TW201034934A - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
TW201034934A
TW201034934A TW98110294A TW98110294A TW201034934A TW 201034934 A TW201034934 A TW 201034934A TW 98110294 A TW98110294 A TW 98110294A TW 98110294 A TW98110294 A TW 98110294A TW 201034934 A TW201034934 A TW 201034934A
Authority
TW
Taiwan
Prior art keywords
electrode
heating
heating device
carbon nanotube
carbon
Prior art date
Application number
TW98110294A
Other languages
Chinese (zh)
Other versions
TWI381989B (en
Inventor
Peng Liu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98110294A priority Critical patent/TWI381989B/en
Publication of TW201034934A publication Critical patent/TW201034934A/en
Application granted granted Critical
Publication of TWI381989B publication Critical patent/TWI381989B/en

Links

Abstract

The present invention relates to a heating device. The heating device includes an insulating substrate; a plurality of row electrodes and a plurality of column electrodes located on the insulated substrate, and a plurality of heating units located on the insulated substrate. The row electrodes and the column electrodes are insulated from each other. Each two adjacent row electrodes and two neighboring column electrodes cooperatively form a grid having a heating unit located thereat. Each of the heating units includes a first electrode, a second electrode and a heating element. The first electrode and the second electrode are electrically connected to the row electrodes and the column electrodes respectively. The heating element includes a carbon nanotube structure electrically connected between the first electrode and the second electrode.

