TW201002611A - Planar heat source - Google Patents

Planar heat source Download PDF

Info

Publication number
TW201002611A
TW201002611A TW97125371A TW97125371A TW201002611A TW 201002611 A TW201002611 A TW 201002611A TW 97125371 A TW97125371 A TW 97125371A TW 97125371 A TW97125371 A TW 97125371A TW 201002611 A TW201002611 A TW 201002611A
Authority
TW
Taiwan
Prior art keywords
layer
heat source
carbon nanotube
surface heat
carbon
Prior art date
Application number
TW97125371A
Other languages
Chinese (zh)
Other versions
TWI360521B (en
Inventor
Chen Feng
Kai Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97125371A priority Critical patent/TWI360521B/en
Publication of TW201002611A publication Critical patent/TW201002611A/en
Application granted granted Critical
Publication of TWI360521B publication Critical patent/TWI360521B/en

Links

Abstract

The present invention relates to a planar heat source. The planar heat source includes at least two electrodes and a heating layer. The at least two electrodes are separately disposed on the heating layer, and electrically contacted with the heating layer. The heating layer includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotubes distributed uniformly.

Description

201002611 九、發明說明: 【發明所屬之技術領域】 本發明涉及-種面熱源,尤其涉及一種基於奈米碳管 的面熱源。 【先前技術】 熱源在人們的生產、生活、科研中起著重要的作用。 面熱源係熱源的一種,其特點為面熱源具有一平面結構, 將待加熱物體置於該平面結構的上方對物體進行加熱, 故’面熱源可對待加熱物體的各個部位同時加熱,加熱面 廣、加熱均勻且效率較高。面熱源已成功用於工業領域、 =領域或生活領域等,如電加熱器、紅外治療儀、電暖 器等。 先刚面熱源一般包括一加熱層和至少兩個 少兩個電極設置於該加熱層的表面,並與該加熱層的表面 電連接。當連接加敎声上的雷纟' 立刻從加熱層釋放出;低,電流時,熱量 :的電熱絲作為加熱層進行電熱轉換。然而, 強度不高易於折斷,特別係彎曲或繞折成-定角 應用受到限制。另,以今屬制士认“疋肖度^故 以普通波导電熱絲所產生的熱量係 ^皮長向外幸畐射的,其電熱轉換效率不高不利於節省 6 201002611 ==勃性,這在一定程度上解決了電熱絲強 折斷的缺點。然而,由於碳纖維仍係以普通波長 向外放熱,故並未解決電熱轉換率低的問題。 =採用碳纖維的加熱層-般包括多根碳纖維熱源線鋪 纖或者棉線的外面浸塗-層防水阻燃絕緣 外塗料的棉:由多根碳纖維與多根表面粘塗有遠紅 料的^ ΐ繞而成。導電芯線中加人时有遠紅外塗 科的棉線’一來可增強芯線的強二 纖維發出的熱量能以紅外波長向外ϋ射。、㈠反導 碳:度 線提高碳纖維的強度:限制了:應m需要加入棉 丄A 丨艮制了其應有範圍;第二’碳纖維 效率較低,一塗有遠紅外塗料的棉 =熱源線再製成加熱層,不利於大面積製作,不^ 勻丨的要求,同時’不利於微型面熱源的製作。 二匕提供種具有強度大,電熱轉換效率較高, 去與二即省月匕源且發熱均句’大小可控,可製成大面積或 者微型的面熱源實為必要。 【發明内容】 種面熱源,該面熱源包括一第一電極 第二電極 和一加熱層。所述第一 、乐%極和第一電極間隔設置於該加熱 上並與該加熱層電接觸。該加熱層包括一奈米碳管層, 7 201002611 該奈米碳管層包括多個均勻分佈的奈米碳管。 相較於先前技術,所述的面熱源具有以下優點:第一, 由於奈米碳管具有較好的強度及知性,奈米碳管層的強度 較大:奈米碳管層的柔性好,不易破裂,使其具有較長的 使:ΐ命。第二’奈米碳管層中的奈米碳管均勻分佈,奈 米石厌g層具有均句的厚度及電阻,發熱均句,奈来碳管的 電熱轉換效率高,故該面熱源具有升溫迅速、熱滯後小、 熱交換速度快的特點。第三,奈米碳管的直徑較小,使得 奈米礙管層具有較小的厚度,可製備微型面熱源,應用於 微型器件的加熱。 【實施方式】 ^下將結合附圖詳細說明本技術方案面熱源。 °月參閱圖1及圖2,本技術方案實施例提供-種面埶 源10’該面熱源10包括一基底18、一反射層17、一加埶 層16、一第一電極12、一第二電極14和一絕緣保護層15。 所述反射層17設置於基底18的表面。所述加熱層16設置 於所述反射層17的夹面。餅沐给 ^ , 幻衣由所述第—電極12和第二電極14 間隔設置於所述加熱層16的表面,並與該加熱層Μ電接 觸用於使所述加熱層16中流過電流。所述絕緣保護層 ^設置於所述加熱層16的表面,並㈣電極12和 第二電極14覆蓋,用於避免所述加熱層16吸附外界雜質。 所述基底18形狀不限,其具有—表面用於支撐加敎層 16或者反射層17。優選地,所述基底板狀基底、, 其材料可為硬性材料m、玻璃、樹脂、石英等, 8 201002611 i中,可根據需要彎折成任意形狀。 實"二、⑼:大小不限,可依據實際需要進行改變。本 有為一陶究基板。另,當加熱層16具 Γ為了上撐性及1紋性時’所述面熱源ig中的基底 18為一可選擇的結構。 田料反射層17的設置用來反射加熱層16所發的熱 罝’從而控制加熱的方向,用於罝而士扭 面加熱,並進一步提高 率。所述反射㉟17的材料為-白色絕緣材料, 如.金屬氧化物、金屬鹽或陶究等。本實施例中,反射層 17為三氧化二鋁層,其厚度為1〇〇微米〜〇5毫米。該反射 層17可通過濺射或其他方法形成於該基底18表面。可以 理解,所述反射層17也可設置在基底18遠離加妖層16 的表面,即所述基底18設置於所述加熱層16和所述反射 層17之間,進一步加強反射層17反射熱量的作用。當面 熱源10不包括基底18時’所述加熱層16可直接設置於所 述反射層17的表面。所述反射層17為一可選擇的結構。 所述加熱層16可直接設置在基底18的表面,此時面熱源 10的加熱方向不限,可用於雙面加熱。 所述加熱層16包括一奈米碳管層。該奈米碳管層包括 多個均勻分佈的奈米碳管。該奈米碳管層包括一奈米碳管 薄膜或者多個奈米碳管長線。所述奈米碳管薄膜包括有序 奈米碳管薄膜或者無序奈米碳管薄膜。所述有序奈米碳管 薄膜中奈米石炭管有序排列’並沿固定方向擇優取向排列。 9 201002611 所述無序奈米碳管薄膜中奈米碳管無序排列。所述多個奈 米碳管長線可平行鋪設或者交叉鋪設形成奈米碳管層。所 述奈米碳管長線包括多個首尾相連的奈米碳管束,該奈米 碳管束包括多個長度相等且均勻分佈的奈米碳管。該奈米 碳管長線係由多個奈米碳管束組成的束狀結構或者絞線結 構。所述束狀結構的奈米碳管長線中的奈米碳管沿奈米碳 管長線的轴向擇優取向排列。所述絞線結構的奈米碳管長 線中的奈米碳管繞奈米碳管長線的軸向螺旋狀旋轉排列。 所述奈米碳管層中的奈米碳管為單壁奈米碳管、雙壁 奈米碳管或者多壁奈米碳管。當所述奈米碳管層中的奈米 碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0.5奈 米〜50奈米。當所述奈米碳管層中的奈米碳管為雙壁奈米 碳管時,該雙壁奈米碳管的直徑為1.0奈米〜50奈米。當 所述奈米碳管層中的奈米碳管為多壁奈米碳管時,該多壁 奈米碳管的直徑為1.5奈米〜50奈米。 優選地,所述奈米碳管層包括至少一有序奈米碳管薄 膜。該有序奈米碳管薄膜可通過直接拉伸一奈米碳管陣列 獲得。該有序奈米碳管薄膜包括多個沿拉伸方向定向排列 的奈米碳管。請參閱圖3,具體地,所述有序奈米碳管薄 膜161包括多個首尾相連且長度相等的奈米碳管束162。 所述奈米碳管束162的兩端通過凡德瓦爾力相互連接。每 個奈米碳管束162包括多個長度相等且平行排列的奈米碳 管163。所述相鄰的奈米碳管163之間通過凡德瓦爾力緊 密結合。所述有序奈米碳管薄膜161係由奈米碳管陣列經 201002611 進一步處理得到的,故其長度與寬度和奈米碳管陣列所生 長的基底的尺寸有關。可根據實際需求制得。本實施例中, 採用氣相沈積法在4英寸的基底生長超順排奈米碳管陣 列。所述有序奈米碳管薄膜161的寬度可為〇 〇1厘米〜1〇 厘米,厚度為10奈米〜1〇〇微米。所述有序奈米碳管薄膜 161中,多個奈米碳管均勻分佈且平行於所述奈米碳管層 的表面。所述的多個奈米碳管沿拉伸方向擇優取向排列。 進一步地’所述奈米碳管層包括至少兩個重疊設置的 上述有序奈米碳管薄膜161。具體地,相鄰的兩個有序奈 米石反官薄膜161中的奈米碳管具有一交叉角度α,且〇度 $α$90度,具體可依據實際需求製備。可以理解,由於奈 米碳管層中的多個有序奈米碳管薄膜161可重疊設置, 故,上述奈米碳管層的厚度不限,可根據實際需要製成具 有任意厚度的奈米碳管層。優選地,所述奈米碳管層的厚 ^為1〇〇奈米〜5毫米。若奈米碳管層的厚度小於ι〇微米 時’還可製成透明的面熱源應用於顯示裝置等其他裝置中。 另,所述加熱層16可包括至少一奈米碳管薄膜和多個 奈米碳管長線互相重疊形成的奈米碳管複合結構,其中, 奈米碳管長線平行或者交叉設置提供一定的支撐作用,使 奈=¼官複合結構具有更好的韌性。由於奈米碳管層具有 一定的韌性,可彎折,故本技術方案實施例中的加熱層16 可為平面結構也可為曲面結構。 卜所述第一電極12和第二電極14由導電材料組成,該 第-電極12和第二電極14的形狀紐,可為導電薄膜、 11 201002611 金屬片或者金屬化線。優選地,第一電極i2和第 w均為一層導電薄膜。該導電薄臈的厚度為ο:太、 微米。該導電薄膜的材料可為金屬、合金 二100 (叫録錫氧化物(AT0)、導電銀膠、導電::: = :性:米:管:。該金屬或合金材料可為 、、、女、鈀、铯或其任意組合的合金。本實施你丨由 所述第一電極12和筮-雪:fcSUAAU ^ ^和弟一電極14的材料為金屬鈀膜,厚产 ^不、未。