位準偏移器
809‧‧‧緩衝器
810‧‧‧解碼器
811‧‧‧位準偏移器
812‧‧‧選取器
820‧‧‧第二字線驅動電路
7031‧‧‧機殼
7032‧‧‧機殼
7033‧‧‧顯示部
7034‧‧‧顯示部
7035‧‧‧麥克風
7036‧‧‧揚聲器
7037‧‧‧操作鍵
7038‧‧‧探針
7041‧‧‧機殼
7042‧‧‧顯示部
7043‧‧‧音頻輸入部
7044‧‧‧音頻輸出部
7045‧‧‧操作鍵
7046‧‧‧光接收部
7051‧‧‧機殼
7052‧‧‧顯示部
7053‧‧‧操作鍵
圖1A及1B是記憶胞的電路圖,圖1C是電晶體的剖面視圖;圖2A是電晶體的電路圖,圖2B顯示相對於閘極電 壓Vgs的汲極電極Id之值;圖3是胞陣列的電路圖;圖4是胞陣列的時序圖;圖5是胞陣列的時序圖;圖6是胞陣列的電路圖;圖7顯示第二字線驅動電路的結構;圖8A及8B是記憶胞的電路圖;圖9A至9D顯示記憶體裝置的製造方法;圖10A至10D顯示記憶體裝置的製造方法;圖11A至11C顯示記憶體裝置的製造方法;圖12A至12C顯示記憶體裝置的製造方法;圖13是記憶胞的剖面視圖;圖14是記憶體裝置的方塊圖;圖15是讀取電路的電路圖;圖16是RF標籤的方塊圖;圖17A及17B顯示儲存媒體的結構;以及圖18A至18C顯示電子裝置。
於下,將參考附圖,詳述本發明的實施例及實例。注意,本發明不限於下述說明,習於此技藝者清楚知道,在不悖離本發明的精神及範圍下,可以以不同方式來修改本發明的模式及細節。因此,本發明不應被解釋成侷限於下述實施例模式的說明。
注意,本發明在其類別包含可以使用記憶體裝置的所有半導體裝置;舉例而言,例如微處理器及影像處理電路等積體電路、RF標籤、儲存媒體、及半導體顯示裝置。此外,半導體顯示裝置在其類別包含例如液晶顯示裝置等使用半導體膜的電路元件包含於像素部或驅動電路部中的半導體顯示裝置、設置有機發光元件(OLED)為代表的發光元件以使用於每一個像素之發光裝置、電子紙、數位微鏡裝置(DMD)、電漿顯示面板(PDP)、及場發光顯示器(FED)。
(實施例1)
圖1A以電路圖顯示根據本發明的一個實施例之記憶體裝置中的記憶胞的結構實例。在圖1A中所示的電路圖中,記憶胞100包含用作為切換元件的電晶體101、以及用作為記憶元件的電容器102和電晶體103。在用作為記憶元件的電晶體103中,電荷係累積於形成在閘極電極與主動層之間的閘極電容,以便儲存資料。
用作為切換元件的電晶體101除了包含第一閘極電極之外還包含用以控制臨界電壓的第二閘極電極。具體而言,電晶體101包含第一閘極電極、第二閘極電極、位於第一閘極電極與第二閘極電極之間的半導體膜、位於第一閘極電極與半導體膜之間的第一絕緣膜、位於第二閘極電極與半導體膜之間的第二絕緣膜、以及連接至半導體膜的源極電極和汲極電極。藉由施加至電晶體的第一閘極電 極、第二閘極電極、源極電極、和汲極電極的電位,可以控制記憶體裝置的各式各樣操作。
注意,在需要時,記憶胞100可以進一步包含例如電晶體、二極體、電阻器、電容器、或電感器等其它電路元件。
電晶體的「源極電極」及「汲極電極」之名詞可以視電晶體的極性或施加至電極的電位位準之間的差而互換。一般而言,在n通道電晶體中,被施加低電位的電極稱為源極電極,被施加高電位的電極稱為汲極電極。此外,在p通道電晶體中,被施加低電位的電極稱為汲極電極,被施加高電位的電極稱為源極電極。於下將說明源極電極與汲極電極的其中之一稱為第一端子,而另一者稱為第二端子,並且,於下將說明包含於記憶胞100中的電晶體101、電容器102、及電晶體103的連接關係。
在圖1A中所示的記憶胞100中,連接至電晶體101的第一端子被供予包含資料的訊號之電位。此外,電晶體101的第二端子係連接至電晶體103的閘極電極。電容器102的成對電極的其中之一係連接至電晶體103的閘極電極,另一電極係連接至被供予預定電位的節點。
電晶體103可以是n通道電晶體或p通道電晶體。
注意,圖1A中所示的記憶胞100並非一定要包含電容器102作為其元件。當記憶胞100包含電容器102時,可以使固持時間更長。相反地,當記憶胞100未包含電容器102時,每單位面積的儲存容量可以增加。
圖1B以電路圖顯示不同於圖1A中的結構之記憶胞的結構實例。在圖1B中所示的電路圖中,記憶胞100包含用作為切換元件的電晶體101、以及用作為記憶元件的電容器102。電荷係累積於用作為記憶元件的電容器102中,以便儲存資料。
圖1B中所示的電晶體101具有類似於圖1A中所示的電晶體101的結構,以及除了包含第一閘極電極之外還包含用以控制臨界電壓的第二閘極電極。
在圖1B中所示的記憶胞100中,連接至電晶體101的第一端子之節點被供予包含資料的訊號之電位。此外,電容器102的成對電極的其中之一係連接至電晶體101的第二端子,另一電極係連接至被施加預定電位的節點。
注意,在本說明書中,「連接」一詞意指電連接及對應於供應或傳送電流、電壓、或電位的狀態。因此,連接狀態並非總是意指直接連接狀態,而是包含經由例如佈線、導電膜、電阻器、二極體、或電晶體等元件以致於可以被供予或傳送電流、電壓、或電位之間接連接狀態。
此外,即使在電路圖中獨立元件彼此連接時,仍然有一個導電膜具有多個元件的功能之情況,例如,部份佈線用作為電極的情況。本說明書中的「連接」一詞也意指一導電膜具有多個元件的功能之情況。
在本發明的一個實施例中,圖1A或圖1B中所示之用作為切換元件的電晶體101的通道形成區包含能帶隙比矽的能帶隙還寬且本質載子密度低於矽的本質載子密度的 半導體材料。藉由包含具有上述特徵的半導體材料之通道形成區,可以實現關閉狀態電流相當低的電晶體101。
注意,當如同本發明的一個實施例中一般控制累積於記憶元件中的電荷量時,在用以儲存資料的記憶體裝置的情況中,由用作為切換元件的電晶體101控制電荷對記憶元件的供應、電荷自記憶元件的釋出、及記憶元件中的電荷儲存。因此,資料固持時間的長度取決於累積在記憶元件中的電荷經由電晶體101的洩漏量。在本發明的一個實施例中,如上所述般,電晶體101的關閉狀態電流相當低。因此,可以防止電荷洩漏,以致於能使資料固持時間更長。
注意,除非另外指明,否則,在本說明書中,在n通道電晶體的情況中,關閉狀態電流是當汲極電極的電位係高於源極電極的電位或閘極電極的電位,而當參考電位是源極電極的電位時閘極電極的電位為0V或更低時,在源極電極與汲極電極之間流動的電流。或者,在本說明書中,在p通道電晶體的情況中,關閉狀態電流是當汲極電極的電位低於源極電極的電位或閘極電極的電位,而當參考電位是源極電極的電位時閘極電極的電位為0V或更高時,在源極電極與汲極電極之間流動的電流。
關於能帶隙比矽的能帶矽還寬且本質載子密度低於矽的本質載子密度之半導體材料的實施例,可以使用例如碳化矽(SiC)或氮化鎵(GaN)等化合物半導體以及氧化物半導體。與例如碳化矽或氮化鎵等化合物半導體不同, 由於能以濺射或濕製程等來形成氧化物半導體,所以,氧化物半導體具有高量產力的優點。此外,與碳化矽或氮化鎵不同,即使在室溫下仍然能沈積氧化物半導體;因此,能夠在玻璃基板之上沈積或是在使用矽的積體電路之上沈積。此外,可以使用較大的基板。因此,使用氧化物半導體,量產力高於碳化矽、氮化鎵、等等的情況。在要取得結晶氧化物半導體以增進電晶體的性能(例如,場效遷移率)之情況中,藉由250至800℃的熱處理,能夠容易取得結晶氧化物半導體。
在下述說明中,以具有上述優點的氧化物半導體用作為電晶體101的半導體膜之情況為例說明。
注意,在本發明的一個實施例中,至少在用作為切換元件的電晶體101的主動層中,包含例如氧化物半導體等寬能帶隙半導體材料。另一方面,對於用作為記憶元件的電晶體103的主動層,可以使用氧化物半導體或是可以使用氧化物半導體以外的下述半導體:非晶矽、微晶矽、多晶矽、單晶矽、非晶鍺、微晶鍺、多晶鍺、單晶鍺、等等。當氧化物半導體膜被使用於記憶胞100中的所有電晶體的主動層時,製程能夠被簡化。此外,舉例而言,使用例如多晶矽或單晶矽等比氧化物半導體具有更高的遷移率之半導體材料以形成用作為記憶元件的電晶體103的主動層,因此,能夠從記憶胞100高速地讀取資料。
注意,雖然在圖1B中,記憶胞100包含用作為切換元件的電晶體103,但是,本發明不限於此結構。在本發 明的一個實施例中,只要在每一個記憶胞中設置作為切換元件的一個電晶體且這些電晶體的數目是複數的,也是可以接受的。在記憶胞100包含多個用作為切換元件的電晶體之情況中,多個電晶體可以並聯、串聯、或是並聯與串聯的組合。
注意,在本說明書中,舉例而言,電晶體串聯的狀態意指第一電晶體的第一端子及第二端子中僅有一個端子連接至第二電晶體的第一端子及第二端子的僅其中一個端子之狀態。此外,電晶體並聯的狀態意指第一電晶體的第一端子連接至第二電晶體的第一端子及第一電晶體的第二端子係連接至第二電晶體的第二端子的狀態。
與用作為切換元件的電晶體101不同,用作為記憶元件的電晶體103可以包含設於主動層的僅一側上的閘極電極。但是,本發明不限於此結構,類似於用作為切換元件的電晶體101,用作為記憶元件的電晶體103可以包含成對的閘極電極而以主動層設於其間。
接著,圖1C中顯示圖1A及圖1B中的電晶體101的剖面視圖實例。
在圖1C中,電晶體101包含在具有絕緣表面的基板110之上的第一閘極電極111;在第一閘極電極111之上的絕緣膜112;氧化物半導體膜113,用作為主動層且與第一閘極電極111重疊並以絕緣膜112設於其間;在氧化物半導體膜113之上的源極電極114和汲極電極115;在氧化物半導體膜113、源極電極114、和汲極電極115之 上的絕緣膜116;以及,第二閘極電極117,與絕緣膜116之上的氧化物半導體膜113重疊。此外,在圖1C中,絕緣膜118係形成於第二閘極電極117之上且被包含作為電晶體101的元件。
注意,雖然圖1C顯示電晶體101具有單閘極結構,但是,電晶體101可以具有包含多個電連接的閘極電極以致於包含多個通道形成區的多閘極結構。
接著,說明導因於第二閘極電極的電位變化之電晶體101的臨界電壓變化。首先,圖2A顯示電晶體101的電路圖。在圖2A中,電晶體101的電極的電位如下所述地表示:第一閘極電極的電位以Vcg表示;第二閘極電極的電位以Vbg表示;源極電極的電位以Vs表示;以及,汲極電極的電位以Vd表示。
圖2B顯示汲極電流Id的值相對於閘極電壓Vgs。當源極電極的電位Vs為參考電壓時,閘極電壓Vgs對應於第一閘極電極的電位Vcg與源極電極的電位Vs之間的差。
由實線顯示的線120代表第二電閘極電極的電位Vbg與源極電極的電位Vs相同位準之情況中相對於閘極電壓Vgs的汲極電流Id的值。此外,由虛線顯示的線121代表第二電閘極電極的電位Vbg比源極電極的電位Vs的位準還低之情況中相對於閘極電壓Vgs的汲極電流Id的值。注意,線120及121具有相同的源極電極電位Vs和相同的汲極電極電位Vd。
如圖2B中所示,隨著第二閘極電極的電位Vbg變得更低,電晶體101的臨界電壓正向地偏移,以致於關閉狀態電流降低。相反地,隨著第二閘極電極的電位Vbg變得更高,電晶體101的臨界電壓負向地偏移,以致於關閉狀態電流增加,亦即,開啟電阻降低。
在本發明的一個實施例中,如上所述般,資料固持時間的長度視經過電晶體101之記憶體元件中累積的電荷的洩漏量而定。在本發明的一個實施例中,藉由第二閘極電極的電位Vbg之控制,電晶體101的關閉狀態電流顯著地降低。因此,可以防止電荷洩漏,以致於可使資料固持時間更長。
然後,說明包含多個記憶胞的記憶體裝置的結構實例以及記憶體裝置的驅動方法。
圖3是包含多個圖1A中所示的記憶胞100的胞陣列200之電路圖的實例。關於記憶胞100的結構,可以參考實施例1的說明。
在圖3中所示的胞陣列200中,設置例如多個第一字線WLCG、多個第二字線WLBG、多個位元線BL、多個電容器線CL、及多個源極線SL等各種佈線,以及,來自驅動電路的訊號或電位經由佈線而被供應至每一個記憶胞100。
第一字線WLCG連接至電晶體101的第一閘極電極。第二字線WLBG連接至電晶體101的第二閘極電極。位元線BL連接至電晶體101的第一端子及電晶體103的第一 端子。源極線SL連接至電晶體103的第二端子。電容器線CL連接至電容器102的成對電極中未連接至電晶體101的第二端子的其中之一電極。
注意,佈線的數目由記憶胞100的數目及記憶胞100的配置所決定。具體而言,在圖3中所示的胞陣列200中,記憶胞以y列乘x行之矩陣配置,並且,第一字線WLCG1至WLCGy、第二字線WLBG1至WLBGy、電容器線CL1至CLy、源極線SL1至Sly,以及位元線BL1至BLx設置在胞陣列200中。
接著,參考圖4中的時序圖,說明圖3中所示的胞陣列200的操作。注意,圖4顯示對第一列及第一行中的記憶胞、第一列及第x行中的記憶胞、第y列及第一行中的記憶胞、以及第y列及第x行中的記憶胞,執行資料寫入、資料固持、及資料讀取之情況。圖4顯示電晶體103是p通道電晶體的情況。
注意,圖4中的時序圖之陰影區對應於電位是高電位或低電位期間的週期。
首先,說明資料寫入週期Ta中的胞陣列200的操作。
一列接一列地寫入資料。在圖4中,資料被寫至第一列及第一行中的記憶胞以及第一列及第x行中的記憶胞,然後,資料被寫至第y列及第1行中的記憶胞以及第y列及第x行中的記憶胞。
首先,選取被寫入資料的第一列中的記憶胞中的第一 字線WLCG1及電容器線CL1。具體而言,在圖4中,高位準電位VH被施加至第一字線WLCG1、以及接地電位GND被施加至第一字線WLCG2至WLCGy。因此,僅有第一閘極電極連接至第一字線WLCG1的電晶體101被選擇性地開啟。接地電位GND被施加至電容器線CL1、及高位準電位VDD被施加至電容器線CL2至CLy。
在第一字線WLCG1及電容器線CL1被選取的週期中,包含資料的訊號之電位被施加至位元線BL1及BLx。施加至位元線BL1及BLx的電位位準視資料內容而自然不同。圖4顯示高位準電位VDD被施加至位元線BL1及接地電位GND被施加至位元線BLx的情況。施加至位元線BL1及BLx的電位經由開啟的電晶體101而被施加至電容器102的其中一個電極以及電晶體103的閘極電極。當電容器102的其中一個電極與電晶體103的閘極電極彼此連接的節點稱為節點FG時,根據訊號的電位而控制累積於節點FG中的電荷量,以致於資料被寫入至第一列及第一行中的記憶胞以及第一列及第x行中的記憶胞。
然後,接地電位GND被施加至第一字線WLCG1,並且,其第一閘極電極係連接至第一字線WLCG1的電晶體101被關閉。
然後,選取被寫入資料的第y列中的記憶胞中的第一字線WLCGy及電容器線CLy。具體而言,在圖4中,高位準電位VH被施加至第一字線WLCGy並且接地電位GND被施加至第一字線WLCG1至WLCG(y-1)。因此, 僅有其第一閘極電極係連接至第一字線WLCGy的電晶體101被選擇性地開啟。接地電位GND被施加至電容器線CLy並且,高位準電位VDD被施加至電容器線CL1至CL(y-1)。
在第一字線WLCGy及電容器線CLy被選取的週期中,包含資料的訊號之電位被施加至位元線BL1及BLx。圖4顯示接地電位GND被施加至位元線BL1及高位準電位VDD被施加至位元線BLx的情況。施加至位元線BL1及BLx的電位經由開啟的電晶體101而被施加至電容器102的其中一個電極以及電晶體103的閘極電極。根據訊號的電位而控制累積於節點FG中的電荷量,以致於資料被寫入至第y列及第一行中的記憶胞以及第y列及第x行中的記憶胞。
注意,在寫入週期Ta中,接地電位GND被施加至所有的源極線SL。藉由上述結構,在接地電位GND被施加至節點FG的情況中,可以抑制在位元線BL及源極線SL中的電流產生。
為了防止錯誤資料寫至記憶胞,較佳的是在第一字線WLCG和電容器線CL被終止後,終止包含資料的訊號輸入至位元線BL期間的週期。
然後,說明資料固持週期Ts中的胞陣列200的操作。
在固持週期Ts中,使關閉電晶體101的電位,具體而言,接地電位GND,被施加至所有的第一字線WLCG。 在本發明的一個實施例中,在固持週期Ts中,比接地電位GND還低的低位準電位VSS被施加至所有的第二字線WLBG。因此,電晶體101的臨界電壓正向地偏移,以致於電晶體101的關閉狀態電流降低。當電晶體101的關閉狀態電流低時,累積在節點FG中的電荷較不可能洩漏;因此,可以長時間固持資料。
然後,說明資料讀取週期Tr中胞陣列200的操作。
首先,選取資料被讀取的第一列中的記憶胞中的電容器線CL1。具體而言,在圖4中,接地電位GND被施加至電容器線CL1,並且高位準電位VDD被施加至電容器線CL2至CLy。在讀取週期Tr中,因接地電位GND的施加,所有的第一字線WLCG未被選取。在電容器線CL1被選取的期間之週期中,高位準電位VR被施加至所有的源極線SL。注意,電位VR等於電位VDD,或低於電位VDD及高於接地電位GND。
在電晶體103的源極電極與汲極電極之間的電阻視節點FG中累積的電荷量而定。因此,根據累積於節點FG中的電荷量之電位被施加至位元線BL1及BLx。然後,藉由從電位讀取電荷量差異,從第一列及第一行中的記憶胞及第一列和第x行中的記憶胞中讀取資料。
然後,選取資料被讀取的第y列中的記憶胞中的電容器線CLy。具體而言,在圖4中,接地電位GND被施加至電容器線CLy,並且,高位準電位VDD被施加至電容器線CL2至CL(y-1)。如上所述,在讀取週期Tr中, 藉由接地電位GND的施加,所有的第一字線WLCG未被選取。在電容器線CLy被選取的期間之週期中,高位準電位VR被施加至所有的源極線SL。
在電晶體103的源極電極與汲極電極之間的電阻視節點FG中累積的電荷量而定。因此,根據累積於節點FG中的電荷量之電位被施加至位元線BL1及BLx。然後,藉由從電位讀取電荷量差異,從第y列及第一行中的記憶胞及第y列和第x行中的記憶胞中讀取資料。
