TW201133426A - Thermochromatic device and thermochromatic display apparatus - Google Patents

Thermochromatic device and thermochromatic display apparatus Download PDF

Info

Publication number
TW201133426A
TW201133426A TW99107701A TW99107701A TW201133426A TW 201133426 A TW201133426 A TW 201133426A TW 99107701 A TW99107701 A TW 99107701A TW 99107701 A TW99107701 A TW 99107701A TW 201133426 A TW201133426 A TW 201133426A
Authority
TW
Taiwan
Prior art keywords
thermochromic
carbon nanotube
electrode
color developing
color
Prior art date
Application number
TW99107701A
Other languages
Chinese (zh)
Other versions
TWI426476B (en
Inventor
Peng Liu
Duan-Liang Zhou
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99107701A priority Critical patent/TWI426476B/en
Publication of TW201133426A publication Critical patent/TW201133426A/en
Application granted granted Critical
Publication of TWI426476B publication Critical patent/TWI426476B/en

Links

Abstract

The present invention relates to a thermochromatic device. The thermochromatic device includes an insulative substrate having a surface, a color element and a heating element. The color element is located on the surface of the insulative substrate. The heating element includes a carbon nanotube structure and is configured to heat the color element. The color element is made of reversible thermochromatic material. A thermochromatic display using the thermochromatic device is also provided.

Description

201133426 [0001] [0002] Ο [0003] ❹ 發明說明: 【發明所屬之技術領域】 本發明涉及一種熱致變色元件及熱致變色顯示裝置。 [先前技術] 由於熱致變色材料於不同的溫度下可以顯示不同的顏色 ,故,可以應用於熱致變色顯示裝置中作為具有顯示功 能的熱致變色元件。先前的熱致變色顯示裝置中的熱致 變色元件至少包括顯色層與加熱層,所述顯色層與加熱 層貼合設置或間隔設置。其中,所述加熱層主要由金屬 板組成。然而,金屬板的熱容及厚度較大,其作為加熱 層工作時,溫度變化慢、電熱轉換效率低,從而使得熱 致變色元件工作時顯色響應遲純、能耗較大。此外,金 屬板的柔韌性能有限,其難以於柔性熱致變色顯示裝置 中作加熱層。 為克服金屬板作為熱致變色元件的加熱層的缺點,先前 技術提供一種熱致變色顯示裝置,該熱致變色顯示裝置 中的熱致變色元件的加熱層包括碳墨及一聚合物。其中 ,所述碳墨列印於聚合物上。所述聚合物的材料為介電 薄膜或聚酯薄膜。雖然,該熱致變色元件可以應用於柔 性熱致變色顯示裝置中,但由於碳墨列印於聚合物上, 聚合物的熱容較大,使得該加熱層的熱容較大,其工作 時,溫度變化慢、電熱轉換效率低,從而使得熱致變色 元件工作時顯色響應也較遲純、能耗也較大。 【發明内容】 有鑒於此,提供一種顯色響應速度較快的熱致變色元件 099107701 表單編號Α0101 第3頁/共47頁 0992013855-0 [0004] 201133426 及應用該熱致變色元件的熱致變色顯示裝置實為必要。 [0005] —種熱致變色元件,其包括一絕緣基底,一顯色元件以 及至少一用來加熱該顯色元件的加熱元件,所述絕緣基 底具有一表面,該顯色元件與加熱元件設置於該絕緣基 底的表面,其中,所述至少一加熱元件包括至少一奈米 碳管結構,所述顯色元件包括可逆熱致變色材料。 [0006] 一種熱致變色顯示裝置,其包括:一絕緣基底具有一表 面;多個行電極引線與多個列電極引線設置於絕緣基底 的表面,該多個行電極引線與多個列電極引線相互交又 設置,每兩個相鄰的行電極引線與每兩値湘鄰的列電極 引線形成一個網格,且行電極引線與列電極引線之間電 絕緣;以及多個熱致變色元件,每個熱致變色元件對應 一個網格設置;其中,所述熱致變色元件包括一顯色元 件以及至少一用來加熱該顯色元件的加熱元件,所述至 少一加熱元件包括至少一奈米碳管結構,所述顯色元件 包括可逆熱致變色材料。 [0007] 一種熱致變色顯示裝置,其包括:一絕緣基底具有一表 面;以及多個熱致變色元件,該多個熱致變色元件按行 列式排布形成一圖元陣列;以及一驅動電路和多個電極 引線,該驅動電路通過所述多個電極引線分別控制每個 熱致變色元件的加熱元件獨立工作;其中,所述熱致變 色元件包括一顯色元件以及至少一用來加熱該顯色元件 的加熱元件,所述至少一加熱元件包括至少一奈米碳管 結構,所述顯色元件包括可逆熱致變色材料。 0992013855-0 099107701 表單編號A0101 第4頁/共47頁 201133426 [0008] 相較於先前技術,所述熱致變色顯示裝置的熱致變色元 件採用奈米碳管結構作為加熱元件,由於奈米碳管結構 的單位面積熱容比金屬板或介電薄膜或聚酯薄膜的單位 面積熱容較小,故,由該奈米碳管結構構成的加熱元件 具有較快的熱響應速度,可用於對顯色元件進行快速加 熱,使得本發明的熱致變色顯示裝置的畫素單元具有較 快的響應速度。 【實施方式】 [0009] 以下將結合附圖對本#明的熱致變色元件及應用該熱致 〇 變色元件的熱致變色顯示裝置作進一步的詳細說明。 [0010] 請參閱圖1,本發明第一實施例提供一種熱致變色元件 220,其包括一絕緣基底202,一顯色元件218,至少一 加熱元件208以及一第一電極210與一第二電極212。 [0011] 所述絕緣基底202具有一表面2020。所述顯色元件218與 加熱元件208設置於所述絕緣基底202的表面2020。所述 顯色元件218與加熱元件208靠近且到應設置。所謂對應 〇 設置指加熱元件208設置於顯色元件218的周圍,如上方 、下方或四周。可以理解,所述顯色元件218與加熱元件 208的具體設置位置不限,只要確保該加熱元件208可以 加熱該顯色元件218即可。優選地,所述顯色元件218與 加熱元件208均為一層狀結構,且該顯色元件218與加熱 元件208為層疊接觸設置或層疊間隔設置。所謂層疊接觸 設置指顯色元件218與加熱元件208的表面貼合,如:顯 色元件218設置於絕緣基底202的表面2020,加熱元件 208設置於顯色元件218的表面且相互接觸。所謂層疊間 099107701 表單編號A0101 第5頁/共47頁 0992013855-0 201133426 隔設置指顯色元件21 8與加熱元件208平行疋對且間隔設 置’如:顯色元件218設置於加熱元件208與絕緣基底 202之間,且加熱元件208通過支撐體(圖未示)與顯色 元件218間隔設置。所述第一電極210與第二電極212間 隔設置。所述第一電極210和第二電極212分別與加熱元 件208電連接,用於對加熱元件208提供電歷或電流’使 該加熱元件208對顯色元件218進行加熱。 [0012] 本實施例中,加熱元件208的個數為一。所述顯色元件 218與加熱元件208均為一層狀結構。所述加熱元件208 設置於絕緣基底202的表面2020。所述顯色元件218設置 於該加熱元件208表面。所述第一電極210與第二電極 212間隔設置於該加熱元件208表面且位於所述顯色元件 218兩側。 [0013] 所述絕緣基底202可以為一硬性基板或柔性基板。所述硬 性基板可以為陶瓷基板、玻璃基板、石英基板、矽基板 . :丨 V., 、氧化矽基板、金剛石基板、氧化銘参板及硬性高分子 基板等中的一種或複數種。所述柔牲基板可以為合成紙 、纖維布及柔性高分子基板等中的一種或複數種。所述 柔性高分子基板的材料可以為聚對苯二甲酸乙二醇酯( PET)、聚乙烯(PE)、聚碳酸酯(PC)或聚醯亞胺(PI )等。可以理解,所述絕緣基底202的材料不限於上述材 料,只要能夠耐200°C以上溫度的絕緣材料均玎以實現本 發明的目的。所述絕緣基底202的大小、形狀與厚度不限 ,本領域技術人員可以根據實際需要,如根據熱致變色 顯示裝置20的預定大小,設置絕緣基底202的尺寸。本實 099107701 表單編號A0101 第6頁/共47頁 0992013855-0 201133426 施例中,所述絕緣基底202優選為一PET基板,其厚度約1 毫米。201133426 [0001] [0002] [0003] Description of the Invention: [Technical Field] The present invention relates to a thermochromic element and a thermochromic display device. [Prior Art] Since thermochromic materials can display different colors at different temperatures, they can be applied to thermochromic display devices as thermochromic elements having display functions. The thermochromic element in the prior thermochromic display device includes at least a color developing layer and a heating layer, and the color developing layer is disposed or spaced apart from the heating layer. Wherein the heating layer is mainly composed of a metal plate. However, the heat capacity and thickness of the metal plate are large, and when it is operated as a heating layer, the temperature changes slowly and the electrothermal conversion efficiency is low, so that the color change response of the thermochromic element is delayed, and the energy consumption is large. In addition, metal sheets have limited flexibility and are difficult to use as a heating layer in flexible thermochromic display devices. To overcome the shortcomings of metal sheets as a heating layer for thermochromic elements, the prior art provides a thermochromic display device in which the heating layer of the thermochromic element comprises carbon ink and a polymer. Wherein the carbon ink is printed on the polymer. The material of the polymer is a dielectric film or a polyester film. Although the thermochromic element can be applied to a flexible thermochromic display device, since the carbon ink is printed on the polymer, the heat capacity of the polymer is large, so that the heat capacity of the heating layer is large, and the working time is The temperature change is slow and the electrothermal conversion efficiency is low, so that the color-developing response of the thermochromic element is also relatively late and the energy consumption is large. SUMMARY OF THE INVENTION In view of the above, a thermochromic element with a fast color response speed is provided. 099107701 Form No. 1010101 Page 3 / Total 47 Page 0992013855-0 [0004] 201133426 and thermochromic application of the thermochromic element A display device is really necessary. [0005] A thermochromic element comprising an insulating substrate, a color developing element and at least one heating element for heating the color developing element, the insulating substrate having a surface, the color developing element and the heating element being disposed And a surface of the insulating substrate, wherein the at least one heating element comprises at least one carbon nanotube structure, and the color developing element comprises a reversible thermochromic material. [0006] A thermochromic display device comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads disposed on a surface of the insulating substrate, the plurality of row electrode leads and the plurality of column electrode leads Intersecting and disposing, each two adjacent row electrode leads form a grid with the column electrode leads of each of the two adjacent, and the row electrode leads are electrically insulated from the column electrode leads; and a plurality of thermochromic elements, each The thermochromic elements correspond to a grid arrangement; wherein the thermochromic element comprises a color developing element and at least one heating element for heating the color developing element, the at least one heating element comprising at least one nano carbon A tube structure, the color developing element comprising a reversible thermochromic material. [0007] A thermochromic display device comprising: an insulating substrate having a surface; and a plurality of thermochromic elements arranged in a matrix to form an array of primitives; and a driving circuit And a plurality of electrode leads, the driving circuit independently controlling the heating elements of each of the thermochromic elements by the plurality of electrode leads; wherein the thermochromic element comprises a color developing element and at least one is used to heat the A heating element of a chromogenic element, the at least one heating element comprising at least one carbon nanotube structure, the chromogenic element comprising a reversible thermochromic material. 0992013855-0 099107701 Form No. A0101 Page 4 / Total 47 Pages 201133426 [0008] Compared with the prior art, the thermochromic element of the thermochromic display device uses a carbon nanotube structure as a heating element due to the nano carbon The heat capacity per unit area of the tube structure is smaller than the heat capacity per unit area of the metal plate or the dielectric film or the polyester film. Therefore, the heating element composed of the carbon nanotube structure has a faster thermal response speed and can be used for The color developing element is rapidly heated so that the pixel unit of the thermochromic display device of the present invention has a faster response speed. [Embodiment] Hereinafter, a thermochromic element of the present invention and a thermochromic display device using the same will be further described in detail with reference to the accompanying drawings. [0010] Referring to FIG. 1, a first embodiment of the present invention provides a thermochromic element 220 including an insulating substrate 202, a color developing element 218, at least one heating element 208, and a first electrode 210 and a second. Electrode 212. [0011] The insulating substrate 202 has a surface 2020. The color developing element 218 and the heating element 208 are disposed on the surface 2020 of the insulating substrate 202. The color developing element 218 is adjacent to the heating element 208 and should be placed. The so-called corresponding 〇 setting means that the heating element 208 is disposed around the color-developing element 218, such as above, below or around. It can be understood that the specific arrangement position of the color developing element 218 and the heating element 208 is not limited as long as the heating element 208 can be heated to the heating element 218. Preferably, the color developing element 218 and the heating element 208 are both in a layered structure, and the color developing element 218 and the heating element 208 are disposed in a laminated contact or stacked. The layered contact arrangement means that the color developing element 218 is bonded to the surface of the heating element 208. For example, the color developing element 218 is disposed on the surface 2020 of the insulating substrate 202, and the heating element 208 is disposed on the surface of the color developing element 218 and is in contact with each other. The so-called stacking room 099107701 Form No. A0101 Page 5 / Total 47 page 0992013855-0 201133426 Separate setting means that the color-developing element 218 is parallel to the heating element 208 and spaced apart. For example, the color-developing element 218 is disposed on the heating element 208 and insulated. Between the substrates 202, and the heating element 208 is spaced apart from the color developing element 218 by a support (not shown). The first electrode 210 and the second electrode 212 are spaced apart from each other. The first electrode 210 and the second electrode 212 are electrically coupled to the heating element 208, respectively, for providing an electrical history or current to the heating element 208 to cause the heating element 208 to heat the color developing element 218. [0012] In this embodiment, the number of the heating elements 208 is one. Both the color developing element 218 and the heating element 208 have a layered structure. The heating element 208 is disposed on a surface 2020 of the insulating substrate 202. The color developing element 218 is disposed on the surface of the heating element 208. The first electrode 210 and the second electrode 212 are spaced apart from each other on the surface of the heating element 208 and on both sides of the color developing element 218. [0013] The insulating substrate 202 may be a rigid substrate or a flexible substrate. The rigid substrate may be one or more of a ceramic substrate, a glass substrate, a quartz substrate, a tantalum substrate, a ruthenium V., a ruthenium oxide substrate, a diamond substrate, an oxidized crystal substrate, and a rigid polymer substrate. The flexible substrate may be one or a plurality of synthetic paper, fiber cloth, and flexible polymer substrate. The material of the flexible polymer substrate may be polyethylene terephthalate (PET), polyethylene (PE), polycarbonate (PC) or polyimine (PI). It is to be understood that the material of the insulating substrate 202 is not limited to the above materials as long as it can withstand an insulating material having a temperature of 200 ° C or higher to achieve the object of the present invention. The size, shape and thickness of the insulating substrate 202 are not limited, and those skilled in the art can set the size of the insulating substrate 202 according to actual needs, such as according to the predetermined size of the thermochromic display device 20.本本 099107701 Form No. A0101 Page 6 of 47 0992013855-0 201133426 In the embodiment, the insulating substrate 202 is preferably a PET substrate having a thickness of about 1 mm.