所述金屬把與奈米碳管具有較好的潤渴 ^ 之一電極η及第二電極Μ與所述加熱層16 之間形成良好的電接觸,減少歐姆接觸電阻。 所述的第一電極12和第二電極“可設置在加埶芦W 的同-表面上也可設置在加熱層16的不同表面上。或者, 當所述面熱源1G中未包括基底18時,也可將加熱層Μ 固疋在間隔的第一電極12和第二電極14表面,該第—带 極12和第二電極14用於支撐加熱層16。其中,第一電2 12和第一電極14㈣設置,以使加熱層應用於面敎源 10時接入-定的阻值避免短路現象產生。由於作為加熱層 16的奈米碳管層本身有很好的粘附性,故第一電極= 第-電極14直接就可與奈米碳管層之間形成很好的電 觸0 另,所述的第一電極12和第二電極14也可通過—導 電粘結劑(圖未示)設置於該加熱層16的表面上,導電 劑在實現第一電極12和第二電極14與加熱層16電接觸的 同時,還可將所述第一電極12和第二電極14更好地固定 12 201002611 於加熱層16的表面上。本實施例優選的導電枯結 膠。 巧、艮 可以理解’第-電極12和第二電極14的結構和材料 均不限,其設置目的係使所述加熱層16中流過電, 所述第-電極12和第二電極14只需要導電’並與所 熱層16之間形成電接觸都在本發明的保護範圍内。° 所述絕緣保護層15為一可選擇結構,其材 材料,如:橡膠、樹脂等。所述絕緣保護層^厚产不、、, =實:情、『擇。所述絕緣保護層15覆蓋於“:」 在絕緣狀極14和加熱層16之上,可使該面熱源10 緣“下使用,同時還可避免所述加熱層 石反管吸附外界雜皙。太眚始办丨Λ 〒的不未 為橡膜::! 該絕緣保護層15的材料 為橡膠,其厚度為0.5〜2亳米。 叶 ^ 1 ^ Φ ^ 10 ^ ^ ^ ^ 在接入m二12和弟二電極14連接導線後接入電源。 長範圍奈米碳管層即可韓射出-定波 接接觸。式去可與待加熱物體的表面直 爲由沾3者,由於本實施例中作為加熱層16的太乎石-其 ^中的奈米碳管具有良好的導電性能,且該夺 身已經具有-定的自支撐性及穩定性,;官層本 待加熱物體相隔—定的距離設置。 ”、、源20可與 本技術方案實施例中的面熱源1〇在 積大小—定時,可通過調節電 ;^^層的面 田射出不同波長範圍的電磁波。電源電愿的大小 201002611 一定時’奈米碳管層的厚度和麵熱源10輻出電磁波的波長 成反比。即當電源電壓大小一定時,奈米碳管層的厚度越 厚,面熱源ίο輻出電磁波的波長越短,該面熱源1〇可產 生一可見光熱輻射;奈米碳管層的厚度越薄,面熱源1〇 輻出電磁波的波長越長’該面熱源10可產生—紅外線熱輻 射。奈米碳管層的厚度一定時,電源電壓的大小和麵熱源 10輻出電磁波的波長成反比。即當奈米碳管層的厚度一定 時,電源電壓越大,面熱源10輻出電磁波的波長越短,該 面熱源1〇可產生一可見光熱輻射;電源電壓越小,面熱源 10輻出電磁波的波長越長,該面熱源10可產生一紅 輻射。 、 奈米碳管具有良好的導電性能及熱穩定性,且作為一 理想的黑體結構’具有比較高的熱輻射效率。將該面熱源 、暴露在氧化性氣體或者大氣的環境中,其中奈米碳管層 的厚度為5笔米,通過在10伏〜3〇伏調節電源電壓,該面 :、、原10可輻射出波長較長的電磁波。通過溫度測量儀發現 =熱10的溫度為50°c〜50(rc。對於具有黑體結構的 善來》兒其所對應的溫度為200。(:〜45CTC時就能發出人 =a不見的熱輻射(紅外線),此時的熱輻射最穩定、效率 :°應用該奈米碳管層製成的發熱元件,可應用於電加 …益、紅外治療儀、電暖器等領域。 真办2一步地,將本技術方案實施例中的面熱源10放入一 源二1〇、置t,通過在80伏〜150伏調節電源電壓,該面熱 可輻射出波長較短的電磁波。當電源電壓大於15〇 201002611 寺該面熱源10陸續會發出紅光、黃光等可見光。通過 /皿f ’則里儀發現該面熱源10的溫度可達到1500〇C以上, 此時會產生一普通熱輻射。隨著電源電壓的進一步增大, =面熱源1G還能產生殺死細菌的人眼看不見的射線(紫外 “)’可應用於光源、顯示器件等領域。 所述的面熱源具有以下優點:第—,由於奈米碳管具 父好的強度及勒性,奈米碳管層的強度較大,奈米碳管 二的柔性好,不易破裂,使其具有較長的使用壽命。第二, j碳管層中的奈米碳管均勾分佈,奈米碳管層具有均句 “旱度及電阻’發熱均勻,奈米碳管的電熱轉換效率高, 该面,源具有升溫迅速、熱滞後小、熱交換速度快、輕 、效率南的特點。第三,奈米碳管的直錄小 ::層具有較小的厚度,可製備微型面熱源,應用於微; 膜熱:奈米碳管層可包括至少-奈米碳管薄 、^固不米石反官長線互相重疊形成的奈米碳管複合結 八中’奈米碳管長線平行或者交叉設置提供一定的支 =用’使奈米碳管複合結構具有更好的勒性。第五,奈 =¾管層:通過從奈米碳管陣列中拉取後作進一步處理得 到,方法簡單且有利於大面積面熱源的製作。 摞屮斤述’本發明確已符合發明專利之要件,遂依法 =出專利申請。惟,以上所述者僅為.本發明之較佳實施例, :能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =士援依本發明之精神所作之等效修飾或變化,皆應涵 盍於以下申請專利範圍内。 15 201002611 【圖式簡單說明】 圖1係本技術方案實施例的面熱源的結構示意圖。 圖2係圖1的ii-ii剖面示意圖。 圖3係本技術方案實施例的有序奈米碳管薄膜 放大示意圖。 〇刀 【主要元件符號說明】 面熱源 10 第一電極 12 第二電極 14 絕緣保護層 15 加熱層 16 奈米碳管薄膜 161 奈米碳管束 162 奈米碳管 163 反射層 17 基底 18 16201002611 IX. INSTRUCTIONS: [Technical Field] The present invention relates to a seed surface heat source, and more particularly to a surface heat source based on a carbon nanotube. [Prior Art] Heat sources play an important role in people's production, life, and research. The surface heat source is a kind of heat source, which is characterized in that the surface heat source has a planar structure, and the object to be heated is placed above the planar structure to heat the object, so the surface heat source can simultaneously heat various parts of the object to be heated, and the heating surface is wide. Uniform heating and high efficiency. Surface heat sources have been successfully used in industrial fields, = fields or living areas, such as electric heaters, infrared therapeutic devices, and electric heaters. The front face heat source generally comprises a heating layer and at least two electrodes disposed on the surface of the heating layer and electrically connected to the surface of the heating layer. When the thunder is connected to the click, it is immediately released from the heating layer; when low, current, heat: the heating wire is used as a heating layer for electrothermal conversion. However, the strength is not high and it is easy to break, especially bending or winding into a fixed-angle application is limited. In addition, this is a ruler who recognizes that "the heat generated by the ordinary wave of conductive filaments is so long that the skin is long and fortunately shot, and its electrothermal conversion efficiency is not high, which is not conducive to saving 6 201002611 == boring, This solves the disadvantage of the strong breaking of the heating wire to some extent. However, since the carbon fiber is radiated outward at a common wavelength, the problem of low electrothermal conversion rate is not solved. = The heating layer using carbon fiber generally includes a plurality of carbon fibers. Heat source line paving or cotton outer dip coating - layer waterproofing flame retardant insulating outer coating cotton: consisting of multiple carbon fibers and multiple surfaces coated with far red material ^ winding. The conductive core wire is far from adding people Infrared coated cotton thread 'supplements can enhance the heat generated by the strong two fibers of the core wire and can be emitted outward at the infrared wavelength. (1) Anti-conductive