注意,讀取電路被連接至每一個位元線BL的末端,並且,從讀取電路輸出的訊號包含真正地從胞陣列中讀取的資料。
在圖4中,經過所有的寫入週期Ta、固持週期Ts、及讀取週期Tr,低位準電位VSS被施加至所有的第二字線WLBG。但是,在本發明的一個實施例中,至少在固持週期Ts中,低位準電位VSS可以被施加至第二字線WLBG。舉例而言,為了將資料更高速地寫至記憶胞,在被寫入資料的列中,第二字線WLBG的電位可以高於電位VSS以及電晶體101的臨界電壓可以降低。
在圖5中所示的時序圖中,在寫入週期Ta中的第二字線WLBG的電位與圖4中所示的時序圖中的不同。具體而言,在圖5中,於寫入週期Ta中,在第一字線WLCG1被選取的期間之週期中,接地電位GND施加至被寫入資料的列中的記憶胞中的第二字線WLBG1。此外,在第一字線WLCGy被選取的期間之週期中,接地電位GND被施加 至被寫入資料的第y列中的記憶胞中的第二字線WLBGy。藉由上述結構,在資料被寫入的期間之週期中,電晶體101的臨界電壓可以降低;因此,在寫入週期Ta中以更高的速度將資料寫至記憶胞,並抑制固持週期Ts中的電荷洩漏。
然後,說明包含多個記憶胞的記憶體裝置的結構的不同實例以及記憶體裝置的驅動方法。
圖6是包含多個圖1B中所示的記憶胞100之胞陣列300的電路圖。關於記憶胞100的結構,可以參考實施例1中的說明。
在圖6中所示的胞陣列300中,設置例如多條第一字線WLCG、多條第二字線WLBG、多條位元線BL、及多條電容器線CL等各種佈線,並且,來自驅動電路的訊號或電位經由佈線而被供應至每一個記憶胞100。
第一字線WLCG被連接至電晶體101的第一閘極電極。第二字線WLBG被連接至電晶體101的第二閘極電極。位元線BL被連接至電晶體101的第一端子。電容器線CL被連接至電容器102的成對電極中未連接至電晶體101的第二端子的一個電極。
注意,佈線的數目由記憶胞100的數目及記憶胞100的配置所決定。具體而言,在圖6中所示的胞陣列300中,記憶胞以y列乘x行之矩陣方式配置,並且,第一字線WLCG1至WLCGy、第二字線WLBG1至WLBGy、電容器線CL1至CLy、以及位元線BL1至BLx係設置在胞陣列 300中。
接著,說明圖6中所示的胞陣列300的操作。
首先,說明資料寫入週期中胞陣列300的操作。在資料寫入週期中,當具有脈衝的訊號被輸入至第一字線WLCG1時,脈衝的電位,具體而言,高位準電位被施加至連接至第一字線WLCG1的電晶體101的第一閘極電極。因此,其第一閘極電極係連接至第一字線WLCG1的電晶體101被開啟。
然後,包含資料的訊號輸入至位元線BL1及BLx。輸入至位元線BL1及BLx的訊號的電位位準視資料內容而自然有所不同。輸入至位元線BL1至BLx的電位經由開啟的電晶體101而被施加至電容器102的其中一個電極。固定電位被施加至所有的電容器線CL。根據訊號的電位而控制累積於電容器102中的電荷量,以致於資料被寫入至電容器102。
當具有脈衝的訊號對第一字線WLCG1的輸入終止時,其第一閘極電極連接至第一字線WLCG1的電晶體101被關閉。然後,具有脈衝的訊號依序地被輸入至第一字線WLCG2至WLCGy,並且,在具有第一字線WLCG2至WLCGy的記憶胞100中類似地重複上述操作。
然後,說明資料固持週期中胞陣列300的操作。在固持週期中,使電晶體101關閉的電位,具體而言,低位準電位被施加至所有的第一字線WLCG1至WLCGy。在本發明的一個實施例中,在固持週期中,低位準電位VSS被 施加至所有的第二字線WLBG。因此,電晶體101的臨界電壓正向地偏移,以致於電晶體101的關閉狀態電流降低。當電晶體101的關閉狀態電流低時,累積在電容器102中的電荷較不可能洩漏;因此,可以長時間固持資料。
然後,說明資料讀取週期中胞陣列300的操作。在資料讀取週期中,以類似於資料寫入週期中的方式,具有脈衝的訊號依序地輸入至第一字線WLCG1至WLCGy。當脈衝的電位,具體而言,高位準電位被施加至連接至第一字線WLCG1的電晶體101的第一閘極電極時,電晶體101開啟。
當每一個電晶體101開啟時,經由位元線BL而取出累積於電容器102中的電荷。藉由從位元線BL的電位中讀取電荷量的差異,可以讀取資料。
注意,讀取電路被連接至每一條位元線BL的末端,並且,從讀取電路輸出的訊號包含從記憶體部真正讀出的資料。
雖然在本實施例中說明在多個記憶胞100中依序地執行資料讀取,但是,本發明不限於此。可以是僅有具有指定位址的記憶胞100可以執行上述操作。
以類似於圖5中所示的時序圖之方式,為了以更高速度將資料寫至記憶胞,在被寫入資料的列中,第二字線WLBG的電位可以高於電位VSS以及電晶體101的臨界電壓可以降低。
注意,根據本發明的一個實施例之記憶體裝置不限於圖3及圖6中所示的記憶胞100的結構。
圖8A顯示記憶胞100的不同結構。圖8A中所示的記憶胞100包含電晶體101、電容器102、及電晶體103。電晶體101的第一閘極電極被連接至第一字線WLCG。電晶體101的第二閘極電極被連接至第二字線WLBG。電晶體101的第一端子係連接至位元線BL。電晶體101的第二端子係連接至電晶體103的閘極電極。電晶體103的第一端子係連接至資料線DL。電晶體103的第二端子係連接至源極線SL。電容器102的成對電極的其中之一係連接至電晶體103的閘極電極,以及,另一電極係連接至電容器線CL。
在圖8A中所示的記憶胞100的情況中,從資料線DL的電位讀取用作為記憶元件的電晶體103及電容器102中累積的電荷量。
圖8B顯示記憶胞100的不同結構。圖8B中所示的記憶胞100除了包含電晶體101、電容器102、及電晶體103之外,還包含電晶體104,電晶體104用作為用以控制資料讀取的切換元件。電晶體101的第一閘極電極被連接至第一字線WLCG。電晶體101的第二閘極電極被連接至第二字線WLBG。電晶體101的第一端子係連接至位元線BL。電晶體101的第二端子係連接至電晶體103的閘極電極。電晶體103的第一端子係連接至電晶體104的第二端子。電晶體103的第二端子係連接至源極線SL。電 晶體104的第一端子係連接至資料線DL。電晶體104的閘極電極係連接至第三字線WLSW。電容器102的成對電極的其中之一係連接至電晶體103的閘極電極,並且,另一電極係連接至電容器線CL。
在圖8B中所示的記憶胞100的情況中,電晶體104因讀取資料時第三字線WLSW的電位變化而開啟。然後,從資料線DL的電位中讀取用作為記憶元件的電晶體103和電容器102中累積的電荷量。
在根據本發明的實施例之記憶體裝置中,寫入不同的資料,以致於已被寫入的資料被覆寫。因此,不同於習知的快閃記憶體,記憶體裝置具有在改寫資料時不需要抹除已被寫入的資料。
在一般的快閃記憶體的情況中,有電荷累積的浮動閘極被絕緣膜所覆蓋並且處於絕緣狀態。因此,需要施加約20V的高電壓至記憶元件中,以便電荷藉由穿隧效應而累積在浮動閘極中。但是,在本發明的一個實施例中,資料可以由包含高度純化的氧化物半導體膜用作為主動層的電晶體所寫入及讀取。因此,記憶體裝置的操作需要數伏特的電壓,以致於耗電顯著地降低。
注意,在包含一般快閃記憶體的半導體裝置中,由於快閃記憶體的操作所需的電壓(操作電壓)高,所以,施加至快閃記憶體的電壓通常由升壓電路(升壓DC-DC轉換器)等來予以升高。但是,由於在根據本發明的一個實施例之記憶體裝置中,記憶體裝置的操作電壓降低,所 以,能夠降低耗電。因此,在半導體裝置中,例如升壓電路等使用於記憶體裝置的操作之外部電路的負載可以降低,以致於外部電路的功能擴大,並且,實現半導體裝置的更高性能。
此外,雖然在本實施例中說明當使用二進位數位資料時的驅動方法,但是,本發明的記憶體裝置可以使用具有三或更多個值的多值資料。注意,在具有三或更多個值的多值資料的情況中,舉例而言,電荷量之間的差隨著值的數目而增加至四、五、及六而變得更小。因此,假使少量的關閉狀態電流存在,則難以維持資料的準確性,並且,固持週期傾向於更短。但是,在本發明的一個實施例中,由於關閉狀態電流顯著地降低的電晶體用作為切換元件,所以,能夠抑制導因於值多工化的固持週期之縮短。
接著,說明用於控制第二字線WLBG的電位之第二字線驅動電路的結構實例。圖7是第二字線驅動電路150的電路圖實例。
圖7中所示的第二字線驅動電路150包含用作為二極體的電晶體151(驅動電路電晶體)及電容器152(驅動電路電容器)。電位VSS經由端子A而被供應至電晶體151的第一端子。電晶體151的第一閘極電極和第二閘極電極係連接至電晶體151的第二端子。電容器152包含成對的電極。電容器152的成對電極的其中之一係連接至電晶體151的第二端子。預定電位被施加至電容器152的成對電極中之另一電極。電晶體151的第二端子係連接至第 二字線WLBG
具體而言,在圖7中,第二字線驅動電路150包含m(m是2或更大的自然數)組電晶體151和電容器152。此外,n(n是1或更大的自然數)條第二字線WLBG被連接至一個電晶體151的第二端子。
在第二字線WLBG的電位高於電位VSS的情況中,電流從第二字線WLBG經過電晶體151而流至端子A。因此,第二字線WLBG的電位設定於比電位VSS還高出電晶體151的臨界電壓之電位。假使此電位設定成遠低於記憶胞100中的電晶體101的源極電極的電位時,電晶體101的臨界電壓正向地偏移;因此,電晶體101的關閉狀態電流降低。因此,記憶體裝置的固持特徵可以增進。
注意,在電位VSS停止供應至第二字線驅動電路150及端子A的電位高於第二字線WLBG的電位的情況中,反向偏壓電壓被施加至電晶體151,以致於僅有關閉狀態電流流經電晶體151。藉由此關閉狀態電流,電力被儲存於電容器152中,並且,第二字線WLBG的電位隨著時間而增加。最後,使電晶體101的源極電極與第二閘極電極之間的電位差小,以致於無法偏移電晶體101的臨界電壓,而充份地降低關閉狀態電流。但是,由於電容器152可以被設置在胞陣列之外,所以,相較於設在記憶胞中的電容器102,能夠確保更大的電容。因此,舉例而言,當電容器152的電容是設在記憶胞中的電容器102的電容的100倍時,第二字線WLBG的電位要達到上限的時間可以延長 100倍。因此,當電位VSS的供應停止期間的週期短時,可以防止儲存於記憶體裝置中的資料喪失。
注意,電晶體151並非必需包含第二閘極電極。但是,基於後述理由,較佳的是如圖7所示般電晶體151包含第二閘極電極以及第二閘極電極被連接至電晶體151的第二端子。藉由上述結構,當順向偏壓電壓被施加至用作為二極體的電晶體151時,由於電晶體151的臨界電壓降低,所以,開啟狀態電流增加。因此,供應電流至第二字線WLBG的能力增進。此外,藉由上述結構,當反向偏壓電壓被施加至電晶體151時,由於電晶體151的臨界電壓升高,所以,關閉狀態電流降低。因此,第二字線WLBG的電位達到上限所花費的時間可以延長。
如圖4中的時序圖所示般,圖7也顯示當固定電位VSS被供應至第二字線WLBG時第二字線驅動電路150的結構。在如圖5中的時序圖中所示的寫入週期中電位VSS及接地電位GND被供應至第二字線WLBG的情況中,端子A未被連接至DC電源但被連接至圖7中的訊號源。
(實施例2)
在本實施例中,說明包括包含氧化物半導體的電晶體101及包含矽的電晶體103之記憶體裝置製造方法。
例如鍺、矽鍺、或單晶碳化矽、以及矽可以被使用於電晶體103。舉例而言,使用例如矽晶圓等單晶半導體基板,由SOI法所形成的矽薄膜、由汽相沈積所形成的矽薄 膜、等等,形成包含矽的電晶體103。或者,在本發明的一個實施例中,包含於記憶胞中之所有的電晶體可以包含氧化物半導體。
在本實施例中,首先,如圖9A中所示,在基板700之上形成絕緣膜701及與單晶半導體基板分離的島狀半導體膜702。
雖然對於作為基板700的材料並無特別限制,但是,材料需要具有至少足以耐受稍後執行的熱處理之抗熱性。舉例而言,使用由熔融法或漂浮法所形成的玻璃基板、石英基板、半導體基板、陶瓷基板、等等作為基板700。在稍後要被執行的熱處理溫度高的情況中,較佳使用應變點是730℃或更高的玻璃基板作為玻璃基板。
在本實施例中,以使用單晶來形成半導體膜702的實例作為用以形成電晶體103的方法。注意,簡要地說明用以形成單晶半導體膜702的方法之特定實例。首先,包含由電場所加速的離子之離子束進入接合基板及易脆層,接合基板是單晶半導體基板,易脆層是由於在離接合基板的表面某深度處的區域中形成晶體結構的局部失序而為易脆的。藉由離子束的加速能量及離子束進入的角度,可以調整易脆層形成處的深度。然後,接合基板及設有絕緣膜701的基板700彼此附接,以致於絕緣膜701夾於其間。在接合基板與基板700彼此重疊之後,約1至500N/cm2,較佳為11至20N/cm2之壓力被施加至部份接合基板及部份基板700,以致於基板彼此附接。當壓力施加 至部份接合基板及部份基板700時,接合基板與絕緣膜701之間的接合從這些部份開始,造成接合基板與絕緣膜701彼此緊密接觸之的整個表面的接合。之後,執行熱處理,以致於存在於易脆層中的微空乏擴大,並且,微空乏彼此結合。因此,作為接合基板的一部份之單晶半導體膜沿著易脆層而與接合基板分離。熱處理的溫度設定成不會超過基板700的應變點。然後,以蝕刻等等,將單晶半導體膜處理成所需形狀,以便形成島狀半導體膜702。
為了控制臨界電壓,例如硼、鋁、或鍺等賦予p型導電率的雜質元素、或是例如磷或砷等賦予n型導體率的雜質元素可以被添加至半導體膜702。用以控制臨界電壓的雜質元素可以被添加至未被圖案化的半導體膜或是可以被添加至經過圖案化的半導體膜702。或者,於控制臨界電壓的雜質元素可以被添加至接合基板。或者,雜質元素可以被添加至接合基板以概略地控制臨界電壓,並且,將雜質元素進一步添加至未被圖案化的半導體膜或已圖案化的半導體膜702,以便精密地控制臨界電壓。
注意,雖然在本實施例中說明使用單晶半導體膜的實例,但是,本發明不限於此結構。舉例而言,可以使用以汽相沈積而被形成於絕緣膜701之上的多晶、微晶、或非晶半導體膜。或者,以已知的技術,將半導體膜晶化。關於已知的晶化技術,可以使用利用雷射光的雷射晶化或是利用觸媒元素的晶化。或者,結合地使用使用觸媒元素的晶化及雷射晶化。當使用例如石英基板等耐熱基板時,可 以使用與使用電熱爐的熱晶化、使用紅外光的燈退火晶化、使用觸媒元素的晶化、或是約950℃的高溫退火相結合的晶化。
接著,如圖9B中所示中,閘極絕緣膜703係形成於半導體膜702之上。然後,掩罩705係形成於閘極絕緣膜703之上,並且,賦予導電率的雜質元素被添加至部份的半導體膜702,以便形成雜質區704。
藉由高密度電漿處理、熱處理、等等,將半導體膜702的表面氧化或氮化,以形成閘極絕緣膜703。舉例而言,藉由使用例如He、Ar、Kr、或Xe等稀有氣體;以及氧、氧化氮、氨、氮、氫、等等的混合氣體,以執行高密度電漿處理。在此情況中,藉由導入微波以激發電漿,可以產生具有低電子溫度及高密度的電漿。藉由此高密度電漿產生的氧自由基(在某些情況中包含OH自由基)或氮自由基(在某些情況中包含NH自由基),將半導體膜的表面氧化或氮化,形成與半導體膜接觸的1nm至20nm厚、較佳的是5nm至10nm厚的絕緣膜。舉例而言,以1至3倍(流速比)的Ar稀釋氧化亞氮(N2O)及在10Pa至30Pa的壓力下施加3kW至5kW的微波電力(2.45GHz),以致於將執行半導體膜702的表面氧化或氮化。藉由此處理,形成厚度1nm至10nm(較佳地,2nm至6nm)的絕緣膜。此外,將氧化亞氮(N2O)及矽烷(SiH4)導入,以及,在10至30Pa的壓力下,施加3kW至5kW的微波電力(2.45GHz),以致於以汽相沈積 法來形成氧氮化矽膜,藉以形成閘極絕緣膜。藉由結合固相反應與汽相沈積的結合,以形成具有低介面狀態密度及高耐受電壓的閘極絕緣膜。
藉由高密度電漿處理之半導體膜的氧化或氮化是固相反應。因此,閘極絕緣膜703與半導體膜702中之間的介面狀態密度可以相當地低。此外,藉由高密度電漿處理以直接氧化或氮化半導體膜702,可以抑制要被形成的絕緣膜之厚度變異。此外,在半導體膜具有結晶性的情況中,半導體膜的表面由高密度電漿處理的固相反應氧化,而防止晶粒邊界快速地局部氧化。因此,可以形成具有低介面狀態密度的均勻閘極絕緣膜。可以抑制電晶體的特徵變異,所述電晶體的閘極絕緣膜部份或全部地包含高密度電漿處理所形成的絕緣膜。
以電漿強化CVD、濺射、等等,使用包含氧化矽、氮氧化矽、氧氮化矽、氮化矽、氧化鉿、氧化鋁、氧化鉭、氧化釔、矽酸鉿(HfSixOy(x>0,y>0))、添加氮的矽酸鉿(HfSixOy(x>0,y>0))、添加氮的鋁酸鉿(HfAlxOy(x>0,y>0))、等等的膜之單層或堆疊層,形閘極絕緣膜703。
注意,在本說明書中,氧氮化物是包含的氧比氮更多的物質,氮氧化物是包含的氮比氧更多的物質。
舉例而言,閘極絕緣膜703的厚度為1nm至100nm,較佳為10nm至50nm。在本實施例中,以電漿強化CVD,形成含有氧化矽的單層絕緣膜作為閘極絕緣膜 703。
然後,在去除掩罩705之後,如圖9C所示般去除部份閘極絕緣膜703,以及,藉由蝕刻等,在與雜質區704重疊的區域中形成開口706。之後,形成閘極電極707及導電膜708。
形成導電膜以致覆蓋開口706,然後,導電膜被處理(圖案化)成預定形狀,以致於形成閘極電極707和導電膜708。導電膜708在開口706中接觸雜質區704。以CVD法、濺射法、汽相沈積、旋轉塗敷、等等,形成導電膜。關於導電膜,可以使用鉭(Ta)、鎢(W)、鈦(Ti)、鉬(Mo)、鋁(Al)、銅(Cu)、鉻(Cr)、鈮(Nb)、等等。可以使用含有金屬作為主成份的合金或含有金屬的化合物。或者,可以使用摻雜賦予半導體膜導電率之例如磷等雜質元素的例如多晶矽等半導體,以形成導電膜。
注意,雖然在本實施例中使用單層導電膜來形成閘極電極707及導電膜708,但是,本實施例不限於此結構。閘極電極707和導電膜708可以由多個堆疊的導電膜形成。