Description

201034934 六、發明說明: ' 【發明所屬之技術領域】 • 本發明涉及—種加熱料,尤其涉及-縣於奈米碳管的加 熱器件。 【先Θ技術】 加熱器件於人們的生產、生活、科研中起著重要的作用,被 廣泛應用於真空加熱器、紅外理療儀、電暖器等領域。 ❹ 2007年4月11日公告的公告號為CN2888786Y的中國大陸專 利申明揭不一種加熱器件。請參見圖j,該加熱器件包括一石英支 撑盤1,該石英支樓盤i上設置有繞線孔陣列3;—加熱絲4,該 加熱絲4按照一定繞線規則穿過繞線孔陣列3繞至石英支撐盤工 上,於石英支雜1兩端邊賴稱分佈有賴絲柱插孔2,加熱 絲4端部於插孔2處與兩個電極5相連形成良好的電接觸。然而, 該加熱器件中,石英支撑盤1上的加熱絲4相互串聯,故,石英 ❹支雜1上的減個加熱料必綱時卫作,無法實現對物體的 局部定點加熱。 2005年11月π日公開的公開號為US2〇〇5〇2529〇6ai的美國 專利申請揭示-種可局部定點加熱的加熱器件。請參見圖2,該加 熱器件ίο包括一基底u ;複數個支撐墊12,該複數個支禮墊12 汉置於基底11上;及複數個加熱單元14,每個加熱單元對應 每個支料12設置於該基底u上。域墊u表面塗覆有絕緣材 料層13,以使支撐墊12與加熱單元14之間相互絕緣。該複數個 4 201034934 、加熱單元14通過一導電體網絡與-控制器(圖未示)電連接。控 :制器可控制每個加熱單元14獨立工作,故,該加熱器件可實現對 -物體的局部定點加熱。然而’所述加熱器件1〇中的加熱單元Μ -通常採用導電陶竟,導電玻璃或金屬等材料製作。這些材料所製 備的加熱單元14的密度較大,故,加熱器件10的重量較重,從 而使該加熱器件10應用時難以滿足便攜的要求,其應用範圍受到 限制。 〇 【發明内容】 有馨於此,確有必要提供一種重量較輕,應用範圍廣泛的加 熱器件。 一種加熱器件,其包括:—絕緣基底;複數個分別平行且等 間隔設置於鱗基底上幼互交叉設置的行雜與職極,複數 個由所述每兩個相鄰行電極與每兩個相鄰列電極相互交又設置而 形成的網格,及複數個分別對應設置於網格中的加熱單元。所述 ❹行電極與列電極之間電絕緣。每個加熱單S進一步包括間隔設置 的一第二電極與-第—電極,及一加熱元件,該第—電極和第二 電極刀別與上述行電極與列電極電連接。該加熱元件包括一奈米 碳管結構,且與第二電極電連接,並與第一電極間隔設置。 相較於先前技術,所述的加熱器件中的加熱元件採用奈米碳 官結構,奈米碳管結構的密度較小,故,該加熱器件具有較輕的 重量,可廣泛應用於各種領域。 【實施方式】 5 201034934 以下將結合附圖對本發明的加熱器件作進一步的詳細說明。 6月參關3及圖4,本發明第—實施例提供-種加熱器件20, 其包括-絕緣基底202 ’複數個行電極204、複數個歹,j電極206及 複數個加熱單元220。所述複數個行電極2〇4與複數侧電極· 設置於該絕緣基底202上,並可相互平行間隔設置。每兩個相鄰 的行電極204與兩個相鄰的列電極2〇6形成一網格214,且每侧 格214定位-個加熱單元22〇,即加熱單元22〇與網格214 一一對 〇 應。 所述的絕緣基底202為-絕緣基板,如喊基板、玻璃基板、 樹脂基板及石英基板等t的—誠錄。所舰緣基底 202的大 小與厚度不限,本領域技術人員可根據實際需要,如根據加熱器 件20的預定大小’設置絕緣基底2〇2的尺寸。本實施例中,所述 、、邑緣基底2〇2優選為一石英基板,其厚度約i毫米邊長為48毫 米。 © 所述複數個行電極204與複數個列電極2〇6相互交叉設置, 而且,於行電極204與列電極2〇6交又處設置有一介質絕緣層 216該”質絕緣層216可確保行電極2〇4與列電極2⑽之間電絕 緣,以防止爾。複數個行電極204或列電極206之間可等間距 〇又置也可不等間距設置。優選地,複數個行電極2〇4或列電極 206之間等間距設£。所述行電極2〇4與列電極2⑽為導電材料或 塗有導電材料層的絕緣材料。本實施例中,該複數個行電極咖 與複數個列電極2〇6優選為採用導電漿料印製的平面導電體,且 6 201034934 該複數個行電極204的行間距為50微米〜2厘米,複數個列電極 ’ 206的列間距為50微米〜2厘米。該行電極204與列電極2〇6的寬 _度為30微米〜1〇〇微米,厚度為10微米〜50微米。該行電極2〇4 -與列電極206的交叉角度為10度到90度,優選為9〇度。所述行 電極204與列電極206可通過絲網列印法將導電漿料印製於絕緣 基底202上製備。該導電聚料的成分包括金屬粉、低溶點玻璃粉 和黏結劑。其中,該金屬粉優選為銀粉,該黏結劑優選為松油醇 〇 或乙基纖維素。該導電漿料中,金屬粉的重量比為50%〜90%,低 溶點玻璃粉的重量比為2%〜10%,黏結劑的重量比為8%〜4〇%。 所述複數個加熱單元220分別一一對應設置於上述複數個網 格214中。每個加熱單元22〇包括一第一電極21〇,一第二電極 212,及一加熱元件2〇8。該第一電極21〇與第二電極212對應且 絕緣間隔設置。每個網格214内的第一電極21〇和第二電極212 之間的距離不限’優選地為1〇微米~2厘米。該加熱元件2〇8設置 ❹於第-電極210與第二電極212之間,且,分別與第一電極21〇 及第-電極212電連接。該加熱元件2〇8與絕緣基底2〇2間隔設 置以免該加熱元件2〇2發出的熱量被絕緣基底2〇2吸收,影響 力…、元件208的熱回應速度。加熱元件2〇8與絕緣基底之間 的距離不限’優選地,加熱元件與絕緣基底观之間的距離 為1〇微米〜2厘米。本實施例中,同一行的加熱單元220中的第-電極細與同-行電極2〇4電連接,同一列的加熱單元22〇中的 第二電極212與同-列電極206電連接,加熱元件與絕緣基 7 201034934 底202之間的距離為1毫米。201034934 VI. Description of the invention: 'Technical field to which the invention pertains>> The present invention relates to a heating material, and more particularly to a heating device for a carbon nanotube in a county. [Advanced Technology] Heating devices play an important role in people's production, life, and scientific research. They are widely used in vacuum heaters, infrared physiotherapy devices, and electric heaters.中国 The mainland China patent announcement number CN2888786Y announced on April 11, 2007 is not a heating device. Referring to FIG. j, the heating device includes a quartz support disk 1 on which the array of winding holes 3 is disposed; a heating wire 4 that passes through the winding hole array 3 according to a certain winding rule. Wrapped around the quartz support plate, the wire rod socket 2 is distributed on both ends of the quartz branch 1. The end of the heating wire 4 is connected to the two electrodes 5 at the socket 2 to form a good electrical contact. However, in the heating device, the heating wires 4 on the quartz supporting disk 1 are connected in series with each other. Therefore, the heating material on the quartz crucible 1 is required to be fixed, and localized heating of the object cannot be achieved. U.S. Patent Application Serial No. U.S. Patent No. 5, 225, filed on Jan. s. Referring to FIG. 2, the heating device ίο includes a substrate u; a plurality of support pads 12, the plurality of support pads 12 are placed on the substrate 11, and a plurality of heating units 14, each of which corresponds to each of the materials 12 is disposed on the substrate u. The surface of the domain pad u is coated with an insulating material layer 13 to insulate the support pad 12 from the heating unit 14 from each other. The plurality of 4 201034934, the heating unit 14 is electrically connected to a controller (not shown) via a conductor network. Control: The controller can control each heating unit 14 to work independently, so that the heating device can achieve local fixed-point heating of the object. However, the heating unit Μ in the heating device 1 is usually made of a conductive ceramic, a conductive glass or a metal. The heating unit 14 prepared by these materials has a relatively high density, so that the weight of the heating device 10 is heavy, so that the heating device 10 is difficult to meet the portable requirements when applied, and its application range is limited. 〇 【Contents】 It is necessary to provide a heating device with a light weight and a wide range of applications. A heating device comprising: an insulating substrate; a plurality of rows and columns respectively arranged in parallel and equally spaced on the scale substrate, each of the two adjacent row electrodes and each of the two A grid formed by the adjacent column electrodes intersecting each other and a plurality of heating units respectively disposed in the grid. The drain electrode and the column electrode are electrically insulated. Each of the heating sheets S further includes a second electrode and a -electrode electrode disposed at intervals, and a heating element, and the first electrode and the second electrode blade are electrically connected to the row electrode and the column electrode. The heating element includes a carbon nanotube structure and is electrically connected to the second electrode and spaced apart from the first electrode. Compared with the prior art, the heating element in the heating device adopts a nano carbon structure, and the density of the carbon nanotube structure is small, so that the heating device has a light weight and can be widely used in various fields. [Embodiment] 5 201034934 Hereinafter, the heating device of the present invention will be further described in detail with reference to the accompanying drawings. In June, reference numeral 3 and FIG. 4, a first embodiment of the present invention provides a heating device 20 including an insulating substrate 202' plurality of row electrodes 204, a plurality of turns, a j electrode 206, and a plurality of heating cells 220. The plurality of row electrodes 2〇4 and the plurality of side electrodes are disposed on the insulating substrate 202 and may be disposed in parallel with each other. Each two adjacent row electrodes 204 and two adjacent column electrodes 2〇6 form a grid 214, and each side grid 214 is positioned with a heating unit 22〇, that is, the heating unit 22〇 and the grid 214 are one by one. Right. The insulating substrate 202 is an insulating substrate, such as a substrate, a glass substrate, a resin substrate, and a quartz substrate. The size and thickness of the rim substrate 202 are not limited, and those skilled in the art can set the size of the insulating substrate 2 〇 2 according to actual needs, such as according to the predetermined size of the heater member 20. In this embodiment, the edge substrate 2〇2 is preferably a quartz substrate having a thickness of about i mm and a side length of 48 mm. The plurality of row electrodes 204 and the plurality of column electrodes 2〇6 are disposed to cross each other, and a dielectric insulating layer 216 is disposed at the intersection of the row electrode 204 and the column electrode 2〇6. The electrodes 2〇4 and the column electrodes 2(10) are electrically insulated to prevent the plurality of row electrodes 204 or the column electrodes 206 from being equally spaced apart or unequally spaced. Preferably, the plurality of row electrodes 2〇4 Or the column electrodes 206 are equidistantly spaced apart. The row electrodes 2〇4 and the column electrodes 2(10) are electrically conductive materials or insulating materials coated with a layer of conductive material. In this embodiment, the plurality of row electrodes and a plurality of columns The electrode 2〇6 is preferably a planar conductor printed with a conductive paste, and 6 201034934 the row spacing of the plurality of row electrodes 204 is 50 micrometers to 2 centimeters, and the column spacing of the plurality of column electrodes '206 is 50 micrometers to 2 centimeters. The row electrode 204 and the column electrode 2〇6 have a width of 30 μm to 1 μm and a thickness of 10 μm to 50 μm. The row electrode 2〇4 − intersects the column electrode 206 at an angle of 10 degrees. Up to 90 degrees, preferably 9 degrees. The row electrode 204 and the column electrode 206 The conductive paste is prepared by printing on the insulating substrate 202 by a screen printing method. The conductive material comprises metal powder, low melting point glass powder and a binder, wherein the metal powder is preferably silver powder, and the bonding agent Preferably, it is terpineol or ethyl cellulose. In the conductive paste, the weight ratio of the metal powder is 50% to 90%, and the weight ratio of the low melting point glass powder is 2% to 10%, and the weight ratio of the binder The plurality of heating units 220 are respectively disposed in the plurality of grids 214. The heating unit 22 includes a first electrode 21, a second electrode 212, and a heating element 2 〇 8. The first electrode 21 对应 is corresponding to the second electrode 212 and is spaced apart from each other. The distance between the first electrode 21 每个 and the second electrode 212 in each of the grids 214 is not limited to 'preferably The heating element 2〇8 is disposed between the first electrode 210 and the second electrode 212, and is electrically connected to the first electrode 21〇 and the first electrode 212, respectively. The heating element 2 is electrically connected to the second electrode 212. The crucible 8 is spaced apart from the insulating substrate 2〇2 to prevent the heat generated by the heating element 2〇2 from being insulated by the insulating substrate 2 〇2 absorption, influence..., thermal response speed of element 208. The distance between heating element 2〇8 and the insulating substrate is not limited to 'preferably, the distance between the heating element and the insulating substrate is 1 〇 micrometer to 2 cm In this embodiment, the first electrode in the heating unit 220 of the same row is electrically connected to the same-row electrode 2〇4, and the second electrode 212 in the heating unit 22〇 of the same row is electrically connected to the same-column electrode 206. The distance between the heating element and the insulating base 7 201034934 bottom 202 is 1 mm.

所述第二電極212與第一電極210為導電體,如金屬層等。 該第一電極210可為行電極2〇4的延伸部分,該第二電極212可 為列電極206的延伸部分,第一電極21〇和行電極2〇4可一體成 型’第二電極212和列電極2〇6也可一體成型。本實施例中,該 第-電極210與第二電極212均為平面導電體,其尺寸由網格214 的尺寸決定。該第一電極21〇直接與行電極2〇4電連接,該第二 212直接與舰極2〇6電連接。所述第一 _ 21〇與第二電 極212的長度為2〇微米〜υ厘米,寬度為3〇微米〜丨厘米,厚度 為10微米〜500微米。優選地,所述第二電極212與第一電極2⑽ 的長度為100微米〜700微米,寬度為5〇微米〜5〇〇微米厚度為 20微米〜1〇〇微米。本實施例中’該第一電極21〇與第二電極 的材料為導電漿料,通過絲網印刷法印製於絕緣基底2〇2上。該 導電漿料的成分與上述電極所用的導電衆料的成分相同。°" 所述加熱元仵 L $ ;’官結構。該奈料管結構篇 自支撐結構。觸“自支撐結構,,即絲米碳管結構無_ 一支撐體捕’也能保持自身特定的形狀。該自支撐 碳管結構包括複數個奈米碳管,爾數個奈米絲通過凡德⑽ 力被吸引’從而使奈米碳管結構具有特定的形狀。所述_ 官結構中的奈米射包括單壁奈米碳管、雙絲树管及多壁力 米碳管中的-種或多種。所述單壁奈米碳管的直徑為Μ争米: 奈米’所述雙壁奈米碳管的直獲為L〇奈米〜5〇奈米所述㈣ 201034934 /米石反官的直控為1,5奈米〜50奈米。該奈米碳管結構為層狀或線狀 :結構。由於該奈未碳管結構為—自支撐結構,不通過支撐體支撺 ^•仍了保持層狀或線狀結構。該奈米碳管結構中奈米碳管之間具 有大量間隙’從而使該奈米碳管結構具有大量微孔。所述奈米碳 管結構的單㈣積熱容擔2xlG-4料每平方縣㈣文。優選 地’所述奈米碳管結構的單位面積熱容可小於或等於ΐ 7χΐ〇-6焦耳 $平方厘米開爾文。由於奈米碳管的熱容較小,故,由該奈米碳 〇管結構構成的加熱元件2〇8具有較快的熱回應速度可用於對物 體進行快速加熱。 所述奈米碳管結構包括至少—奈米碳管膜、至少-奈米碳管 線狀結構或其組合。所述奈米碳管觀括複數個鮮分佈的奈米 碳管。該奈米碳管财的奈米碳管有序排列絲序排列。有= 列指奈米碳管财的大多數奈米碳管沿-個❹個方向擇優取向 排列。無序排列指奈米碳管膜中的奈米碳管相互纏繞或雜亂排 〇列。當奈米碳管财括無賴刺奈米碳料,奈米碳管相互纏 繞;當奈来碳管膜包括有序排列的奈米碳料,奈米碳管沿一個 方向或者複數個方向擇優取向排列。當奈米碳管結構包括複數個 奈米碳管基本沿同一方向有序排列時,該複數個奈米碳管從第一 電極向第二電極延伸。具體地,該奈米碳管膜可包括奈米碳管絮 化膜、奈米碳管碾壓膜或奈米碳。該奈米碳管線狀处構包 括至少-非扭轉的奈米碳管線、至少一扭轉的奈米石炭管線或心且 合。當所述奈米碳管線狀結構包括多根非扭轉的奈米碳管線紐 9 201034934 轉的奈米碳管、㈣,該釉轉的絲碳管麵扭轉的奈米碳管線 可相互平仃呈-束狀結構,或相互轉呈—絞線結構。 日二參閱圖5筆,_,縣崎输括複數個連續 g >;段143。該複數個奈米碳管片段⑷通過 凡德瓦爾力首尾相連。每—奈米碳料段143包括複數個相互平 行的奈米好⑹騎數個被平㈣麵辦145通過 Ο 〇 爾力緊密結合。該奈米碳管片請具有任意的寬度、厚度Γ均 勻陡及形狀。該奈米碳管拉臈中的奈米碳管145沿同一方向擇優 向排歹J可理解’由複數個奈米碳管拉膜組成的奈来碳管結構 :。相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有—爽角α, -’從而使相鄰闕奈米碳管拉膜巾的奈米碳管相互交 I成’網狀結構’該網狀結構包括複數個微孔該複數微孔 :勻,規饰於奈米碳管結構中,其巾,該微孔直徑為】奈米 太,微米所述奈米碳管拉膜的厚度為0.01微米〜100微米。所述 :米反g拉财通過拉取—奈米碳管陣列直接獲得。所述奈米碳 2膜的、纟。構及其製備方法請參見范守善等人於2007年2月9曰 、用的於2008年8月13公開的第CN101239712A號中國大陸 A開專利申請“碳納米管結構及其製備方法”。 &所述奈米碳管賴軌㈣自分佈的奈米碳管 。奈米碳管可 同方向擇優取向排列’也可沿不同方向擇優取向排列。優選 所述奈米碳管碾壓膜中的奈米碳管平行於奈米碳管碾壓膜的 所述奈米碳管碾壓膜中的奈米碳管相互交疊,且通過凡德 201034934 •瓦爾力相互吸引,緊密結合’使得該奈米碳管樣膜具有很好的 :柔齡’可彎曲折疊成任意形狀而不破裂。且由於奈米碳管碾壓 -膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈 -米碳管礙壓縣-自支獅結構,可無需基底支撐。所述奈来碳 官碾壓膜可通過碰—奈米碳管p車列獲得。所述絲碳管雜膜 中的奈米碳管與形成奈米碳管陣列的基底的表面形成一夾角α,其 中,(X大於等於〇度且小於等於15度(〇3^15。),該夾角α與施加 〇 於奈米碳管陣列上的壓力有關,壓力越大,該夾角越小。所述奈 米碳管碾壓膜的長度和寬度不限。所述礙壓膜包括複數個微孔結 構,該微孔結構均勻且規則分佈於奈米碳管艰壓膜中,其中微孔 直徑為1奈米〜0.5微米。所述奈米碳管碾壓膜及其製備方法請參 見范守善等人於2007年6月1日申請的,於2008年12月3日公 開的第CN101314464A號中國大陸專利申請“碳納米管薄膜的製 備方法”。 〇 所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據實際 需要選擇。本發明實施例提供的奈米碳管絮化膜的長度為◎厘 米,寬度為1〜10厘米’厚度為1微米〜2毫米。所述奈米碳管絮化 膜包括相互纏繞的奈米碳管,奈米碳管的長度大於10微米。所述 奈米碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構。 所述奈米碳管絮化膜中的奈米碳管均勻分佈,無規則排列,使該 奈米碳管絮化膜各向同性,所述奈米碳管絮化膜中的奈米碳管之 間形成大量的微孔,微孔孔徑為1奈米〜0.5微米。所述奈米碳管 11 201034934 絮化膜及其製備方法請參見范守善等人於丽年*月i3日申請 的,於2008年10月15日公開的第CN101284662A號中國大陸專 利申請“碳納米管薄膜的製備方法”。 〇 ❹ 請參閱圖7’該非扭轉的奈米礙管線包括複數個沿該非扭轉的 奈米碳管線長度方向排列的奈米碳管。具體地,該非扭轉的奈米 炭&線包括複數個奈米碳管片段,該複數個奈米石炭管片段通過凡 德瓦爾力首尾相連,每—奈米碳管片段包括複數個相互平行並通 過凡德瓦爾力緊密結合的奈米碳管。該奈米碳管片段具有任意的 長度、厚度、均勻性及形狀。該雜轉的奈米碳#線長度不限, 直徑為0.5奈米〜100微米。非扭轉的奈米碳管線為將奈米碳管拉 賴過有機溶_理制。具舰,將錢溶舰潤所述奈米碳 官拉臈的整個表面,於揮發性有機溶劑揮發時產生的表面張力的 作用下不米石反管拉膜中的相互平行的複數個奈米碳管通過凡产 瓦爾力緊密結合,從猶米碳管拉膜嶋—非扭轉: 管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙網、、二 或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭 轉的4碳料與未經有機_處_奈米碳f顯比, 積減小’黏性降低。 兩端Γ树料祕管料採用—顧力騎述奈米碳管拉膜 &目反方向扭轉獲得。請參閱圖8,該扭轉的 括 :數個繞該扭轉的奈米碳管_向螺旋排觸MS、線具包= i该扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈 12 201034934 • 米石反B片^又通過凡德瓦爾力首尾相連,每一奈米碳管片段包括複 數個相互平行並通過凡德瓦爾力緊密結合的奈米碳管。該奈米碳 •管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳 •管線長度不限,直徑為0.5奈米〜1〇〇微米。進一步地,可採用一 揮發性有機溶劑處理該扭轉的奈米碳管線。於揮發性有機溶劑揮 發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相 鄰的奈米碳管通過凡德瓦爾力緊密結合,使扭轉的奈米碳管線的 〇 比表面積減小,密度及強度增大。 所述奈米碳管線狀結構及其製備方法請參見范守善等人於 2002年9月16曰申請的,於漏年8月2〇曰公告的第 CNl〇(mm9C射社陸公告專利“—種碳_管繩及其製造 方法” ’及於2005年12月16日申請的,於2〇〇7年6月2〇日公 開的第CN1982209A號中國大陸公開專利申請“碳納米管絲及其 製作方法”。 ~ 〇 一所述加熱元件還可包括一奈米碳管複合結構。所述奈米 石反&複。結構包括-奈米碳管結構及分散於奈米碳管結構中的填 充材=所述填充材料填充贿米碳管結射的微孔中或複合於 奈米碳管結構的表面。所述填充材料包括金屬、樹脂、斑 璃及纖維中的—種或多種。可選擇地,所述奈米碳管複合結構可 及,碳餘贿合於職财。所縣體的材料 匕括金屬、樹脂、陶竟、玻璃及纖維中的—種或多種。 將奈米碳管結構完全包覆,細至少部分浸潤於該奈米料 13 201034934 結構中。 由於加熱元件208主要由奈米碳管構成,奈米碳管具有較高 的電熱轉換效率及較高的熱輕射效率,故,該加熱元件施電熱 轉換效率及熱輻射效率較高。 所述加熱單元220進-步包括複數個固定電極224設置於第 -電極210與第二_ 212 ±。該固定電極224與第一電極加 ❹ Ο 或第二電極212 --對應。優選地,該固定電極224形狀、大小 及材料與第-電極21〇與第二電極212的形狀、大小及材料相同。 該固定電極2¾可確保將加熱元件2〇8更牢固地固定於第一電極 210與第二電極212上。 本實施例中,於邊長為48毫米的絕緣基底2〇2上製備 個加熱單元220。請參見圖9和圖1〇,每個加鮮元22〇令的加 熱元件2〇8為一奈米碳管拉膜,且每個奈米碳管拉膜的長度為300 微米’寬度為100微米。該奈米碳管拉膜中的奈米碳管首尾相連, 且從第-電極2Κ)向二電極212延伸。該奈米碳管拉膜可通過自 身的黏性固定於第—電極加與第二電極加上,或通過一導電 黏結劑固定於第—電極210與第二電極212上。 進一步’所述加熱ϋ件2G可包括—反射層(圖未示)設置於 邑緣基底202罪近加熱元件2〇8的表面。所述反射層的材料為一 白色絕緣材料’如:金屬氧化物、金屬鹽及陶究等中的-種或多 種。本實酬中,所述反㈣的材料優選為三氧化二銘,其厚度 為100微米〜0.5毫米。該反射層可通過物理氣相沈積法或化學氣 14 201034934 ; 相沈積法等方法製備。所述物理氣相沈積法包括濺射或蒸鍍等❶ 本實施例中,通過濺射的方法沈積三氧化二鋁於該絕緣基底202 -表面。所述反射層用來反射所述加熱元件208所發的熱量,從而 -控制加熱的方向,用於單面加熱,並進一步提高加熱的效率 進一步,所述加熱器件20還可包括一絕緣保護層(圖未示) 设置於絕緣基底202上以覆蓋所述行電極204,列電極206、第一 電極210與第二電極212及加熱元件2〇8。所述絕緣保護層的材料 〇為-絕緣材料’如:橡膠、樹脂等。所述絕緣保護層厚度不限, 可根據實際情況選擇。本實施例中,該絕緣保護層的材料採用樹 脂,其厚度A 0.5毫米〜2 $米。該絕緣保護層可通過塗敷或沈積 的方法形成於絕緣基底202上。所述絕緣保護層用來防止該加熱 器件20使用時與外界形成電接觸,同時還可防止加熱元件中 的奈米碳管結構吸附外界雜質。 所述加熱器件20的使用時,可進一步包括一驅動電路,通過 〇驅動電路可選擇性地對行電極204和列電極206通入電流,使與 該行電極204和列電極206電連接的加熱單元22〇工作,即可實 現加熱器件20的局部加熱,可控加熱。 明參見圖11 ’本實施例中的加熱元件2〇8具有較高的加熱效 率’當電流為100毫安培時,加熱元件2〇8的溫度可達到麵κ。 請參見圖12,加熱元件208的熱回應速度較快,可快速的升降溫。 請參關13及14,本發明第二實施例提供一種加熱器件%。 〜加熱ϋ件30包括-絕緣基底3G2,複數個行電極與複數個 15 201034934 :列電極306及複數個加熱單元320。每個加熱單元320包括一第一 : 電極310、一第二電極312及一加熱元件308。該加熱器件30與 本發明第-實施例提供的加熱器件2〇結構基本相同,其區別在 於’該加熱器件30中的加熱元件308直接設置於絕緣基底3〇2上。 所述加熱元件308可為本發明第一實施例提供的奈米碳管結構。 由於奈米碳管結構直接設置於絕緣基底3〇2上,故,使用時不易 被破壞。可轉,本實細巾,㈣加熱元件直接設置於絕 〇緣基底302上,該加熱元件3〇8還可為通過絲網列印等方法形成 的奈米碳管層’該奈米碳管層無f為自支獅構,可包括複數個 奈米碳管無序分佈。 該加熱器件使用時,利用其熱輻射進行加熱。該加熱器件中 具有以下m,奈米碳管結構具有較高的電熱轉換效率及 比較高的熱輻射鱗’故’該加熱!!件的電熱轉換效及熱輕射效 率較高。第二’由於奈米碳管結構的熱容較小,故,該加熱元件 G具有較快的熱回麟度,可實現有效地局部加熱。第三,由於奈 米碳管的密度較小,使該加熱器件的重量較輕,便於攜帶,可廣 泛應用於各種領域。該加熱器件可應用於電加熱器、紅外治療儀、 電暖器,真空加熱設備等領域。 綜上所述,本發明確已符合發明專利之要件,遂依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此 限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明 之精神所作之等效修飾鎌化,魏涵蓋於以下帽專概圍内。 16 201034934 【圖式簡單說明】 圖1為先前技術中的加熱器件的俯視圖。 意圖 圖2為先前技術中可局部定點加熱的加熱器件的結構示— 圖3為本發明第一實施例的加熱器件的俯視圖。 圖4為沿圖3中IV-IV線的剖面圖。 膜結構 圖5為本發明第一實施例用作加熱元件的奈米碳管拉 的掃描電鏡照片。 ❹ 〇 示音=為圖5中的奈米碳管拉膜結構中的奈米碳管片段的結構 圖7為本發明第-實施例用作加熱元件的非 線的掃描電鏡照片。 们' 丁、水奴官 圖8為本發明第一實施例作為加熱元件的 的掃描電鏡照片。 不未石反&線 圖9為本發明第一實施例的加熱單元的婦描電鏡照片。 圖10為圖9的側面的掃描電鏡照片。 線圖圖u為本發日謂4關的加絲件中電流與溫度的特徵曲 圖。圖12為本㈣第—實施儀加細件的翻應速度的曲線 圖I3為本翻第二實施例的加熱器件的俯視圖。 圖14為沿圖13中xiv-xiv線的剖面圖。 【主要元件符號說明】 201034934 加熱器件 20, 30 絕緣基底 202, 302 行電極 204, 304 列電極 206, 306 加熱元件 208, 308 第一電極 210, 310 第二電極 212, 312 網格 214, 314 介質絕緣層 216, 316 加熱單元 220, 320 固定電極 224, 324 〇 18The second electrode 212 and the first electrode 210 are electrical conductors, such as a metal layer or the like. The first electrode 210 may be an extension of the row electrode 2〇4, the second electrode 212 may be an extension of the column electrode 206, and the first electrode 21〇 and the row electrode 2〇4 may be integrally formed with the 'second electrode 212 and The column electrodes 2〇6 can also be integrally formed. In this embodiment, the first electrode 210 and the second electrode 212 are both planar conductors, and the size thereof is determined by the size of the grid 214. The first electrode 21 is electrically connected directly to the row electrode 2〇4, and the second 212 is directly electrically connected to the ship 2〇6. The first _ 21 〇 and the second electrode 212 have a length of 2 〇 micrometers to υ cm, a width of 3 〇 micrometers to 丨 cm, and a thickness of 10 micrometers to 500 micrometers. Preferably, the second electrode 212 and the first electrode 2 (10) have a length of 100 μm to 700 μm and a width of 5 μm to 5 μm and a thickness of 20 μm to 1 μm. In the present embodiment, the material of the first electrode 21〇 and the second electrode is a conductive paste, which is printed on the insulating substrate 2〇2 by screen printing. The composition of the conductive paste is the same as that of the conductive material used for the above electrode. °" The heating element 仵 L $ ;’ official structure. The tube structure is self-supporting structure. Touching the "self-supporting structure, that is, the silk-carbon tube structure without _ a support catch" can also maintain its own specific shape. The self-supporting carbon tube structure includes a plurality of carbon nanotubes, and several nanowires pass through De (10) force is attracted 'so that the carbon nanotube structure has a specific shape. The nano-shot in the _ official structure includes single-walled carbon nanotubes, double-silver tube and multi-walled carbon nanotubes - The diameter of the single-walled carbon nanotube is Μ 米 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The direct control of the anti-official is 1,5 nm to 50 nm. The structure of the carbon nanotube is layered or linear: structure. Since the structure of the carbon nanotube is self-supporting, it does not pass through the support. • The layered or linear structure is still maintained. There is a large amount of gap between the carbon nanotubes in the carbon nanotube structure, so that the carbon nanotube structure has a large number of micropores. (4) Heat accumulating capacity 2xlG-4 material per square county (4). Preferably, the heat capacity per unit area of the carbon nanotube structure may be less than or equal to ΐ 7χ Ϊ́〇-6 joules per square centimeter Kelvin. Due to the smaller heat capacity of the carbon nanotubes, the heating element 2〇8 consisting of the nanocarbon tube structure has a faster thermal response speed for the object The carbon nanotube structure comprises at least a carbon nanotube membrane, a at least a nanocarbon pipeline structure or a combination thereof, wherein the carbon nanotube comprises a plurality of freshly distributed carbon nanotubes. The carbon nanotubes of the carbon nanotubes are arranged in an orderly arrangement. There are = most of the carbon nanotubes of the carbon nanotubes are arranged in a preferred orientation along a direction. The disordered arrangement refers to the nanocarbon. The carbon nanotubes in the membrane are intertwined or disorderly arranged. When the carbon nanotubes contain rogue nano carbon materials, the carbon nanotubes are intertwined; when the nai carbon nanotube membrane comprises ordered nanometers The carbon material, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. When the carbon nanotube structure includes a plurality of carbon nanotubes arranged in an order along the same direction, the plurality of carbon nanotubes are first The electrode extends toward the second electrode. Specifically, the carbon nanotube film may include nano a tubular flocculating membrane, a carbon nanotube rolled membrane or a nanocarbon. The nanocarbon pipeline structure comprises at least a non-twisted nanocarbon pipeline, at least one twisted nanocarbon pipeline or a core. The nanocarbon pipeline-like structure comprises a plurality of non-twisted nanocarbon pipelines, a carbon nanotube, a carbon nanotube, and a carbon nanotube-twisted nanocarbon pipeline, which can be flush with each other. The bundle structure, or the mutual twist-strand structure. On the second day, see Figure 5, _, the county is divided into a plurality of consecutive g >; paragraph 143. The plurality of carbon nanotube fragments (4) through the Van der Waals force It is connected end to end. Each nano carbon section 143 includes a plurality of mutually parallel nanometers. (6) Riding several flats (four) planes 145 is closely combined by Ο 〇 力 force. The carbon nanotube sheets should have any width, The thickness Γ is evenly steep and the shape. The carbon nanotubes 145 in the carbon nanotubes are preferentially oriented in the same direction. It can be understood that the carbon nanotube structure consists of a plurality of carbon nanotube films. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube films is - refresh angle α, -', so that the carbon nanotubes of the adjacent carbon nanotubes are made into a network. The network structure comprises a plurality of micropores, the plurality of micropores: uniform, decorated in a carbon nanotube structure, the towel, the diameter of the micropores is nanometer, and the nanometer carbon nanotubes are pulled The thickness of the film is from 0.01 micron to 100 microns. The: m anti-g Lacai is directly obtained by pulling the carbon nanotube array. The nanocarbon 2 film, ruthenium. For the structure and preparation method thereof, please refer to the patent application "Carbon Nanotube Structure and Preparation Method" of Chinese Patent Application No. CN101239712A, published on Feb. 13, 2007, by Fan Shoushan et al. & said carbon nanotubes on the rail (four) self-distributed carbon nanotubes. The carbon nanotubes can be arranged in the same direction as the preferred orientation, or they can be arranged in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the carbon nanotubes in the carbon nanotube rolled film of the carbon nanotube rolled film, and pass through the van der 201034934 • Valli attracts each other and tightly combines 'making the carbon nanotube-like film very good: soft age' can be bent into any shape without breaking. And because the carbon nanotubes are crushed - the carbon nanotubes in the membrane are attracted to each other by the van der Waals force, and the tight combination makes the nano-carbon tube obstruct the county-self-supporting lion structure, without the need of substrate support. The Nilai carbon official rolling film can be obtained by a collision-nano carbon tube p train. The carbon nanotubes in the carbon nanotube film form an angle α with the surface of the substrate forming the carbon nanotube array, wherein (X is greater than or equal to 15 degrees (〇3^15.), The angle α is related to the pressure applied to the array of carbon nanotubes, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube film are not limited. The pressure blocking film includes a plurality of Microporous structure, the microporous structure is uniform and regularly distributed in the carbon nanotube hard film, wherein the micropore diameter is from 1 nm to 0.5 μm. The carbon nanotube film and the preparation method thereof can be found in Fan Shoushan. The Chinese Patent Application No. CN101314464A, published on December 1, 2007, issued on December 3, 2008, discloses the preparation of carbon nanotube film. 长度The length of the carbon nanotube film The width and the thickness are not limited, and may be selected according to actual needs. The carbon nanotube film of the embodiment of the present invention has a length of ◎ cm and a width of 1 to 10 cm and a thickness of 1 μm to 2 mm. The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes, carbon nanotubes The length of the carbon nanotubes is more than 10 micrometers. The carbon nanotubes are mutually attracted and entangled by van der Waals force to form a network structure. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and arranged irregularly. The carbon nanotube flocculation membrane is isotropic, and a plurality of micropores are formed between the carbon nanotubes in the carbon nanotube flocculation membrane, and the pore diameter of the micropores is from 1 nm to 0.5 μm. Carbon tube 11 201034934 The flocculation membrane and its preparation method can be found in the preparation of the carbon nanotube film by the Chinese patent application No. CN101284662A, which was filed on October 15, 2008, by Fan Shoushan et al. Method 。 See Figure 7 'The non-twisted nano-barrier line includes a plurality of carbon nanotubes arranged along the length of the non-twisted nanocarbon line. Specifically, the non-twisted nano-carbon & A plurality of carbon nanotube segments, the plurality of carboniferous tube segments are connected end to end by van der Waals force, and each of the carbon nanotube segments comprises a plurality of carbon nanotubes which are parallel to each other and closely coupled by van der Waals force. The carbon nanotube fragment It has any length, thickness, uniformity and shape. The length of the miscible nanocarbon # line is not limited, and the diameter is from 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is used to pull the carbon nanotubes. Organic solution _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Parallel multiple carbon nanotubes are tightly bonded by van Val force, and the membrane is pulled from the carbon nanotubes - non-twisted: pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, propane, or Chloroform, ethanol was used in this example. The non-twisted 4 carbon material treated by the organic solvent showed a decrease in the viscosity of the non-twisted 4 carbon material. At the two ends, the eucalyptus material is used in the tube material - Gu Li riding the nano carbon tube film & Referring to FIG. 8 , the twist includes: a plurality of carbon nanotubes around the twisted wire _ a spiral contact MS, a wire package = i the twisted nano carbon pipeline includes a plurality of carbon nanotube segments, the plural奈奈12 201034934 • The Meishi anti-B film ^ is connected end to end by Van der Waals force. Each nano carbon tube segment consists of a plurality of carbon nanotubes that are parallel to each other and tightly coupled by Van der Waals force. The nanocarbon tube segments have any length, thickness, uniformity, and shape. The twisted nanocarbon • the length of the pipeline is not limited, and the diameter is 0.5 nm to 1 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by the van der Waals force to make the twist ratio of the twisted nanocarbon pipeline. The surface area is reduced, and the density and strength are increased. The nanocarbon pipeline-like structure and its preparation method can be found in the application of Fan Shoushan et al. on September 16, 2002, and the CN1〇 announced in the August 2nd issue of the leaked year (mm9C shoots the land to announce the patent "- Carbon_tube rope and its manufacturing method" and the application of CN 1982209A, published on December 16, 2005, on the second day of June 2, 2007 The heating element may further comprise a carbon nanotube composite structure. The nano stone anti-reaction structure comprises a carbon nanotube structure and a filling dispersed in the carbon nanotube structure. The filling material is filled in the micropores of the brittle carbon tube or composited on the surface of the carbon nanotube structure. The filling material includes one or more of metal, resin, glass and fiber. The carbon nanotube composite structure is available, and the carbon waste is combined with the occupational wealth. The material of the county body includes one or more kinds of metals, resins, ceramics, glass and fibers. The structure is completely covered and finely at least partially infiltrated into the nanostructure 13 201034934 structure. Since the heating element 208 is mainly composed of a carbon nanotube, the carbon nanotube has a high electrothermal conversion efficiency and a high thermal light-emission efficiency, so that the heating element has a high electrothermal conversion efficiency and a high heat radiation efficiency. The unit 220 further includes a plurality of fixed electrodes 224 disposed on the first electrode 210 and the second _212 ±. The fixed electrode 224 corresponds to the first electrode plus 或 or the second electrode 212. Preferably, the fixed electrode The shape, size and material of the 224 are the same as those of the first electrode 21A and the second electrode 212. The fixed electrode 226 ensures that the heating element 2〇8 is more firmly fixed to the first electrode 210 and the second electrode. 212. In this embodiment, a heating unit 220 is prepared on an insulating substrate 2〇2 having a side length of 48 mm. Referring to Fig. 9 and Fig. 1 , each heating element 22 of the fresh element 22 is ordered. A carbon nanotube film is drawn, and each nano carbon tube film has a length of 300 μm and a width of 100 μm. The carbon nanotubes in the carbon nanotube film are connected end to end and from the first electrode. 2Κ) extends to the two electrodes 212. The carbon nanotube film can be fixed to the first electrode and the second electrode by its own viscous adhesion, or can be fixed to the first electrode 210 and the second electrode 212 by a conductive adhesive. Further, the heating element 2G may include a reflective layer (not shown) disposed on the surface of the rim substrate 202 adjacent to the heating element 2〇8. The material of the reflective layer is a white insulating material such as a metal oxide, a metal salt, and a ceramic or the like. In the present invention, the material of the anti-(iv) is preferably a bismuth trioxide having a thickness of from 100 micrometers to 0.5 millimeters. The reflective layer can be prepared by physical vapor deposition or chemical gas 14 201034934; phase deposition. The physical vapor deposition method includes sputtering or evaporation, etc. In the present embodiment, aluminum oxide is deposited on the surface of the insulating substrate 202 by sputtering. The reflective layer is used to reflect the heat generated by the heating element 208, thereby controlling the direction of heating, for single-sided heating, and further improving the efficiency of heating. The heating device 20 may further include an insulating protective layer. (not shown) is disposed on the insulating substrate 202 to cover the row electrode 204, the column electrode 206, the first electrode 210 and the second electrode 212, and the heating element 2〇8. The material of the insulating protective layer is - an insulating material such as rubber, resin or the like. The thickness of the insulating protective layer is not limited and can be selected according to actual conditions. In this embodiment, the material of the insulating protective layer is made of a resin having a thickness of 0.5 mm to 2 $ m. The insulating protective layer can be formed on the insulating substrate 202 by coating or deposition. The insulating protective layer serves to prevent the heating device 20 from making electrical contact with the outside when in use, and also prevents the carbon nanotube structure in the heating element from adsorbing foreign matter. The heating device 20 can further include a driving circuit for selectively applying current to the row electrode 204 and the column electrode 206 through the 〇 driving circuit to electrically connect the row electrode 204 and the column electrode 206. The unit 22 is operated to achieve local heating of the heating device 20, and controlled heating. Referring to Fig. 11 'the heating element 2 〇 8 in this embodiment has a higher heating efficiency'. When the current is 100 mA, the temperature of the heating element 2 〇 8 can reach the surface κ. Referring to FIG. 12, the heating element 208 has a faster thermal response speed and can be rapidly warmed up and down. Referring to 13 and 14, a second embodiment of the present invention provides a heating device %. The heating element 30 includes an insulating substrate 3G2, a plurality of row electrodes and a plurality of 15 201034934: column electrodes 306 and a plurality of heating units 320. Each heating unit 320 includes a first electrode 310, a second electrode 312, and a heating element 308. The heating device 30 is substantially identical in structure to the heating device 2〇 provided by the first embodiment of the present invention, except that the heating element 308 in the heating device 30 is directly disposed on the insulating substrate 3〇2. The heating element 308 can be the carbon nanotube structure provided by the first embodiment of the present invention. Since the carbon nanotube structure is directly disposed on the insulating substrate 3〇2, it is not easily broken during use. The rotating material, the actual fine towel, and (4) the heating element is directly disposed on the insulating edge substrate 302, and the heating element 3〇8 can also be a carbon nanotube layer formed by a screen printing method or the like. The layer without f is a self-supporting lion structure, and may include a plurality of carbon nanotubes disorderly distributed. When the heating device is used, it is heated by its heat radiation. The heating device has the following m, and the carbon nanotube structure has high electrothermal conversion efficiency and relatively high heat radiation scale. Therefore, the electric heating conversion efficiency and the thermal light efficiency of the heating member are high. Secondly, since the heat capacity of the carbon nanotube structure is small, the heating element G has a relatively fast thermal recovery, and effective local heating can be achieved. Third, due to the low density of the carbon nanotubes, the heating device is light in weight and portable, and can be widely used in various fields. The heating device can be applied to the fields of electric heaters, infrared therapeutic devices, electric heaters, vacuum heating devices and the like. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention cannot be limited thereby. The equivalent modifications made by those who are familiar with the skill of the present invention in accordance with the spirit of the present invention are covered by the following caps. 16 201034934 [Schematic Description of the Drawings] Fig. 1 is a plan view of a heating device in the prior art. 2 is a structural view of a heating device which can be locally fixed-point heating in the prior art - Fig. 3 is a plan view of the heating device of the first embodiment of the present invention. Figure 4 is a cross-sectional view taken along line IV-IV of Figure 3. Membrane Structure Fig. 5 is a scanning electron micrograph of a carbon nanotube drawn as a heating element in the first embodiment of the present invention. ❹ 示 Sound = Structure of the carbon nanotube segments in the carbon nanotube film structure of Fig. 5 Fig. 7 is a non-linear scanning electron micrograph of the heating element used in the first embodiment of the present invention. They are a SEM image of the first embodiment of the present invention as a heating element. Fig. 9 is a photograph of a photographic electron micrograph of the heating unit of the first embodiment of the present invention. Figure 10 is a scanning electron micrograph of the side of Figure 9. The line graph u is a characteristic curve of current and temperature in the wire feeder of the Japanese-original 4-node. Fig. 12 is a graph showing the curve of the doubling speed of the splicing member of the fourth embodiment. Fig. 13 is a plan view showing the heating device of the second embodiment. Figure 14 is a cross-sectional view taken along line xiv-xiv of Figure 13. [Main component symbol description] 201034934 Heating device 20, 30 Insulation substrate 202, 302 row electrode 204, 304 column electrode 206, 306 Heating element 208, 308 First electrode 210, 310 Second electrode 212, 312 Grid 214, 314 Medium Insulation layer 216, 316 heating unit 220, 320 fixed electrode 224, 324 〇18

Claims (1)

201034934 七、申請專利範圍: "1. 一種加熱器件,其改良在於,其包括: 一絕緣基底具有一表面; 複數個行電極與複數個列電極設置於絕緣基底的表面, 個行電極與細_極迪蚊設置,每蝴目麵行電極 和與其相交的兩個相鄰的列電極形成一個網格,且行電 電極之間電絕緣;及 〃 〇 j數個加鮮元,每個加鮮元對應格設置,每個加熱 單兀^括帛電極、—第二電極和—加熱元件,該第—電極 與第二電極絕緣間隔設置,該第一電極與第二電極分別與所述 行電極和㈣極電連接,所述加熱元件與所述第—電極和第二 電極電連接’所述加熱元件包括一奈米碳管結構。 2.如申請專利顧第述的加熱餅,其巾,所述複數個行 電極等間隔設置,且複數個列電極等間隔設置。 ° 3.如申請專利範圍第2項所述的加熱器件,其中,所述第-電極 與行電極一體成型’第二電極與列電極一體成型。 4. 如申請專利範圍第i項所述的加熱器件,其中,所述每個網格 内第一電極和第二電極之間的間隔距離為1〇微米〜2厘米。 5. 如申請專利範圍第1項所述的加熱器件,其中,所述奈米碳管 結構包括至少-奈米碳管膜、至少-奈米碳管線狀結構或其組 合。 6·如申請專利範圍第5項所述的加熱器件,其中,所述奈米碳管 19 201034934 膜的單位面積熱容小於2xl〇-4焦耳每平方厘米開爾文。 7. 如申請專利範圍第6項所述的加熱器件,其中,所述奈米碳管 膜的單位面積熱容小於等於1Jxl0-6焦耳每平方厘米開爾文。& 8. 如申請專利範圍第5項所述的加熱器件,其中,所述奈米碳管 結構包括至少兩個層攸置的奈米碳管膜,相鄰兩個奈米: 膜之間通過凡德瓦爾力緊密連接。 9. 如申請專利範圍第5項所述的加熱器件,其中,所述奈米碳管 膜包括複數個奈米碳管,該複數個奈米碳管首尾相連且基本沿 同一方向擇優取向排列。 10. 如申請專利範圍第9項所述的加熱器件,其中,所述奈米碳管 結構中的複數個奈米碳管基本沿同一方向從第一電 ^ 電極延伸。 ,其中,所述奈米碳管 取向排列。 ,其中,所述奈米碳管 11. 如申請專利範圍第5項所述的加熱器件 膜包括複數個奈米碳管沿不同方向擇優 〇 12. 如申請專利範圍第5項所述的加熱器件 膜包括複數個奈米碳管相互纏繞。 ,其中,所述奈米碳管 線、至少一扭轉的奈米 13.如申請專利範圍第5項所述的加熱器件 線狀結構包括至少-__奈米碳管 碳管線或其組合。 R如申請專利範圍第13項所述的加熱器件,其中,所述非扭轉 的奈米碳管線包括概财料管沿該雜制奈米碳管線 長度方向平订排列,所述扭轉的奈米碳管線包括複數個奈米碳 20 201034934 管沿該扭轉的奈米碳管線長度方向呈螺旋狀排列。 15. 如申請專利範圍第1項所述的加熱器件,其中,所述加熱器件 進一步包括複數個固定電極,該複數個固定電極分別對應設置 於第一電極和第二電極,所述奈米碳管結構的兩端分別固定設 置於第一電極、第二電極與固定電極之間。 16. 如申請專利範圍第1項所述的加熱器件,其中,所述加熱元件 與絕緣基底間隔設置,加熱元件與絕緣基底之間的距離為1〇 〇 微米〜2厘米。 Π.如申請專利範圍第1項所述的加熱器件,其中,所述加熱元件 直接設置於絕緣基底表面。 18. —種加熱器件,其改良在於,其包括: 一絕緣基底具有一表面; 複數個行雜錢數_電極分別平行設置於_基底的表 ® ’該複數個行電極與複數個舰極相互交叉設置,每兩個相 ❹ _行電極和與其相交的兩個相鄰的列電極形成—個網格,且 行電極與列電極之間電絕緣;及 2數個加鮮元,每個加鮮元對應—個雛設置,每個加熱 單^匕括帛電極、—第二電極和_加航件,該第一電極 與第-電極絕緣間隔設置於所述每個網格中,該第一電極與第 二電極分別與所述行電極和列電極電連接,所述加熱元件與所 j第-電極和第二電極電連接,所述加熱元件包括一奈米碳管 後合結構,該奈米碳管複合結構包括—奈米碳管結構。 21 201034934 19.如申請專·_ 18項所述的加熱器件,射,所述奈求碳 S複cr、。構包括—基體,該奈米碳管結構複合於該基體中。 2〇.=申料概_ 18項所述的加熱器件,其巾,所述奈米碳 S複σ九構包域充材料,該填充材料複合於該奈米碳管結構 的表面或奈米碳管結構内部。 21·如申晴專利範圍第2〇項所述的加熱器件,其中,所述填充材 Ο201034934 VII. Patent application scope: "1. A heating device, the improvement comprising: an insulating substrate having a surface; a plurality of row electrodes and a plurality of column electrodes disposed on the surface of the insulating substrate, the row electrodes and the thin _Didi mosquito set up, each butterfly line electrode and two adjacent column electrodes intersecting it form a grid, and the electric electrodes are electrically insulated; and 〃 数 j several fresh elements, each fresh The first cell and the second electrode are respectively spaced apart from each other, and the first electrode and the second electrode are respectively spaced apart from the row electrode, and each of the heating electrodes is provided with a heating electrode, a second electrode, and a heating element. And (4) electrically connected, the heating element is electrically connected to the first electrode and the second electrode. The heating element comprises a carbon nanotube structure. 2. The heating cake according to the patent application, wherein the plurality of row electrodes are equally spaced, and a plurality of column electrodes are equally spaced. The heating device according to claim 2, wherein the first electrode is integrally formed with the row electrode. The second electrode is integrally formed with the column electrode. 4. The heating device of claim i, wherein a distance between the first electrode and the second electrode in each of the grids is from 1 μm to 2 cm. 5. The heating device of claim 1, wherein the carbon nanotube structure comprises at least a carbon nanotube film, at least a nanocarbon line structure or a combination thereof. 6. The heating device according to claim 5, wherein the carbon nanotubes 19 201034934 film has a heat capacity per unit area of less than 2 x 1 〇 -4 joules per square centimeter Kelvin. 7. The heating device of claim 6, wherein the carbon nanotube membrane has a heat capacity per unit area of less than or equal to 1 J x 10-6 joules per square centimeter Kelvin. 8. The heating device of claim 5, wherein the carbon nanotube structure comprises at least two layers of disposed carbon nanotube membranes, adjacent to two nanometers: between membranes Tightly connected by Van der Valli. 9. The heating device of claim 5, wherein the carbon nanotube film comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being connected end to end and arranged in a preferred orientation substantially in the same direction. 10. The heating device of claim 9, wherein the plurality of carbon nanotubes in the carbon nanotube structure extend from the first electrode in substantially the same direction. Wherein the carbon nanotubes are aligned. The carbon nanotubes according to claim 5, wherein the plurality of carbon nanotubes are selected in different directions. 12. The heating device according to claim 5 The membrane includes a plurality of carbon nanotubes intertwined with each other. Wherein the carbon nanotube wire, the at least one twisted nanometer, the heating device, the wire structure as described in claim 5, comprises at least a -__ carbon nanotube carbon line or a combination thereof. The heating device of claim 13, wherein the non-twisted nanocarbon pipeline comprises a billing tube aligned along a length direction of the hybrid nanocarbon pipeline, the twisted nanometer The carbon line includes a plurality of nanocarbons 20 201034934. The tubes are helically arranged along the length of the twisted nanocarbon line. 15. The heating device of claim 1, wherein the heating device further comprises a plurality of fixed electrodes, wherein the plurality of fixed electrodes are respectively disposed on the first electrode and the second electrode, the nanocarbon Both ends of the tube structure are respectively fixedly disposed between the first electrode, the second electrode and the fixed electrode. 16. The heating device of claim 1, wherein the heating element is spaced apart from the insulating substrate, and the distance between the heating element and the insulating substrate is 1 〇 微米 to 2 cm. The heating device according to claim 1, wherein the heating element is directly disposed on a surface of the insulating substrate. 18. A heating device, the improvement comprising: an insulating substrate having a surface; a plurality of rows of miscellaneous numbers _ electrodes are respectively arranged in parallel on the table of the _substrate® 'the plurality of row electrodes and the plurality of ship poles mutually Cross-setting, each two ❹ row electrodes and two adjacent column electrodes intersecting each other form a grid, and the row electrode and the column electrode are electrically insulated; and 2 number of fresh elements, each adding fresh The element corresponds to a nesting setting, each of the heating electrodes, the second electrode and the _aircrafting member, the first electrode and the first electrode are spaced apart from each other in the grid, the first The electrode and the second electrode are electrically connected to the row electrode and the column electrode, respectively, the heating element is electrically connected to the first electrode and the second electrode, and the heating element comprises a carbon nanotube rear structure, the The carbon nanotube composite structure includes a carbon nanotube structure. 21 201034934 19. If the heating device described in the application of _18 is applied, the carbon is recovered from the carbon. The structure includes a matrix, and the carbon nanotube structure is compounded in the matrix. The heating device described in Item 18, the towel, the nano carbon S complex σ-six-domain filling material, the filling material is composited on the surface of the carbon nanotube structure or nano Inside the carbon tube structure. The heating device according to the second aspect of the invention, wherein the filler material 料包括金屬、樹脂、陶兗、玻璃以及纖維中的一種或多種。 22.種加熱器件,其改良在於,其包括: 夕個間隔叹置的行電極引線及多個間隔設置的列電極引線,所 述多個行電極引線與多個列電極引線相互交又設置,每相鄰兩 行電極f丨線和與其交叉的相鄰兩個列電則線形成一網 格’所述行_引線與列電極引線之間電絕緣;及 夕個石反納米官加熱結構,每個網格對應設置一個奈米碳管加熱 結構’該奈米碳管加熱結構與對應的所述網格的一個行電極引 線及一個列電極引線電連接。 Μ:力申Si範圍第22項所述的加熱器件’其中,所述奈米碳 吕加”、、、、,口構主要由奈米碳管構成。 24=!範圍第22項所述的加熱器件,其中,所述奈米破 =加減触括—絲,和奸縣祕麵合槐基體中。 種加熱ϋ件’纽良在於,該加熱器件包括: 妙的行電極引線及多烟隔設置的列電極引線 心個行電極引線與多個列電極引線相互交又設置,形成多個 22 201034934 對應設置,每個奈 且與其對應的網格的 網格,所述行電極狀與列電極化線之間電絕緣;及 多個奈米碳管加熱結構與所述多個網格一一 米碳管加熱結觸應-_朗加熱點, 行電極?丨線及_剌線電連接。 26. -種加熱器件’其改良在於,該加熱器件包括: 二官加熱結構按行列式排布形成—加熱 Ο 奈米碳管加熱結構對應一個加熱點;及 ]W 引線及多個間隔設置的列電極•所 極引㈣、、與夕個列電極引線相互交又設置,所述行電 〜、顺;㈣絕緣,每米 連接於所述她服她钟㈣。、、、、。_生 〇 23The material includes one or more of metals, resins, ceramics, glass, and fibers. 22. A heating device, the improvement comprising: a row electrode strip with a plurality of spaced apart slits and a plurality of spaced column electrode leads, wherein the plurality of row electrode leads and the plurality of column electrode leads are disposed to each other Each adjacent two rows of electrode f丨 lines and adjacent two column electric lines intersecting therewith form a grid 'the row_lead and the column electrode lead are electrically insulated; and the eve stone anti-nano official heating structure, Each of the grids is provided with a carbon nanotube heating structure. The carbon nanotube heating structure is electrically connected to a row electrode lead and a column electrode lead of the corresponding grid. Μ: The heating device described in the 22nd item of the Lishen Si range, wherein the nanocarbon ruthenium, the, and the mouth structure are mainly composed of a carbon nanotube. 24=! The heating described in the 22nd item The device, wherein the nano-breaking = addition and subtraction of the contact-silk, and the traits of the genius of the genus in the matrix. The heating element 'New Zealand lie, the heating device includes: wonderful row electrode lead and multi-smoke setting The column electrode lead and the plurality of column electrode leads are disposed to intersect each other to form a plurality of 22 201034934 correspondingly arranged, each of which corresponds to a grid of meshes, and the row electrode and the column are polarized The wires are electrically insulated; and the plurality of carbon nanotube heating structures are in contact with the plurality of grids one by one carbon tubes, and the heating electrodes, the row electrodes, the wires, and the wires are electrically connected. - a heating device' is improved in that the heating device comprises: a two-dimensional heating structure formed in an array arrangement - heating Ο a carbon nanotube heating structure corresponding to a heating point; and] a W lead and a plurality of spaced columns Electrode • Extremely cited (four), and the same column electrode Cross each other and disposed, the electric line ~, cis; (iv) an insulating, per meter is connected to the clock her her clothes green square iv ,,,, ._ 23.
TW98110294A 2009-03-27 2009-03-27 Heating device TWI381989B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98110294A TWI381989B (en) 2009-03-27 2009-03-27 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98110294A TWI381989B (en) 2009-03-27 2009-03-27 Heating device

Publications (2)

Publication Number Publication Date
TW201034934A true TW201034934A (en) 2010-10-01
TWI381989B TWI381989B (en) 2013-01-11

Family

ID=44855729

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110294A TWI381989B (en) 2009-03-27 2009-03-27 Heating device

Country Status (1)

Country Link
TW (1) TWI381989B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791395B2 (en) 2011-09-28 2014-07-29 National Taiwan University Nanotube heating device comprising carbon nanotube and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202677A (en) * 1991-01-31 1993-04-13 Crystal Images, Inc. Display apparatus using thermochromic material
US6225608B1 (en) * 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
ES2335981T3 (en) * 2003-01-20 2010-04-07 Whirlpool Corporation ELECTRIC KITCHEN PLATE AND METHOD TO DETERMINE THE POSITION OF KITCHEN UTENSILS ON THIS.
US7482556B2 (en) * 2004-03-30 2009-01-27 Shaw John R Heating apparatus with multiple element array
US20080187685A1 (en) * 2007-02-07 2008-08-07 Atomic Energy Council - Institute Of Nuclear Energy Research Method of preparing vertically-aligned carbon nanotube under atmospheric and cold-wall heating treatments and making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791395B2 (en) 2011-09-28 2014-07-29 National Taiwan University Nanotube heating device comprising carbon nanotube and manufacturing method thereof

Also Published As

Publication number Publication date
TWI381989B (en) 2013-01-11

Similar Documents

Publication Publication Date Title
CN101848564B (en) Heating element
TWI420954B (en) Heater and method for making the same
TW201240480A (en) Thermoacoustic device
CN102463715A (en) Method for preparing carbon nano-tube composite material and application thereof
TW201039670A (en) Linear heater
TWI460127B (en) Method for making heaters
TWI454817B (en) Thermochromatic device and thermochromatic display apparatus
TW201239873A (en) Thermal acoustic device and electric device
TW201034934A (en) Heating device
TW201133425A (en) Thermochromatic device and thermochromatic display apparatus
TWI400984B (en) Planar heater
TWI399120B (en) Planar heater
TWI400983B (en) Planar heater
TWI400985B (en) Method for making planar heater
TWI513357B (en) Three-dimensional heat source
TW201240485A (en) Thermal acoustic device and electric device
TWI408990B (en) Linear heater
TWI397342B (en) Planar heater
JP2010006698A (en) Linear heater
TWI448416B (en) Method for making linear heater
TWI380733B (en) Planar heating source
TW201133426A (en) Thermochromatic device and thermochromatic display apparatus
TW201039678A (en) Linear heater
TWI408989B (en) Linear heater
TWI501687B (en) Three-dimensional heat source