carbon: The strength of the carbon fiber is increased by the degree line: Restricted: M should be added to the cotton aphid A Twisted its proper range; the second 'carbon fiber efficiency is lower, a cotton coated with far-infrared coating = heat source line and then made into a heating layer, which is not conducive to large-area production, does not meet the requirements of uniformity, and at the same time 'unfavorable Production of micro surface heat source The two kinds of cockroaches provide high intensity and high electrothermal conversion efficiency. It is necessary to control the size of the sputum and the heat generation. It is necessary to make a large area or miniature surface heat source. a surface heat source, the surface heat source comprising a first electrode second electrode and a heating layer, wherein the first, Le% pole and the first electrode are disposed on the heating and in electrical contact with the heating layer. The heating layer comprises One carbon nanotube layer, 7 201002611 The carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes. Compared with the prior art, the surface heat source has the following advantages: first, since the carbon nanotube has Good strength and knowledge, the strength of the carbon nanotube layer is large: the carbon nanotube layer is flexible and not easy to be broken, so that it has a longer effect: the second 'carbon nanotube layer The carbon nanotubes are evenly distributed, and the nano-stone layer has the thickness and resistance of the uniform sentence, and the heat is uniform. The heat transfer efficiency of the carbon nanotubes is high, so the heat source has rapid heating, small thermal hysteresis, and heat exchange rate. Fast features. Third, carbon nanotube The diameter is small, so that the nano-barrier layer has a small thickness, and a micro-surface heat source can be prepared for heating of the micro device. [Embodiment] The surface heat source of the present technical solution will be described in detail below with reference to the accompanying drawings. 1 and 2, the embodiment of the present invention provides a seed source 10'. The surface heat source 10 includes a substrate 18, a reflective layer 17, a twist layer 16, a first electrode 12, and a second electrode 14. And an insulating protective layer 15. The reflective layer 17 is disposed on the surface of the substrate 18. The heating layer 16 is disposed on the face of the reflective layer 17. The cake is provided by the first electrode 12 and The second electrode 14 is spaced apart from the surface of the heating layer 16 and is in electrical contact with the heating layer for flowing a current in the heating layer 16. The insulating protective layer is disposed on the surface of the heating layer 16. And (4) covering the electrode 12 and the second electrode 14 for preventing the heating layer 16 from adsorbing external impurities. The substrate 18 is not limited in shape and has a surface for supporting the twisted layer 16 or the reflective layer 17. Preferably, the base plate-shaped substrate, the material thereof may be a hard material m, glass, resin, quartz, etc., in 8 201002611 i, may be bent into any shape as needed. Real " Second, (9): The size is not limited, can be changed according to actual needs. This is a ceramic substrate. Further, when the heating layer 16 has a support and a graininess, the substrate 18 in the surface heat source ig is an optional structure. The field reflective layer 17 is provided to reflect the heat generated by the heating layer 16 to control the direction of heating for the twisted surface heating and further increase the rate. The material of the reflection 3517 is a white insulating material such as a metal oxide, a metal salt or a ceramic. In this embodiment, the reflective layer 17 is a layer of aluminum oxide having a thickness of from 1 μm to 5 mm. The reflective layer 17 can be formed on the surface of the substrate 18 by sputtering or other methods. It can be understood that the reflective layer 17 can also be disposed on the surface of the substrate 18 away from the demon layer 16, that is, the substrate 18 is disposed between the heating layer 16 and the reflective layer 17, further enhancing the reflective layer 17 to reflect heat. The role. When the surface heat source 10 does not include the substrate 18, the heating layer 16 may be disposed directly on the surface of the reflective layer 17. The reflective layer 17 is an alternative structure. The heating layer 16 can be directly disposed on the surface of the substrate 18, and the heating direction of the surface heat source 10 is not limited, and can be used for double-sided heating. The heating layer 16 includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotube layer comprises a carbon nanotube film or a plurality of carbon nanotube long wires. The carbon nanotube film comprises an ordered carbon nanotube film or a disordered carbon nanotube film. The carbon nanotube tubes in the ordered carbon nanotube film are arranged in an orderly manner and arranged in a preferred orientation in a fixed direction. 