關於雙導電膜的結合,以氮化鉭或鉭使用於第一導電膜以及以鎢使用於第二導電膜。除了此實施例之外,可以使用任何下述組合:氮化鉭及鎢;氮化鉬及鉬;鋁及鉭;鋁及鈦、等等。由於鎢及氮化鉭具有高抗熱性,所以,在形成二導電膜後的步驟中執行用於熱活化的熱處理。或 者,關於雙導電膜的組合,舉例而言,可以使用摻雜有賦予n型導電率的雜質元素之矽及矽化鎳、摻雜有賦予n型導電率的雜質之矽及矽化鎢、等等。
在堆疊三或更多層導電膜的三層結構之情況中,較佳使用鉬膜、鋁膜、及鉬膜的層疊結構。
使用氧化銦、氧化銦及氧化錫的混合物、氧化銦及氧化鋅的混合物、氧化鋅、鋅鋁氧化物、鋅鋁氮氧化物、鋅鎵氧化物、等等透光氧化物導電膜作為閘極電極707和導電膜708。
或者,以未使用掩罩之滴放法,選擇性地形成閘極電極707和導電膜708。滴放法是藉由從孔口排放或噴射含有預定成份的液滴以形成預定圖案的方法,並且,依其類別包含噴墨法。
此外,藉由形成導電膜以形成閘極電極707和導電膜708,以及,在適當地控制的條件下(例如,施加至線圈化電極層的電力量、施加至基板側上的電極層之電力量、及基板側上的電極溫度),以感應耦合電漿(ICP)蝕刻,將導電膜蝕刻成具有所需的錐形形狀。此外,可以藉由掩罩的形狀以控制錐形形狀的角度等等。注意,關於蝕刻氣體,可以適當地使用例如氯、氯化硼、氯化矽、或四氯化硼等以氯為基礎的氣體;例如四氟化碳、氟化硫、或氟化氮等以氟為基礎的氣體;或是氧。
接著,如圖9D所示,當以閘極電極707和導電膜708作為掩罩,將賦予一導電率型的雜質元素添加至半導 體膜702時,在半導體膜702中形成與閘極電極707重疊的通道形成區710、將通道形成區710夾於其間的成對雜質區709、以及藉由進一步添加雜質元素至部份的雜質區704而取得的雜質區711。
在本實施例中,說明賦予p型導電率的雜質元素(例如,硼)添加至半導體膜702。
注意,圖12A是當完成上述步驟時記憶胞的上視圖。沿著圖12A中的虛線A1-A2所取得的剖面視圖對應於圖9D。
接著,如圖10A中所示般,形成絕緣膜712和713以致於覆蓋閘極絕緣膜703、閘極電極707、及導電膜708。具體而言,可以使用氧化矽、氮化矽、氮氧化矽、氧氮化矽、氮化鋁、氮氧化鋁、等等作為絕緣膜712和713。特別是,由於可以充份地降低導因於電極或佈線的重疊之電容,所以,使用低介電常數(低k)材料較佳形成絕緣膜712和713。注意,可以使用包含此材料的多孔絕緣膜作為絕緣膜712和713。由於多孔絕緣膜具有比緻密絕緣層更低的介電常數,所以,可以進一步降低導因於電極或佈線之寄生電容。
在本實施例中,說明以氧氮化矽用於絕緣膜712及氮氧化矽用於絕緣膜713的實例。此外,在本實施例中,雖然說明在閘極電極707及導電膜708之上形成絕緣膜712和713的實例,但是,在本發明中,可以僅有一層絕緣膜形成於閘極電極707和導電膜708之上、或是三或更多層 的多個絕緣膜可以被堆疊。
接著,如圖10B中所示般,絕緣膜712和713受到CMP(化學機械拋光)或蝕刻,以致於閘極電極707和導電膜708的表面曝露出、注意,為了增進稍後形成的電晶體101的特徵,較佳將絕緣膜712和713的表面僅可能地平坦化。
經由上述步驟,形成電晶體103。
接著,說明用以形成電晶體101的方法。首先,如圖10C所示,在絕緣膜712或絕緣膜713之上形成閘極電極714。使用類似於閘極電極707和導電膜708之材料及層疊結構,以形成閘極電極714。
閘極電極714的厚度為10至400nm,較佳為100至200nm。在本實施例中,在使用鎢靶材,以濺射法形成用於閘極電極的150nm厚的導電膜之後,以蝕刻將導電膜處理(圖案化)成所需形狀,以便形成閘極電極714。注意,當形成的閘極電極的端部是尾端漸細時,增進堆疊於其上的閘極絕緣膜的覆蓋。以噴墨法形成光阻掩罩。當以噴墨法形成光阻掩罩時,不使用光罩;因此,可以降低製造成本。
接著,如圖10D所示,在閘極電極714之上形成閘極絕緣膜715,然後,在閘極絕緣膜715之上形成島狀氧化物半導體膜716以便覆蓋閘極電極714。
使用類似於閘極絕緣膜703之材料及層疊結構,以形成閘極絕緣膜715。注意,較佳的是閘極絕緣膜715含有 儘可能少的例如濕氣或氫等雜質。在以濺射法形成氧化矽膜的情況中,使用矽靶材或石英靶材作為靶材,並且,使用氧或氧和氬的混合氣體作為濺射氣體。
藉由去除雜質及降低氧缺乏而高度純化的氧化物半導體對於介面狀態及介面電荷高度敏感;因此,高度純化的氧化物半導體膜716與閘極絕緣膜715之間的介面的特徵是重要的。因此,接觸高度純化的氧化物半導體膜716之閘極絕緣膜715需要高品質。
舉例而言,由於能夠形成具有耐高電壓的緻密高品質絕緣膜,所以,使用微波(2.45GHz的頻率)之高密度電漿強化CVD是較佳的。這是因為當高度純化的氧化物半導體緊密地接觸高品質閘極絕緣膜時,介面狀態可以降低以及介面特性可以有利。
無需多言,只要能夠形成高品質絕緣膜作為閘極絕緣膜715,可以使用例如濺射或電漿強化CVD等不同的沈積法。此外,只要與絕緣膜的氧化物半導體之間的介面的特性及膜品質由沈積後執行的熱處理修改,可以使用任何絕緣膜。在任一情況中,只要膜品質與閘極絕緣膜一樣高,與氧化物半導體之間的介面狀態密度降低、以及可以形成有利的介面,則任何絕緣膜都可以被使用。
閘極絕緣膜715可以具有一種結構,其中,使用具有高障壁特性的材料形成的絕緣膜與例如氧化矽膜或氧氮化矽膜等具有低氮比例的絕緣膜相堆疊。在該情況中,在具有高障壁特性的絕緣膜與氧化物半導體膜716之間形成例 如氧化矽膜或氧氮化矽膜等絕緣膜。關於具有高障壁特性的絕緣膜,舉例而言,可以使用氮化矽膜、氮氧化矽膜、氮化鋁膜、氧化鋁膜、氮氧化鋁膜、等等。具有高障壁特性的絕緣膜能夠防止氛圍中例如濕氣或氫等雜質、或是例如鹼金屬或重金屬等基板中的雜質進入氧化物半導體膜716、閘極絕緣膜715、或是氧化物半導體膜716與另一絕緣膜之間的介面以及其附近。此外,形成例如氧化矽膜或氧氮化矽膜等具有低氮比例的絕緣膜以致接觸氧化物半導體膜716,以致於可以防止具有高障壁特性的絕緣膜直接接觸氧化物半導體膜716。
舉例而言,以濺射形成50nm至200nm厚的氮化矽膜(SiNy(y>0))以及在第一閘極絕緣膜上堆疊5nm至300nm厚的氧化矽膜(SiOx(x>0))作為第二閘極絕緣膜,以此方式,形成100nm厚的閘極絕緣膜715。閘極絕緣膜715的厚度可以視電晶體所需的特徵而被適當地設定且可為約350nm至400nm。
在本實施例中,形成具有一種結構的閘極絕緣膜715,在所述結構中,由濺射所形成的100nm厚的氧化矽膜被堆疊於由濺射所形成的50nm厚的氮化矽膜。
注意,閘極絕緣膜715接觸稍後形成的氧化物半導體膜716。當氫含於氧化物半導體膜716中時,不利地影響電晶體的特徵;因此,較佳的是閘極絕緣膜715未含有氫、羥基、及濕氣。為了在閘極絕緣膜715中含有儘可能少的氫、羥基、及濕氣,較佳的是在濺射設備的預熱室中 將有閘極電極714形成於其上的基板700預熱作為沈積的前置預熱,以消除及排除吸附於基板700之上的例如氫或濕氣等雜質。預熱的溫度是100至400℃,較佳為150至300℃。關於設置在預熱室中的抽真空機構,低溫泵是較佳的。注意,可以省略預熱處理。
將形成於閘極絕緣膜715之上的氧化物半導體膜處理成所需形狀,以形成島狀氧化物半導體膜716。氧化物半導體膜的厚度是2至200nm,較佳為3至50nm,更佳為3至20nm。使用氧化物半導體作為靶材,以濺射沈積氧化物半導體膜。或者,在稀有氣體(例如,氬)氛圍、氧氛圍、或稀有氣體(例如,氬)與氧的混合氛圍中,以濺射形成氧化物半導體膜。
注意,在以濺射法沈積氧化物半導體膜之前,藉由逆向濺射,較佳去除附接於閘極絕緣膜715的表面上的灰塵,在逆向濺射中,導入氬氣以及產生電漿。逆向濺射為一種方法,其中,未施加電壓至靶材側,在氬氛圍中,使用RF電源以施加電壓至基板側,並且,在基板附近中產生電漿,以致於修改基板表面。注意,可以使用氮、氦、或類似者以取代氬氛圍。或者,可以使用添加氧、氧化亞氮、或類似者之氬氛圍。或者,可以使用添加氯、四氯化氮、或類似者之氬氛圍。
如上所述,關於氧化物半導體膜,可以使用氧化銦;氧化錫;氧化鋅;例如以In-Zn為基礎的氧化物、以Sn-Zn為基礎的氧化物、以Al-Zn為基礎的氧化物、以Zn- Mg為基礎的氧化物、以Sn-Mg為基礎的氧化物、以In-Mg為基礎的氧化物、或以In-Ga為基礎的氧化物等二成份金屬氧化物;例如以In-Ga-Zn為基礎的氧化物(也稱為IGZO)、以In-Al-Zn為基礎的氧化物、以In-Sn-Zn為基礎的氧化物、以Sn-Ga-Zn為基礎的氧化物、以Al-Ga-Zn為基礎的氧化物、以Sn-Al-Zn為基礎的氧化物、以In-Hf-Zn為基礎的氧化物、以In-La-Zn為基礎的氧化物、以In-Ce-Zn為基礎的氧化物、以In-Pr-Zn為基礎的氧化物、以In-Nd-Zn為基礎的氧化物、以In-Sm-Zn為基礎的氧化物、以In-Eu-Zn為基礎的氧化物、以In-Gd-Zn為基礎的氧化物、以In-Tb-Zn為基礎的氧化物、以In-Dy-Zn為基礎的氧化物、以In-Ho-Zn為基礎的氧化物、以In-Er-Zn為基礎的氧化物、以In-Tm-Zn為基礎的氧化物、以In-Yb-Zn為基礎的氧化物、或以In-Lu-Zn為基礎的氧化物等三成分金屬氧化物;或是,例如以In-Sn-Ga-Zn為基礎的氧化物、以In-Hf-Ga-Zn為基礎的氧化物、以In-Al-Ga-Zn為基礎的氧化物、以In-Sn-Al-Zn為基礎的氧化物、以In-Sn-Hf-Zn為基礎的氧化物、或以In-Hf-Al-Zn為基礎的氧化物等四成分金屬氧化物。
在本實施例中,作為氧化物半導體膜使用30nm厚的以In-Ga-Zn為基礎的氧化物半導體薄膜,所述以In-Ga-Zn為基礎的氧化物半導體薄膜係使用包含銦(In)、鎵(Ga)、及鋅(Zn)的靶材,以濺射法所取得的。在以濺射法形成以In-Ga-Zn為基礎的氧化物半導體薄膜的情 況中,較佳的是使用原子比為In:Ga:Zn=1:1:1、4:2:3、3:1:2、1:1:2、2:1:3、或3:1:4之以In-Ga-Zn為基礎的靶材。當使用具有上述原子比的以In-Ga-Zn為基礎的氧化物之靶材以形成氧化物半導體膜時,容易形成多晶或c軸對齊的晶體(CAAC)。包含In、Ga、及Zn的靶材的填充率高於或等於90%且低於或等於100%,較佳為高於或等於95%且低於100%。藉由使用具有高填充率的靶材,以形成緻密的氧化物半導體膜。
在以In-Zn為基礎的材料使用於氧化物半導體的情況中,使用的靶材具有原子比為In:Zn=50:1至1:2的成分比(In2O3:ZnO=25:1至1:4莫耳比),較佳為In:Zn=20:1至1:1原子比(In2O3:ZnO=10:1至1:2莫耳比)、更佳為In:Zn=1.5:1至15:1原子比(In2O3:ZnO=3:4至15:2莫耳比)。舉例而言,當用於由以In-Zn為基礎的氧化物所形成的氧化物半導體膜的沈積之靶材具有原子比為In:Zn:O=X:Y:Z時,Z>1.5 X+Y。藉由將Zn的比例保持於在上述範圍之內,可以增進遷移率。
在本實施例中,以下述方式沈積氧化物半導體膜:將基板固持於維持降壓狀態的處理室中、去除餘留在處理室中的濕氣、將氫及濕氣被去除的濺射氣體導入、以及使用靶材。且在沈積時,基板溫可為100℃至600℃,較佳地為200℃至400℃。在基板被加熱時沈積氧化物半導體膜,可以降低含於沈積的氧化物半導體膜中的雜質濃度。 此外,可以降低濺射造成的傷害。為了去除餘留在處理室中的濕氣,較佳使用吸附型真空泵。舉例而言,較佳使用低溫泵、離子泵、或鈦昇華泵。設有冷阱的渦輪泵可以作為抽真空機構。舉例而言,藉由使用低溫泵,從處理室中抽除氫離子、例如水等含有氫原子的化合物(較佳為含有碳原子的化合物)、等等。因此,可以降低含於處理室中沈積的氧化物半導體膜中的雜質濃度。
關於沈積條件的實施例,使用下述條件:基板與靶材之間的距離為100mm,壓力0.6Pa,直流(DC)電力為0.5kW,氛圍為氧氛圍(氧流量比例為100%)氛圍。注意,由於脈衝式直流(DC)電源可以降低沈積時的粉末物質以及膜厚均勻,所以較佳的是使用脈衝式直流(DC)電源。
注意,為了在氧化物半導體膜中含有儘可能少的氫、羥基、及濕氣,較佳的是在濺射設備的預熱室中將有閘極絕緣膜715形成於上的基板700預熱作為沈積的前置預熱,以消除及排除吸附於基板700之上的例如氫或濕氣等雜質。預熱的溫度是100至400℃,較佳為150至300℃。關於設置在預熱室中的抽真空機構,低溫泵是較佳的。注意,可以省略預熱處理。在閘極絕緣膜721被形成之前,對導電膜719和720形成於其上的基板700類似地執行此預熱。
注意,用於形成島狀氧化物半導體膜716的蝕刻可以是乾式蝕刻、濕式蝕刻、或乾式蝕刻及濕式蝕刻。關於用 於乾式蝕刻的氣體,較佳使用含氯的氣體(例如氯(Cl2)、三氯化硼(BCl3)、四氯化矽(SiCl4)、或四氯化碳(CCl4)等以氯為基礎的氣體)。或者,可以使用含有氟的氣體(例如四氟化碳(CF4)、氟化硫(SF6)、氟化氮(NF3)、或三氟甲烷(CHF3)等以氟為基礎的氣體)、溴化氫(HBr)、氧(O2)、這些氣體中任何添加例如氦(He)或氬(Ar)等稀有氣體之氣體、等等。
關於乾式蝕刻,可以使用平行板RIE(反應離子蝕刻)或ICP(感應耦合電漿)蝕刻。為將膜蝕刻成具有所需形狀,適當地調整蝕刻條件(例如,施加至線圈電極的電力量、施加至基板側上的電極之電力量、基板側上電極的溫度)。
關於用於濕式蝕刻的蝕刻劑,使用例如磷酸、醋酸、及硝酸的混合溶液、例如檸檬酸或草酸等有機酸、等等。在本實施例中,使用ITO-07N(Kanto Chemical Co.,Inc.的產品)的濕式蝕刻。
以噴墨法形成用以形成島狀氧化物半導體膜716的光阻掩罩。當以噴墨法形成光阻掩罩時,未使用光罩;因此,製造成本降低。
注意,較佳的是在後續步驟中在導電膜形成之前執行逆向濺射,以致於去除附接至島狀氧化物半導體膜716及閘極絕緣膜715的表面上的殘餘光阻等等。
注意,在某些情況中,由濺射等沈積的氧化物半導體膜含有大量的濕氣或氫(包含羥基)作為雜質。濕氣或氫 容易形成施體位準並因而作為氧化物半導體中的雜質。因此,在本發明的一個實施例中,為了降低氧化物半導體膜中例如濕氣或氫等雜質(執行脫氫或脫水),島狀氧化物半導體膜716在降壓氛圍、氮、稀有氣體、等等的惰性氣體氛圍、氧氣氛圍、或超乾空氣(在使用腔體振盪雷射吸收光譜(CRDS)法以露點儀執行測量的情況中,濕氣量是20ppm或更低(轉換成露點,-55℃)),較佳為1ppm或更低,更佳為10ppb或更低)中,受到熱處理。
藉由對氧化物半導體膜716執行熱處理,消除島狀氧化物半導體膜716中的濕氣或氫。具體而言,在高於或等於250℃且低於或等於750℃,較佳為高於或等於400℃且低於基板的應變點之溫度下,執行熱處理。舉例而言,以500℃執行熱處理約3分鐘至6分鐘。當以RTA用於熱處理時,短時間地執行脫水或脫氫;因此,即使在高於玻璃基板的應變點之溫度下,仍然可以執行處理。
在本實施例中,使用為熱處理設備的其中之一的電熱爐。
注意,熱處理設備不限於電熱爐,可以設有以來自例如受電阻式電路器等加熱器的熱傳導或熱輻射來加熱物品之設備。舉例而言,使用例如GRTA(氣體快速熱退火)設備或LRTA(燈快速熱退火)設備等RTA(快速熱退火)設備。LRTA設備是藉由例如鹵素燈、金屬鹵化物燈、氙電弧燈、碳電弧燈、高壓鈉燈、或高壓水銀燈等燈發射的光(電磁波)之輻射,將物體加熱。GRTA設備是 使用高溫氣體以執行熱處理之設備。使用不會因熱處理而與物體反應之惰性氣體作為氣體,例如氮或稀有氣體(例如,氬)。
在熱處理中,較佳的是濕氣、氫、等等不包含於氮或例如氦、氖、或氬等稀有氣體中。或者,導入於熱處理設備中之氮或例如氦、氖、或氬等稀有氣體之純度較佳為6N(99.9999%)或更高,又較佳為7N(99.99999%)或更高(亦即,雜質濃度為1ppm或更低,較佳為0.1ppm或更低)。
注意,已有文獻指出氧化物半導體對於雜質不敏感,當可觀數量的金屬雜質含於膜中時不會有問題,以及,可以使用含有例如鈉等大量鹼金屬且不昂貴的鈉鈣玻璃(Kamiya,Nomura,及Hosono等人所著的「Carrier Transport Properties and Electronic Structures of Amorphous Oxide Semiconductors:The present status」,KOTAI BUTSURI(SOLID STATE PHYSICS),2009,Vol.44,pp.621-633)。但是此考量並不適當。鹼金屬不是包含於氧化物半導體中的元素,因此是雜質。在鹼土金屬不是包含於氧化物半導體中之情況中,鹼土金屬也是雜質。在鹼金屬中,特別是,當接觸氧化物半導體膜的絕緣膜是氧化物且Na擴散至絕緣層中時Na變成Na+。此外,在氧化物半導體膜中,Na進入或切斷包含於氧化物半導體中的金屬與氧之間的鍵。結果,舉例而言,發生例如導因於臨界電壓在負方向上偏移之電晶體常開狀態、或遷移率降 低等電晶體特徵劣化。也發生特徵變異。當氧化物半導體膜中的氫濃度相當低時,此導因於雜質之特徵變異及電晶體特徵劣化出現。因此,當氧化物半導體膜中的氫濃度為5×1019cm-3或更低時,特別是,5×1018cm-3或更低時,雜質濃度較佳降低。具體而言,較佳的是二次離子質譜儀對Na濃度的測量值為5×1016/cm3或更低,又較佳為1×1016/cm3或更低,仍然又較佳為1×1015/cm3或更低。類似地,Li濃度的測量值較佳的是5×1015/cm3或更低,又較佳的是1×1015/cm3或更低。類似地,K濃度的測量值較佳的是5×1015/cm3或更低,更佳的是1×1015/cm3或更低。