[0014] 所述顯色元件21 8由可逆熱致變色材料製成。所謂可逆熱 致變色材料指當溫度達到特定範圍時材料的顏色會發生 改變,當溫度恢復到初始溫度時,材料的顏色會隨之復 原的智慧型材料。當該顯色元件218被加熱至特定溫度範 圍時,該顯色元件218的顏色發生改變,從而實現顯示。 所述可逆熱致變色材料的變色溫度低於200°C,優選地, 該可逆熱致變色材料的變色溫度為大於40°C且低於100°C Ο 。可以理解,選擇變色溫度為大於40°C且低於100°C的可 逆熱致變色材料製備顯色元件218 —方面可以確保該熱致 變色元件220在室溫條件下工作,另一方面可以降低熱致 變色元件220的工作電壓,從而降低能耗。所述可逆熱致 變色材料可以為無機類可逆熱致變色材料,有機類可逆 熱致變色材料或液晶類可逆熱致變色材料。 [0015] 所述無機類可逆熱致變色材料包括含銀的碘化物,含銀 ¢) i 的絡合物,含銀的複鹽,含銅.的峡化物,含銅的絡合物 ,含銅的複鹽,含汞的蛾化物,含汞的絡合物,含汞的 複鹽,由鈷鹽、鎳鹽與六次曱基四胺形成的化合物,氧 化釩,釩酸鹽,鉻酸鹽以及氧化釩、釩酸鹽、鉻酸鹽中 任意一種或幾種的混合物。所述無機類可逆熱致變色材 料及其顏色變化範圍和變色溫度參見表1。 [0016] 表1無機類可逆熱致變色材料 [0017] |材料名稱(化學式|顏色變化範圍 |變色溫度(°C ) 099107701 表單編號A0101 第7頁/共47頁 0992013855-0 201133426 C〇Cl2-2C6H12N4r 10H2〇 ~_ 粉紅色一天藍色 ——. 39. 6 C〇I2-2C6H12N4· ioh2〇 粉紅色—綠色 50 C〇S〇4*C6H12N4· 9H2〇 ~~~~~_ 桃紅色—紫色 ~~~_ 60 CuS〇4.2C6H12N4. 5H2〇 ---— 藍色〜翠綠色 76 NiBr2-2C6H12N4* 1〇H2〇 綠色〜藍色 60 NiCl2*2C6H12N4·' 10H 〇 ——~~~1- 綠色〜黃色 110 Co⑽3)2. _1SH12N4-1〇H2〇 氣紅色一绛紅色 75 _AygI4 黃色一紅色. 42 』ygl4 洋紅色一紅檫色 71 J^2 紅色一藍色 137 所述有機類可逆 體)、顯色劑(電子接受體)以及溶劑組成。其中,發 色劑決定顏色,顯色劑決定顏色深淺,溶劑決定變色溫 度所述發色劑可以為二芳甲院類發色劑、熒燒類發色 劑、吲哚啉苯酞類發色劑、吩噻嗪類發色劑、螺吼喃類 發色劑、席夫域類發色劑、螺環類發色劑或雙蒽酮類發 色劑等。所述三芳曱烷類發色劑可以為結晶紫内酯、孔 雀綠内醋或甲紛紅等。所述熒烧類發色劑可以為FT_2、 099107701 表單編號A0101 第8頁/共47頁 0992013855-0 201133426 Ο [0018] 熱敏紅或熱敏綠等。所述顯色劑主要包括無機類顯色劑 和有機類顯色劑。其中,無機類顯色劑可以為酸性白土 或活性白土以及高嶺土或鋁鎂矽酸鹽類等。有機類顯色 劑可以為酚羥基化合物及其衍生物,如雙酚A、對羥基苯 甲酸苄酯或4-羥基香豆素等;羧基化合物及其衍生物, 如己酸、辛酸、硬脂酸、對苯二曱酸或一些可以提供質 子的路易士酸等。當使用三芳甲烷類作發色劑時,優選 有機酚類作為顯色劑。所述溶劑可以為醇類,如正十二 醇、正十四醇、正十六醇或正十八醇等。另外,一些高 級脂肪酮、酯、醚、醯胺或羧酸類化合物等也可用作溶 劑。 Ο [0019] 液晶是介於固態與各向同性液態之間的中間態物相,即 為三維有序的空間結構和各向同性的均質熔融物質。所 述液晶類可逆熱致變色材料指由溫度變化所引起的,並 且只能在一定溫度範圍内存在的晶態物質。所述液晶類 可逆熱致變色材料可以為近晶型液晶、向列型液晶或膽 甾型液晶。所述膽留型液晶以膽留醇為母體,經酯化或 鹵素取代後而製成。 本實施例中,所述顯色元件21 8為一層銀汞的碘化物( AgzHgl,),其厚度為10微米~500微米。優選地,該顯 色元件218的厚度為50微米〜100微米。所述顯色元件218 可以通過熱沉積或濺射等方法沉積於所述加熱元件208表 面且至少位於第一電極210與第二電極212之間。所述顯 色元件21 8可以與所述第一電極210或第二電極212間隔 設置,也可以與所述第一電極210或第二電極212相互接 099107701 表單編號A0101 第9頁/共47頁 0992013855-0 201133426 觸設置。 [0020] 所述加熱元件2 0 8包括一奈米碳管結構。所述奈米碳管結 構為一自支撐結構。所謂“自支撐結構”即該奈米碳管 結構無需通過一支撐體支撐,也能保持自身特定的形狀 。該自支撐結構的奈米碳管結構包括複數個奈米碳管, 該複數個奈米碳管通過凡德瓦爾力相互吸引,從而使奈 米碳管結構具有特定的形狀。所述奈米碳管結構中的奈 米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳 管中的一種或複數種。所述單壁奈米碳管的直徑為0. 5奈 米〜50奈米,所述雙壁奈米碳管的直徑為1. 0奈米〜50奈 米,所述多壁奈米碳管的直徑為1. 5奈米〜5 0奈米。該奈 米碳管結構為層狀或線狀結構。由於該奈米碳管結構具 有自支撐性,不通過支撐體支撐時仍可保持層狀或線狀 結構。該奈米碳管結構中奈米碳管之間具有大量間隙, 從而使該奈米碳管結構具有大量微孔。所述奈米碳管結 構的單位面積熱容小於2x1 (Γ4焦耳每平方厘米開爾文。 優選地,所述奈米碳管結構的單位面積熱容可以小於等 於1. 7x10_6焦耳每平方厘米開爾文。 [0021] 所述奈米碳管結構包括至少一奈米碳管膜、至少一奈米 碳管線狀結構或其組合。所述奈米碳管膜包括複數個均 勻分佈的奈米碳管。該奈米碳管膜中的奈米碳管有序排 列或無序排列。當奈米碳管膜包括無序排列的奈米碳管 時,奈米碳管相互纏繞;當奈米碳管膜包括有序排列的 奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優 取向排列。所謂擇優取向指奈米碳管膜中大部分奈米碳 099107701 表單編號A0101 第10頁/共47頁 0992013855-0 201133426 Ο [0022] 管於某一方向上具有較大的取向幾率,即奈米碳管膜中 大部分奈米碳管的轴向基本沿同一方向延伸。當奈米碳 管結構包括複數個奈米碳管基本沿同一方向有序排列時 ,該複數個奈米碳管從第一電極向第二電極延伸。具體 地,該奈米碳管膜可包括奈米碳管絮化膜、奈米碳管碾 壓膜或奈米破管拉膜。該奈米碳管線狀結構包括至少一 非扭轉的奈米碳管線、至少一扭轉的奈米碳管線或其組 合。當所述奈米碳管線狀結構包括多根非扭轉的奈米碳 管線或扭轉的奈米碳管線時,該非扭轉的奈米碳管線或 扭轉的奈米碳管線可以相互平行設置成一束狀結構,或 相互扭轉設置成一絞線結構。 所述奈米碳管膜為由若干奈米碳管組成的自支撐結構。 〇 所述若干奈米碳管為沿同一方向擇優取向排列。所述擇 優取向指奈米碳管膜中大多數奈米碳管的整體延伸方向 基本朝同一方向。而且,所述大多數奈米碳管的整體延 伸方向基本平行於奈米碳管膜的表面。進一步地,所述 奈米碳管膜中多數奈米碳管通過凡德瓦爾力首尾相連。 具體地,所述奈米碳管膜中基本朝同一方向延伸的大多 數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米 碳管通過凡德瓦爾力首尾相連。當然,所述奈米碳管膜 中存在少數隨機排列的奈米碳管,這些奈米碳管不會對 奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯 影響。所述自支撐為奈米碳管膜不需要大面積的載體支 撐,而只要相對兩邊提供支撐力即能整體上懸空而保持 自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間 099107701 表單編號Α0101 第11頁/共47頁 0992013855-0 201133426 隔特定距離設置的兩個支撐體上時,位於兩個支撐體之 間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支 撐主要通過奈米碳管膜中存在連續的通過凡德瓦爾力首 尾相連延伸排列的奈米碳管而實現。 [0023] 具體地,所述奈米碳管膜中基本朝同一方向延伸的多數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。故,不能排除奈米碳管膜的基本朝同一方向延伸的 多數奈米碳管中並列的奈米碳管之間可能存在部分接觸 〇 [0024] 請參閱圖2及圖3,具體地,所述奈米碳管拉膜包括複數 個連續且定向排列的奈米碳管片段143。該複數個奈米碳 管片段143通過凡德瓦爾力首尾相連。每一奈米碳管片段 143包括複數個相互平行的奈米碳管145,該複數個相互 平行的奈米碳管145通過凡德瓦爾力緊密結合。該奈米碳 管片段143具有任意的長度、厚度、均勻性及形狀。所述 奈米碳管拉膜的厚度為0.5奈米〜100微米,寬度與拉取出 該奈米碳管拉膜的奈米碳管陣列的尺寸有關,長度不限 。.該奈米碳管膜中的奈米碳管14 5沿同一方向擇優取向排 列。所述奈米碳管拉膜具有較高的透光性。單層奈米碳 管拉膜的透光率達90%以上。所述奈米碳管拉膜及其製備 方法具體請參見申請人於20 07年2月12日申請的,於 2008年8月16日公開的第TW200833862號台灣公開專利 申請“奈米碳管膜結構及其製備方法”。為節省篇幅, 僅引用於此,但上述申請所有技術揭露也應視為本發明 099107701 表單編號A0101 第12頁/共47頁 0992013855-0 201133426 申請技術揭露的一部分。 [0025] 當所述奈米碳管結構包括層疊設置的多層奈米碳管拉膜 時,相鄰兩層奈米碳管拉膜中的擇優取向排列的奈米碳 管之間形成一交叉角度α,且α大於等於0度小於等於90 度(0°SaS90°)。所述複數個奈米碳管拉膜之間或一 個奈米碳管拉膜之中的相鄰的奈米碳管之間具有間隙, 從而於奈求碳管結構中形成複數個微孔,微孔的孔徑約 小於10微米。本實施例中,所述奈米碳管結構為一單層 奈米碳管拉膜。 〇 [0026] 所述奈米碳管碾壓膜包括均勻分佈的奈米碳管。奈米碳 管沿同一方向擇優取向排列,奈米碳管也可沿不同方向 擇優取向排列。優選地,所述奈米碳管碾壓膜中的奈米 碳管平行於奈米碳管碾壓膜的表面。所述奈米碳管碾壓 膜中的奈米碳管相互交疊,且通過凡德瓦爾力相互吸引 ,緊密結合,使得該奈米碳管碾壓膜具有很好的柔韌性 ,可以彎面折疊成任意形狀而不破裂。且由於奈米碳管 Q 碾壓膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊 密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需 基底支撐。所述奈米碳管碾壓膜可通過碾壓一奈米碳管 陣列獲得。所述奈米碳管碾壓膜中的奈米碳管與形成奈 米碳管陣列的基底的表面形成一夾角/3,其中,/3大於 等於0度且小於等於15度(0S 0^15°),該夾角卢與施 加於奈米碳管陣列上的壓力有關,壓力越大,該夾角越 小。所述奈米碳管碾壓膜的長度和寬度不限。所述碾壓 膜包#複數個微孔結構,該微孔結構均勻且規則分佈於 099107701 表單編號A0101 第13頁/共47頁 0992013855-0 201133426 奈米碳管碾壓膜中,其中微孔直徑為1奈米〜0. 5微米。所 述奈米碳管碾壓膜及其製備方法具體請參見申請人於 2007年6月29日申請的,於2009年1月1日公開的第 TW200900348號台灣專利申請“奈米碳管薄膜的製備方 法”。為節省篇幅,僅引用於此,但上述申請所有技術 揭露也應視為本發明申請技術揭露的一部分。 [0027] 所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據 實際需要選擇。本發明實施例提供的奈米碳管絮化膜的 長度為卜10厘米,寬度為1~10厘米,厚度為1微米〜2毫 米。所述奈米碳管絮化膜包括相互纏繞的奈米碳管,奈 米碳管的長度大於10微米。所述奈米碳管之間通過凡德 瓦爾力相互吸引、纏繞,形成網絡狀結構。所述奈米碳 管絮化膜中的奈米碳管均勻分佈,無規則排列,使該奈 米碳管絮化膜各向同性,所述奈米碳管絮化膜中的奈米 碳管之間形成大量的微孔,微孔孔徑為1奈米〜〇. 5微米。 所述奈米碳管絮化膜及其製備方法具體請參見申請人於 2007年5月11日申請的,於2008年11月16日公開的第 TW200844041號台灣專利申請“奈米碳管薄膜的製備方 法”。為節省篇幅,僅引用於此,但上述申請所有技術 揭露也應視為本發明申請技術揭露的一部分。 [0028] 請參閱圖4,該非扭轉的奈米碳管線包括複數個沿該非扭 轉的奈米碳管線長度方向排列的奈米碳管。具體地,該 非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數 個奈米碳管片段通過凡德瓦爾力首尾相連,每一奈米碳 管片段包括複數個相互平行並通過凡德瓦爾力緊密結合 099107701 表單編號A0101 第14頁/共47頁 0992013855-0 201133426 Ο 的奈米碳管。該奈米碳管片段具有任意的長度、厚度、 均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑 為0. 5奈米〜100微米。非扭轉的奈米碳管線為將奈米碳管 拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤 所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發 時產生的表面張力的作用下,奈米碳管拉膜中的相互平 行的複數個奈米碳管通過凡德瓦爾力緊密結合,從而使 奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶 劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氣乙烷 或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非 扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相 比,比表面積減小,黏性降低。 [0029] 〇 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 拉膜兩端沿相反方向扭轉獲得。請參閱圖5,該扭轉的奈 米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排 列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數 個奈米碳管片段,該複數個奈米碳管片段通過凡德瓦爾 力首尾相連,每一奈米碳管片段包括複數個相互平行並 通過凡德瓦爾力緊密結合的奈米碳管。該奈米碳管片段 具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米 碳管線長度不限,直徑為0. 5奈米〜100微米。進一步地, 可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在 揮發性有機溶劑揮發時產生的表面張力的作用下,處理 後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡德瓦爾 力緊密結合,使扭轉的奈米碳管線的比表面積減小,密 099107701 表單編號Α0101 第15頁/共47頁 0992013855-0 201133426 度及強度增大。 [0030] 所述奈米碳管線及其製備方法具體請參見申請人於2002 年11月5日申請的,於2008年11月21日公告的第 1 303239號台灣公告專利“一種奈米碳管繩及其製造方 法”,及於於2005年12月16日申請的,於2007年7月1日 公開的第TW200724486號台灣公開專利申請“奈米碳管 絲及其製作方法”。為節省篇幅,僅引用於此,但上述 申請所有技術揭露也應視為本發明申請技術揭露的一部 分。 [0031] 由於奈米碳管結構具有較大的比表面積,其本身有很好 的黏附性,故由奈米碳管結構組成的加熱元件208可以直 接設置於所述絕緣基底202的表面2020。另,所述加熱元 件208也可通過一黏結劑(圖未示)固定於所述絕緣基底 202的表面2020。所述加熱元件208可以直接固定於第一 電極210與第二電極212的表面,也可通過一導電黏結劑( 圖未示)固定於第一電極210與第二電極212的表面。本實 施例中,優選的導電黏結劑為銀膠。 [0032] 由於加熱元件208直接設置於絕緣基底202的表面2020, 故,該加熱元件208還可以為通過絲網列印等方法形成的 奈米碳管層,該奈米碳管層包括複數個奈米碳管無序分 佈。 [0033] 所述加熱元件208還可以包括一奈米碳管複合結構。所述 奈米碳管複合結構包括一奈米碳管結構以及分散於奈米 碳管結構中的填充材料。所述填充材料填充於奈米碳管 099107701 表單編號A0101 第16頁/共47頁 0992013855-0 201133426 結構中的微孔中或複合於奈米碳管結構的表面。所述填 充材料包括金屬、樹脂、陶瓷、玻璃以及纖維中的一種 或複數種。可選擇地,所述奈米碳管複合結構可以包括 一基體以及一奈米碳管結構複合於該基體中。所述基體 的材料包括金屬、樹脂、陶瓷、玻璃以及纖維中的一種 或複數種。所述基體將奈米碳管結構完全包覆,該基體 材料可至少部分浸潤於該奈米碳管結構中。 [0034] Ο Ο [0035] 當採用奈米碳管膜作為加熱元件208時,可以將奈米碳管 膜直接鋪設於絕緣基底202的表面20¾0或層狀顯色元件 218表面;當採用單個奈米碳管線狀結構作為加熱元件 208時,可以將該單個奈米碳管線狀姑構折疊或纏繞成一 層狀結構後再鋪設於絕緣基底202的表面2020或層狀顯色 元件218表面,也可以將該單個奈米碳管線狀結構盤繞設 置於一塊狀顯色元件218周圍;當採用複數個奈米碳管線 狀結構作為加熱元件2〇8時,可以將該複敏個奈米碳管線 狀結構平行設置、交又設置或編織成一層狀結構後再鋪 設於絕緣基底202的表面2020或層狀顯色元件218表面。 由於本實施例的加熱元件2〇8主要由奈米碳管構成,奈米 碳管具有較高的電熱轉換效率以及比較高的熱輻射效率 ’故’該加熱元件2〇8電熱轉換效率及熱輻射效率較高。 由於奈米破管結構的熱容較小,故,由該奈米碳管結構 構成的加熱元件2〇8具有較快的熱響應速度,可用於對顯 色元件218進行快速加熱。如,單層奈米碳管拉膜可以在 1毫秒内升溫到約2000K。該特性使得本發明實施例製備 的熱致變色元件220具有較快的響應速度。由於奈米碳管 099107701 表單編號A0101 第Π頁/共47頁 0992013855-0 201133426 具有較強的化學穩定性,故,採用該奈米碳管結構的加 熱元件208的電阻穩定,從而提高了熱致變色元件220的 穩定性。另,由於奈米碳管具有較小的尺寸,故,採用 該奈米碳管結構作為加熱元件208可以減小熱致變色元件 220的尺寸,從而提高採用該熱致變色元件220的顯示裝 置的解析度。 [0036] 所述第一電極210與第二電極212的設置位置不限,可以 直接設置於絕緣基底202的表面2020,或設置於加熱元件 208表面,或設置於顯色元件218表面,或設置於一支撐 體(圖未示)上。所述第一電極210與第二電極2 12由導 電材料組成,該第一電極210與第二電極21 2的形狀不限 ,可為導電薄膜、金屬片或者金屬引線。優選地,第一 電極210與第二電極212均為一層導電薄膜。該導電薄膜 的厚度為0. 5奈米〜500微米。該導電薄膜的材料可以為金 屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ΑΤΟ)、 導電漿料或導電聚合物等。該金屬或合金材料可以為鋁 、銅、鎢、銦、金、欽、銀、欽、妃、絶或上述金屬的 任意組合的合金。本實施例中,該第一電極210與第二電 極212的材料為導電漿料,通過絲網列印法列印於所述絕 緣基底20 2上。該導電漿料的成分包括金屬粉、低熔點玻 璃粉和黏結劑。其中,該金屬粉優選為銀粉,該黏結劑 優選為松油醇或乙基纖維素。該導電衆料中,金屬粉的 重量比為50%〜90%,低熔點玻璃粉的重量比為2°/»~10%, 黏結劑的重量比為8%〜40%。 [0037] 所述熱致變色元件220在使用時,當在所述第一電極210 099107701 表單編號Α0101 第18頁/共47頁 0992013855-0 201133426 Ο [0038][0014] The color developing element 218 is made of a reversible thermochromic material. The so-called reversible thermochromic material refers to the color of the material changes when the temperature reaches a certain range, and the color of the material will be restored when the temperature returns to the initial temperature. When the color developing element 218 is heated to a specific temperature range, the color of the color developing element 218 is changed to effect display. The reversible thermochromic material has a color change temperature of less than 200 ° C. Preferably, the reversible thermochromic material has a color change temperature of greater than 40 ° C and less than 100 ° C. It can be understood that the preparation of the color developing element 218 by selecting a reversible thermochromic material having a color change temperature of more than 40 ° C and less than 100 ° C can ensure that the thermochromic element 220 operates at room temperature, and on the other hand can be lowered. The operating voltage of the thermochromic element 220 reduces energy consumption. The reversible thermochromic material may be an inorganic reversible thermochromic material, an organic reversible thermochromic material or a liquid crystal reversible thermochromic material. [0015] The inorganic reversible thermochromic material comprises a silver-containing iodide, a complex containing silver iridium), a double salt containing silver, a cation containing copper, a complex containing copper, Double salt of copper, molybdenum containing mercury, complex containing mercury, double salt containing mercury, compound formed from cobalt salt, nickel salt and hexamethylenetetramine, vanadium oxide, vanadate, chromic acid a salt and a mixture of any one or more of vanadium oxide, vanadate, and chromate. The inorganic reversible thermochromic material and its color change range and discoloration temperature are shown in Table 1. Table 1 Inorganic Reversible Thermochromic Material [0017] | Material Name (Chemical Formula | Color Variation Range | Color Change Temperature (°C) 099107701 Form No. A0101 Page 7 / Total 47 Page 0992013855-0 201133426 C〇Cl2- 2C6H12N4r 10H2〇~_ Pink Day Blue——. 39. 6 C〇I2-2C6H12N4· ioh2〇 Pink-Green 50 C〇S〇4*C6H12N4· 9H2〇~~~~~_ Pink-Purple~ ~~_ 60 CuS〇4.2C6H12N4. 5H2〇---- Blue~ Emerald 76 NiBr2-2C6H12N4* 1〇H2〇Green~Blue 60 NiCl2*2C6H12N4·' 10H 〇——~~~1- Green~ Yellow 110 Co(10)3)2. _1SH12N4-1〇H2 Xenon red one red 75 _AygI4 yellow one red. 42 』ygl4 magenta red 71 71 J^2 red one blue 137 said organic reversible body) A toner (electron acceptor) and a solvent composition. Wherein, the coloring agent determines the color, the coloring agent determines the color depth, and the solvent determines the color changing temperature. The coloring agent may be a Erfangjia coloring agent, a fluorescent coloring agent, a porphyrin benzoquinone coloring color. Agent, phenothiazine-based hair coloring agent, snail-like coloring agent, Schiff domain-based coloring agent, spiro ring-like coloring agent or bis-ketone-based coloring agent. The triarylnonane type coloring agent may be crystal violet lactone, chlorinated vinegar or a red vinegar. The fluorescent coloring agent may be FT_2, 099107701 Form No. A0101 Page 8 of 47 0992013855-0 201133426 Ο [0018] Thermal red or thermal green. The developer mainly includes an inorganic color developer and an organic color developer. Among them, the inorganic color developing agent may be acid white clay or activated clay, kaolin or aluminum magnesium silicate. The organic color developer may be a phenolic hydroxyl compound and a derivative thereof, such as bisphenol A, benzyl p-hydroxybenzoate or 4-hydroxycoumarin, etc.; a carboxyl compound and a derivative thereof, such as caproic acid, caprylic acid, and stearic acid; Acid, terephthalic acid or some Lewis acids that can provide protons. When triarylmethane is used as the color former, organic phenols are preferred as the color former. The solvent may be an alcohol such as n-dodecyl alcohol, n-tetradecyl alcohol, n-hexadecanol or n-octadecanol or the like. In addition, some advanced fatty ketones, esters, ethers, decylamines or carboxylic acids can also be used as solvents.液晶 [0019] Liquid crystal is an intermediate phase between a solid and an isotropic liquid, that is, a three-dimensional ordered spatial structure and an isotropic homogeneous molten material. The liquid crystal reversible thermochromic material refers to a crystalline substance which is caused by a change in temperature and which can only exist within a certain temperature range. The liquid crystal type reversible thermochromic material may be a smectic liquid crystal, a nematic liquid crystal or a cholesteric liquid crystal. The cholesteric liquid crystal is prepared by using cholesteric alcohol as a precursor and being substituted by esterification or halogen. In this embodiment, the color developing element 218 is a layer of silver mercury iodide (AgzHgl) having a thickness of 10 micrometers to 500 micrometers. Preferably, the color developing element 218 has a thickness of from 50 micrometers to 100 micrometers. The color developing element 218 may be deposited on the surface of the heating element 208 by thermal deposition or sputtering or at least between the first electrode 210 and the second electrode 212. The color developing element 218 may be spaced apart from the first electrode 210 or the second electrode 212, or may be connected to the first electrode 210 or the second electrode 212. 099107701 Form No. A0101 Page 9 of 47 0992013855-0 201133426 Touch settings. [0020] The heating element 206 includes a carbon nanotube structure. The carbon nanotube structure is a self-supporting structure. The so-called "self-supporting structure" means that the carbon nanotube structure can maintain its own specific shape without being supported by a support. The self-supporting structure of the carbon nanotube structure comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are attracted to each other by the van der Waals force, so that the carbon nanotube structure has a specific shape. The carbon nanotubes in the carbon nanotube structure include one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes. The nano-walled carbon nanotubes having a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotubes having a diameter of 1.0 nm to 50 nm, the multi-walled carbon nanotubes The diameter is 1. 5 nm ~ 5 0 nm. The carbon nanotube structure is a layered or linear structure. Since the carbon nanotube structure is self-supporting, it can maintain a layered or linear structure without being supported by the support. The carbon nanotube structure has a large amount of gaps between the carbon nanotubes, so that the carbon nanotube structure has a large number of micropores. The heat capacity per unit area of the carbon nanotube structure is less than 2x1 (Γ4 joules per square centimeter Kelvin. Preferably, the heat capacity per unit area of the carbon nanotube structure may be less than or equal to 1. 7x10_6 joules per square centimeter Kelvin. The carbon nanotube structure comprises at least one carbon nanotube film, at least one nanocarbon line-like structure or a combination thereof. The carbon nanotube film comprises a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes in the carbon nanotube film are ordered or disorderly arranged. When the carbon nanotube membrane comprises a disorderly arranged carbon nanotube, the carbon nanotubes are intertwined; when the carbon nanotube membrane comprises When ordering the carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The so-called preferred orientation refers to most of the carbon carbon in the carbon nanotube film. 099107701 Form No. A0101 Page 10 of 47 0992013855-0 201133426 Ο [0022] The tube has a large orientation probability in a certain direction, that is, the axial direction of most of the carbon nanotubes in the carbon nanotube film extends substantially in the same direction. When the carbon nanotube structure includes plural Basic carbon nanotubes When the same direction is arranged in an order, the plurality of carbon nanotubes extend from the first electrode to the second electrode. Specifically, the carbon nanotube film may include a carbon nanotube film, a carbon nanotube film Or a nanotube breaking membrane. The nanocarbon line structure comprises at least one non-twisted nanocarbon pipeline, at least one twisted nanocarbon pipeline or a combination thereof. When the nanocarbon pipeline structure comprises a plurality of When the non-twisted nano carbon line or the twisted nano carbon line is used, the non-twisted nano carbon line or the twisted nano carbon line may be arranged in parallel with each other in a bundle structure, or twisted to each other to form a stranded structure. The carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along the same direction. The preferred orientation refers to most nanocarbons in the carbon nanotube film. The overall extension direction of the tubes is substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film Via Van der Waals Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and each of the carbon nanotubes adjacent to the extending direction pass through the van der Waals Valli is connected end to end. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube membrane. These carbon nanotubes do not constitute the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, and as long as the supporting force is provided on both sides, the whole film can be suspended and maintained in a self-membranous state, that is, the carbon nanotube film is placed ( Or fixed to) 099107701 Form No. 1010101 Page 11 / Total 47 Pages 0992013855-0 201133426 When two supports are placed at a certain distance, the carbon nanotube film between the two supports can be suspended to maintain its own film. State. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end of the van der Waals force in the carbon nanotube film. [0023] Specifically, a plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated. Extend the direction. Therefore, it is impossible to exclude that there may be partial contact between the carbon nanotubes juxtaposed in the majority of the carbon nanotubes extending in the same direction. [0024] Please refer to FIG. 2 and FIG. 3, specifically, The carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by Van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 145 which are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any length, thickness, uniformity, and shape. The thickness of the carbon nanotube film is 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited. The carbon nanotubes 14 5 in the carbon nanotube film are arranged in a preferred orientation in the same direction. The carbon nanotube film has high light transmittance. The transmittance of the single-layer carbon nanotube film is over 90%. The carbon nanotube film and the preparation method thereof are described in detail in the Taiwan Patent Application No. TW200833862, which was filed on the Aug. 16, 2007. Structure and preparation method thereof". In order to save space, only the above is cited, but all the technical disclosures of the above application should also be regarded as the present invention. 099107701 Form No. A0101 Page 12 of 47 0992013855-0 201133426 Part of the technical disclosure. [0025] When the carbon nanotube structure comprises a stacked multi-layered carbon nanotube film, a preferred angle between the aligned carbon nanotubes in the adjacent two layers of carbon nanotube film forms an intersection angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0°SaS90°). a gap is formed between the plurality of carbon nanotube films or between adjacent carbon nanotubes in a carbon nanotube film, thereby forming a plurality of micropores in the carbon tube structure. The pores have a pore size of less than about 10 microns. In this embodiment, the carbon nanotube structure is a single-layer carbon nanotube film. [0026] The carbon nanotube rolled film includes a uniformly distributed carbon nanotube. The carbon nanotubes are arranged in the same direction, and the carbon nanotubes can also be arranged in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube rolled film overlap each other and are attracted to each other by the van der Waals force, and the carbon nanotubes have good flexibility and can be bent. Fold into any shape without breaking. Moreover, since the carbon nanotubes in the carbon nanotubes of the carbon nanotubes Q are attracted to each other by the van der Waals force, the carbon nanotube film is a self-supporting structure, which does not require a substrate support. The carbon nanotube rolled film can be obtained by rolling an array of carbon nanotubes. The carbon nanotubes in the carbon nanotube rolled film form an angle /3 with the surface of the substrate forming the carbon nanotube array, wherein /3 is greater than or equal to 0 degrees and less than or equal to 15 degrees (0S 0^15) °), the angle is related to the pressure applied to the array of carbon nanotubes, the greater the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. The laminated film package has a plurality of microporous structures, and the microporous structure is uniform and regularly distributed in 099107701. Form No. A0101 Page 13 / Total 47 pages 0992013855-0 201133426 Nano carbon tube rolling film, wherein the micropore diameter 5微米。 For 1 nm ~ 0. 5 microns. The carbon nanotube film and the preparation method thereof are described in detail in the Taiwan Patent Application No. TW200900348, filed on Jan. 29, 2009, filed on Jan. 29, 2009. Preparation". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application. [0027] The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube film of the embodiment of the present invention has a length of 10 cm, a width of 1 to 10 cm, and a thickness of 1 μm to 2 mm. The carbon nanotube flocculation membrane comprises intertwined carbon nanotubes having a length greater than 10 microns. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. The carbon nanotubes in the carbon nanotube flocculation membrane are uniformly distributed and arranged irregularly, so that the carbon nanotube flocculation membrane is isotropic, and the carbon nanotubes in the carbon nanotube flocculation membrane are isotactic. A large number of micropores are formed between the micropores having a pore size of 1 nm to 〇. 5 μm. The carbon nanotube film and the preparation method thereof are described in detail in the Taiwan Patent Application No. TW200844041 filed on Nov. 16, 2008, the entire disclosure of which is incorporated herein by reference. Preparation". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the technical disclosure of the present application. [0028] Referring to FIG. 4, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by Van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Devalli is closely integrated with 099107701 Form No. A0101 Page 14 / Total 47 Page 0992013855-0 201133426 Ο Nano carbon tube. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. The non-twisted nano carbon line is obtained by treating the carbon nanotube film with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, a plurality of nano carbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. [0029] 扭转 The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 5, the twisted carbon nanotube line includes a plurality of carbon nanotubes arranged in an axial spiral arrangement around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by Van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through each other Deval's tightly integrated carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by the van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline Decrease, dense 099107701 Form number Α 0101 Page 15 / Total 47 page 0992013855-0 201133426 Degree and intensity increase. [0030] The nano carbon pipeline and the preparation method thereof are specifically referred to the applicant's patent application on November 5, 2002, No. 1 303239 announced on November 21, 2008. A rope and a method of manufacturing the same, and a Taiwan Patent Application No. TW200724486, which was filed on Dec. 1, 2005, which is hereby incorporated by reference. In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the disclosure of the technology of the present application. [0031] Since the carbon nanotube structure has a large specific surface area and itself has good adhesion, the heating element 208 composed of a carbon nanotube structure can be directly disposed on the surface 2020 of the insulating substrate 202. In addition, the heating element 208 can also be fixed to the surface 2020 of the insulating substrate 202 by a bonding agent (not shown). The heating element 208 may be directly fixed to the surface of the first electrode 210 and the second electrode 212, or may be fixed to the surfaces of the first electrode 210 and the second electrode 212 by a conductive adhesive (not shown). In this embodiment, the preferred conductive bonding agent is silver paste. [0032] Since the heating element 208 is directly disposed on the surface 2020 of the insulating substrate 202, the heating element 208 may also be a carbon nanotube layer formed by a method such as screen printing, and the carbon nanotube layer includes a plurality of layers. The carbon nanotubes are disorderly distributed. [0033] The heating element 208 may also include a carbon nanotube composite structure. The carbon nanotube composite structure includes a carbon nanotube structure and a filler material dispersed in the carbon nanotube structure. The filler material is filled in the carbon nanotubes 099107701 Form No. A0101 Page 16 of 47 0992013855-0 201133426 The micropores in the structure or the surface of the carbon nanotube structure. The filling material includes one or more of a metal, a resin, a ceramic, a glass, and a fiber. Alternatively, the carbon nanotube composite structure may include a matrix and a carbon nanotube structure composited in the matrix. The material of the substrate includes one or more of a metal, a resin, a ceramic, a glass, and a fiber. The substrate completely encapsulates the carbon nanotube structure, and the matrix material is at least partially infiltrated into the carbon nanotube structure. [0035] When a carbon nanotube film is used as the heating element 208, the carbon nanotube film can be directly laid on the surface of the insulating substrate 202 or the surface of the layered color developing element 218; When the carbon-carbon pipeline-like structure is used as the heating element 208, the single nano-carbon line-like structure may be folded or wound into a layered structure and then laid on the surface 2020 of the insulating substrate 202 or the surface of the layer-like color-developing element 218, or The single nano carbon line structure is coiled around the one-piece color developing element 218; when a plurality of nano carbon line-like structures are used as the heating element 2〇8, the sensitized nano carbon line can be used. The structures are placed in parallel, placed or woven into a layered structure and then laid on the surface 2020 of the insulating substrate 202 or the surface of the layered color developing element 218. Since the heating element 2〇8 of the present embodiment is mainly composed of a carbon nanotube, the carbon nanotube has a high electrothermal conversion efficiency and a relatively high heat radiation efficiency, so the heating element 2〇8 electrothermal conversion efficiency and thermal radiation More efficient. Since the heat capacity of the nano-tube structure is small, the heating element 2〇8 composed of the carbon nanotube structure has a relatively fast thermal response speed and can be used for rapid heating of the color-developing element 218. For example, a single-layer carbon nanotube film can be heated to about 2000K in 1 millisecond. This property allows the thermochromic element 220 produced in the embodiment of the present invention to have a faster response speed. Since the carbon nanotubes 099107701 form number A0101 page/47 pages 0992013855-0 201133426 have strong chemical stability, the resistance of the heating element 208 using the carbon nanotube structure is stable, thereby improving the heat generation. The stability of the color changing element 220. In addition, since the carbon nanotube has a small size, the use of the carbon nanotube structure as the heating element 208 can reduce the size of the thermochromic element 220, thereby improving the display device using the thermochromic element 220. Resolution. [0036] The first electrode 210 and the second electrode 212 are not limited in position, and may be directly disposed on the surface 2020 of the insulating substrate 202, or disposed on the surface of the heating element 208, or disposed on the surface of the color developing element 218, or On a support (not shown). The first electrode 210 and the second electrode 2 12 are composed of a conductive material, and the shapes of the first electrode 210 and the second electrode 21 2 are not limited and may be a conductive film, a metal piece or a metal lead. Preferably, the first electrode 210 and the second electrode 212 are each a conductive film. 5纳米〜500微米。 The thickness of the conductive film is 0. 5 nanometers ~ 500 microns. The material of the electroconductive thin film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (cerium), conductive paste or conductive polymer or the like. The metal or alloy material may be an alloy of aluminum, copper, tungsten, indium, gold, chin, silver, yttrium, niobium or any combination of the above metals. In this embodiment, the material of the first electrode 210 and the second electrode 212 is a conductive paste, which is printed on the insulating substrate 20 2 by screen printing. The composition of the conductive paste includes metal powder, low-melting glass powder, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive material, the weight ratio of the metal powder is 50% to 90%, the weight ratio of the low-melting glass powder is 2°/»~10%, and the weight ratio of the binder is 8% to 40%. [0037] When the thermochromic element 220 is in use, when at the first electrode 210 099107701 Form No. 101 0101 Page 18 / Total 47 Pages 0992013855-0 201133426 Ο [0038]

[0039] 與第二電極21 2之間施加一電壓時,所述加熱元件208開 始發熱並加熱該顯色元件218。當顯色元件21 8被加熱至 一變色溫度時,顯色元件218顯示顏色或發生色變。如: 以八@21^14製備的顯色元件218為例,當加熱至42°C時, 顯色元件218由黃色變為紅色。當保持電壓不變時,顯色 元件218的溫度保持不變,從而顯示固定的顏色。可以理 解,通過控制施加於第一電極2 10與第二電極212之間的 電壓大小,還可以改變加熱元件208的加熱溫度,從而改 變顯色元件218顯示的顏色。由於顯色元件218採用可逆 熱致變色材料製成,所以當停止加熱時,所述顯色元件 218又回復到原有的顏色。 本發明第一實施例提供的熱致變色元件220的製備方法為 :首先,於絕緣基底202的表面2020鋪設一單層奈米碳管 拉膜;其次,通過絲網列印於該奈米碳管拉膜表面形成 間隔設置的第一電極210與第二電極212 ;然後,於第一 電極210與第二電極212之間沈積一層銀汞的碘化物作為 顯色元件218。 請參閱圖6,本發明第二實施例提供一種熱致變色元件 320,其包括一絕緣基底302,一顯色元件318,一加熱 元件308以及一第一電極310與一第二電極312。該熱致 變色元件320與本發明第一實施例提供的熱致變色元件 220結構基本相同,其區別在於所述顯色元件318設置於 絕緣基底302與加熱元件308之間。具體地,所述顯色元 件318設置於絕緣基底302表面。所述第一電極310與一 第二電極31 2分別設置於顯色元件318兩侧的絕緣基底 099107701 表單編號A0101 第19頁/共47頁 0992013855-0 201133426 302表面。所述加熱元件308設置於該顯色元件318表面 與顯色元件318貼合且將第—電極31〇與-第二電極3\2 覆盖。本實施例中’由於加熱元件3G8覆蓋顯色元件318 ,所述加熱元件308應具有較好地透明度,可選擇為一透 明奈米碳管結構為_透明奈米碳管結構,優選地,所述 加熱元件綱為單層奈米碳管拉膜。本發明第二實施例提 供的熱致變色科32()的製備方法為:首先,於絕緣基底 302表面通過絲網列印形成間隔設置的第-電極3 i 〇與第 電極312 ’然後’於第一電極η〇與第二電極Μ〗之間 沈積一層銀汞的碘化物作為顯色元件318,且顯色元件 318與第一電極310與第二電極312的厚度相同;最後, 將一單層奈米碳管拉臈舖設於所述第一電極31〇與第二電 極312上並將顯色元件318覆蓋。 [0040] 請參閱圖7,本發明第三實施例提供-種熱致變色元件 420,其包括一絕緣基底4〇2,一顯色元件418,一加熱 兀件408以及一第一電極41〇與一第二電極412。該熱致 變色元件420與本發明第二實癌例提供的熱致變色元件 320結構基本相同’其區別在於加熱元件4〇8與所述顯色 元件418間隔設置。具體地,所述顯色元件418設置於絕 緣基底402表面。所述第一電極41〇與一第二電極412分 別設置於顯色元件418兩側的絕緣基底4〇2表面,且第一 電極410與一第二電極412的高度高於顯色元件418的厚 度。所述加熱元件4〇8的兩端分別設置於第一電極410與 一第二電極412上,從而,所述加熱元件4〇8通過第一電 極410與一第二電極412與所述顯色元件418間隔設置。 099107701 表單編號A0101 第20頁/共47頁 0992013855-0 201133426 .可以理解,所述加熱元件408可以通過兩個支撐體(圖未 示)與所述顧色元件418間隔設置。優選地,所述加熱元 件408應具有較小的單位面積熱容,優選地,單位面•積熱 容小於2x1 (Γ4焦耳每平方厘米開爾文。本實施例中,所 述加熱元件408為單層奈米碳管拉膜,其單位面積熱容為 小於等於1. 7x10 6焦耳每平方厘米開爾文。由於加熱元 件408與所述顯色元件418間隔設置,加熱元件4〇8與顯 色元件418之間的熱交換主要通過熱輻射的方式進行。而 且’由於所述加熱元件4〇8具有較小的單位面積熱容,加 》 熱元件408可在較短時間内達到預定溫度。故,達到預定 溫度的加熱元件408可以為顯色元件41/8提供一短而強的 熱脈衝,從而提高了熱致變色元件420的響應速度。本發 明第二實施例提供的熱致變色元件42〇的製備方法為與本 發明第二實施例提供的熱致變色元件320的製備方法基本 相同,其區別在於顯色元件418的的厚度小於第一電極 410與第二電極412的厚度。由於單層奈_碳管拉膜具有 自支樓性’故’該單層奈米碳管拉臈與顯色元件418間隔 # 設置。 [0041]凊參閱圖8,本發明第四實施例提供—種熱致變色元件 520,其包括一絕緣基底5〇2,一顯色元件518,一加熱 .元件508以及—第—電極510與一第二電極512。該熱致 變色元件520與本發明第一實施例提供的熱致變色元件 220結構基本相同,其區別在於所述加熱元件5〇8不僅設 置於顧色元件518與絕緣基底502之間且進一步延伸至顯 色元件518側面。具體地’所述加熱元件508設置於絕緣 099107701 表單編號 A0101 第 頁/共 47 頁 0992013855-0 201133426 基底502表面。所述顯色元件518設置於加熱元件5〇8表 面。所述第一電極5U)與第二電極512分別設置於絕緣基 底502表面且位於顯色元件518兩側。所述加熱元件5〇8 進一步從顯色元件518與第一電極510或第二電極512相 對的側面延伸至第一電極51〇與第二電極512的表面,從 而將顯色元件518部分包覆◊可以理解,所述加熱元件 508也可以設置於顯色元件518的上表面且進一步延伸至 顯色兀件518與第一電極51 〇或第二電極512相對的側面 ,從而將顯色元件518部分包覆。本實施例中,優選地, 所述加熱元件5 0 8為單層奈米碳管拉膜&由於加熱元件 508與顯色元件518具有較大的接觸面積,可以提高加熱 元件508對顯色元件518的加熱效率,從而提高所述熱致 變色元件520的靈敏度。本發明第四實施例提供的熱致變 色元件520的製備方法為:首先,於絕緣基底5〇2表面通 過絲網列印形成間隔設置的第一電極51〇與第二電極512 ,然後,將一單層奈米碳管拉膜翁設於所述第一電極5J 〇 與第二電極512上’並向該奈米碳管拉膜施加一壓力,使 其吸附於第一電極510與第二電紅512相對的側壁上以及 第—電極510與第二電極512之間的絕緣基底502上;於 第一電極510與第二電極51 2之間沈積一層銀汞的碘化物 作為顯色元件518。 [0042] 請參閱圖9,本發明第五實施例提供一種熱致變色元件 620 ’其包括一絕緣基底602,一顯色元件618,一第一 加熱元件608,一第二加熱元件609以及一第一電極610 與—第二電極612。該熱致變色元件620與本發明第一實 099107701 表單編號A0101 第22頁/共47頁 0992013855-0 201133426 施例提供的熱致變色元件220結構基本相同,其區別在於 所述熱致變色元件620進一步包括一設置於顯色元件 表面第二加熱元件6〇9。具體地,所述第一加熱元件6〇8 置於絕緣基底602表面。所述顯色元件gig設置於該第 —加熱元件608表面◊所述第一電極61〇與第二電極612 分別設置於該第一加熱元件608表面且位於顯色元件618 兩侧。所述第二加熱元件6〇9設置於所述顯色元件618表 面且將第一電極61〇與第二電極612覆蓋。本實施例中, 所述加第一加熱元件與第二加熱元件6〇9均為單層奈 米碳管拉膜。通過第一加熱元件6〇8與第二加熱元件609 同時對顯色元件618加熱,可以進一步提高所述熱致變色 元件620的靈敏度。本發明第五實施例提供的.熱致變色元 件620的製備方法為:首先,於絕緣基底602表面鋪設一 第一單層奈米碳管拉膜;其次’通過絲網列印於該奈米 碳官拉膜表面形成間隔設置的第一電極610與第二電極 612 ;然後,於第一電極610與第二電;極02之間沈積一 層銀汞的碘化物作為顯色元件618 ’且顧色元件618與第 一電極610與第二電極612的厚度相同;最後,將一第二 單層奈米碳管拉膜鋪設於所述第一電極610與第二電極 612上並將顯色元件618覆蓋。 [0043] 清參閱圖1 0,本發明第六實施例提供一種熱致變色元件 720 ’其包括一絕緣基底702 ’ 一顯色元件718 ’ 一加熱 元件708以及一第一電極71〇與一第二電極712。該熱致 變色元件720與本發明第一實施例提供的熱致變色元件 220結構基本相同,其區別在於所述絕緣基底7〇2的表面 099107701 表單編號Α0101 第23頁/兵47 Μ 0992013855-0 201133426 具有一凹槽722,所述顯色元件718設置於該凹槽722内 。具體地,所述顯色元件718設置於該凹槽722内且厚度 等於凹槽722的深度。所述加熱元件708設置於顯色元件 718表面將所述凹槽722覆蓋並延伸至凹槽722外的絕緣 基底702表面。所述第一電極710與第二電極712設置於 該凹槽722外的絕緣基底702上的加熱元件708表面。所 述凹槽722的大小,深度與形狀不限。優選地,所述顯色 元件718的厚度與該凹槽722的深度相同。本實施例中, 所述加熱元件708為單層奈米碳管拉膜。由於,所述顯色 元件718設置於凹槽722内,故,當顯色元件718被加熱 時仍然可以保持原有的形狀。本發明第六實施例提供的 熱致變色元件720的製備方法為:首先,於絕緣基底702 表面刻蝕形成一凹槽722 ;其次,於凹槽722内沈積一層 銀汞的碘化物作為顯色元件718 ;然後,將一單層奈米碳 管拉膜鋪設於所述凹槽722上並將顯色元件718覆蓋;最 後,通過絲網列印於該奈米碳管拉膜表面形成間隔設置 的第一電極710與第二電極712,且該第一電極710與第 二電極712位於凹槽722外的絕緣基底702上。 [0044] 本發明進一步提供一種應用上述第一實施例至第六實施 例的熱致變色元件的熱致變色顯示裝置。所述熱致變色 顯示裝置包括複數個熱致變色元件按行列式排布形成一 晝素陣列;以及一驅動電路和複數個電極引線,該驅動 電路通過所述複數個電極引線分別控制每個熱致變色元 件的加熱元件獨立工作。具體地,本發明實施例將複數 個熱致變色元件公用一絕緣基底,並通過由行列電極形 099107701 表單編號A0101 第24頁/共47頁 0992013855-0 201133426 成的疋址-¾路獨立控制每個熱致變色元件工作以银 不效果。以下將以應用本發明第一實施例的煞欵 件220的熱致變色顯示裝置為例,對本發明的熱致變色Γ顯 不裝置作進一步的詳細說明》 [0045] Ο [0046] ο [0047] 099107701 請參閱圖11及圖12,本發明實施例提供—種執敢變色顯 示裝置20,其包括一絕緣基底2〇2,複數個 电極引線 204、複數個列電極引線206以及複數個熱致變色元件 220。所述複數個行電極引線204與複數個列電極引線 206分別平行間隔地設置於該絕緣基底2〇2上, 此所述 電極引線204與列電極51線206交叉設置形成〜網絡纟士構 。每兩個相鄰的行電極引線2〇4與兩個相鄰的列電極引線 206形成一網格214,且每個網格214定位一個畫素單元 ’即每個網格214内設置一熱致變色元件220。 所述絕緣基底202的大小、形狀與厚度不限,本領域技術 人員可以根據實際需要,如根據熱致變色顯示裝置20的 預定大小’設置絕緣基底202的尺寸。本實施例中s所述 絕緣基底202優選為一PET基板,其厚度約1毫米,邊長為 48毫米。由於本實施例中的複數個熱致變色元件220公用 一絕緣基底202,故,每個熱致變色元件220無需專門的 絕緣基底。 所述複數個行電極引線204與複數個列電極引線206相互 交又處設置有一介質絕緣層216,該介質絕緣層216可確 保行電極引線204與列電極引線206之間電絕緣’以防止 短路。所述複數個行電極引線2 〇 4或列電極引線2 0 6之間 町以等間距設置,也可以不等間距設置。優選地’複數 表單編號A0101 第25頁/共47頁 0992013855-0 201133426 個行電極引線204或列電極引線206之間等間距設置。所 述行電極引線2 0 4與列電極引線206為導電材料或塗有導 電材料層的絕緣材料。所述導電材料可以為導電衆料、 金屬薄膜、奈米碳管線或氧化銦錫(ITO)等。本實施例 中,該複數個行電極引線204與複數個列電極引線206優 選為採用導電漿料列印的平面導電體,且該複數個行電 極引線204的行間距為50微米〜5厘米,複數個列電極引線 206的列間距為50微米〜2厘米。該行電極引線204與列電 極引線206的寬度為30微米〜100微米,厚度為10微米〜50 微米。本實施例中,該行電極引線204與列電極引線206 的交叉角度可為10度到90度,優選為90度。本實施例中 ,可通過絲網列印法將導電漿料列印於絕緣基底2 0 2上製 備行電極引線204與列電極引線206。該導電漿料的成分 包括金屬粉、低熔點玻璃粉和黏結劑。其中,該金屬粉 優選為銀粉,該黏結劑優選為松油醇或乙基纖維素。該 導電漿料中,金屬粉的重量比為50%〜90%,低熔點玻璃粉 的重量比為2%〜10%,黏結劑的重量比為8%〜40%。 [0048] 所述第一電極210與第二電極212的材料可以與行電極引 線204,列電極引線206的材料相同或不同。該第一電極 210可以為行電極引線204的延伸部分,該第二電極212 可以為列電極引線2 0 6的延伸部分。第一電極210和行電 極引線204可以一體成型,第二電極212和列電極引線 206也可一體成型。本實施例中,該第一電極210與第二 電極212均為平面導電體,其尺寸由網格214的尺寸決定 。該第一電極210直接與行電極引線204電連接,該第二 099107701 表單編號A0101 第26頁/共47頁 0992013855-0 201133426 電極21 2直接與列電極引線206電連接。所述第一電極 [0049] 〇 210與第二電極212的長度為20微米~1.5厘米,寬度為30 微米〜1厘米,厚度為10微米〜50微米。優選地,所述第二 電極212與第一電極210的長度為100微米~700微米,寬 度為50微米〜500微米,厚度為20微米~100微米。本實施 例中,該第一電極210與第二電極212的材料為導電漿料 ,通過絲網列印法列印於絕緣基底2〇2上° 本實施例中,於邊長為48毫米的絕緣基底2〇2上製備了 16 xl6個熱致變色元件220。每個熱致變色元件中的加 熱元件208為一奈米碳管拉膜,且每個条米礙管拉膜的長 度為300微米,寬度為1〇〇微米。該奈米碳管拉膜中的奈 米碳管首尾相連,且從第一.電極2.1〇向第二電極212延伸 。該奈米碳管拉膜的兩端分別設置於所述第一電極210與 絕緣基底202之間以及第二電極212與絕緣基底2〇2之間 。該奈来碳管拉膜通過自身的黏性固定於絕緣基底202上 〇 Q [0050] 進一步,所述熱致變色顯示裝置2〇可以包括一絕熱材料 222設置於每個熱致變色元件22〇的周圍。具體地,該絕 熱材料222可以設置於每個網格214中的熱致變色元件 220與行電極引線204或列電極引線2〇6之間的所有位置 ,從而使得相鄰的熱致變色元件22Q之間實現埶隔離,以 減少熱致變色元件220之間的干擾。所述絕熱材料m為 三氧化二銘或有機材料。所述有機材料可以為聚對苯二 甲酸乙二醇、聚乙稀、聚碳酸料_亞胺等。本實 施例中,所述絕熱材料222優選為聚對笨二甲酸乙二醇醋 099107701 表單編號A0101 第27頁/共47頁 0992013855-0 201133426 ,其厚度與所述行電極引線2 0 4與列電極引線2 0 6以及第 一電極210與第二電極212的厚度相同。該絕熱材料222 可以通過物理氣相沈積法或化學氣相沈積法等方法製備 。所述物理氣相沈積法包括濺射或蒸鍍等。 [0051] 進一步,所述熱致變色顯示裝置20還可以包括一保護層 224設置於絕緣基底202上以覆蓋所述行電極引線204, 列電極引線206、以及每個熱致變色元件220。所述保護 層224為一透明且絕緣的保護層,其的材料可以為有機高 分子、二氧化矽或三氧化二鋁等。該有機高分子可以為 聚對苯二曱酸乙二醇酯、聚乙烯、聚碳酸酯或聚醯亞胺 等。所述保護層224厚度不限,可以根據實際情況選擇。 本實施例中,該保護層224的材料採用聚對苯二曱酸乙二 醇酯,其厚度為0.5毫米毫米。該保護層可通過塗敷或 沈積的方法形成於絕緣基底202上。所述保護層用來防止 該熱致變色顯示裝置20於使用時與外界形成電接觸,同 時還可以防止加熱元件208中的奈米碳管結構吸附外界雜 [0052] 所述熱致變色顯示裝置20的於使用時,進一步包括一驅 動電路(圖未示),通過驅動電路可選擇性地對行電極 引線204和列電極引線206通入電流,使與該行電極引線 204和列電極引線206電連接的熱致變色元件220工作, 即可實現熱致變色顯示裝置20顯示效果。 [0053] 所述熱致變色顯示裝置20的熱致變色元件220採用奈米碳 管作為加熱元件208,由於奈米碳管結構的熱容較小,故 ,由該奈米碳管結構構成的加熱元件208具有較快的熱響 099107701 表單編號Α0101 第28頁/共47頁 0992013855-0 201133426 應、速度,可用於對顯色元件218進行快速加熱,使得本發 明的熱致變色顯示裝置2〇的畫素單元具有較快的響應速 度。所述熱致變色顯示裝置20通過行電極引線204和列電 極引線206分別控制各個熱致變色元件22〇工作,可以實 現動態顯示。該熱致變色顯示裝置2〇可以應用於看板、 報紙、圖書等領域。 [0054] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 〇 ’自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援絲發騎作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0055] 圖1為本發明第-實施例的熱致變色元件的結構示意圖。 [0056] 圖2為本發明第-實施例用作加熱元件的奈米碳管拉膜的 掃描電鏡照片。 、 [0057] ❹ 圖3為圖2中的奈求碳管拉膜中的奈米碳管片段的結構示 意圖。 /' [0058] 圖4為本發明第-實施例用作加熱元件的非扭轉的奈米碳 管線的掃描電鏡照片。 [0059] 圖5為本發明第-實施例作為加熱元件的扭轉的奈米碳管 線的掃描電鏡照片。 [0060] 圖6為本發明第二實施例的熱致變色元件的結構示意圖。 [0061] 圖7為本發明第三實施例的熱致變色元件的結構示意圖。 099107701 表單編號A0101 第29頁/共47頁 0992013855-0 201133426 [0062] 圖8為本發明第四實施例的熱致變色元件的結構示意圖。 [0063] 圖9為本發明第五實施例的熱致變色元件的結構示意圖。 [0064] 圖10為本發明第六實施例的熱致變色元件的結構示意圖 〇 [0065] 圖11為採用本發明第一實施例的熱致變色元件的熱致變 色顯示裝置的俯視圖。 [0066] 圖1 2為沿圖11中X11 -X11線的剖面圖。 【主要元件符號說明】 [0067] 熱致變色顯示裝置:20 [0068] 絕緣基底:2 0 2,3 0 2, 402, 502, 602, 702 [0069] 表面:2020 [0070] 行電極引線:204 [0071] 列電極引線:206 [0072] 加熱元件:208,308, 408, 508, 708 [0073] 第一加熱元件:608 [0074] 第二加熱元件:609 [0075] 第一電極:210, 310, 410, 510, 610, 710 [0076] 第二電極:212,312, 412, 512, 612, 712 [0077] 網格:214 [0078] 介質絕緣層:216 表單編號A0101 第30頁/共47頁 099107701 0992013855-0 201133426 [0079] . [0080] [0081] [0082] [0083] Ο 顯色元件:218,318,418,518,618,718 熱致變色元件:220,320,420,520,620,720 絕熱材料.2 2 2 保護層:224 凹槽:722 〇 099107701 表單編號Α0101 第31頁/共47頁 0992013855-0When a voltage is applied between the second electrode 21 2, the heating element 208 begins to generate heat and heat the color developing element 218. When the color developing element 218 is heated to a color changing temperature, the color developing element 218 displays a color or undergoes a color change. For example, taking the color developing element 218 prepared by the eight @21^14 as an example, when heated to 42 ° C, the color developing element 218 changes from yellow to red. When the voltage is kept constant, the temperature of the color developing element 218 remains unchanged, thereby displaying a fixed color. It will be appreciated that by controlling the magnitude of the voltage applied between the first electrode 2 10 and the second electrode 212, the heating temperature of the heating element 208 can also be varied, thereby changing the color displayed by the color developing element 218. Since the color developing element 218 is made of a reversible thermochromic material, the color developing element 218 returns to its original color when heating is stopped. The thermochromic element 220 provided by the first embodiment of the present invention is prepared by first laying a single-layer carbon nanotube film on the surface 2020 of the insulating substrate 202; secondly, printing the nano carbon through the screen. The surface of the tube is formed with a first electrode 210 and a second electrode 212 which are spaced apart; then, a layer of silver mercury iodide is deposited as a color developing element 218 between the first electrode 210 and the second electrode 212. Referring to FIG. 6, a second embodiment of the present invention provides a thermochromic element 320 including an insulating substrate 302, a color developing element 318, a heating element 308, and a first electrode 310 and a second electrode 312. The thermochromic element 320 is substantially identical in construction to the thermochromic element 220 of the first embodiment of the present invention, except that the color developing element 318 is disposed between the insulating substrate 302 and the heating element 308. Specifically, the color developing element 318 is disposed on the surface of the insulating substrate 302. The first electrode 310 and the second electrode 31 2 are respectively disposed on the insulating substrate on both sides of the color developing element 318. 099107701 Form No. A0101 Page 19 of 47 0992013855-0 201133426 302 Surface. The heating element 308 is disposed on the surface of the color developing element 318 to be adhered to the color developing element 318 and covers the first electrode 31A and the second electrode 3\2. In the present embodiment, since the heating element 3G8 covers the color developing element 318, the heating element 308 should have a good transparency, and a transparent carbon nanotube structure can be selected as a transparent carbon nanotube structure. Preferably, The heating element is a single layer carbon nanotube film. The method for preparing the thermochromic group 32() according to the second embodiment of the present invention is as follows: first, the first electrode 3 i 〇 and the first electrode 312 ' are then formed on the surface of the insulating substrate 302 by screen printing. A layer of silver mercury iodide is deposited as a color developing element 318 between the first electrode η〇 and the second electrode ,, and the color developing element 318 is the same thickness as the first electrode 310 and the second electrode 312; finally, a single A layer of carbon nanotubes is laid on the first electrode 31A and the second electrode 312 and covers the color developing element 318. Referring to FIG. 7, a third embodiment of the present invention provides a thermochromic element 420 including an insulating substrate 4〇2, a color developing element 418, a heating element 408, and a first electrode 41. And a second electrode 412. The thermochromic element 420 is substantially identical in structure to the thermochromic element 320 provided by the second embodiment of the invention, except that the heating element 4〇8 is spaced from the color developing element 418. Specifically, the color developing element 418 is disposed on the surface of the insulating substrate 402. The first electrode 41 〇 and the second electrode 412 are respectively disposed on the surface of the insulating substrate 4 〇 2 on both sides of the color developing element 418 , and the height of the first electrode 410 and the second electrode 412 is higher than that of the color developing element 418 . thickness. The two ends of the heating element 4〇8 are respectively disposed on the first electrode 410 and the second electrode 412, so that the heating element 4〇8 passes through the first electrode 410 and a second electrode 412 and the color development Element 418 is spaced apart. 099107701 Form No. A0101 Page 20 of 47 0992013855-0 201133426 It will be appreciated that the heating element 408 can be spaced from the GU element 418 by two supports (not shown). Preferably, the heating element 408 should have a small heat capacity per unit area, preferably, the unit surface heat capacity is less than 2x1 (Γ4 joules per square centimeter Kelvin. In the present embodiment, the heating element 408 is a single layer. The carbon nanotube film has a heat capacity per unit area of less than or equal to 1. 7x10 6 joules per square centimeter Kelvin. Since the heating element 408 is spaced apart from the color developing element 418, the heating element 4〇8 and the color developing element 418 The heat exchange between the two is mainly carried out by means of heat radiation, and 'because the heating element 4 〇 8 has a small heat capacity per unit area, the heating element 408 can reach a predetermined temperature in a short time. The temperature heating element 408 can provide a short and strong thermal pulse to the color developing element 41/8, thereby increasing the response speed of the thermochromic element 420. Preparation of the thermochromic element 42A provided by the second embodiment of the present invention The method is basically the same as the method for preparing the thermochromic element 320 provided by the second embodiment of the present invention, except that the thickness of the color developing element 418 is smaller than that of the first electrode 410 and the second electrode 412. Since the single-layer carbon nanotube film has a self-supporting property, the single-layer carbon nanotube is spaced apart from the color-developing element 418. [0041] Referring to FIG. 8, the fourth embodiment of the present invention For example, a thermochromic element 520 is provided, which includes an insulating substrate 5〇2, a color developing element 518, a heating element 508, and a first electrode 510 and a second electrode 512. The thermochromic element 520 and The thermochromic element 220 provided by the first embodiment of the present invention has substantially the same structure, except that the heating element 5〇8 is disposed not only between the color element 518 and the insulating substrate 502 but also further to the side of the color developing element 518. Specifically, the heating element 508 is disposed on the surface of the substrate 502. The coloring element 518 is disposed on the surface of the heating element 5〇8. The first electrode 5U is disposed on the surface of the substrate 502. And the second electrode 512 are respectively disposed on the surface of the insulating substrate 502 and on both sides of the color developing element 518. The heating element 5〇8 further extends from the side opposite to the first electrode 510 or the second electrode 512 from the side of the color developing element 518 to the surface of the first electrode 51〇 and the second electrode 512, thereby partially covering the color developing element 518. It can be understood that the heating element 508 can also be disposed on the upper surface of the color developing element 518 and further extend to the side of the color developing element 518 opposite to the first electrode 51 or the second electrode 512, thereby the color developing element 518. Partially coated. In this embodiment, preferably, the heating element 508 is a single-layer carbon nanotube film &; because the heating element 508 and the color-developing element 518 have a large contact area, the heating element 508 can be improved in color development. The heating efficiency of element 518 increases the sensitivity of the thermochromic element 520. The method for preparing the thermochromic element 520 according to the fourth embodiment of the present invention is as follows: first, the first electrode 51 〇 and the second electrode 512 are formed on the surface of the insulating substrate 5 〇 2 by screen printing, and then a single-layer carbon nanotube film is disposed on the first electrode 5J 〇 and the second electrode 512 ′ and applies a pressure to the carbon nanotube film to adsorb the first electrode 510 and the second electrode On the opposite sidewalls of the red 512 and on the insulating substrate 502 between the first electrode 510 and the second electrode 512; a layer of silver mercury iodide is deposited as a color developing element 518 between the first electrode 510 and the second electrode 51 2 . . [0042] Referring to FIG. 9, a fifth embodiment of the present invention provides a thermochromic element 620' including an insulating substrate 602, a color developing element 618, a first heating element 608, a second heating element 609, and a The first electrode 610 and the second electrode 612. The thermochromic element 620 is substantially identical in structure to the thermochromic element 220 provided by the first embodiment of the present invention in the form of the thermochromic element 220. The difference is that the thermochromic element 620 is substantially identical to the structure of the first embodiment of the present invention. Further comprising a second heating element 6〇9 disposed on the surface of the color developing element. Specifically, the first heating element 6〇8 is placed on the surface of the insulating substrate 602. The coloring element gig is disposed on the surface of the first heating element 608. The first electrode 61 and the second electrode 612 are respectively disposed on the surface of the first heating element 608 and on both sides of the color developing element 618. The second heating element 6〇9 is disposed on the surface of the color developing element 618 and covers the first electrode 61〇 and the second electrode 612. In this embodiment, the first heating element and the second heating element 6〇9 are both single-layer carbon nanotube film. The sensitivity of the thermochromic element 620 can be further improved by simultaneously heating the color developing element 618 by the first heating element 6〇8 and the second heating element 609. The method for preparing the thermochromic element 620 according to the fifth embodiment of the present invention is as follows: first, a first single-layer carbon nanotube film is laid on the surface of the insulating substrate 602; secondly, the nanometer is printed on the nanowire through the screen. a first electrode 610 and a second electrode 612 are formed on the surface of the carbon film; and then a layer of silver mercury iodide is deposited as a color developing element 618 between the first electrode 610 and the second electrode; The color element 618 is the same thickness as the first electrode 610 and the second electrode 612; finally, a second single-layer carbon nanotube film is laid on the first electrode 610 and the second electrode 612 and the color developing element 618 coverage. Referring to FIG. 10, a sixth embodiment of the present invention provides a thermochromic element 720' including an insulating substrate 702', a color developing element 718', a heating element 708, and a first electrode 71 and a first Two electrodes 712. The thermochromic element 720 has substantially the same structure as the thermochromic element 220 provided by the first embodiment of the present invention, except that the surface of the insulating substrate 7〇2 is 099107701. Form No. 1010101 Page 23 / Bing 47 Μ 0992013855-0 201133426 has a recess 722 in which the color developing element 718 is disposed. Specifically, the color developing element 718 is disposed within the recess 722 and has a thickness equal to the depth of the recess 722. The heating element 708 is disposed on the surface of the color developing element 718 to cover the recess 722 and extend to the surface of the insulating substrate 702 outside the recess 722. The first electrode 710 and the second electrode 712 are disposed on the surface of the heating element 708 on the insulating substrate 702 outside the recess 722. The size, depth and shape of the groove 722 are not limited. Preferably, the color developing element 718 has the same thickness as the recess 722. In this embodiment, the heating element 708 is a single-layer carbon nanotube film. Since the color developing element 718 is disposed in the recess 722, the original shape can be maintained when the color developing element 718 is heated. The method for preparing the thermochromic element 720 according to the sixth embodiment of the present invention is as follows: first, a recess 722 is formed on the surface of the insulating substrate 702; secondly, a layer of silver-mercury iodide is deposited in the recess 722 as a color developing. Element 718; then, a single layer of carbon nanotube film is laid on the groove 722 and the color developing element 718 is covered; finally, the screen is printed on the surface of the carbon nanotube film to form a space. The first electrode 710 and the second electrode 712 are located on the insulating substrate 702 outside the recess 722. The present invention further provides a thermochromic display device to which the thermochromic elements of the first to sixth embodiments described above are applied. The thermochromic display device includes a plurality of thermochromic elements arranged in a matrix to form a matrix of pixels; and a driving circuit and a plurality of electrode leads, the driving circuit respectively controlling each heat through the plurality of electrode leads The heating elements of the color-changing elements operate independently. Specifically, in the embodiment of the present invention, a plurality of thermochromic elements are shared by an insulating substrate, and are independently controlled by an address of -099107701 Form No. A0101 Page 24/47 pages 0992013855-0 201133426. A thermochromic element works with silver and does not work. Hereinafter, the thermochromic display device of the present invention will be further described in detail by taking the thermochromic display device of the element 220 of the first embodiment of the present invention as an example. [0045] ο [0047] Referring to FIG. 11 and FIG. 12, an embodiment of the present invention provides a color display device 20 comprising an insulating substrate 2〇2, a plurality of electrode leads 204, a plurality of column electrode leads 206, and a plurality of heats. The color changing element 220. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are respectively disposed on the insulating substrate 2〇2 in parallel with each other. The electrode leads 204 and the column electrode 51 lines 206 are arranged to intersect to form a network gentleman structure. Each two adjacent row electrode leads 2〇4 and two adjacent column electrode leads 206 form a grid 214, and each grid 214 positions a pixel unit 'ie, a heat is placed in each grid 214 The color changing element 220. The size, shape and thickness of the insulating substrate 202 are not limited, and those skilled in the art can set the size of the insulating substrate 202 according to actual needs, such as according to the predetermined size of the thermochromic display device 20. The insulating substrate 202 of the embodiment s is preferably a PET substrate having a thickness of about 1 mm and a side length of 48 mm. Since the plurality of thermochromic elements 220 in this embodiment share an insulating substrate 202, each of the thermochromic elements 220 does not require a special insulating substrate. The plurality of row electrode leads 204 and the plurality of column electrode leads 206 are disposed with a dielectric insulating layer 216 interposed therebetween, and the dielectric insulating layer 216 ensures electrical insulation between the row electrode leads 204 and the column electrode leads 206 to prevent short circuits. . The plurality of row electrode leads 2 〇 4 or the column electrode leads 2 0 6 are arranged at equal intervals, and may also be arranged at unequal intervals. Preferably, the plural form number A0101 page 25/total page 47 0992013855-0 201133426 row electrode lead 204 or column electrode lead 206 are equally spaced. The row electrode lead 604 and the column electrode lead 206 are electrically conductive materials or insulating materials coated with a conductive material layer. The conductive material may be an electrically conductive material, a metal thin film, a nano carbon line, or indium tin oxide (ITO) or the like. In this embodiment, the plurality of row electrode leads 204 and the plurality of column electrode leads 206 are preferably planar conductors printed by using a conductive paste, and the row spacing of the plurality of row electrode leads 204 is 50 micrometers to 5 centimeters. The column spacing of the plurality of column electrode leads 206 is 50 micrometers to 2 centimeters. The row electrode lead 204 and the column electrode lead 206 have a width of 30 μm to 100 μm and a thickness of 10 μm to 50 μm. In this embodiment, the intersection angle of the row electrode lead 204 and the column electrode lead 206 may be 10 degrees to 90 degrees, preferably 90 degrees. In this embodiment, the row electrode lead 204 and the column electrode lead 206 can be prepared by printing a conductive paste on the insulating substrate 220 by a screen printing method. The composition of the conductive paste includes metal powder, low-melting glass frit, and a binder. Among them, the metal powder is preferably silver powder, and the binder is preferably terpineol or ethyl cellulose. In the conductive paste, the weight ratio of the metal powder is 50% to 90%, the weight ratio of the low-melting glass powder is 2% to 10%, and the weight ratio of the binder is 8% to 40%. [0048] The material of the first electrode 210 and the second electrode 212 may be the same as or different from the material of the row electrode lead 204 and the column electrode lead 206. The first electrode 210 may be an extension of the row electrode lead 204, and the second electrode 212 may be an extension of the column electrode lead 206. The first electrode 210 and the row electrode lead 204 may be integrally formed, and the second electrode 212 and the column electrode lead 206 may also be integrally formed. In this embodiment, the first electrode 210 and the second electrode 212 are both planar conductors, and the size thereof is determined by the size of the grid 214. The first electrode 210 is directly electrically connected to the row electrode lead 204. The second 099107701 Form No. A0101 Page 26 of 47 0992013855-0 201133426 The electrode 21 2 is directly electrically connected to the column electrode lead 206. The first electrode [0049] has a length of 20 micrometers to 1.5 centimeters, a width of 30 micrometers to 1 centimeter, and a thickness of 10 micrometers to 50 micrometers. Preferably, the second electrode 212 and the first electrode 210 have a length of 100 micrometers to 700 micrometers, a width of 50 micrometers to 500 micrometers, and a thickness of 20 micrometers to 100 micrometers. In this embodiment, the material of the first electrode 210 and the second electrode 212 is a conductive paste, which is printed on the insulating substrate 2〇2 by screen printing. In this embodiment, the side length is 48 mm. 16 x 16 thermochromic elements 220 were prepared on the insulating substrate 2〇2. The heating element 208 in each of the thermochromic elements is a carbon nanotube drawn film, and each of the strips has a length of 300 μm and a width of 1 μm. The carbon nanotubes in the carbon nanotube film are connected end to end and extend from the first electrode 2.1 to the second electrode 212. Both ends of the carbon nanotube film are disposed between the first electrode 210 and the insulating substrate 202 and between the second electrode 212 and the insulating substrate 2〇2. The carbon nanotube film is fixed on the insulating substrate 202 by its own viscosity. Further, the thermochromic display device 2 can include a heat insulating material 222 disposed on each of the thermochromic elements 22〇. Around. Specifically, the heat insulating material 222 may be disposed at all positions between the thermochromic element 220 and the row electrode lead 204 or the column electrode lead 2〇6 in each of the grids 214 such that adjacent thermochromic elements 22Q Tantalum isolation is achieved to reduce interference between the thermochromic elements 220. The heat insulating material m is a metal oxide or an organic material. The organic material may be polyethylene terephthalate, polyethylene, polycarbonate or imine. In this embodiment, the heat insulating material 222 is preferably a polyethylene terephthalate vinegar 099107701 Form No. A0101 Page 27 / 47 pages 0992013855-0 201133426, the thickness of the row electrode lead 2 0 4 and column The electrode lead 2 0 6 and the first electrode 210 and the second electrode 212 have the same thickness. The heat insulating material 222 can be produced by a method such as physical vapor deposition or chemical vapor deposition. The physical vapor deposition method includes sputtering or evaporation, and the like. Further, the thermochromic display device 20 may further include a protective layer 224 disposed on the insulating substrate 202 to cover the row electrode leads 204, the column electrode leads 206, and each of the thermochromic elements 220. The protective layer 224 is a transparent and insulating protective layer, and the material thereof may be organic high molecular weight, cerium oxide or aluminum oxide. The organic polymer may be polyethylene terephthalate, polyethylene, polycarbonate or polyimine. The thickness of the protective layer 224 is not limited and can be selected according to actual conditions. In this embodiment, the protective layer 224 is made of polyethylene terephthalate and has a thickness of 0.5 mm. The protective layer can be formed on the insulating substrate 202 by coating or deposition. The protective layer is used to prevent the thermochromic display device 20 from making electrical contact with the outside during use, and also prevents the carbon nanotube structure in the heating element 208 from adsorbing external impurities. [0052] The thermochromic display device In use, the driver circuit 20 further includes a driving circuit (not shown) through which the row electrode lead 204 and the column electrode lead 206 are selectively energized to make the row electrode lead 204 and the column electrode lead 206. When the electrically connected thermochromic element 220 operates, the display effect of the thermochromic display device 20 can be achieved. [0053] The thermochromic element 220 of the thermochromic display device 20 uses a carbon nanotube as the heating element 208. Since the heat capacity of the carbon nanotube structure is small, the carbon nanotube structure is composed of The heating element 208 has a faster heat response. 099107701 Form No. 1010101 Page 28 / Total 47 Page 0992013855-0 201133426 The speed, speed, can be used to rapidly heat the color developing element 218, so that the thermochromic display device of the present invention 2〇 The pixel unit has a faster response speed. The thermochromic display device 20 controls the operation of each of the thermochromic elements 22 by the row electrode leads 204 and the column electrode leads 206, respectively, and dynamic display can be realized. The thermochromic display device 2 can be applied to fields such as billboards, newspapers, books, and the like. [0054] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and the scope of the patent application of the present invention is not limited thereto. Equivalent modifications or changes in the riding of a person who is familiar with the skill of the case shall be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0055] FIG. 1 is a schematic view showing the structure of a thermochromic element according to a first embodiment of the present invention. 2 is a scanning electron micrograph of a carbon nanotube film used as a heating element in the first embodiment of the present invention. [0057] FIG. 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. Figure 4 is a scanning electron micrograph of a non-twisted nanocarbon line used as a heating element in accordance with a first embodiment of the present invention. Figure 5 is a scanning electron micrograph of a twisted carbon nanotube wire as a heating element in accordance with a first embodiment of the present invention. 6 is a schematic structural view of a thermochromic element according to a second embodiment of the present invention. 7 is a schematic structural view of a thermochromic element according to a third embodiment of the present invention. 099107701 Form No. A0101 Page 29 of 47 0992013855-0 201133426 [0062] FIG. 8 is a schematic structural view of a thermochromic element according to a fourth embodiment of the present invention. 9 is a schematic structural view of a thermochromic element according to a fifth embodiment of the present invention. 10 is a schematic view showing the structure of a thermochromic element according to a sixth embodiment of the present invention. [0065] FIG. 11 is a plan view showing a thermochromic display device using a thermochromic element according to a first embodiment of the present invention. 12 is a cross-sectional view taken along line X11-X11 of FIG. 11. [Main component symbol description] [0067] Thermochromic display device: 20 [0068] Insulation substrate: 2 0 2, 3 0 2, 402, 502, 602, 702 [0069] Surface: 2020 [0070] Row electrode lead: 204 [0071] Column electrode lead: 206 [0072] Heating element: 208, 308, 408, 508, 708 [0073] First heating element: 608 [0074] Second heating element: 609 [0075] First electrode: 210 , 310, 410, 510, 610, 710 [0076] Second electrode: 212, 312, 412, 512, 612, 712 [0077] Grid: 214 [0078] Dielectric insulating layer: 216 Form No. A0101 Page 30 / A total of 47 pages 099107701 0992013855-0 201133426 [0079] [0083] [0083] 显 color developing elements: 218, 318, 418, 518, 618, 718 thermochromic elements: 220, 320, 420 ,520,620,720 Insulation material.2 2 2 Protective layer: 224 Groove: 722 〇099107701 Form number Α0101 Page 31/Total 47 page 0992013855-0

Claims (1)

201133426 七、申請專利範圍: 1 . -種熱致變色元件,其包括:_絕緣基底,—顯色元件以 及至少一用來加熱該顯色元件的加熱元件,所述絕緣基底 具有表面,该顯色元件與加熱元件設置於該絕緣基底的 表面其改良在於,所述至少一加熱元件包括至少一奈米 碳管結構,所述顯色元件包括可逆熱致變色材料。 2 .如申β專利範圍第1項所述的熱致變色元件,其中,所述 ”’、負色元件與至少—加熱元件均層狀結構,且該顯色元 件與該至少一加熱元件為層疊接觸設置。 3 .如申请專利範圍第2項所述的熱致變色元件,其中,所述 熱致變色元件包括兩個分別設置於所述顯色元件相對的兩 個表面的加熱元件。 4.如申靖專利範圍第1項所述的熱致變色元件,其中,所述 顯色元件與至少一加熱元件均為一層狀結構且該顯色元 件與該至少一加熱元件通過一支撐體間隔設置。 5 .如申凊專利乾圍第1項所述的熱致變色元件,其中,戶斤述 絕緣基底的表面具有一凹槽,所述顯色元件設置於該四槽 内絕緣基底的表面。 6.如申請專利範圍第1項所述的熱致變色元件,其中,所述 熱致變色疋件進一步包括一第一電極以及一第二電極,所 述第一電極及第二電極間隔的與該至少一加熱元件電連接 〇 7 ·如申研專利範圍第1項所述的熱致變色元件其中,戶斤述 了逆熱致變色材料的變色溫度低於2〇〇。〇。 8 .如申請專利範圍第1項所述的熱致變色元件,其中,所述 099107701 表單編號A0101 第32頁/共47頁 0992013855-0 201133426 可逆熱致變色材料為無機類可逆熱致變色材料,所述無機 類可逆熱致變色材料包括含銀的碘化物,含銀的絡合物, 含銀的複鹽,含銅的蛾化物,含銅的絡合物,含銅的複鹽 ,含汞的埃化物,含汞的絡合物,含汞的複鹽,由鈷鹽、 鎳鹽與六次甲基四胺形成的化合物,氧化釩,釩酸鹽,鉻 酸鹽以及氧化釩、飢酸鹽、鉻酸鹽中任意一種或幾種的混 合物。 9 .如申請專利範圍第1項所述的熱致變色元件,其中,所述 可逆熱致變色材料為有機類可逆熱致變色材料,所述有機 Ο 類可逆熱致變色材料包括發色劑、顯色劑以及溶劑。 10 .如申請專利範圍第1項所述的熱致變色元件,其中,所述 可逆熱致變色材料液晶類可逆熱致變色材料,所述液晶類 可逆熱致變色材料為近晶型液晶、向列型液晶或膽甾型液 晶。 11 .如申請專利範圍第1項所述的熱致變色元件,其中,所述 奈米碳管結構包括至少一奈米碳管膜。 12 .如申請專利範圍第11項所述的熱致變色元件,其中,所述 〇 奈米碳管膜的單位面積熱容小於等於2x1 (Γ4焦耳每平方厘 米開爾文。 13 .如申請專利範圍第11項所述的熱致變色元件,其中,所述 奈米碳管膜為由若干奈米碳管組成的自支撐結構,且所述 若干奈米碳管為沿同一方向擇優取向排列。 14 .如申請專利範圍第13項所述的熱致變色元件,其中,所述 奈米碳管膜中多數奈米碳管通過凡德瓦爾力首尾相連。 15 .如申請專利範圍第1項所述的熱致變色元件,其中,所述 奈米碳管結構包括至少一奈米碳管線,所述奈米碳管線包 099107701 表單編號A0101 第33頁/共47頁 0992013855-0 201133426 括複數個奈米碳管沿該奈米碳管線長度方向平行排列或沿 該奈米碳管線長度方向呈螺旋狀排列。 16 . —種熱致變色顯示裝置,其包括: 一絕緣基底具有一表面; 複數個行電極引線與複數個列電極引線設置於絕緣基底的 表面,該複數個行電極引線與複數個列電極引線相互交叉 設置,每兩個相鄰的行電極引線與每兩個相鄰的列電極引 線形成一個網格,且行電極引線與列電極引線之間電絕緣 ;以及 複數個如申請專利範圍第1至15項中任意一項所述的熱致 變色元件,每個熱致變色元件對應一個網格設置。 17 .如申請專利範圍第16項所述的熱致變色顯示裝置,其中, 所述熱致變色顯示裝置進一步包括設置於每個網格中且位 於熱致變色元件與行電極引線或列電極引線之間的絕熱材 料。 18 .如申請專利範圍第17項所述的熱致變色顯示裝置,其中, 所述絕熱材料為三氧化二鋁或有機材料。 19 .如申請專利範圍第16項所述的熱致變色顯示裝置,其中, 所述熱致變色顯示裝置進一步包括一設置於所述複數個行 電極引線、複數個列電極引線以及複數個熱致變色元件表 面的透明保護層。 20 . 一種熱致變色顯示裝置,其包括: 一絕緣基底具有一表面; 以及複數個如申請專利範圍第1至1 5項中任意一項所述的 熱致變色元件,該複數個熱致變色元件按行列式排布形成 一畫素陣列;以及 099107701 表單編號A0101 第34頁/共47頁 0992013855-0 201133426 一驅動電路和複數個電極引線,該驅動電路通過所述複數 個電極引線分別控制每個熱致變色元件的加熱元件獨立工 作0 Ο 099107701 表單編號A0101 第35頁/共47頁 0992013855-0201133426 VII. Patent application scope: 1. A thermochromic element comprising: an insulating substrate, a color developing element and at least one heating element for heating the color developing element, the insulating substrate having a surface, the display The improvement of the color element and the heating element on the surface of the insulating substrate is such that the at least one heating element comprises at least one carbon nanotube structure, the color developing element comprising a reversible thermochromic material. The thermochromic element according to claim 1, wherein the "', the negative color element and the at least the heating element are each layered, and the color developing element and the at least one heating element are The thermochromic element according to claim 2, wherein the thermochromic element comprises two heating elements respectively disposed on opposite surfaces of the color developing element. The thermochromic element according to claim 1, wherein the color developing element and the at least one heating element are each a layer structure, and the color developing element and the at least one heating element pass through a support body. The thermochromic element according to claim 1, wherein the surface of the insulating substrate has a groove, and the color developing element is disposed on the insulating substrate of the four grooves. 6. The thermochromic element of claim 1, wherein the thermochromic element further comprises a first electrode and a second electrode, the first electrode and the second electrode being spaced apart With that at least The heating element is electrically connected to the 〇7. The thermochromic element as described in claim 1, wherein the color change temperature of the inverse thermochromic material is less than 2 〇〇. . 8. If the patent application scope The thermochromic element according to Item 1, wherein the 099107701 Form No. A0101 Page 32 / Total 47 Page 0992013855-0 201133426 The reversible thermochromic material is an inorganic reversible thermochromic material, the inorganic reversible heat The color-changing materials include silver-containing iodides, silver-containing complexes, silver-containing double salts, copper-containing moth compounds, copper-containing complexes, copper-containing double salts, mercury-containing anions, and mercury. a complex, a complex salt containing mercury, a compound formed from a cobalt salt, a nickel salt and a hexamethylenetetramine, a vanadium oxide, a vanadate, a chromate, and a vanadium oxide, a stark, a chromate The thermochromic element according to claim 1, wherein the reversible thermochromic material is an organic reversible thermochromic material, and the organic hydrazine reversible heat Color-changing materials include coloring agents, color development The thermochromic element according to claim 1, wherein the reversible thermochromic material is a liquid crystal reversible thermochromic material, and the liquid crystal reversible thermochromic material is a smectic type. The thermochromic element according to claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film. The thermochromic element according to claim 11, wherein the heat capacity per unit area of the tantalum carbon nanotube film is less than or equal to 2x1 (Γ4 joules per square centimeter Kelvin. 13) as claimed in claim 11 The thermochromic element, wherein the carbon nanotube film is a self-supporting structure composed of a plurality of carbon nanotubes, and the plurality of carbon nanotubes are arranged in a preferred orientation in the same direction. The thermochromic element according to claim 13, wherein a plurality of carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. The thermochromic element according to claim 1, wherein the carbon nanotube structure comprises at least one nano carbon line, the nano carbon line package 099107701, Form No. A0101, page 33/total 47 pages 0992013855-0 201133426 A plurality of carbon nanotubes are arranged in parallel along the length of the nanocarbon pipeline or spirally along the length of the nanocarbon pipeline. 16 . A thermochromic display device comprising: an insulating substrate having a surface; a plurality of row electrode leads and a plurality of column electrode leads disposed on a surface of the insulating substrate, the plurality of row electrode leads and the plurality of column electrode leads Interdigitated with each other, each two adjacent row electrode leads form a grid with each two adjacent column electrode leads, and the row electrode leads are electrically insulated from the column electrode leads; and a plurality of ones as claimed in claim 1 The thermochromic element of any of the 15 items, wherein each thermochromic element corresponds to a grid arrangement. The thermochromic display device of claim 16, wherein the thermochromic display device further comprises a thermochromic element and a row electrode or a column electrode lead disposed in each of the grids. Insulation between the materials. The thermochromic display device according to claim 17, wherein the heat insulating material is aluminum oxide or an organic material. 19. The thermochromic display device of claim 16, wherein the thermochromic display device further comprises a plurality of row electrode leads, a plurality of column electrode leads, and a plurality of thermally induced A transparent protective layer on the surface of the color changing element. A thermochromic display device, comprising: an insulating substrate having a surface; and a plurality of thermochromic elements according to any one of claims 1 to 5, wherein the plurality of thermochromic elements The components are arranged in a matrix to form a pixel array; and 099107701 Form No. A0101, page 34/47, 0992013855-0, 201133426, a driving circuit and a plurality of electrode leads, the driving circuit respectively controlling each of the plurality of electrode leads The heating elements of a thermochromic element work independently 0 Ο 099107701 Form No. A0101 Page 35 / Total 47 Page 0992013855-0
TW99107701A 2010-03-16 2010-03-16 Thermochromatic device and thermochromatic display apparatus TWI426476B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99107701A TWI426476B (en) 2010-03-16 2010-03-16 Thermochromatic device and thermochromatic display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99107701A TWI426476B (en) 2010-03-16 2010-03-16 Thermochromatic device and thermochromatic display apparatus

Publications (2)

Publication Number Publication Date
TW201133426A true TW201133426A (en) 2011-10-01
TWI426476B TWI426476B (en) 2014-02-11

Family

ID=46751234

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99107701A TWI426476B (en) 2010-03-16 2010-03-16 Thermochromatic device and thermochromatic display apparatus

Country Status (1)

Country Link
TW (1) TWI426476B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297974B (en) * 2014-09-30 2017-08-11 江苏和成显示科技股份有限公司 Microcapsules liquid crystal and its microcapsules liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202677A (en) * 1991-01-31 1993-04-13 Crystal Images, Inc. Display apparatus using thermochromic material
US7164224B2 (en) * 2000-12-14 2007-01-16 Sharp Kabushiki Kaisha Backlight having discharge tube, reflector and heat conduction member contacting discharge tube
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
KR101458846B1 (en) * 2004-11-09 2014-11-07 더 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 The fabrication and application of nanofiber ribbons and sheets and twisted and non-twisted nanofiber yarns
US20080252202A1 (en) * 2007-04-11 2008-10-16 General Electric Company Light-emitting device and article
CN101314464B (en) * 2007-06-01 2012-03-14 北京富纳特创新科技有限公司 Process for producing carbon nano-tube film

Also Published As

Publication number Publication date
TWI426476B (en) 2014-02-11

Similar Documents

Publication Publication Date Title
CN102103275B (en) Thermochromatic element and thermochromatic display device
CN101819335B (en) Thermochromatic element and thermochromatic display device
CN102103276B (en) Thermochromatic element and thermochromatic display device
CN102103274B (en) Thermochromic element and thermochromic display device
CN101848564B (en) Heating element
TWI494640B (en) Thermochromatic device and thermochromatic display apparatus
JP5243518B2 (en) Thermochromic element and thermochromic display device
CN102162294A (en) Heating floor tile and heating floor using the same
TWI603129B (en) Thermochromic element and thermochromic display apparatus
TWI454817B (en) Thermochromatic device and thermochromatic display apparatus
TWI598857B (en) Thermochromatic device and thermochromatic display apparatus
TWI426476B (en) Thermochromatic device and thermochromatic display apparatus
TWI487970B (en) Thermochromic element and thermochromic display apparatus
CN101923227A (en) Thermotropic display element and thermotropic display device
TWI487971B (en) Thermochromic element and thermochromic display apparatus
TWI603130B (en) Thermochromic element and thermochromic display apparatus
TW201034934A (en) Heating device
CN101616516B (en) Line heat source
TW201033716A (en) Thermochromic element and thermochromic display apparatus
TW201135685A (en) Thermochromatic device and thermochromatic display apparatus
TWI380728B (en) Linear heater
KR20200125804A (en) Transparent Electrode and the Smart Window Film Having the Same
TW201004860A (en) Linear heater