9 201002611 The carbon nanotubes in the disordered carbon nanotube film are disorderly arranged. The plurality of carbon nanotube long wires may be laid in parallel or cross-laid to form a carbon nanotube layer. The long carbon nanotube line comprises a plurality of carbon nanotube bundles connected end to end, and the carbon nanotube bundle comprises a plurality of carbon nanotubes of equal length and uniform distribution. The long carbon nanotube line is a bundle structure or a stranded structure composed of a plurality of carbon nanotube bundles. The carbon nanotubes in the long carbon nanotube line of the bundle structure are arranged along the axially preferred orientation of the long line of the carbon nanotubes. The carbon nanotubes in the long carbon nanotube line of the stranded structure are arranged in an axial spiral rotation around the long line of the carbon nanotubes. The carbon nanotubes in the carbon nanotube layer are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotubes in the carbon nanotube layer are single-walled carbon nanotubes, the single-walled carbon nanotubes have a diameter of from 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube layer are double-walled carbon nanotubes, the diameter of the double-walled carbon nanotubes is from 1.0 nm to 50 nm. When the carbon nanotubes in the carbon nanotube layer are multi-walled carbon nanotubes, the multi-walled carbon nanotubes have a diameter of from 1.5 nm to 50 nm. Preferably, the carbon nanotube layer comprises at least one ordered carbon nanotube film. The ordered carbon nanotube film can be obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film comprises a plurality of carbon nanotubes oriented in the direction of stretching. Referring to Figure 3, in particular, the ordered carbon nanotube film 161 comprises a plurality of carbon nanotube bundles 162 that are end to end and of equal length. Both ends of the carbon nanotube bundle 162 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 162 includes a plurality of carbon nanotubes 163 of equal length and arranged in parallel. The adjacent carbon nanotubes 163 are tightly bonded by van der Waals force. The ordered carbon nanotube film 161 is further processed by the carbon nanotube array through 201002611, so its length is related to the width and the size of the substrate grown by the carbon nanotube array. Can be made according to actual needs. In this example, a super-aligned carbon nanotube array was grown on a 4-inch substrate by vapor deposition. The ordered carbon nanotube film 161 may have a width of from 1 cm to 1 cm and a thickness of from 10 nm to 1 μm. In the ordered carbon nanotube film 161, a plurality of carbon nanotubes are uniformly distributed and parallel to the surface of the carbon nanotube layer. The plurality of carbon nanotubes are arranged in a preferred orientation along the stretching direction. Further, the carbon nanotube layer includes at least two of the above-described ordered carbon nanotube films 161 which are disposed in an overlapping manner. Specifically, the carbon nanotubes in the adjacent two ordered nano-reverse films 161 have an intersection angle α and a twist of $α$90 degrees, which can be prepared according to actual needs. It can be understood that, since the plurality of ordered carbon nanotube films 161 in the carbon nanotube layer can be overlapped, the thickness of the above carbon nanotube layer is not limited, and the nanometer having any thickness can be prepared according to actual needs. Carbon tube layer. Preferably, the thickness of the carbon nanotube layer is from 1 nanometer to 5 millimeters. If the thickness of the carbon nanotube layer is less than ι〇μm, a transparent surface heat source can be used for other devices such as display devices. In addition, the heating layer 16 may include a carbon nanotube composite structure formed by at least one carbon nanotube film and a plurality of carbon nanotube long lines overlapping each other, wherein the long carbon nanotubes are parallel or cross-connected to provide a certain support. The effect is to make the nano-composite structure have better toughness. Since the carbon nanotube layer has a certain toughness and can be bent, the heating layer 16 in the embodiment of the present invention may be a planar structure or a curved structure. The first electrode 12 and the second electrode 14 are composed of a conductive