經由上述步驟,島狀氧化物半導體膜716中的氫濃度可以降低。此外,在低於或等於玻璃轉變溫度之溫度下的熱處理能夠形成具有寬能帶隙的氧化物半導體膜及導因於氫的低載子密度。因此,可以使用大基板形成電晶體,以致於增加量產力。可以在沈積氧化物半導體膜之後的任何時間執行熱處理。
注意,在氧化物半導體膜被加熱的情況中,在某些情況中,取決於氧化物半導體膜的材料或加熱條件,而在氧化物半導體膜的表面處形成板狀晶體。板狀晶體較佳為在實質上垂直於氧化物半導體膜的表面之方向上c軸對齊的單晶。即使板狀晶體不是單晶體,每一個晶體較佳的是在實質上垂直於氧化物半導體膜的表面之方向上c軸對齊的多結晶體。此外,較佳的是多結晶體是c軸對齊的以及多個晶體的a-b平面相對應、或是多個晶體的a-軸或b-軸彼 此對齊。注意,當氧化物半導體膜的基底表面不平整時,板狀晶體是多晶的。因此,基底表面較佳的是儘可能平整的。
接著,如圖11A所示,去除部份閘極絕緣膜715,以便形成開口717和718。因此,部份的閘極電極707和部份的導電膜708曝露出。然後,形成經由開口717及氧化物半導體膜716而與閘極電極707相接觸的導電膜719以及經由開口718及氧化物半導體膜716而與導電膜708相接觸的導電膜720。導電膜719和720用作為源極和汲極電極。
具體而言,以濺射或真空汽相沈積而形成導電膜以致覆蓋開口717和718,然後將導電膜處理(圖案化)成預定形狀,以此方式,形成導電膜719和720。
關於作為導電膜719和720之導電膜可以使用任何下述材料:選自鋁、鉻、銅、鉭、鈦、鉬、或鎢之元素;含有任何這些元素的合金;包含上述元素組合的合金膜;等等。或者,可以使用例如鉻、鉭、鈦、鉬、或鎢等耐火金屬膜堆疊於鋁、銅、等等金屬膜之上或之下的結構。較佳使用鋁或銅結合耐火金屬材料,以避免抗熱性及腐蝕的有關問題。關於耐火金屬材料,可以使用鉬、鈦、鉻、鉭、鎢、釹、鈧、釔、等等。
此外,作為導電膜719和720之導電膜可以具有單層結構或二或更多層的疊層結構。舉例而言,可為含矽的鋁膜之單層結構、鈦膜堆疊於鋁膜之上之雙層結構、鈦膜、 鋁膜、及鈦膜依序堆疊的三層結構、等等。
注意,關於作為導電膜719和720的導電膜,可以使用導電金屬氧化物。關於導體金屬氧化物,可以使用氧化銦、氧化錫、氧化鋅、氧化銦及氧化錫的混合物、氧化銦及氧化鋅的混合物、或是含矽或氧化矽之導電金屬氧化物材料。
在導電膜形成之後執行熱處理的情況中,導電膜較佳具有足以耐受熱處理的抗熱性。
注意,適當地調整每一個材料及蝕刻條件,以致於在蝕刻導電膜時儘可能地不去除氧化物半導體膜716。取決於蝕刻條件,島狀氧化物半導體膜716的露出部分被部份地蝕刻,以致於在某些情況中形成溝槽(凹部)。
在本實施例中,使用鈦膜作為導電膜。因此,使用含有氨及過氧化氫水的溶液(過氧化氫銨混合物),以濕式蝕刻選擇性地蝕刻導電膜;但是,在某些情況中氧化物半導體膜716被部分地蝕刻。關於過氧化氫銨混合物,具體而言,使用31wt%的含氧水、28wt%的銨水、及水以5:2:2的體積比混合之溶液。或者,藉由使用含氯(Cl2)、氯化硼(BCl3)、等等的氣體,對導電膜執行乾式蝕刻。
注意,為了降低微影製程中所使用的光罩數目及降低製程數目,使用多色調掩罩以執行蝕刻製程,多色調掩罩是光透射過而具有多種強度的掩罩。使用多色調掩罩所形成的光阻掩具有複數種厚度,以及藉由蝕刻以改變光阻掩 罩的形狀;因此,在多個用於將膜處理成不同的圖案之蝕刻製程中,使用光阻掩罩。因此,以一個多色調掩罩,可以形成對應於至少二種或更多種的不同圖案之光阻掩罩。因此,降低曝光掩罩的數目及對應的微影製程之數目,以便簡化製程。
此外,在氧化物半導體膜716與用作為源極和汲極電極的導電膜719和720之間,設置用作為源極區和汲極區的氧化物導電膜。氧化物導電膜的材料較佳含有氧化鋅作為成分以及較佳未含有氧化銦。關於此氧化物導電膜,可以使用氧化鋅、鋅鋁氧化物、鋅鋁氧氮化物、鋅鎵氧化物、等等。
舉例而言,在形成氧化物導電膜的情況中,同時執行用以形成氧化物導電膜的圖案化及用以形成導電膜719和720的圖案化。
藉由設置用作為源極區和汲極區的氧化物導電膜,可以降低氧化物半導體膜716與導電膜719和720之間的電阻,以使電晶體能夠高速地操作。此外,藉由設置用作為源極區和汲極區的氧化物導電膜,可以增加電晶體的耐受電壓。
接著,使用例如N2O、N2、或Ar等氣體,執行電漿處理。藉由此電漿處理,去除附接至曝露出之氧化物半導體膜的表面的水、等等。或者,使用氧及氬的混合氣體,執行電漿處理。
注意,圖12B是當完成上述步驟時記憶胞的上視圖。 沿著圖12B中的虛線A1-A2取得的剖面視圖對應於圖11A。
在電漿處理之後,如圖11B中所示般,形成閘極絕緣膜721以便覆蓋導電膜719和720、以及氧化物半導體膜716。然後,在閘極絕緣膜721之上形成閘極電極722以便與氧化物半導體膜716重疊,並且,在導電膜719之上形成導電膜723以便與導電膜719重疊。
使用類似於閘極絕緣膜703的材料及層疊結構,以形成閘極絕緣膜721。注意,閘極絕緣膜721較佳包含儘可能少的濕氣或氫等雜質,並且,使用單層絕緣膜或堆疊的多個絕緣膜,以形成閘極絕緣膜721。當在閘極絕緣膜721中含有氫時,氫進入氧化物半導體膜716或是氧化物半導體膜716中的氧由氫取出,因而氧化物半導體膜716具有較低的電阻(n型導電率);因此,可以形成寄生通道。因此,重要的是採用未使用氫的沈積方法以形成含有儘可能少的閘極絕緣膜721。具有高障壁特性的材料較佳使用於閘極絕緣膜721。關於具有高障壁特性的絕緣膜,舉例而言,可以使用氮化矽膜、氮氧化矽膜、氮化鋁膜、氮氧化鋁膜、等等。當使用堆疊的多個絕緣膜時,在比具有高障壁特性的絕緣膜更接近氧化物半導體膜716的側上,形成例如氧化矽膜或氧氮化矽膜等具有低氮比例的絕緣膜。形成具有高障壁特性的絕緣膜以致於與導電膜719和720以及氧化物半導體膜716重疊,而以具有低氮比例的絕緣膜夾於其間。當使用具有高障壁特性的絕緣膜時, 可以防止例如濕氣或氫等雜質進入氧化物半導體膜716、閘極絕緣膜721、或氧化物半導體膜716與另一絕緣膜之間的介面及其附近。此外,形成例如氧化矽膜或氧氮化矽膜等具有低氮比例的絕緣膜以便接觸氧化物半導體膜716,以致於能夠防止具有高障壁特性的絕緣膜直接接觸氧化物半導體膜716。
在本實施例中,形成具有一種結構的閘極絕緣膜721,所述結構中,由濺射所形成的100nm厚的氮化矽係堆疊於由濺射所形成的200nm厚的氧化矽膜之上。沈積時的基板溫度在室溫至300℃的範圍,在本實施例中為100℃。
在形成閘極絕緣膜721之後,執行熱處理。在氮氛圍、超乾空氣、或稀有氣體(例如,氬或氖)中,較佳為在200℃至400℃的溫度下,舉例而言,250℃至350℃的溫度下,執行熱處理。較佳的是,氣體中的水含量是20ppm或更低、較佳為1ppm或更低、更佳為10ppb或更低。在本實施例中,舉例而言,在氮氛圍中,在250℃下執行熱處理1小時。或者,以類似於對氧化物半導體膜執行的用以降低濕氣或氫之熱處理的方式,在導電膜719和720形成之前,執行短時間的高溫RTA處理。即使在設置含有氧的閘極絕緣膜721之後藉由執行熱處理,在由對氧化物半導體膜716執行的熱處理在氧化物半導體膜716中產生氧缺陷時,氧仍然從閘極絕緣膜721供應至氧化物半導體膜716。藉由供應氧至氧化物半導體膜716, 可以降低氧化物半導體膜716中作為施體的氧缺陷,以及滿足化學計量比例。結果,氧化物半導體膜716可以高度純化以致成為實質上本質的且能降低導因於氧缺陷的電晶體電特徵之變異;因此,可以增進電特徵。對於執行此熱處理的時機並無特別限定,只要在形成閘極絕緣膜721之後執行即可。當此熱處理在另一步驟中作為熱處理(例如,形成樹脂膜時的熱處理或降低透明導電膜的電阻之熱處理)時,可以使氧化物半導體膜716實質上為本徵的但不增加步驟數目。
或者,使氧化物半導體膜716受到氧氛圍中的熱處理以致於氧添加至氧化物半導體,可以降低氧化物半導體膜716中作為施體的氧缺陷。舉例而言,在高於或等於100℃且低於350℃的溫度下,較佳為在高於或等於150℃且低於250℃的溫度下,執行熱處理。較佳的是,用於氧氛圍中的熱處理之氧氣未包含水、氫、等等。或者,導入至熱處理設備的氧氣的純度較佳為6N(99.9999%)或更高時,更佳為7N(99.99999%)(亦即,氧中的雜質濃度為1ppm或更低,較佳為0.1ppm或更低)。
或者,藉由離子佈植、離子摻雜、等等,將氧添加至氧化物半導體膜716,以致於降低作為施體的氧缺陷。舉例而言,以2.45GHz的微波使氧成為電漿可以添加至氧化物半導體膜716。
以導電膜形成於閘極絕緣膜721之上而後被圖案化的方式,形成閘極電極722和導電膜723。使用類似於閘極 電極722和導電膜719和720之材料及層疊結構,以形成閘極電極722和導電膜723。
閘極電極722和導電膜723的厚度均為10至400nm,較佳為100至200nm。舉例而言,形成鈦膜、鋁膜、及鈦膜堆疊的導電膜,經由微影術等等而形成光阻掩罩,並且,以蝕刻去除不必要的部份以致於將導電膜處理(圖案化)成所需形狀,以此方式,形成閘極電極722和導電膜723。
經由上述步驟,以形成電晶體101。
注意,導電膜719及導電膜723彼此重疊而以閘極絕緣膜721設於其間之部份相當於電容器102。
注意,圖12C是當完成上述步驟時記憶胞的上視圖。沿著圖12C中的虛線A1-A2所取得的剖面視圖對應於圖11B。
雖然將電晶體101描述為單閘極電晶體,但是,在需要時,當包含電連接的多個閘極電極714時,形成包含多個通道形成區的多閘極電晶體。
注意,可以使用含有氧及屬於13族元素之絕緣材料,形成接觸氧化物半導體膜716的絕緣膜(在本實施例中,相當於閘極絕緣膜715及閘極絕緣膜721)。很多氧化物半導體材料含有屬於13族的元素,並且,含有屬於13族的元素之絕緣材料與氧化物半導體良好地作用。以含有屬於13族的元素之絕緣材料用於接觸氧化物半導體膜的絕緣膜,與氧化物半導體膜之間的介面狀態可以保持 良好。
含有屬於13族元素的絕緣材料意是含有屬於13族的一或更多種元素的絕緣材料。含有屬於13族元素的絕緣材料的實施例包含氧化鎵、氧化鋁、鋁鎵氧化物、及鎵鋁氧化物。此處,鋁鎵氧化物是以原子百分比而言鋁含量大於鎵含量之材料,鎵鋁氧化物是以原子百分比而言鎵含量大於或等於鋁含量之材料。
舉例而言,在形成接觸含鎵的氧化物半導體膜之絕緣膜的情況中,當以含氧化鎵的材料可以使用於絕緣膜時,在氧化物半導體膜與絕緣膜之間可以保持有利的介面特徵。舉例而言,當氧化物半導體膜及含有氧化鎵的絕緣膜被設置成彼此接觸時,能夠降低氧化物半導體膜與絕緣膜之間的介面的氫累積。注意,在與氧化物半導體的構成元素相同族的元素使用於絕緣膜之情況中,取得類似的效果。舉例而言,藉由使用含有氧化鋁的材料,有效地形成絕緣膜。氧化鋁不易透水。因此,較佳的是使用包含氧化鋁的材料以防止水進入氧化物半導體膜。
藉由氧氛圍中的熱處理或氧摻雜,接觸氧化物半導體膜716的絕緣膜較佳含有的氧之比例高於化學計量成分中的氧比例。氧摻雜是氧被添加至塊體。注意,使用「塊體」一詞以清楚說明氧不僅被添加至薄膜的表面,也被添加至薄膜的內部。此外,「氧摻雜」包含「氧電漿摻雜」,其中,成為電漿的氧添加至塊體。可以藉由離子佈植或離子摻雜,以執行氧摻雜。
舉例而言,在使用氧化鎵以形成接觸氧化物半導體膜716的絕緣膜之情況中,藉由氧氛圍中的熱處理或氧摻雜,將氧化鎵的成分設定為Ga2Ox(X=3+α,0<α<1)。
在使用氧化鋁以形成接觸氧化物半導體膜716的絕緣膜之情況中,藉由氧氛圍中的熱處理或氧摻雜,將氧化鎵的成分設定為Al2Ox(X=3+α,0<α<1)。
在使用鎵鋁氧化物(鋁鎵氧化物)以形成接觸氧化物半導體膜716的絕緣膜之情況中,藉由氧氛圍中的熱處理或氧摻雜,將鎵鋁氧化物(鋁鎵氧化物)的成分設定為GaxAl2-xO3+α(0<X<2,0<α<1)。
藉由氧摻雜,形成包含氧的比例高於化學計量成分的氧比例之區域的絕緣膜。當包含此區域的絕緣膜接觸氧化物半導體膜時,絕緣膜中過量存在的氧供應至氧化物半導體膜,並且,氧化物半導體膜中以及氧化物半導體與絕緣膜之間的介面處的氧缺乏降低。因此,氧化物半導體膜可以被形成為本徵的或實質上本徵的氧化物半導體。
包含氧的比例高於化學計量成分的氧比例之區域的絕緣膜可以應用至設置於氧化物半導體膜的上側上的絕緣膜、或設置於接觸氧化物半導體膜716的絕緣膜的氧化物半導體膜的下側上之絕緣膜;但是,較佳的是將此絕緣膜應用至都接觸氧化物半導體膜716的此二絕緣膜。藉由一種結構,可以增強上述效果,在所述結構中,氧化物半導體膜716係夾置於絕緣膜與絕緣膜之間,這些絕緣膜均包含氧的比例高於化學計量成分的氧比例之區域,作為接觸 氧化物半導體膜716的絕緣膜及位於氧化物半導體膜716的上側及下側上。
氧化物半導體膜716的上側及下側上的絕緣膜可以含有相同的構成元素或不同的構成元素。舉例而言,可以都使用成分為Ga2Ox(X=3+α,0<α<1)之氧化鎵,形成上側及下側上的絕緣膜。或者,使用Ga2Ox(X=3+α,0<α<1)以形成上側及下側上的絕緣膜的其中之一,而使用成分為Al2Ox(X=3+α,0<α<1)之氧化鋁以形成另一絕緣膜。
以均包含氧的比例高於化學計量成分的氧比例之區域的絕緣膜的堆疊,形成接觸氧化物半導體膜716的絕緣膜。舉例而言,可以如下所述地形成氧化物半導體膜716的上側上的絕緣膜:形成成分為Ga2Ox(X=3+α,0<α<1)的氧化鎵,以及在其上形成成分為GaXAl2-XO3+α(0<X<2,0<α<1)之鎵鋁氧化物(鋁鎵氧化物)。注意,以均包含氧的比例高於化學計量成分的氧比例之區域的絕緣膜的堆疊,形成氧化物半導體膜716的下側上的絕緣膜。或者,氧化物半導體膜716的上側及下側上的絕緣膜都由均包含氧的比例高於化學計量成分的氧比例之區域的絕緣膜的堆疊所形成。
接著,如圖11C中所示般,絕緣膜724被形成為覆蓋閘極絕緣膜721、導電膜723、和閘極電極722。以PVD、CVD、等等,形成絕緣膜724。使用包含例如氧化矽、氧氮化矽、氮化矽、氧化鉿、氧化鎵、或氧化鋁等無 機絕緣材料之材料,形成絕緣膜724。注意,關於絕緣膜724,較佳使用具有低介電常數的材料或是具有低介電常數的結構(例如,多孔結構)。當絕緣膜724的介電常數降低時,產生於佈線或電極之間的寄生電容可以降低,造成更高速操作。注意,雖然在本實施例中,絕緣膜724具有單層結構,但是,本發明的一個實施例不限於此結構。絕緣膜724可以具有二或更多層的層疊結構。
接著,在閘極絕緣膜721和絕緣膜724中形成開口725,以致於部份導電膜720曝露出。之後,經由開口725而接觸導電膜720的佈線726被形成於絕緣膜724之上。
以PVD或CVD形成導電膜,然後將導電膜圖案化,以致於形成佈線726。關於導電膜的材料,可以使用選自鋁、鉻、銅、鉭、鈦、鉬、或鎢的元素;含有任何這些元素作為成分的合金;等等。可以使用包含錳、鎂、鋯、鈹、釹、及鈧的其中之一或任何這些元素的組合。
具體而言,舉例而言,能夠採用一種方法,其中,以PVD在包含絕緣膜724的開口之區域中形成薄鈦膜並且以PVD形成薄鈦膜(具有約5nm的厚度),然後,形成鋁膜以致嵌入於開口725中。此處,以PVD形成的鈦膜具有降低形成於有鈦膜形成於其上的表面上之氧化物膜的功能(例如,自然的氧化物膜),以降低與下電極等(此處,導電膜720)之間的接觸電阻。此外,可以防止鋁膜的小丘。在形成鈦、氮化鈦、等等的障壁膜之後,以電鍍 法形成銅膜。
形成於絕緣膜724中的開口725較佳形成於與導電膜708重疊的區域中。藉由在此區域中設置開口725,可以防止因接觸區域而增加元件面積。
此處,說明雜質區704與導電膜720的連接位置以及導電膜720及佈線726的連接位置彼此重疊但未使用導電膜708的情況。在該情況中,開口(也稱為下部開口)形成於雜質區704中,雜質區704係形成在絕緣膜712和713之上,並且,導電膜720被形成至覆蓋下部中的開口。之後,在與下部中的開口重疊的區域中之閘極絕緣膜721與絕緣膜724中形成開口(也稱為上部開口),並且,形成佈線726。當在與下部中的開口重疊的區域中形成上部開口時,形成於下部開口中的導電膜720可能因蝕刻而斷開。為了避免斷開,下部中及上部中的開口形成為不會彼此重疊,以致於發生元件面積增加的問題。
如同本實施例中所述般,藉由使用導電膜708,形成上部開口而未斷開導電膜720。因此,下部中及上部中的開口可以被形成以致彼此重疊,以致於可以抑制導因於開口之元件面積的增加。亦即,半導體裝置可以高度地集成。
接著,形成絕緣膜727以致覆蓋佈線726。經由一系列的步驟,可以製造記憶體裝置。
注意,在製造方法中,在形成氧化物半導體膜716之後,形成用作為源極和汲極電極的導電膜719和720。因 此,如圖11B中所示般,在以製造方法取得的電晶體101中,在氧化物半導體膜716之上形成導電膜719和720。但是,在電晶體101中,用作為源極和汲極電極的導電膜可以被形成於氧化物半導體膜716之下方,亦即,在氧化物半導體膜716與閘極絕緣膜715之間。
圖13顯示當用作為源極和汲極電極的導電膜719和720係設於氧化物半導體膜716與閘極絕緣膜715之間時記憶胞的剖面視圖。在形成閘極絕緣膜715之後形成導電膜719和720,然後,形成氧化物半導體膜716,以此方式,取得圖13中顯示的電晶體101。
本實施例可以與上述實施例結合。
(實施例3)
說明根據本發明的一個實施例之記憶胞裝置中的驅動電路的特定結構的實例。
圖14顯示根據本發明的一個實施例之記憶體裝置的特定結構的方塊圖。注意,在圖14中所示的方塊圖中,以功能分類記憶胞中的電路以及顯示獨立的區塊。但是,難以完全依功能來分類真實電路,在某些情況中,一個電路具有多種功能。
圖14中顯示的記憶體裝置400包含胞陣列801及驅動電路802。驅動電路802包含讀取電路803、第一字線驅動電路804、第二字線驅動電路820、以及位元線驅動電路805,讀取電路803產生包含讀自胞陣列801的資料 之訊號,第一字線驅動電路804控制第一字線的電位,第二字線驅動電路820控制第二字線的電位,位元線驅動電路805控制胞陣列801中被選取的記憶胞之資料寫入。驅動電路802又包含控制電路806,控制電路806控制讀取電路803、第一字線驅動電路804、第二字線驅動電路820、及位元線驅動電路805的操作。
在圖14中所示的記憶體裝置800中,第一字線驅動電路804包含解碼器807、位準偏移器808、及緩衝器809。位元線驅動電路805包含解碼器810、位準偏移器811、及選取器812。
注意,只要根據本發明的一個實施例之記憶體裝置800包含至少胞陣列801,則是可以接受的。此外,根據本發明的一個實施例之記憶體裝置800依其類別包含記憶體模組,在記憶體模組中,部份驅動電路802或整個驅動電路802連接至胞陣列801。記憶體模組可以設有安裝於印刷電路板等上的連接端子,並且可以被樹脂等所保護,亦即被封裝。
使用一個基板,可以形成胞陣列801、讀取電路803、第一字線驅動電路804、第二字線驅動電路820、位元線驅動電路805、及控制電路806。或者,使用一基板形成胞陣列801、讀取電路803、第一字線驅動電路804、第二字線驅動電路820、位元線驅動電路805、及控制電路806中的任一電路,而以不同的基板用於其它所有電路,或者,可以使用不同的基板,以形成所有這些電 路。
在使用不同基板的情況中,藉由使用FPC(可撓性印刷電路)等,確保電連接。在該情況中,以COF(膜上晶片)法,將部份的驅動電路802連接至FPC。或者,以COG(玻璃上晶片)確保電連接。
當包含胞陣列801的位址(Ax,Ay)作為資料之訊號AD輸入至記憶體裝置800時,控制電路806將位址中與行方向有關的資料Ax以及位址中與列方向有關的資料Ay分別傳送至位元驅動電路805和第一字線驅動電路804。此外,控制電路806將包含輸入至記憶體裝置800的資料之訊號DATA傳送至位元驅動電路805。
根據供應至控制電路806的訊號RE(讀取致能)、訊號WE(寫入致能)、等等,選取胞陣列801中的寫入資料操作及讀取資料操作。此外,在設置多個胞陣列801的情況中,用於選取胞陣列801之訊號CE(晶片致能)可以輸入至控制電路806。在該情況中,在根據訊號CE選取的胞陣列801中,執行根據訊號RE或訊號WE選取的操作。
在胞陣列801中,當根據訊號WE選取寫入操作時,在包含於第一字線驅動電路804中的解碼器807中,產生用於選取對應於位址Ay的記憶胞之訊號,以回應來自控制電路806的指令。以位準偏移器808調整訊號的振幅,然後,在緩衝器809中處理訊號的波形,以及經過處理的訊號輸入至胞陣列801。在位元線驅動電路805中,產生 用於選取對應於解碼器810中被選取的記憶胞之中的位址Ax的記憶胞之訊號,以回應來自控制電路806之指令。以位準偏移器811來調整訊號的振幅,然後,經過處理的訊號被輸入至選取器812。在選取器812中,根據輸入訊號,將訊號DATA取樣,並且,經過取樣的訊號被輸入至對應於位址(Ax,Ay)的記憶胞。
在胞陣列801中,當根據訊號RE而選取讀取操作時,在包含於第一字線驅動電路804中的解碼器807中產生用以選取對應於位址Ay的記憶胞之訊號,以回應來自控制電路806的指令。以位準偏移器808來調整訊號的振幅,然後,在緩衝器809中處理訊號的波形,以及經過處理的訊號被輸入至胞陣列801。在讀取電路803中,產生用於選取對應於解碼器807被選取的記憶胞之中的位址Ax的記憶胞之訊號,以回應來自控制電路806的指令。讀取儲存在對應於位址(Ax,Ay)的記憶胞中的資料,並且,產生包含資料的訊號。
第二字線驅動電路820供應第二字線的電位至胞陣列801。
本實施例可以與任合上述實施例適當地結合。
(實施例4)
在本實施例中,說明讀取電路的具體結構之實例。
根據寫至記憶胞的資料,決定自胞陣列讀出的電位位準。因此,理想上,當具有相同的數位值被儲存於多個記 憶胞中時,應從多個記憶胞讀取具有相同位準的電位。但是,實際上,在讀取資料時用作為記憶元件的電晶體特徵或是用作為切換元件的電晶體特徵可能隨著記憶胞而變。在該情況中,即使當所有要被讀取的資料具有相同的數位值時,真正被讀取的電位仍然會改變,以致於電位的位準廣泛地分佈。因此,較佳的是在驅動電路中設置讀取電路,在讀取電路中,即使當讀自胞陣列的電位稍微變化時,仍可產生包含更準確的資料及具有根據所需的規格處理之振幅和波形的訊號。
圖15是讀取電路的電路圖。圖15中所示的讀取電路包含用作為切換元件的電晶體260、以及用作為電阻器的電晶體261,電晶體260用以控制自胞陣列讀取的電位Vdata對讀取電路的輸入。圖15中所示的讀取電路又包含運算放大器262。
具體而言,電晶體261的閘極電極被連接至電晶體261的汲極電極(或汲極區)。此外,高位準電源電位Vdd被施加至電晶體261的閘極電極以及汲極電極。此外,電晶體261的源極電極被連接至運算放大器262的非反相輸入端(+)。因此,電晶體261用作為連接於被施加電源電位Vdd的節點與運算放大器262的非反相輸入端(+)之間的電阻器。注意,雖然閘極電極被連接至汲極電極的電晶體作為圖15中的電阻器,但是,本發明不限於此。可以使用用作為電阻器的元件。
用作為切換元件的電晶體260根據施加至電晶體260 的閘極電極之訊號Sig的電位而控制電位Vdata對電晶體260的源極電極的供應。
舉例而言,當電晶體260被開啟時,藉由使用電晶體260與電晶體261以將電位Vdata及電源電位Vdd電阻式分壓而取得的電位會被施加至運算放大器262的非反相輸入端(+)。由於電源電位Vdd的位準固定,所以,藉由電阻式分壓而取得的電位位準反應電位Vdata的位準,亦即,讀取資料的數位值。
相反地,參考電位Vref被施加至運算放大器262的反相輸入端(-)。輸出端的電位Vout的位準視相對於參考位準Vref之施加至反相輸入端(-)的電位位準而變。因此,可以取得間接包含資料的訊號。
注意,即使具有相同值的資料被儲存於記憶胞中時,由於記憶胞的特徵變化,發生讀取電位Vdata的位準波動,以致於電位的位準可能廣泛分佈。因此,慮及節點的電位Vdata的波動而決定參考電位Vref的位準,以便準確地讀取資料的值。
由於圖15顯示當使用二進位數位值時讀取電路的實例,用以讀取資料的一個運算放大器使用於被施予電位Vdata的一個節點。但是,運算放大器的數目不限於此。當使用n值資料(n是2或更大的自然數)時,使用於被施予電位Vdata的一個節點之運算放大器的數目為(n-1)。
本實施例可以任何上述實施例適當地結合。
(實施例5)
在本實施例中,說明本發明的半導體裝置的其中之一的RF標籤之結構實例。
圖16是方塊圖,顯示本發明的RF標籤的一個態樣。在圖16中,RF標籤550包含天線電路551及積體電路552。積體電路552包含電源電路553、解調變電路554、調變電路555、調節器556、算術電路557、記憶體裝置558、及升壓電路559。
然後,說明RF標籤550的操作實施例。當無線電波從詢答器傳送時,無線電波在天線電路551中被轉換成AC電壓。在電源電路553中,來自天線電路551的AC電壓被整流以及產生電源電壓。在電源電路553中產生的電源電壓被施加至算術電路557及調節器556。在穩定來自電源電路553的電源電壓之後或是在調整電壓的位準之後,調節器556供應電壓至例如積體電路552中的解調變電路554、調變電路555、算術電路557、記憶體裝置558、或升壓電路559等電路。
解調變電路554將天線電路551接收到的AC訊號解調變以及將訊號輸出至下一級的算術電路557。算術電路557根據自解調變電路554輸入的訊號而執行算術處理以及產生另一訊號。在算術處理中,使用記憶體裝置558作為主快取記憶體或是次快取記憶體。此外,算術電路557分析自解調變電路554輸入的訊號,以及輸出記憶體裝置 558中的資料或是執行記憶體裝置558中的指令以回應自詢答器傳送的指令。自算術電路557輸出的訊號被編碼並傳送至調變電路555。調變電路555根據訊號而將天線電路551收到的無線電波調變。在天線電路551中受調變的無線電波由詢答器接收。
依此方式,藉由調變作為載體(載波)的無線電波,以執行RF標籤550與詢答器之間的通訊。載波的頻率是125kHz、13.56MHz、950MHz、等等,其視標準而變。視標準而有不同的調變方法,例如振幅調變、頻率調變、及相位調變;但是,任何調變方法只要是根據標準,均可被使用。
訊號傳輸方法視載波的波長而分成例如電磁耦合法、電磁感應法、微波法等不同種類。
升壓電路559將調節器556輸出的電壓升壓以及將電壓供應至記憶體裝置558。
注意,在RF標籤550是被動標籤的情況中,DC電位未從外部電源供應至RF標籤550。因此,在圖7中所示的第二字線驅動電路150被設在被動RF標籤550的情況中,電位VSS未從外部供應至端子A。因此,在本發明的一個實施例中,在RF標籤550是被動標籤的情況中,在電源電路553中設置例如電荷泵等用以產生負電位的電路。藉由所述結構,電位VSS可以從電源電路553被供應至圖7中所示的第二字線驅動電路150中的端子A;因此,可以增進記憶體裝置的資料固持特徵。
在本發明的一個實施例中,記憶體裝置558具有上述實施例中所述的結構;因此,可以長時間固持資料以及可以增加資料改寫的頻率。因此,在根據本發明的一個實施例之RF標籤550中,藉由使用記憶體裝置558,可以增加資料的可靠度。
此外,在本發明的一個實施例中,記憶體裝置558具有上述實施例中所述的結構;因此,可以降低耗電。因此,在根據本發明的一個實施例之RF標籤550中,可以降低RF標籤550中的耗電;因而,可以延長詢答器與RF標籤550之間的通訊距離。
在本實施例中,說明包含天線電路551的RF標籤550的結構;但是,根據本發明的一個實施例之RF標籤並非一定要包含天線電路。此外,圖16中所示的RF標籤可以包含振盪電路或蓄電池。
本實施例可以與任何上述實施例適當地結合。
(實施例6)
在本實施例中,說明根據本發明的一個實施例之包含記憶體裝置的半導體裝置的其中之一的可攜式儲存媒體實例。
圖17A顯示根據本發明的一個實施例之儲存媒體的結構。在圖17A中所示的儲存媒體中,下述元件被安裝於印刷電路板756上:根據本發明的一個實施例之記憶體裝置751;在驅動電路與儲存媒體之間執行電連接的連接器 752;介面753,根據各種訊號,對經由連接器752輸入或輸出的每一個訊號執行訊號處理;發光二極體754,根據儲存媒體等的操作而發光;以及,控制器755,控制例如記憶體裝置751、介面753、及發光二極體754等儲存媒體中電路及半導體元件的操作。此外,可以設置用以產生用以控制控制器755的操作的時脈訊號之石英振盪器、用以控制儲存媒體中的電源電位的位準之調節器、等等。
如圖17B中所示般,圖17A中的印刷電路板756可以被使用樹脂等的覆蓋材料757所覆蓋而受保護,以致於部份的連接器752及部份的發光二極體754曝露出。
由於在根據本發明的一個實施例之記憶體裝置751中,可以降低操作耗電,所以,可以降低使用記憶體裝置751的儲存媒體之耗電以及連接至記錄媒體的驅動裝置之耗電。此外,由於在根據本發明的一個實施例之記憶體裝置751中,能夠長時間地固持資料以及能夠增加資料的改寫頻率,所以,可以增加儲存媒體的可靠度。
本實施例可以與任何上述實施例適當地結合。
〔實例1〕
使用根據本發明的一個實施例之半導體裝置,以致於提供高度可靠的電子裝置、低電力電子裝置、及具有高速驅動的電子裝置。特別是,在難以連續接收電力的可攜式電子裝置之情況中,當添加本根據本發明的一個實施例之低電力半導體裝置作為裝置的元件時,可以取得連續操作 時間增加的優點。
根據本發明的一個實施例之半導體裝置可以用於顯示裝置、膝上型電腦、或設有記錄媒體的影像再生裝置(典型上,再生例如數位多樣式碟片(DVD)等記錄媒體內容及具有用於顯示再生影像的顯示器之裝置)。此外,關於包含根據本發明的一個實施例之半導體裝置的電子裝置,可為行動電話、可攜式遊戲機、個人數位助理、電子書讀取器、例如攝影機及數位靜態相機等像機、護目鏡型顯示器(頭戴式顯示器)、導航系統、音頻再生裝置(例如,汽車音響系統及數位音響播放器)、影印機、傳真機、印表機、多功能印表機、自動櫃員機(ATM)、販賣機、等等。圖18A至18C顯示這些電子裝置的具體實施例。
圖18A顯示可攜式遊戲機,其包含機殼7031、機殼7032、顯示部7033、顯示部7034、麥克風7035、揚聲器7036、操作鍵7037、探針7038、等等。根據本發明的一個實施例之半導體裝置可以用於用以控制可攜式遊戲機的驅動之積體電路。藉由根據本發明的一個實施例之半導體裝置被使用於用以控制可攜式遊戲機的驅動之積體電路,可以提供高度可靠的可攜式遊戲機以及多功能可攜式遊戲機。雖然圖18A中所示的可攜式遊戲機具有二顯示部7033和7034,但是,包含於可攜式遊戲機中的顯示部的數目不限於此。
圖18B顯示行動電話,其包含機殼7041、顯示部7042、音頻輸入部7043、音頻輸出部7044、操作鍵 7045、光接收部7046、等等。在光接收部7046中收到的光被轉換成電訊號,以致於載入外部影像。根據本發明的一個實施例之半導體裝置可以用於用以控制行動電話的驅動之積體電路。藉由根據本發明的一個實施例之半導體裝置被使用於用以控制行動電話的驅動之積體電路,可以提供高度可靠的行動電話以及多功能行動電話。
圖18C顯示個人數位助理,其包含機殼7051、顯示部7052、操作鍵7053、等等。在圖18C中所示的個人數位助理中,數據機可以被併入於機殼7051中。根據本發明的一個實施例之半導體裝置可以被使用於用以控制個人數位助理的驅動之積體電路。藉由根據本發明的一個實施例之半導體裝置被使用於用以控制個人數位助理的驅動之積體電路,可以提供高度可靠的個人數位助理以及多功能個人數位助理。
本實例可以與任何上述實施例適當地結合。

Claims (10)

  1. 一種半導體裝置,包括:第一電晶體,其係二極體連接的;以及第二電晶體,其中,該第二電晶體的背閘極被電連接至該第一電晶體的閘極,並且其中,該半導體裝置係配置成使得該第二電晶體的臨界電壓藉由將低於接地電位的電位經由該第一電晶體而供應至該第二電晶體的該背閘極而被正向地偏移。
  2. 一種半導體裝置,包括:第一電晶體,其係二極體連接的;第二電晶體;以及第三電晶體,其中,該第二電晶體的背閘極被電連接至該第一電晶體的閘極,其中,該第三電晶體的背閘極被電連接至該第一電晶體的該閘極,其中,該半導體裝置係配置成使得該第二電晶體的臨界電壓藉由將低於接地電位的電位經由該第一電晶體而供應至該第二電晶體的該背閘極而被正向地偏移,並且其中,該半導體裝置係配置成使得該第三電晶體的臨界電壓藉由將低於該接地電位的該電位經由該第一電晶體而供應至該第三電晶體的該背閘極而被正向地偏移。
  3. 如申請專利範圍第1或2項之半導體裝置,其 中,該第一電晶體包括氧化物半導體層中的通道形成區。
  4. 如申請專利範圍第3項之半導體裝置,其中,該氧化物半導體層係設置在第一閘極電極與第二閘極電極之間。
  5. 如申請專利範圍第3項之半導體裝置,其中,該氧化物半導體層包括銦和鋅。
  6. 如申請專利範圍第1或2項之半導體裝置,另包括電連接至該第一電晶體的電容器。
  7. 如申請專利範圍第1或2項之半導體裝置,另包括電連接至該第二電晶體的電容器。
  8. 如申請專利範圍第1或2項之半導體裝置,其中,該第二電晶體係包含在記憶胞中。
  9. 如申請專利範圍第1項之半導體裝置,其中,該第二電晶體係包含在記憶胞中,其中,該記憶胞另包括第三電晶體,並且其中,該第三電晶體的閘極被電連接至該第二電晶體的源極和汲極的其中一者。
  10. 如申請專利範圍第2項之半導體裝置,其中,該第二電晶體係包含在記憶胞中,其中,該記憶胞另包括第四電晶體,並且其中,該第四電晶體的閘極被電連接至該第二電晶體的源極和汲極的其中一者。
TW107113575A 2010-08-27 2011-08-25 記憶體裝置及半導體裝置 TWI698959B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010190344 2010-08-27
JP2010-190344 2010-08-27

Publications (2)

Publication Number Publication Date
TW201830586A true TW201830586A (zh) 2018-08-16
TWI698959B TWI698959B (zh) 2020-07-11

Family

ID=45697091

Family Applications (5)

Application Number Title Priority Date Filing Date
TW106112242A TWI629751B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW107113575A TWI698959B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW100130485A TWI556355B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW105124319A TWI590385B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW109119933A TWI743833B (zh) 2010-08-27 2011-08-25 半導體裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106112242A TWI629751B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW100130485A TWI556355B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW105124319A TWI590385B (zh) 2010-08-27 2011-08-25 記憶體裝置及半導體裝置