material, and the shape of the first electrode 12 and the second electrode 14 may be a conductive film, 11 201002611 metal piece or metallized wire. Preferably, the first electrode i2 and the wth are each a layer of a conductive film. The thickness of the conductive thin crucible is ο: too, micron. The material of the conductive film may be metal, alloy two 100 (called tin oxide (AT0), conductive silver glue, conductive::: =: sex: meter: tube: the metal or alloy material can be,,, female An alloy of palladium, rhodium or any combination thereof. In the present embodiment, the material of the first electrode 12 and the 筮-snow: fcSUAAU ^ ^ and the first electrode 14 is a metal palladium film, and the thickness is not high or not. The metal has a good thirst with the carbon nanotubes and a good electrical contact between the second electrode Μ and the heating layer 16 to reduce the ohmic contact resistance. The first electrode 12 And the second electrode "may be disposed on the same surface of the hoist W. It may also be disposed on different surfaces of the heating layer 16. Alternatively, when the substrate 18 is not included in the surface heat source 1G, the heating layer may be disposed. The first electrode 12 and the second electrode 14 are fixed on the surface of the first electrode 12 and the second electrode 14. The first electrode 12 and the second electrode 14 are used to support the heating layer 16. The first electrode 12 and the first electrode 14 (four) are disposed so that When the heating layer is applied to the surface source 10, the resistance value is set to avoid the occurrence of a short circuit phenomenon due to the carbon carbon as the heating layer 16. The layer itself has good adhesion, so the first electrode = the first electrode 14 can directly form a good electrical contact with the carbon nanotube layer. In addition, the first electrode 12 and the second electrode 14 can also be disposed on the surface of the heating layer 16 by a conductive adhesive (not shown). The conductive agent can also make the first electrode 12 and the second electrode 14 electrically contact with the heating layer 16, and can also The first electrode 12 and the second electrode 14 are better fixed on the surface of the heating layer 16. The conductive paste is preferred in this embodiment. It is understood that the first electrode 12 and the second electrode 14 can be understood. The structure and the material are not limited, and the purpose of the setting is to make electricity flow in the heating layer 16, and the first electrode 12 and the second electrode 14 only need to conduct electricity and form electrical contact with the thermal layer 16 Within the scope of protection of the invention, the insulating protective layer 15 is an optional structure, such as rubber, resin, etc. The insulating protective layer is not thick, and is: The insulating protective layer 15 is covered on the ":" over the insulating pole 14 and the heating layer 16, and the surface can be made The source 10 edge is used underneath, and at the same time, the heated layer stone back pipe can be prevented from adsorbing external foreign matter. The material of the insulating protective layer 15 is rubber, and the material of the insulating protective layer 15 is rubber. The thickness is 0.5~2亳. Leaf ^ 1 ^ Φ ^ 10 ^ ^ ^ ^ After connecting the m 2 12 and the second electrode 14 connecting wires, the power is connected. The long-range carbon nanotube layer can be shot out. The wave contact is in contact with the surface of the object to be heated, and the carbon nanotubes in the present embodiment have good electrical conductivity, and the carbon nanotubes in the present embodiment have good electrical conductivity. The body has already had a certain self-supporting and stability; the official layer of the object to be heated is separated by a fixed distance setting. The source 20 can be in the same size as the surface heat source in the embodiment of the present technical solution. The electromagnetic field of different wavelength ranges can be emitted by adjusting the surface of the layer. The size of the power supply is expected to be 201002611. 'The thickness of the carbon nanotube layer is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source 10. That is, when the power supply voltage is constant, the thicker the thickness of the carbon nanotube layer, the shorter the wavelength of the electromagnetic wave radiated by the surface heat source, The surface heat source 1 〇 can generate a visible light heat radiation; the thinner the thickness of the carbon nanotube layer, the longer the wavelength of the surface heat source 1 〇 emits electromagnetic waves. The surface heat source 10 can generate infrared heat radiation. The carbon nanotube layer When the thickness is constant, the magnitude of the power supply voltage is inversely proportional to the wavelength of the electromagnetic wave radiated from the surface heat source 10. That is, when the thickness of the carbon nanotube layer is constant, the larger the power supply voltage, the shorter the wavelength of the electromagnetic wave radiated by the surface heat source 10, the surface The heat source 1〇 can generate a visible light heat radiation; the smaller the power source voltage, the longer the wavelength of the electromagnetic wave emitted by the surface heat source 10, the surface heat source 10 can generate a red radiation. The carbon nanotube has good electrical conductivity and thermal stability. Qualitative, and as an ideal black body structure 'has a relatively high thermal radiation efficiency. The surface heat source, exposed to oxidizing gas or atmospheric environment, wherein the thickness of the carbon nanotube layer is 5 pen meters, passed at 10 Volt ~ 3 volts to adjust the power supply voltage, the surface:, the original 10 can radiate electromagnetic waves with a longer wavelength. It is found by the temperature measuring instrument = the temperature of the hot 10 is 50 ° c ~ 50 (rc. For the good with the black body structure The temperature corresponding to it is 200. (: ~45CTC can emit heat radiation (infrared) that is not visible to people = a. At this time, the heat radiation is the most stable and efficient: °The carbon nanotube layer is applied The heating element can be applied to the fields of electric heating, infrared therapeutic apparatus, electric heater, etc. In one step, the surface heat source 10 in the embodiment of the technical solution is put into one source, two 〇, and t, By adjusting the power supply voltage at 80 volts to 150 volts, the surface heat can radiate electromagnetic waves with a shorter wavelength. When the power supply voltage is greater than 15 〇 201002611, the surface heat source 10 will emit visible light such as red light and yellow light. 'Jerry found that the temperature of the heat source 10 can be Above 1500 〇C, a common heat radiation is generated. As the power supply voltage is further increased, the surface heat source 1G can also generate rays (UV ") that can be invisible to the human eye, which can be applied to the light source. The field of display devices and the like. The surface heat source has the following advantages: first, because of the strength and the character of the carbon nanotubes, the strength of the carbon nanotube layer is large, and the flexibility of the carbon nanotubes is good. It is not easy to rupture, so it has a long service life. Second, the carbon nanotubes in the j carbon tube layer are hooked, and the carbon nanotube layer has a uniform sentence "dryness and resistance", uniform heating, carbon nanotubes The electrothermal conversion efficiency is high, and the surface has the characteristics of rapid temperature rise, small heat lag, fast heat exchange speed, light weight and high efficiency. Third, the direct recording of the carbon nanotubes: the layer has a small thickness. , can prepare micro-face heat source, applied to micro; film heat: carbon nanotube layer can include at least - nano carbon tube thin, ^ solid non-meter stone reverse long line formed by overlapping carbon nanotube composite knot eight" The long line of carbon nanotubes is parallel or cross-connected to provide a certain branch = use ' The carbon nanotube composite structure has better character. Fifth, Nai = 3⁄4 tube layer: It is obtained by further drawing from the carbon nanotube array, and the method is simple and favorable for the production of large-area surface heat source.摞屮 述 ” 'The invention has indeed met the requirements of the invention patent, 遂 legal = patent application. However, the above description is only a preferred embodiment of the present invention, and can limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by the Society in accordance with the spirit of the present invention shall be within the scope of the following patent application. 15 201002611 [Simplified description of the drawings] Fig. 1 is a schematic structural view of a surface heat source according to an embodiment of the present technical solution. Figure 2 is a schematic cross-sectional view of the ii-ii of Figure 1. Fig. 3 is an enlarged schematic view showing an ordered carbon nanotube film according to an embodiment of the present technical solution. Sickle [Description of main component symbols] Surface heat source 10 First electrode 12 Second electrode 14 Insulating protective layer 15 Heating layer 16 Carbon nanotube film 161 Carbon nanotube bundle 162 Carbon nanotube 163 Reflective layer 17 Substrate 18 16