TW109119933A TWI743833B (zh) 2010-08-27 2011-08-25 半導體裝置

Country Status (7)

Country Link
US (3) US8737109B2 (zh)
JP (8) JP5755082B2 (zh)
KR (4) KR102115344B1 (zh)
CN (2) CN106298794B (zh)
DE (1) DE112011102837B4 (zh)
TW (5) TWI629751B (zh)
WO (1) WO2012026503A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685953B (zh) * 2018-09-10 2020-02-21 大陸商長江存儲科技有限責任公司 使用梳狀繞線結構減少金屬線裝載的記憶元件
TWI738342B (zh) * 2019-06-17 2021-09-01 美商格芯(美國)集成電路科技有限公司 具有埋置交叉耦合互連的結構及sram位元單元
US11640974B2 (en) 2020-06-30 2023-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array isolation structures
TWI807270B (zh) * 2020-05-29 2023-07-01 台灣積體電路製造股份有限公司 記憶胞、半導體元件及形成半導體元件的方法
US11695073B2 (en) 2020-05-29 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures
US11710790B2 (en) 2020-05-29 2023-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array channel regions
US11729987B2 (en) 2020-06-30 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array source/drain electrode structures
US12051750B2 (en) 2022-08-09 2024-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102115344B1 (ko) * 2010-08-27 2020-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치, 반도체 장치
US9024317B2 (en) 2010-12-24 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device
JP5933897B2 (ja) 2011-03-18 2016-06-15 株式会社半導体エネルギー研究所 半導体装置
JP6012263B2 (ja) 2011-06-09 2016-10-25 株式会社半導体エネルギー研究所 半導体記憶装置
WO2012169142A1 (en) 2011-06-09 2012-12-13 Semiconductor Energy Laboratory Co., Ltd. Cache memory and method for driving the same
US8891285B2 (en) 2011-06-10 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8958263B2 (en) * 2011-06-10 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6081171B2 (ja) * 2011-12-09 2017-02-15 株式会社半導体エネルギー研究所 記憶装置
KR102108248B1 (ko) * 2012-03-14 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막, 트랜지스터, 및 반도체 장치
US9276121B2 (en) * 2012-04-12 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102330543B1 (ko) * 2012-04-13 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6005391B2 (ja) * 2012-05-01 2016-10-12 株式会社半導体エネルギー研究所 半導体装置
DE102013022449B3 (de) * 2012-05-11 2019-11-07 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung und elektronisches Gerät
KR102059218B1 (ko) 2012-05-25 2019-12-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 프로그래머블 로직 디바이스 및 반도체 장치
US9135182B2 (en) 2012-06-01 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Central processing unit and driving method thereof
US8947158B2 (en) 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9853053B2 (en) 2012-09-10 2017-12-26 3B Technologies, Inc. Three dimension integrated circuits employing thin film transistors
CN108493253B (zh) * 2012-11-30 2023-04-25 株式会社半导体能源研究所 半导体装置
US9023699B2 (en) 2012-12-20 2015-05-05 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive random access memory (RRAM) structure and method of making the RRAM structure
US9318484B2 (en) 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6405097B2 (ja) * 2013-02-28 2018-10-17 株式会社半導体エネルギー研究所 半導体装置
JP5874670B2 (ja) * 2013-03-28 2016-03-02 ソニー株式会社 撮像装置および撮像表示システム
TWI631711B (zh) * 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 半導體裝置
JP6406926B2 (ja) * 2013-09-04 2018-10-17 株式会社半導体エネルギー研究所 半導体装置
US9607991B2 (en) 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103474473B (zh) * 2013-09-10 2016-02-03 深圳市华星光电技术有限公司 一种薄膜晶体管开关及其制造方法
US9716100B2 (en) * 2014-03-14 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and electronic device
KR102333604B1 (ko) * 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치를 포함하는 표시 장치
JP6580863B2 (ja) 2014-05-22 2019-09-25 株式会社半導体エネルギー研究所 半導体装置、健康管理システム
US9312280B2 (en) 2014-07-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6652342B2 (ja) * 2014-08-08 2020-02-19 株式会社半導体エネルギー研究所 半導体装置
KR102329498B1 (ko) * 2014-09-04 2021-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20170068511A (ko) * 2014-10-06 2017-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 전자 기기
TW201624708A (zh) 2014-11-21 2016-07-01 半導體能源研究所股份有限公司 半導體裝置及記憶體裝置
JP6383280B2 (ja) * 2014-12-15 2018-08-29 株式会社フローディア 不揮発性半導体記憶装置
WO2016099580A2 (en) 2014-12-23 2016-06-23 Lupino James John Three dimensional integrated circuits employing thin film transistors
US9633710B2 (en) 2015-01-23 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Method for operating semiconductor device
US9489988B2 (en) * 2015-02-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10262570B2 (en) 2015-03-05 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP2017010000A (ja) 2015-04-13 2017-01-12 株式会社半導体エネルギー研究所 表示装置
JP6674838B2 (ja) * 2015-05-21 2020-04-01 株式会社半導体エネルギー研究所 電子装置
JP6901831B2 (ja) 2015-05-26 2021-07-14 株式会社半導体エネルギー研究所 メモリシステム、及び情報処理システム
US9847406B2 (en) * 2015-08-27 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, storage device, resistor circuit, display device, and electronic device
WO2017068478A1 (en) * 2015-10-22 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or memory device including the semiconductor device
KR102629293B1 (ko) 2015-11-20 2024-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 이 반도체 장치의 제작 방법, 또는 이 반도체 장치를 가지는 표시 장치
JP6811084B2 (ja) 2015-12-18 2021-01-13 株式会社半導体エネルギー研究所 半導体装置
KR102613318B1 (ko) 2015-12-28 2023-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9953695B2 (en) 2015-12-29 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and semiconductor wafer
JP6827328B2 (ja) * 2016-01-15 2021-02-10 株式会社半導体エネルギー研究所 半導体装置及び電子機器
US10411013B2 (en) * 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US10250247B2 (en) 2016-02-10 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US10014325B2 (en) 2016-03-10 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10741587B2 (en) 2016-03-11 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method the same
SG10201701689UA (en) 2016-03-18 2017-10-30 Semiconductor Energy Lab Semiconductor device, semiconductor wafer, and electronic device
WO2017175095A1 (en) 2016-04-08 2017-10-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10236875B2 (en) 2016-04-15 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for operating the semiconductor device
KR102458660B1 (ko) 2016-08-03 2022-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
US9978879B2 (en) 2016-08-31 2018-05-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10192871B2 (en) 2016-09-23 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10685983B2 (en) 2016-11-11 2020-06-16 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
JP6871722B2 (ja) * 2016-11-17 2021-05-12 株式会社半導体エネルギー研究所 半導体装置
KR20180055701A (ko) 2016-11-17 2018-05-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP6822114B2 (ja) * 2016-12-13 2021-01-27 天馬微電子有限公司 表示装置、トランジスタ回路及び薄膜トランジスタの駆動方法
US11200859B2 (en) 2017-01-24 2021-12-14 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US10910407B2 (en) 2017-01-30 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10375338B2 (en) * 2017-02-01 2019-08-06 Omnivision Technologies, Inc. Two stage amplifier readout circuit in pixel level hybrid bond image sensors
WO2018158650A1 (ja) * 2017-03-03 2018-09-07 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の駆動方法
JP2018147541A (ja) * 2017-03-08 2018-09-20 株式会社東芝 メモリを備えた集積回路および書き込み方法
JP2018181890A (ja) * 2017-04-03 2018-11-15 株式会社半導体エネルギー研究所 半導体装置
KR20200009023A (ko) * 2017-05-19 2020-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 또는 기억 장치
DE112018002796T5 (de) 2017-05-31 2020-03-19 Semiconductor Energy Laboratory Co., Ltd. Vergleichsschaltung, Halbleitervorrichtung, elektronische Komponente und elektronisches Gerät
CN109037444B (zh) * 2017-06-09 2022-01-04 华邦电子股份有限公司 电容器结构及其制造方法
JP6953229B2 (ja) * 2017-08-10 2021-10-27 株式会社半導体エネルギー研究所 半導体装置
JP7117322B2 (ja) 2017-12-06 2022-08-12 株式会社半導体エネルギー研究所 半導体装置
JP7160834B2 (ja) 2017-12-08 2022-10-25 株式会社半導体エネルギー研究所 半導体装置
KR102617170B1 (ko) 2017-12-27 2023-12-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치
TWI829663B (zh) 2018-01-19 2024-01-21 日商半導體能源研究所股份有限公司 半導體裝置以及其工作方法
JP6538902B2 (ja) * 2018-02-14 2019-07-03 株式会社半導体エネルギー研究所 半導体装置
JP2019164868A (ja) * 2018-03-20 2019-09-26 東芝メモリ株式会社 半導体記憶装置
WO2019186323A1 (ja) 2018-03-29 2019-10-03 株式会社半導体エネルギー研究所 記憶装置、および電子機器
US11355176B2 (en) 2018-05-02 2022-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN112534802B (zh) * 2018-08-03 2024-04-30 株式会社半导体能源研究所 摄像装置的工作方法
US11849584B2 (en) 2019-01-25 2023-12-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of semiconductor device, and operation method of semiconductor device
US11164976B2 (en) 2019-04-08 2021-11-02 Kepler Computing Inc. Doped polar layers and semiconductor device incorporating same
JP7123860B2 (ja) * 2019-06-17 2022-08-23 株式会社東芝 演算装置
US11476252B2 (en) 2019-08-28 2022-10-18 Micron Technology, Inc. Memory device having 2-transistor vertical memory cell and shared channel region
TWI762894B (zh) * 2019-11-05 2022-05-01 友達光電股份有限公司 電路裝置
CN110956993A (zh) * 2019-12-12 2020-04-03 中国科学院微电子研究所 基于电阻分压读取的阻变型存储单元
TWI763266B (zh) * 2020-01-24 2022-05-01 台灣積體電路製造股份有限公司 記憶體裝置、資料處理裝置及資料處理方法
US11232838B2 (en) 2020-01-24 2022-01-25 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric FET-based content addressable memory
US11908505B2 (en) 2020-01-24 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Ferroelectric FET-based content addressable memory
TWI730725B (zh) * 2020-04-15 2021-06-11 力晶積成電子製造股份有限公司 半導體結構以及積體電路及半導體結構
US11699391B2 (en) 2021-05-13 2023-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display apparatus, and electronic device
CN115871338A (zh) * 2021-09-30 2023-03-31 群创光电股份有限公司 具有记忆单元的加热器装置及其操作方法

Family Cites Families (201)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US343083A (en) * 1886-06-01 John joseph charles smith
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPS62274773A (ja) * 1986-05-23 1987-11-28 Hitachi Ltd 半導体記憶装置
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63268184A (ja) * 1987-04-24 1988-11-04 Sony Corp 半導体メモリ装置
JPH05167073A (ja) * 1991-12-17 1993-07-02 Hitachi Ltd 半導体集積回路装置及びその製造方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JPH0763077B2 (ja) 1992-07-06 1995-07-05 カシオ計算機株式会社 薄膜半導体素子
JPH0799251A (ja) * 1992-12-10 1995-04-11 Sony Corp 半導体メモリセル
JPH07176184A (ja) 1993-12-20 1995-07-14 Mitsubishi Electric Corp 半導体記憶装置と、その半導体記憶装置におけるデータの書込および読出方法
JP3085073B2 (ja) 1994-01-24 2000-09-04 富士通株式会社 スタティックram
JPH08181316A (ja) * 1994-12-22 1996-07-12 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP3394133B2 (ja) * 1996-06-12 2003-04-07 沖電気工業株式会社 昇圧回路
JPH10199241A (ja) * 1997-01-06 1998-07-31 Mitsubishi Electric Corp 半導体記憶装置
JPH10256560A (ja) * 1997-01-10 1998-09-25 Sony Corp 半導体装置の駆動方法および半導体装置
US6150687A (en) * 1997-07-08 2000-11-21 Micron Technology, Inc. Memory cell having a vertical transistor with buried source/drain and dual gates
US6064589A (en) * 1998-02-02 2000-05-16 Walker; Darryl G. Double gate DRAM memory cell
US6445032B1 (en) * 1998-05-04 2002-09-03 International Business Machines Corporation Floating back gate electrically erasable programmable read-only memory(EEPROM)
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP3053178B2 (ja) * 1998-09-14 2000-06-19 株式会社日立製作所 半導体集積回路
JP2000124418A (ja) * 1998-10-16 2000-04-28 Sony Corp 半導体記憶装置
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
US6281552B1 (en) * 1999-03-23 2001-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having ldd regions
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP2001093989A (ja) 1999-09-22 2001-04-06 Sony Corp 半導体装置
US6646949B1 (en) * 2000-03-29 2003-11-11 International Business Machines Corporation Word line driver for dynamic random access memories
JP2001284592A (ja) 2000-03-29 2001-10-12 Sony Corp 薄膜半導体装置及びその駆動方法
US6566685B2 (en) * 2000-04-12 2003-05-20 Casio Computer Co., Ltd. Double gate photo sensor array
KR100569119B1 (ko) * 2000-04-14 2006-04-10 주식회사 만도 차량용 파워스티어링 유압시험용 연결지그
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
TWI236557B (en) * 2000-09-29 2005-07-21 Au Optronics Corp TFT LCD and method of making the same
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2002343083A (ja) * 2001-05-18 2002-11-29 Mitsubishi Electric Corp 半導体装置
JP2003092364A (ja) * 2001-05-21 2003-03-28 Mitsubishi Electric Corp 半導体記憶装置
JP2002368226A (ja) * 2001-06-11 2002-12-20 Sharp Corp 半導体装置、半導体記憶装置及びその製造方法、並びに携帯情報機器
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
EP1443130B1 (en) 2001-11-05 2011-09-28 Japan Science and Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4223270B2 (ja) * 2002-11-19 2009-02-12 パナソニック株式会社 昇圧回路およびそれを内蔵した不揮発性半導体記憶装置
US7710771B2 (en) * 2002-11-20 2010-05-04 The Regents Of The University Of California Method and apparatus for capacitorless double-gate storage
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP2004297048A (ja) * 2003-03-11 2004-10-21 Semiconductor Energy Lab Co Ltd 集積回路、該集積回路を有する半導体表示装置及び集積回路の駆動方法
US7541614B2 (en) * 2003-03-11 2009-06-02 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit, semiconductor device comprising the same, electronic device having the same, and driving method of the same
US7250720B2 (en) 2003-04-25 2007-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US6845059B1 (en) * 2003-06-26 2005-01-18 International Business Machines Corporation High performance gain cell architecture
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7719343B2 (en) * 2003-09-08 2010-05-18 Peregrine Semiconductor Corporation Low noise charge pump method and apparatus
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
WO2005088726A1 (ja) 2004-03-12 2005-09-22 Japan Science And Technology Agency アモルファス酸化物及び薄膜トランジスタ
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
WO2005098955A1 (en) 2004-04-09 2005-10-20 Semiconductor Energy Laboratory Co., Ltd. Limiter and semiconductor device using the same
JP5041672B2 (ja) 2004-04-09 2012-10-03 株式会社半導体エネルギー研究所 半導体装置
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP4795653B2 (ja) * 2004-06-15 2011-10-19 ルネサスエレクトロニクス株式会社 半導体記憶装置
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CN101057333B (zh) 2004-11-10 2011-11-16 佳能株式会社 发光器件
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
CN101057338B (zh) 2004-11-10 2011-03-16 佳能株式会社 采用无定形氧化物的场效应晶体管
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
KR100998527B1 (ko) 2004-11-10 2010-12-07 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 비정질 산화물 및 전계 효과 트랜지스터
US20060118869A1 (en) 2004-12-03 2006-06-08 Je-Hsiung Lan Thin-film transistors and processes for forming the same
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
CN101258607B (zh) * 2005-09-06 2011-01-05 佳能株式会社 使用非晶氧化物膜作为沟道层的场效应晶体管、使用非晶氧化物膜作为沟道层的场效应晶体管的制造方法、以及非晶氧化物膜的制造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4560502B2 (ja) 2005-09-06 2010-10-13 キヤノン株式会社 電界効果型トランジスタ
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
EP1770788A3 (en) 2005-09-29 2011-09-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5234301B2 (ja) * 2005-10-03 2013-07-10 Nltテクノロジー株式会社 薄膜トランジスタ、薄膜トランジスタアレイ基板、液晶表示装置およびそれらの製造方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101103374B1 (ko) 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP5015473B2 (ja) * 2006-02-15 2012-08-29 財団法人高知県産業振興センター 薄膜トランジスタアレイ及びその製法