Claims (1)

201002611 十、申請專利範圍 1. 一種面熱源,包括一加熱層,至少兩電極間隔設置 於該加熱層表面並與該加熱層電接觸,其改良在 於,所述加熱層包括一奈米碳管層,該奈米碳管層 包括多個均勻分佈的奈米碳管。 2. 如申請專利範圍第1項所述的面熱源,其中,所述 奈米碳管層中奈米碳管有序排列。 3. 如申請專利範圍第【項所述的面熱源,其中,所述 奈米碳管層中奈米碳管無序排列。 4·如申請專利範圍帛1項所述的面熱源,其中,所述 奈米碳管層的厚度為100奈米〜5毫米。 5.如申請專利範圍帛丄項所述的面熱源,其中,所述 至少兩電極的材料為金屬、合金、銦錫氧化物、銻 =氧化物、導電銀膠、導電聚合物或導電性奈米碳 6. 如申請專利範圍第5項所述的面熱源,其 至少兩電極的材料為把、絶、銘、銅、鶴、銷工 鈦、敍或其任意組合的合金。 I 7. 如申請專利範圍第i項所述的面熱源 S兩電極設置在奈米碳管層的同-表:或者Si 如申請專利範圍第1項所述的面 步,括-導電枯結劑設置在所述的至少兩’進-米碳管層之間。 *電極和音 17 8. 201002611 9.如申請專利範圍第}項 太斤迂的面熱源,其中,所述 不水石反皆層包括至少一牟 瞢县綠4 不木石反官薄膜和多個奈米碳 心3 形成的奈米碳管複合結構。 轨源進—牛=Λ 的面熱源’其中’所述面 #包括-板狀基底’所 該板狀基底表面。 Τ反&層β又置在 其中,所述 η.如申請專利範圍第10項所述的面埶源 基底的材料為柔性材料或硬性材料。 其中,所述 12. 如申請專利範圍第11項所述的面熱源 柔性材料為塑膠或柔性纖維。 其中,所述 13. 如申請專利範圍第^所述的面熱源 硬性材料為陶竟、玻璃、樹脂或石英。 141申請專利範圍第1項所述的面熱源,其中,所述面 熱源進一步包括一;厅迷面 面。 匕括反射層,該反射層設置於加熱層表 15. 如申請專利範圍第η頊所 反射屉< 罢* 項所述的面熱源,其中,所述 ,層叹置在所述加熱層與基底之間或者嗖 述基底遠離加熱層的表面。 11在所 16. 如申請專利範圍第14項所述的面熱源,1中,所述 =層的材料為金屬氧化物、_1^迷 17. 如申請專利範圍第14項所料面熱源,^中 反射層的厚度為100微米〜0.5毫米 述 队如申請專利範圍第i項所述的面熱源, 熱源進一步包括一绍祕/1?地 ' Ύ所述面 匕括、絕緣保濩層設置於所述加熱層表 18 201002611201002611 X. Patent Application Area 1. A surface heat source comprising a heating layer, at least two electrodes are disposed on the surface of the heating layer and in electrical contact with the heating layer, wherein the heating layer comprises a carbon nanotube layer The carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes. 2. The surface heat source according to claim 1, wherein the carbon nanotubes in the carbon nanotube layer are arranged in an orderly manner. 3. The surface heat source according to the above-mentioned patent application, wherein the carbon nanotubes in the carbon nanotube layer are disorderly arranged. 4. The surface heat source according to claim 1, wherein the carbon nanotube layer has a thickness of from 100 nm to 5 mm. 5. The surface heat source according to claim 2, wherein the at least two electrodes are made of a metal, an alloy, an indium tin oxide, a cerium oxide, a conductive silver paste, a conductive polymer or a conductive nano. The carbonaceous carbon source 6. The surface heat source according to claim 5, wherein the at least two electrodes are made of alloys of ruthenium, ruthenium, copper, crane, titanium, or any combination thereof. I 7. The two electrodes of the surface heat source S as described in the scope of claim patent item i are disposed on the same surface of the carbon nanotube layer: or Si as described in claim 1 of the patent scope, including - conductive dry knot The agent is disposed between the at least two 'in-meter carbon tube layers. *Electrode and sound 17 8. 201002611 9. If the surface area of the patent application is too large, the non-water stone anti-layer includes at least one county green 4 non-wood stone anti-official film and multiple nanometers. Carbon nanotube composite structure formed by carbon core 3. The rail source is - the surface heat source of the cow = 其中 where the surface # includes the plate-like substrate. The anti-layer layer β is further disposed therein, and the material of the noodle source substrate according to claim 10 is a flexible material or a hard material. Wherein, the surface heat source flexible material according to claim 11 is a plastic or a flexible fiber. Wherein, 13. The surface heat source hard material as described in the patent application scope is ceramic, glass, resin or quartz. 141. The surface heat source of claim 1, wherein the surface heat source further comprises: a fan face. In addition, the reflective layer is disposed on the heating layer. The surface heat source according to the reflective drawer of the present invention, wherein the layer is slanted on the heating layer and Between the substrates or the surface of the substrate away from the heating layer. [11] The surface heat source according to claim 14, wherein the material of the layer is a metal oxide, and the material of the surface of the material is the heat source of the material. The thickness of the middle reflective layer is 100 micrometers to 0.5 millimeters. As described in the patent application scope, the heat source further includes a surface of the surface, and the insulating layer is disposed on the surface. The heating layer table 18 201002611
TW97125371A 2008-07-04 2008-07-04 Planar heat source TWI360521B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97125371A TWI360521B (en) 2008-07-04 2008-07-04 Planar heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97125371A TWI360521B (en) 2008-07-04 2008-07-04 Planar heat source

Publications (2)

Publication Number Publication Date
TW201002611A true TW201002611A (en) 2010-01-16
TWI360521B TWI360521B (en) 2012-03-21

Family

ID=44825275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97125371A TWI360521B (en) 2008-07-04 2008-07-04 Planar heat source

Country Status (1)

Country Link
TW (1) TWI360521B (en)

Also Published As

Publication number Publication date
TWI360521B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
CN101626639B (en) Plane heat source
TW201008362A (en) Hollow heating source
CN101636005B (en) Plane heat source
CN101616513B (en) Linear heat source
TW201002611A (en) Planar heat source
CN101636004B (en) Plane heat source
CN101636007B (en) Plane heat source
TWI462630B (en) Planar heating source
CN101616514B (en) Linear heat source
TWI380731B (en) Planar heating source
TWI462628B (en) Planar heating source
TWI380730B (en) Planar heating source
TW201000395A (en) Linear heater
TWI380733B (en) Planar heating source
TWI448417B (en) Linear heater
CN101636006A (en) Plane heat source
TWI427027B (en) Hollow heating source
TWI473524B (en) Hollow heating source
TWI380732B (en) Planar heating source
TWI386363B (en) Linear heater
TWI462627B (en) Hollow heating source
TWI466585B (en) Hollow heating source
TW201006300A (en) Linear heater
CN101616512A (en) Line heat source
TW201006295A (en) Linear heater