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5016244B2 (ja) 2006-03-17 2012-09-05 ルネサスエレクトロニクス株式会社 半導体記憶装置
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
KR100801961B1 (ko) 2006-05-26 2008-02-12 한국전자통신연구원 듀얼 게이트 유기트랜지스터를 이용한 인버터
US8330492B2 (en) * 2006-06-02 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP5386069B2 (ja) * 2006-06-02 2014-01-15 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
TWI831616B (zh) * 2006-09-29 2024-02-01 日商半導體能源研究所股份有限公司 半導體裝置
JP5468196B2 (ja) * 2006-09-29 2014-04-09 株式会社半導体エネルギー研究所 半導体装置、表示装置及び液晶表示装置
KR101293573B1 (ko) * 2006-10-02 2013-08-06 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP2008151963A (ja) * 2006-12-15 2008-07-03 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の駆動方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP4910779B2 (ja) * 2007-03-02 2012-04-04 凸版印刷株式会社 有機elディスプレイおよびその製造方法
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) * 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101376973B1 (ko) * 2007-04-27 2014-03-25 삼성디스플레이 주식회사 박막 트랜지스터 기판의 제조 방법
US20080273366A1 (en) * 2007-05-03 2008-11-06 International Business Machines Corporation Design structure for improved sram device performance through double gate topology
US8803781B2 (en) * 2007-05-18 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8232598B2 (en) * 2007-09-20 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP2009094927A (ja) 2007-10-11 2009-04-30 Seiko Epson Corp バッファ、レベルシフト回路及び表示装置
JP4524699B2 (ja) * 2007-10-17 2010-08-18 ソニー株式会社 表示装置
JP5430846B2 (ja) * 2007-12-03 2014-03-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
TWI369554B (en) * 2007-12-27 2012-08-01 Au Optronics Corp Pixel structure and manufacturing method thereof
TWI409556B (zh) * 2008-01-09 2013-09-21 Chunghwa Picture Tubes Ltd 畫素結構與主動元件陣列基板
JP5264197B2 (ja) 2008-01-23 2013-08-14 キヤノン株式会社 薄膜トランジスタ
JP2009206508A (ja) * 2008-01-31 2009-09-10 Canon Inc 薄膜トランジスタ及び表示装置
KR101512818B1 (ko) * 2008-02-01 2015-05-20 삼성전자주식회사 산화물 반도체 트랜지스터 및 그 제조방법
JP5270938B2 (ja) * 2008-03-19 2013-08-21 ルネサスエレクトロニクス株式会社 半導体集積回路及び半導体集積回路の設計方法
JP5325446B2 (ja) * 2008-04-16 2013-10-23 株式会社日立製作所 半導体装置及びその製造方法
JP5305731B2 (ja) * 2008-05-12 2013-10-02 キヤノン株式会社 半導体素子の閾値電圧の制御方法
TWI495108B (zh) * 2008-07-31 2015-08-01 Semiconductor Energy Lab 半導體裝置的製造方法
US9000441B2 (en) 2008-08-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP2010040815A (ja) * 2008-08-06 2010-02-18 Sony Corp 縦型電界効果トランジスタ及び画像表示装置
JP5207885B2 (ja) * 2008-09-03 2013-06-12 キヤノン株式会社 画素回路、発光表示装置及びそれらの駆動方法
KR101681483B1 (ko) * 2008-09-12 2016-12-02 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
KR101623958B1 (ko) * 2008-10-01 2016-05-25 삼성전자주식회사 인버터 및 그의 동작방법과 인버터를 포함하는 논리회로
KR20100038986A (ko) * 2008-10-07 2010-04-15 삼성전자주식회사 산화물 박막 트랜지스터를 포함하는 적층 메모리 장치
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
US8106400B2 (en) 2008-10-24 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102197490B (zh) 2008-10-24 2013-11-06 株式会社半导体能源研究所 半导体器件和用于制造该半导体器件的方法
JP5587591B2 (ja) * 2008-11-07 2014-09-10 株式会社半導体エネルギー研究所 半導体装置
KR101432764B1 (ko) * 2008-11-13 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
KR102025505B1 (ko) 2008-11-21 2019-09-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5781720B2 (ja) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 半導体装置及び半導体装置の製造方法
JP5185838B2 (ja) * 2009-01-05 2013-04-17 カシオ計算機株式会社 薄膜トランジスタの製造方法
JP5144558B2 (ja) 2009-02-19 2013-02-13 セイコーインスツル株式会社 転がり軸受装置
TWI529942B (zh) 2009-03-27 2016-04-11 半導體能源研究所股份有限公司 半導體裝置
KR102181301B1 (ko) 2009-07-18 2020-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치 제조 방법
CN105070749B (zh) 2009-07-18 2019-08-09 株式会社半导体能源研究所 半导体装置以及制造半导体装置的方法
TWI596741B (zh) 2009-08-07 2017-08-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
TWI559501B (zh) 2009-08-07 2016-11-21 半導體能源研究所股份有限公司 半導體裝置和其製造方法
KR101707433B1 (ko) 2009-09-04 2017-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치를 제작하기 위한 방법
WO2011027664A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
WO2011040213A1 (en) 2009-10-01 2011-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20110037220A (ko) 2009-10-06 2011-04-13 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를 구비하는 유기전계발광 표시 장치
CN102484471B (zh) 2009-10-30 2015-04-01 株式会社半导体能源研究所 驱动器电路、包括该驱动器电路的显示设备和包括该显示设备的电子设备
KR101523358B1 (ko) 2009-12-04 2015-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
CN105047669B (zh) 2009-12-28 2018-08-14 株式会社半导体能源研究所 存储器装置和半导体装置
JP5743407B2 (ja) * 2010-01-15 2015-07-01 キヤノン株式会社 トランジスタの駆動方法及び該方法で駆動されるトランジスタを含む表示装置
KR101924318B1 (ko) 2010-02-12 2018-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 구동 방법
KR102049472B1 (ko) 2010-02-19 2019-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8588000B2 (en) 2010-05-20 2013-11-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device having a reading transistor with a back-gate electrode
WO2011155295A1 (en) 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
KR102115344B1 (ko) * 2010-08-27 2020-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 기억 장치, 반도체 장치
CN103201831B (zh) 2010-11-05 2015-08-05 株式会社半导体能源研究所 半导体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685953B (zh) * 2018-09-10 2020-02-21 大陸商長江存儲科技有限責任公司 使用梳狀繞線結構減少金屬線裝載的記憶元件
TWI738342B (zh) * 2019-06-17 2021-09-01 美商格芯(美國)集成電路科技有限公司 具有埋置交叉耦合互連的結構及sram位元單元
TWI807270B (zh) * 2020-05-29 2023-07-01 台灣積體電路製造股份有限公司 記憶胞、半導體元件及形成半導體元件的方法
US11695073B2 (en) 2020-05-29 2023-07-04 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures
US11710790B2 (en) 2020-05-29 2023-07-25 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array channel regions
US11640974B2 (en) 2020-06-30 2023-05-02 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array isolation structures
US11729987B2 (en) 2020-06-30 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array source/drain electrode structures
US12051750B2 (en) 2022-08-09 2024-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. Memory array gate structures

Also Published As

Publication number Publication date
JP6838179B2 (ja) 2021-03-03
JP2017055121A (ja) 2017-03-16
CN103081092A (zh) 2013-05-01
KR20190053300A (ko) 2019-05-17
TW201727834A (zh) 2017-08-01
CN103081092B (zh) 2016-11-09
KR20130107285A (ko) 2013-10-01
TWI590385B (zh) 2017-07-01
KR20200057805A (ko) 2020-05-26
JP5755082B2 (ja) 2015-07-29
KR102115344B1 (ko) 2020-05-26
TWI629751B (zh) 2018-07-11
JP6649931B2 (ja) 2020-02-19
TWI743833B (zh) 2021-10-21
TWI556355B (zh) 2016-11-01
US20120051118A1 (en) 2012-03-01
US20140226401A1 (en) 2014-08-14
JP2022088460A (ja) 2022-06-14
US20160336068A1 (en) 2016-11-17
WO2012026503A1 (en) 2012-03-01
JP7370406B2 (ja) 2023-10-27
KR20180132980A (ko) 2018-12-12
JP2021073738A (ja) 2021-05-13
JP2015173288A (ja) 2015-10-01
JP2020061581A (ja) 2020-04-16
TWI698959B (zh) 2020-07-11
JP2012069932A (ja) 2012-04-05
JP6018259B2 (ja) 2016-11-02
KR101928897B1 (ko) 2018-12-13
JP6250123B2 (ja) 2017-12-20
CN106298794B (zh) 2019-07-30
JP2018046288A (ja) 2018-03-22
KR102334169B1 (ko) 2021-12-01
US9449706B2 (en) 2016-09-20
US8737109B2 (en) 2014-05-27
TW201234532A (en) 2012-08-16
JP2023181249A (ja) 2023-12-21
TW201640619A (zh) 2016-11-16
DE112011102837T5 (de) 2013-08-22
DE112011102837B4 (de) 2021-03-11
TW202040756A (zh) 2020-11-01
KR101979758B1 (ko) 2019-05-17
US10297322B2 (en) 2019-05-21
CN106298794A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
JP7370406B2 (ja) 半導体装置
KR101987638B1 (ko) 반도체 장치
US20200091154A1 (en) Semiconductor device
US8848464B2 (en) Semiconductor device and method of driving semiconductor device
JP5770068B2 (ja) 半導体装置

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees