RU2647012C2 - Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника - Google Patents

Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника Download PDF

Info

Publication number
RU2647012C2
RU2647012C2 RU2016130039A RU2016130039A RU2647012C2 RU 2647012 C2 RU2647012 C2 RU 2647012C2 RU 2016130039 A RU2016130039 A RU 2016130039A RU 2016130039 A RU2016130039 A RU 2016130039A RU 2647012 C2 RU2647012 C2 RU 2647012C2
Authority
RU
Russia
Prior art keywords
pipe
heat exchanger
section
outer pipe
cross
Prior art date
Application number
RU2016130039A
Other languages
English (en)
Other versions
RU2016130039A (ru
Inventor
Маркус Вальтер ТЕЛИАН
Original Assignee
Ховал Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ховал Акциенгезелльшафт filed Critical Ховал Акциенгезелльшафт
Publication of RU2016130039A publication Critical patent/RU2016130039A/ru
Application granted granted Critical
Publication of RU2647012C2 publication Critical patent/RU2647012C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/20Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes
    • F24H1/205Water-storage heaters with immersed heating elements, e.g. electric elements or furnace tubes with furnace tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • F24H1/282Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes with flue gas passages built-up by coaxial water mantles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B9/00Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body
    • F22B9/02Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body the boiler body being disposed upright, e.g. above the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • F24H1/28Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body including one or more furnace or fire tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • F24H9/0031Guiding means in combustion gas channels with means for changing or adapting the path of the flue gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0206Heat exchangers immersed in a large body of liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/105Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being corrugated elements extending around the tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Изобретение относится к теплотехнике и может быть применено в отопительных котлах. У трубы (5) теплообменника отопительного котла (2), имеющей наружную трубу (10), по которой могут протекать уходящие газы топки котла, и которая может быть окружена с наружной стороны греющей водой, и вдвинутую в наружную трубу профильную вставку (11), которая для увеличения внутренней поверхности наружной трубы (10) имеет ребра (14), проходящие в ее продольном направлении (12), и находится в теплопроводящем контакте с наружной трубой (10), первый продольный участок (22) наружной трубы (10) выполнен в виде гладкостенного цилиндра, а второй продольный участок (23) наружной трубы (10) имеет по меньшей мере один элемент (24) для сужения поперечного сечения, сужающий проточное поперечное сечение, при этом профильная вставка (11) распространяется исключительно по первому продольному участку (22) наружной трубы (10). Технический результат – повышение мощности передачи тепла газообразных продуктов сгорания греющей воде в отопительном котле. 2 н. и 13 з.п. ф-лы, 13 ил.

Description

Изобретение касается трубы теплообменника отопительного котла, в частности конденсационного котла, имеющей наружную трубу, по которой могут протекать уходящие газы топки котла, и которая может быть окружена с наружной стороны греющей водой, и вдвинутую в наружную трубу профильную вставку, которая для увеличения внутренней поверхности наружной трубы имеет ребра, проходящие в ее продольном направлении, и находится в теплопроводящем контакте с наружной трубой.
Также изобретение касается отопительного котла, в частности конденсационного котла, для нагрева греющей воды циркуляционного контура отопления, имеющего корпус, который ограничивает камеру греющей воды и который имеет предвключенную камере греющей воды топочную камеру.
Такой отопительный котел вышеназванного рода, который предлагается заявителем, может эксплуатироваться в качестве водогрейного котла с топкой для газообразного топлива или топкой для жидкого топлива (мазут, керосин или тому подобное). У такого водогрейного котла (конденсационного котла) газообразные продукты сгорания охлаждаются до конденсации влаги уходящих газов, чтобы использовать также тепло конденсации. Предпосылкой для этого является, что отопительный котел, соответственно, водогрейный котел эксплуатируется с температурой греющей воды, которая в конце пути газообразных продуктов сгорания через отопительный котел ниже, чем температура точки росы газообразных продуктов сгорания. Стремятся к тому, чтобы на кратчайшем возможном пути газообразных продуктов сгорания по водоохлаждаемым трубам теплообменника отопительного котла охлаждать газообразные продукты сгорания с высокой температуры на входе до самой низкой температуры греющей воды, имеющейся между температурой точки росы и температурой рециркуляции греющей воды отопительного котла. Для этого известны трубы теплообменника, при этом одна из труб теплообменника вышеназванного рода известна, например, из EP 0 752 088 A1.
В основе изобретения лежит задача создать решение, которое конструктивно простым образом и с оптимальными затратами создает трубу теплообменника, а также отопительный котел, обеспечивающие возможность еще большей мощности передачи тепла от газообразных продуктов сгорания к греющей воде в отопительном котле.
В отношении трубы теплообменника вышеназванного рода задача в соответствии с изобретением решается таким образом, что первый продольный участок наружной трубы выполнен гладкостенным и цилиндрическим, а второй продольный участок наружной трубы имеет по меньшей мере один элемент для сужения поперечного сечения, сужающий проточное поперечное сечение, при этом профильная вставка распространяется исключительно по первому продольному участку наружной трубы. Другими словами, профильная вставка расположена исключительно в пределах первого продольного участка.
Также в отношении отопительного котла вышеназванного рода задача в соответствии с изобретением решается таким образом, что внутри корпуса расположена по меньшей мере одна труба теплообменника по одному из пп.1-13 формулы изобретения, которая отходит от топочной камеры и распространяется, проходя через камеру греющей воды. При этом возможна по меньшей мере одна труба теплопередачи для очень малых мощностей примерно 10 кВт, в отличие от чего в большинстве случаев применения будут предусмотрены несколько труб теплопередачи. Указанная по меньшей мере одна труба теплообменника может, например, проходить через камеру греющей воды вертикально или же горизонтально, при этом возможен также любой другой угол от 90° (вертикально) до 0° (горизонтально).
Предпочтительные и целесообразные варианты осуществления и усовершенствования изобретения содержатся в зависимых пунктах формулы изобретения.
Изобретением предоставляются труба теплообменника, а также отопительный котел, имеющий несколько таких труб теплообменника, которые отличаются соответственно отвечающей функциональным требованиям конструкцией и имеют простое и экономичное строение. У известных труб теплообменника из уровня техники проблема заключалась в том, что горячие газообразные продукты сгорания текли по трубе теплообменника от ее впуска до ее выпуска и при этом охлаждались. Связанное с этим значительное уменьшение объема газообразных продуктов сгорания приводило к тому, что скорость течения и турбулентность до выпуска трубы теплообменника сильно уменьшались, что негативно сказывалось на эффективности теплопередачи. В отличие от этого, в настоящем изобретении с помощью указанного по меньшей мере одного элемента для сужения поперечного сечения, сужающего проточное поперечное сечение наружной трубы, увеличивается потеря давления выше по потоку от элемента для сужения поперечного сечения, то есть между топочной камерой и элементом для сужения поперечного сечения, вследствие чего в соответствии с изобретением значительно больше энергии может передаваться в топочной камере и во втором продольном участке трубы теплообменника перед элементом для сужения поперечного сечения. В продольном участке перед элементом для сужения поперечного сечения, благодаря уменьшенному проточному поперечному сечению, скорость течения уходящего газа резко возрастает, вследствие чего дополнительно увеличиваются теплопередача и вместе с тем использование энергии уходящего газа. В продольном участке ниже по потоку от сужения проточного поперечного сечения, то есть ниже по потоку от элемента для сужения поперечного сечения, уходящий газ снова расширяется и направляется в продольный участок наружной трубы, имеющий профильную вставку. При наличии очень большой поверхности благодаря ребрам профильной вставки, проходящим в продольном направлении трубы теплообменника, в первом продольном участке наружной трубы уходящий газ охлаждается ниже точки росы, что предпочтительно сказывается на технике максимального использования теплоты сгорания топлива и тем самым на коэффициенте полезного действия отопительного котла. Преимущества изобретения при этой трубе теплообменника и оснащенном ею отопительном котле могут описываться следующим образом. В отличие от труб теплообменника без сужения, увеличение потерь давления выше по потоку от сужения способствует улучшенной теплопередаче в топочной камере и на входе трубы теплообменника. Далее, повышение скорости течения в области сужения и, в частности, ниже по потоку от сужения приводит к лучшей теплопередаче, потому что элемент для сужения поперечного сечения изменяет ламинарное перед сужением течение на турбулентное течение ниже по потоку от сужения. Наконец, увеличение поверхности теплопередачи за счет ребер профильной вставки в первом продольном участке трубы теплообменника способствует низким скоростям течения ниже по потоку от сужения и приводит к низким температурам уходящего газа, что дополнительно помогает улучшению передачи тепла греющей воде.
В варианте осуществления предлагаемой изобретением трубы теплообменника изобретение предусматривает, что указанный по меньшей мере один элемент для сужения поперечного сечения выполнен в виде по меньшей мере одной вогнутости в стенке второго продольного участка наружной трубы. Таким образом не должен изготавливаться и монтироваться никакой дополнительный конструктивный элемент для осуществления предпочтительного принципа действия изменения поперечного сечения.
Особенно эффективным в варианте осуществления предлагаемой изобретением трубы теплообменника оказалось, если указанный по меньшей мере один элемент для сужения поперечного сечения включает в себя по меньшей мере две первые вогнутости, которые выполнены в стенке второго продольного участка наружной трубы, причем эти две первые вогнутости расположены диаметрально противоположно друг другу и выполнены зеркально-симметрично относительно первой плоскости трубы.
Для увеличения скорости течения ниже по потоку от вогнутостей по другому варианту осуществления предусмотрено, что между указанными по меньшей мере двумя первыми вогнутостями выполнен по меньшей мере один первый проточный зазор, который составляет от 2% до 3% диаметра наружной трубы.
Тогда для дополнительного подъема эффективности предусмотренного изобретением сужения поперечного сечения в варианте осуществления трубы теплообменника предусмотрено, что элемент для сужения поперечного сечения дополнительно к указанным по меньшей мере двум первым вогнутостям включает в себя по меньшей мере две вторые вогнутости, которые образованы стенкой второго продольного участка наружной трубы, причем эти две вторые вогнутости расположены диаметрально противоположно друг другу и выполнены зеркально-симметрично относительно второй плоскости трубы, которая проходит перпендикулярно первой плоскости трубы.
Далее, в варианте осуществления вторых вогнутостей элемента для сужения поперечного сечения изобретение предусматривает, что между указанными по меньшей мере двумя вторыми вогнутостями выполнен по меньшей мере один второй проточный зазор, который составляет от 18% до 22% диаметра наружной трубы.
В отношении увеличения скорости течения и турбулентности ниже по потоку от элемента для сужения поперечного сечения в другом варианте осуществления изобретение предусматривает, что первые и вторые выемки выполнены в одинаковом осевом положении второго продольного участка наружной трубы, при этом образованное первыми и вторыми выемками проточное поперечное сечение второго продольного участка наружной трубы имеет H-образное поперечное сечение. Разумеется, возможно, чтобы первые и вторые выемки были выполнены с осевым смещением в различных осевых положениях второго продольного участка наружной трубы.
Для предлагаемой изобретением трубы теплообменника оказалось оптимальным, если по одному из вариантов осуществления изобретения осевая длина первого продольного участка соответствует по меньшей мере 2-кратной величине осевой длины второго продольного участка. В альтернативном варианте осуществления осевая длина второго продольного участка может быть больше, чем осевая длина первого продольного участка.
В предпочтительном варианте осуществления изобретение предусматривает, что профильная вставка включает в себя трубчатый корпус, который образован по меньшей мере двумя оболочковыми элементами, имеющими каждый поперечное сечение в форме сектора круга. При этом варианте осуществления трубы теплообменника могут изготавливаться экономично и с помощью простого производственного процесса.
Особенно предпочтительно, если в варианте осуществления предлагаемой изобретением трубы теплообменника трубчатый корпус включает в себя два оболочковых элемента, которые на своих соприкасающихся продольных краях выполнены с пазовыми углублениями и ребровидными выступами и при этом, подобно уплотнению, вставляются друг в друга, причем эти два оболочковых элемента на своей внутренней стороне выполнены с ребрами, вдающимися в поперечное сечение в свету трубчатого корпуса, распространяющимися в продольном направлении наружной трубы, таким образом, что каждый оболочковый элемент своими ребрами образует открытый с одной стороны профиль. Это исполнение оболочковых элементов в виде двух полуоболочек, имеющих ребра, как с одной стороны профиля является простым и экономичным в изготовлении, например, путем профильного прессования.
В варианте осуществления предлагаемой изобретением трубы теплообменника изобретение предусматривает, что эти два оболочковых элемента выполнены каждый на одном продольном крае с уплотнительным пазом, а на другом продольном крае - с уплотнительным ребром, адаптированным к форме уплотнительного паза. При этом варианте осуществления, подобном лабиринтному уплотнению, в первом продольном участке наружной трубы предотвращается образование зазора, из-за которого уходящий газ или конденсат мог бы проникать между профильной вставкой и наружной трубой и приводить к коррозии.
Простая и оптимальная по стоимости возможность изготовления предлагаемой изобретением трубы теплообменника в варианте осуществления изобретения заключается в том, что указанному по меньшей мере одному элементу для сужения поперечного сечения придана форма трубчатой вставки, выполненной подобно соплу, которая вдвинута в наружную трубу в ее втором продольном участке. Таким образом, нет необходимости подвергать наружную трубу дополнительной обработке с учетом вдавливаний или, соответственно, вогнутостей для сужения поперечного сечения. Более того, достаточно, если изготавливается отдельный элемент для сужения поперечного сечения с диаметром, адаптированным к внутреннему диаметру наружной трубы, который затем вместе с профильной вставкой может вдвигаться в наружную трубу при монтаже или отгрузке трубы теплообменника.
В другом варианте осуществления изобретение предусматривает, что наружная труба состоит из металлического сплава, предпочтительно стали, а профильная вставка - из алюминия. Наружная труба, благодаря этому выбору материала, является устойчивой к кислотам и щелочам конденсата уходящих газов, а с другой стороны, может своими концами ввариваться в донья труб или пластины труб, которые отделяют камеру греющей воды, окружающую трубы теплообменника, с одной стороны от топочной камеры, а с другой стороны от расположенного под камерой греющей воды сборника уходящих газов отопительного котла.
Наконец, для увеличения эффективности теплопередачи изобретение предусматривает, что второй продольный участок наружной трубы, имеющий указанный по меньшей мере один элемент для сужения поперечного сечения, расположен между топочной камерой и первым продольным участком наружной трубы. Таким образом, элемент для сужения поперечного сечения трубы теплообменника в области ее впуска влияет на течение газообразных продуктов сгорания и повышает скорость течения, а также турбулентность в трубе теплообменника.
Разумеется, что вышеназванные и еще поясняемые ниже признаки могут использоваться не только в данной указанной комбинации, но и в других комбинациях или по отдельности, не выходя из рамок настоящего изобретения. Рамки изобретения заданы только пунктами формулы изобретения.
Другие подробности, признаки и преимущества предмета изобретения содержатся в последующем описании со ссылкой на чертеж, на котором в качестве примера изображен один из предпочтительных примеров осуществления изобретения. На чертеже показано:
фиг.1: предлагаемый изобретением отопительный котел на виде в перспективе;
фиг.2: другое изображение в перспективе отопительного котла с частично разрезанным корпусом;
фиг.3: покомпонентное изображение предлагаемой изобретением трубы теплообменника отопительного котла на виде в перспективе;
фиг.4: вид в сечении предлагаемой изобретением трубы теплообменника;
фиг.5: на изображении в перспективе труба теплообменника в соответствии с изобретением;
фиг.6: вид предлагаемой изобретением трубы теплообменника сбоку в сечении по одной плоскости трубы;
фиг.7: другой вид предлагаемой изобретением трубы теплообменника сбоку в сечении по другой плоскости трубы;
фиг.8: увеличенное изображение продольного участка трубы теплообменника с фиг.6;
фиг.9: другое увеличенное изображение продольного участка трубы теплообменника с фиг.7;
фиг.10: вид поперечного сечения предлагаемой изобретением трубы теплообменника в одном осевом положении;
фиг.11: другой вид поперечного сечения предлагаемой изобретением трубы теплообменника в другом осевом положении;
фиг.12: вид поперечного сечения трубы теплообменника соответственно положению, показанному на фиг.10, при этом отмечено проточное поперечное сечение;
фиг.13: изображение в перспективе предлагаемой изобретением трубы теплообменника, при этом область элемента для сужения поперечного сечения показана как вид в разрезе.
На фиг.1 изображен корпус 1 отопительного котла 2 на виде в перспективе, при этом на фиг.2 корпус 1 частично скрыт, чтобы позволить лучше заглянуть внутрь корпуса 1. Отопительный котел 2 служит для нагрева греющей воды не изображенного более подробно циркуляционного контура отопления и может быть выполнен в виде конденсационного котла. Корпус 1 охватывает камеру 3 греющей воды и включает в себя также горшкообразно или конически выполненную топочную камеру 4, которая расположена над камерой 3 греющей воды, и для которой предусмотрена не изображенная горелка. На дне топочной камеры 4 расположен теплообменник, который имеет множество труб 5 теплообменника, пронизывающих камеру 3 греющей воды и впадающих (оканчивающихся) в не изображенную подробнее камеру сборника уходящих газов. Следовательно, трубы 5 теплообменника отходят от дна топочной камеры 4 и распространяются в показанном примере осуществления по существу вертикально через камеру 3 греющей воды, причем альтернативно возможен также любой угол от 0° для горизонтального прохождения до 90° для вертикального прохождения труб 5 теплообменника в камере греющей воды. При этом омываемые греющей водой наружные поверхности труб 5 теплообменника отдают свое тепло греющей воде в камере 3 греющей воды, при этом в трубах 5 теплообменника существует такой перепад температур, что температура в верхней области существенно превышает температуру в нижней области. В камеру греющей воды впадают возвратные патрубки 6, соответственно 7, через которые охлажденная возвратная вода различных циркуляционных контуров отопления снова подается в камеру 3 греющей воды. Соединенный с возвратным патрубком 6 циркуляционный контур отопления служит, например, для подогрева технической воды, то есть имеет сравнительно высокую температуру возврата, в то время как нижний возвратный патрубок 7 соединен с циркуляционным контуром отопления, например, для обогрева пола, то есть имеющим относительно низкую температуру возврата. Подогретая греющая вода для циркуляционных контуров отопления забирается через верхний подающий патрубок 8.
На фиг.2 показаны трубы 5 теплообменника, которые в своей верхней области в соответствии с изобретением выполнены с вогнутостями или, соответственно, с окружным вдавливанием 9 каждая. Одну отдельную трубу 5 теплообменника в соответствии с настоящим изобретением можно видеть на покомпонентном изображении в перспективе на фиг.3. Как можно различить, труба 5 теплообменника имеет наружную трубу 10, по которой при эксплуатации отопительного котла 2 протекают уходящие газы топки котла и которая с наружной стороны окружена греющей водой, и профильную вставку 11, в смонтированном состоянии вдвинутую в наружную трубу 10. В изображенном примере осуществления наружная труба 10 состоит из металлического сплава, предпочтительно стали. Профильная вставка 11 для увеличения внутренней поверхности наружной трубы 10 имеет ребра 14, проходящие в ее продольном направлении 12, и находится в теплопроводящем контакте с наружной трубой 10, причем для улучшения теплопередачи профильная вставка 11 состоит из алюминия.
В изображенном примере осуществления профильная вставка 11 включает в себя трубчатый корпус, который образован двумя оболочковыми элементами 15, 16. Эти два оболочковых элемента 15, 16 имеют каждый поперечное сечение в форме половины круга. Конечно, возможна была бы также цельная профильная вставка 11, которая, однако, не была бы оптимальной по стоимости изготовления. Поэтому следует скорее стремиться к профильной вставке 11, состоящей по меньшей мере из двух частей, оболочковые элементы которой выполнены в виде секторов круга, чтобы получить замкнутую профильную вставку 11. По этому примеру осуществления трубчатый корпус включает в себя, таким образом, два оболочковых элемента 15, 16, которые на своих соприкасающихся продольных краях 17 выполнены с пазовыми углублениями 18 и ребровидными выступами 19 и при этом, подобно уплотнению, вставляются друг в друга, как показано на фиг.4 на увеличенном детальном виде. Эти два оболочковых элемента 15, 16 на своей внутренней стороне выполнены с ребрами 14, вдающимися в поперечное сечение в свету трубчатого корпуса, распространяющимися в продольном направлении 12 наружной трубы 10, при этом каждый оболочковый элемент 15, 16 с его ребрами 14 образует открытый с одной стороны профиль. В частности, эти два оболочковых элемента 15, 16 выполнены каждый на одном продольном крае 12 с углублением 18, выполняющим функцию уплотнительного паза, а на другом продольном крае 12 - с уплотнительным ребром, адаптированным к форме уплотнительного паза, которое представляет собой выступ 19. Собранная из двух оболочковых элементов 15, 16 профильная вставка 11 непосредственно по всей своей окружной поверхности прилегает к наружной трубе 10 и изготовлена с наружным диаметром, который несколько меньше, чем внутренний диаметр наружной трубы 10, чтобы профильная вставка 11 могла без затруднений вдвигаться в наружную трубу 10.
Как уже можно было видеть из фиг.3, наружная труба 10 и профильная вставка 11 имеют различную осевую длину, что изображено на фиг.6 и 7, на которых показаны разные виды сбоку предлагаемой изобретением трубы 5 теплообменника, в отличие от чего на фиг.5 показана одна отдельная труба 5 теплообменника, у которой профильная вставка 11 вдвинута в наружную трубу 10 и снаружи не различима.
Из фиг.6 следует, что осевая длина 20 наружной трубы 10 идеальным образом соответствует 1,5-кратной величине осевой длины 21 профильной вставки 11, при этом возможно также, чтобы осевая длина 20 наружной трубы 10 соответствовала 1,3-кратной величине или 1,7-кратной величине осевой длины 21 профильной вставки 11. Различные осевые длины 20, 21 наружной трубы 10 и профильной вставки 11 приводят к тому, что наружная труба 10 может подразделяться на два продольных участка. При этом первый продольный участок 22 наружной трубы 10 выполнен в виде гладкостенного цилиндра. Второй продольный участок 23 наружной трубы 10 имеет по меньшей мере один элемент 24 для сужения поперечного сечения, сужающий проточное поперечное сечение. При этом профильная вставка 11 распространяется исключительно по первому продольному участку 22 наружной трубы 10. Это приводит к тому, что в изображенном примере осуществления осевая длина 25 первого продольного участка 22 соответствует по меньшей мере 2-кратной величине осевой длины 26 второго продольного участка 23. В качестве альтернативного отношения длин в очень особых случаях применения возможно также, чтобы осевая длина 26 второго продольного участка 23 была больше, чем осевая длина 25 первого продольного участка 22.
Со ссылкой на фиг.6 показано, что профильная вставка 11 не заканчивается заподлицо с наружной трубой 10, а на небольшое расстояние вдвинута в наружную трубу 10, так что профильная вставка 11 полностью помещена в наружную трубу 10 и, в частности, в первый продольный участок 22. Далее, из фиг.6 в сочетании с фиг.2 следует, что вторые, имеющие элемент 24 для сужения поперечного сечения продольные участки 23 каждой из наружных труб 10 расположены между топочной камерой 4 и каждым из первых продольных участков 22 соответствующих наружных труб 10. Следовательно, каждый элемент 24 для сужения поперечного сечения расположен непосредственно ниже по потоку от топочной камеры 4.
При этом элементу 24 для сужения поперечного сечения могла бы быть придана форма трубчатой вставки, выполненной в виде сопла, которая вдвинута во второй продольный участок 23 наружной трубы 10. Причем наружная труба 10 была бы тогда выполнена сплошь гладкостенной как в первом, так и во втором продольном участке 22, 23. В отличие от этого, в изображенном примере осуществления второй продольный участок 23 наружной трубы 10 имеет вдавливания, соответственно вогнутости 9.
В сочетании с фиг.6-13 ниже форма элемента 24 для сужения поперечного сечения описывается более точно. Для этой цели поперечное сечение наружной трубы 10 в соответствии с фиг.6, 7 и 10 делится первой плоскостью 27 трубы и второй плоскостью 28 трубы, которая проходит перпендикулярно первой плоскости 27 трубы. При этом на фиг.6 показано изображение сечения по первой плоскости 27 трубы, в отличие от чего на фиг.7 показано изображение сечения по второй плоскости 28 трубы. Как явствует из фиг.6-13, элемент 24 для сужения поперечного сечения включает в себя две первые вогнутости, соответственно, вдавливания 29, 30, которые выполнены в стенке второго продольного участка 23 наружной трубы 10. В частности, эти первые вогнутости 29, 30 вдавлены в стенку второго продольного участка 23, так что эти первые вогнутости 29, 30 представляют собой вогнуто выполненные или, соответственно, выпученные внутрь вдавливания. Эти две первые вогнутости 29, 30 расположены диаметрально противоположно друг другу и выполнены зеркально-симметрично относительно первой плоскости 27 трубы. Между двумя первыми вогнутостями 29, 30 выполнен первый проточный зазор 31 (см. фиг.8), который составляет от 2% до 3% диаметра 32 (см. фиг.6) наружной трубы 10, как показывает приведенное на фиг.8 увеличение фрагмента A с фиг.6. Для образования первых вогнутостей 29, 30 стенка наружной трубы 10 точечно вдавливается с двух сторон трубы, так что возникают выпученные внутрь вдавливания, которые в точке наименьшего расстояния между ними образуют первый проточный зазор 31. При этом стенка для вогнутостей 29, 30 деформируется на некоторой осевой длине 33 (см. фиг.9), которая соответствует 0,4-кратной величине осевой длины 26 второго продольного участка 23, при этом возможна также осевая длина 33, которая соответствует от 0,3-кратной до 0,5-кратной величины осевой длины 26. При этом стенка на этой осевой длине 33 деформации в целом вдавливается для первых вогнутостей 29, 30 так, что эта стенка на осевой длине 33 имеет максимальный диаметр 34 для первых вогнутостей 29, 30, который соответствует 0,6-кратной величине диаметра 32 гладкостенной наружной трубы 10, при этом возможен также максимальный диаметр 34, который соответствует от 0,5-кратной до 0,7-кратной величины диаметра 32 гладкостенной наружной трубы 10.
На фиг.7 и 9 показаны другие изображения вторых выемок 35, 36, при этом осевая длина 33 деформации для первых выемок 29, 30 и для вторых выемок 36, 36 идеальным образом идентична и поэтому показана только на фиг.9. Но осевая длина деформации может быть также разной для первых и вторых выемок. На фиг.7, наряду с профильной вставкой 11, нанесен также осевой участок F-F, который изображен на фиг.11 и показывает наружную трубу 10, а также два оболочковых элемента 15, 16, образующие профильную вставку 11. Эти две вторые выемки 35, 36 вместе с двумя первыми выемками 29, 30 образуют элемент 24 для сужения поперечного сечения, при этом первые выемки 29, 30 выполнены отлично от вторых выемок 35, 36. Эти две вторые вогнутости 35, 36 также расположены диаметрально противоположно друг другу, при этом они выполнены зеркально-симметрично относительно второй плоскости 28 трубы. Эти две вторые 35, 36 также вдавлены в стенку второго продольного участка 23, так что они представляют собой вогнуто выполненные или, соответственно, выпученные внутрь вдавливания. Между двумя вторыми вогнутостями 35, 36 выполнен второй проточный зазор 37, который больше, чем первый проточный зазор 31, и составляет от 18% до 22% диаметра 32 (см. фиг.6) наружной трубы 10, как показывает приведенное на фиг.9 увеличение фрагмента B с фиг.7. Здесь также для образования вторых вогнутостей 29, 30 стенка наружной трубы 10 точечно вдавливается с двух сторон трубы, так что возникают выпученные внутрь вдавливания, которые в точке наименьшего расстояния между ними образуют второй проточный зазор 37. Стенка для вогнутостей 35, 36 деформируется на осевой длине 33 (см. фиг.9), которая тоже соответствует 0,4-кратной величине осевой длины 26 второго продольного участка 23, при этом возможна также осевая длина 33, которая соответствует от 0,3-кратной до 0,5-кратной величины осевой длины 26. Стенка для изготовления вторых вдавливаний, соответственно, вогнутостей 35, 36 на этой осевой длине 33 деформации в целом вдавливается таким образом, что эта стенка на осевой длине 33 имеет максимальный диаметр 38 для вторых вогнутостей 35, 36, который соответствует 0,55-кратной величине диаметра 32 гладкостенной наружной трубы 10, при этом возможен также максимальный диаметр 38, который соответствует от 0,45-кратной до 0,65-кратной величины диаметра 32 гладкостенной наружной трубы 10.
При вышеприведенном исполнении первых вогнутостей 29, 30 и вторых вогнутостей 35, 36 получают проточное поперечное сечение 39, которое показано на фиг.10 в виде заштрихованной поверхности, обозначающей состоящую из оболочковых элементов 15, 16 профильную вставку 11, и на фиг.12 в виде области, окрашенной в черный цвет. Так как первые и вторые выемки 29, 30, 35, 36 выполнены в одинаковом осевом положении второго продольного участка 23 наружной трубы 10, т.е. первые и вторые выемки 29, 30, 35, 36 распространяются, и те, и другие, по одной и той же осевой длине 33, образованное этими первыми и вторыми выемками 29, 30, 35, 36 проточное поперечное сечение 39 второго продольного участка 23 наружной трубы 10 имеет H-образное поперечное сечение. На фиг.13 показана наружная труба 10, у которой участок трубы, начинающийся у H-образного поперечного сечения, опущен, так что хорошо различимо H-образно выполненное проточное поперечное сечение 39.
У предлагаемой изобретением трубы 5 теплообменника элемент 24 для сужения поперечного сечения наружной трубы 10 представляет собой дважды симметрично выполненное сужение, с помощью которого устраняются недостатки, известные из уровня техники. Потому что у труб теплообменника из уровня техники проблема заключается в том, что горячие газообразные продукты сгорания текут по трубе теплообменника от ее впуска до ее выпуска и при этом охлаждаются. Связанное с этим значительное уменьшение объема газообразных продуктов сгорания приводит к тому, что скорость течения и турбулентность до выпуска трубы теплообменника сильно уменьшаются, что негативно сказывается на эффективности теплопередачи. С помощью изобретения улучшается теплопередача, потому что скорость течения и турбулентность в предлагаемой изобретением трубе 5 теплообменника повышаются, благодаря элементу 24 для сужения поперечного сечения. Вдавливания или, соответственно, вогнутости 29, 30, 35, 36 увеличивают потерю давления в области, находящейся выше по потоку перед вдавливаниями или, соответственно, вогнутостями 29, 30, 35, 36. При этом может передаваться значительно больше энергии в топочной камере 4 и в участке трубы 5 теплообменника перед вогнутостями 29, 30, 35, 36. В области вогнутостей 29, 30, 35, 36, благодаря сужению, скорость течения резко возрастает, вследствие чего также повышаются теплопередача и вместе с тем использование энергии. В области после вогнутостей 29, 30, 35, 36, то есть ниже по потоку от сужения, уходящий газ снова расширяется и направляется в участок, имеющий профильную вставку 11. При наличии очень большой поверхности ребер 14 профильной вставки 11 уходящий газ охлаждается здесь до точки росы и при этом помогает получить преимущество в технике максимального использования теплоты сгорания топлива.
Основные преимущества изобретения могут быть сформулированы следующим образом:
- повышение потери давления приводит к лучшей теплопередаче в топочной камере 4 и на входе трубы 5 теплообменника;
- повышение скорости течения в области сужения 24, соответственно, вогнутостей 29, 30, 35, 36 приводит к лучшей теплопередаче (турбулентного течения по сравнению с ламинарным);
- увеличение поверхности теплопередачи с помощью ребер 14 профильной вставки 11 для низкой скорости течения в первом продольном участке 22 трубы 5 теплообменника после, соответственно, ниже по потоку от сужения 24 приводит к лучшей теплопередаче и низким температурам.
С помощью предлагаемых изобретением труб 5 теплообменника в отопительном котле 2 может передаваться на 85-90% больше энергии, чем с помощью известных до сих пор технологий.
Описанное выше изобретение, разумеется, не ограничено описанным и изображенным вариантом осуществления. Очевидно, что в изображенном на чертежах варианте осуществления могут производиться многочисленные модификации, очевидные для специалиста соответственно намеченному применению, без выхода при этом из области изобретения. Например, элемент 24 для сужения поперечного сечения (вместо четырех вдавливаний) может быть выполнен в виде только одной вогнутости 9 в стенке второго продольного участка 23 наружной трубы 10, или несколько сужений поперечного сечения в виде соответствующих вогнутостей 9, находящихся друг за другом, могут быть расположены в осевом направлении 12, соответственно, в разных положениях трубы. К изобретению относится все то, что содержится в описании и/или изображено на чертежах, включая то, что, отличаясь от конкретных примеров осуществления, очевидно для специалиста.

Claims (21)

1. Труба (5) теплообменника отопительного котла (2), в частности конденсационного котла, имеющая наружную трубу (10), по которой могут протекать уходящие газы топки котла, и которая может быть окружена с наружной стороны греющей водой, и вдвинутую в наружную трубу профильную вставку (11), которая для увеличения внутренней поверхности наружной трубы (10) имеет проходящие в ее продольном направлении (12) ребра (14) и находится в теплопроводящем контакте с наружной трубой (10),
отличающаяся тем, что
первый продольный участок (22) наружной трубы (10) выполнен гладкостенным и цилиндрическим, а второй продольный участок (23) наружной трубы (10) имеет по меньшей мере один элемент (24) для сужения поперечного сечения, сужающий проточное поперечное сечение, при этом профильная вставка (11) распространяется исключительно по первому продольному участку (22) наружной трубы (10).
2. Труба (5) теплообменника по п. 1, отличающаяся тем, что указанный по меньшей мере один элемент (24) для сужения поперечного сечения выполнен в виде по меньшей мере одной вогнутости (9) в стенке второго продольного участка (23) наружной трубы (10).
3. Труба (5) теплообменника по п. 1, отличающаяся тем, что указанный по меньшей мере один элемент (24) для сужения поперечного сечения включает в себя по меньшей мере две первые вогнутости (29, 30), которые выполнены в стенке второго продольного участка (23) наружной трубы (10), причем эти две первые вогнутости (29, 30) расположены диаметрально противоположно друг другу и выполнены зеркально-симметрично относительно первой плоскости (27) трубы.
4. Труба (5) теплообменника по п. 3, отличающаяся тем, что между указанными по меньшей мере двумя первыми вогнутостями (29, 30) выполнен по меньшей мере один первый проточный зазор (31), который составляет от 2% до 3% диаметра (32) наружной трубы (10).
5. Труба (5) теплообменника по п. 3 или 4, отличающаяся тем,
что элемент (24) для сужения поперечного сечения дополнительно к указанным по меньшей мере двум первым вогнутостям (29, 30) включает в себя по меньшей мере две вторые вогнутости (35, 36), которые образованы стенкой второго продольного участка (23) наружной трубы (10), причем эти две вторые вогнутости (35, 36) расположены диаметрально противоположно друг другу и выполнены зеркально-симметрично относительно второй плоскости (28) трубы, которая проходит перпендикулярно первой плоскости (27) трубы.
6. Труба (5) теплообменника по п. 5, отличающаяся тем, что между указанными по меньшей мере двумя вторыми вогнутостями (35, 36) выполнен по меньшей мере один второй проточный зазор (37), который составляет от 18% до 22% диаметра (32) наружной трубы (10).
7. Труба (5) теплообменника по п. 6, отличающаяся тем, что первые и вторые вогнутости (29, 30, 35, 36) выполнены в одинаковом осевом положении второго продольного участка (23) наружной трубы (10), при этом образованное первыми и вторыми вогнутостями (29, 30, 35, 36) проточное поперечное сечение (39) второго продольного участка (23) наружной трубы (10) имеет Н-образное поперечное сечение.
8. Труба (5) теплообменника по п. 1, отличающаяся тем, что осевая длина (25) первого продольного участка (22) соответствует по меньшей мере 2-кратной величине осевой длины (26) второго продольного участка (23).
9. Труба (5) теплообменника по п. 1, отличающаяся тем, что профильная вставка (11) включает в себя трубчатый корпус, который образован по меньшей мере двумя оболочковыми элементами (15, 16), имеющими каждый поперечное сечение в форме сектора круга.
10. Труба (5) теплообменника по п. 9, отличающаяся тем, что трубчатый корпус включает в себя два оболочковых элемента (15, 16), которые на своих соприкасающихся продольных краях (17) выполнены с пазовыми углублениями (18) и ребровидными выступами (19) и при этом, подобно уплотнению, вставляются друг в друга, причем эти два оболочковых элемента (15, 16) на своей внутренней стороне выполнены с ребрами (14), вдающимися в поперечное
сечение в свету трубчатого корпуса, распространяющимися в продольном направлении (12) наружной трубы (10), таким образом, что каждый оболочковый элемент (15, 16) своими ребрами (14) образует открытый с одной стороны профиль.
11. Труба (5) теплообменника по п. 10, отличающаяся тем, что эти два оболочковых элемента (15, 16) выполнены каждый на одном продольном крае (17) с уплотнительным пазом (18), а на другом продольном крае (17) - с уплотнительным ребром (19), адаптированным к форме уплотнительного паза (18).
12. Труба (5) теплообменника по п. 1, отличающаяся тем, что указанному по меньшей мере одному элементу (24) для сужения поперечного сечения придана форма трубчатой вставки, выполненной подобно соплу, которая вдвинута в наружную трубу (10) в ее втором продольном участке (23).
13. Труба (5) теплообменника по п. 1, отличающаяся тем, что наружная труба (10) состоит из металлического сплава, предпочтительно стали, а профильная вставка (11) - из алюминия.
14. Отопительный котел (2), в частности, конденсационный котел, для нагрева греющей воды циркуляционного контура отопления, имеющий корпус (1), который ограничивает камеру (3) греющей воды и который имеет предвключенную камере (3) греющей воды топочную камеру (4),
отличающийся тем, что
внутри корпуса (1) расположена по меньшей мере одна труба (5) теплообменника по одному из пп. 1-13, которая отходит от топочной камеры (4) и распространяется, проходя через камеру (3) греющей воды.
15. Отопительный котел (2) по п. 14, при этом второй продольный участок (23) наружной трубы (10), имеющий указанный по меньшей мере один элемент (24) для сужения поперечного сечения, расположен между топочной камерой (4) и первым продольным участком (22) наружной трубы (10).
RU2016130039A 2015-07-23 2016-07-22 Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника RU2647012C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15178123.4 2015-07-23
EP15178123.4A EP3040638B1 (de) 2015-07-23 2015-07-23 Wärmeübertragerrohr und heizkessel mit einem solchen wärmeübertragerrohr

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2018105848A Division RU2682204C2 (ru) 2015-07-23 2016-07-22 Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника

Publications (2)

Publication Number Publication Date
RU2016130039A RU2016130039A (ru) 2018-01-25
RU2647012C2 true RU2647012C2 (ru) 2018-03-13

Family

ID=53783074

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016130039A RU2647012C2 (ru) 2015-07-23 2016-07-22 Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника
RU2018105848A RU2682204C2 (ru) 2015-07-23 2016-07-22 Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2018105848A RU2682204C2 (ru) 2015-07-23 2016-07-22 Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника

Country Status (19)

Country Link
US (1) US9739503B2 (ru)
EP (2) EP3301378B1 (ru)
JP (2) JP6318195B2 (ru)
KR (2) KR101882928B1 (ru)
CN (2) CN108426478B (ru)
AU (2) AU2016204398B2 (ru)
CA (2) CA2899479C (ru)
ES (2) ES2847858T3 (ru)
HK (1) HK1252095A1 (ru)
HR (2) HRP20180853T1 (ru)
HU (2) HUE037245T2 (ru)
PL (2) PL3040638T3 (ru)
PT (1) PT3040638T (ru)
RS (2) RS61336B1 (ru)
RU (2) RU2647012C2 (ru)
SI (1) SI3040638T1 (ru)
TR (1) TR201807745T4 (ru)
TW (1) TWI618909B (ru)
UA (2) UA117507C2 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180372413A1 (en) 2017-06-22 2018-12-27 Rheem Manufacturing Company Heat Exchanger Tubes And Tube Assembly Configurations
USD945579S1 (en) * 2017-12-20 2022-03-08 Rheem Manufacturing Company Heat exchanger tube with fins
EP3740721A4 (en) 2018-01-19 2021-10-20 DRI-Steem Corporation HUMIDIFIER WITH AUTOMATIC EXPIRATION INTERVAL DETERMINATION
EP3740715B1 (en) * 2018-01-19 2023-12-20 DRI-Steem Corporation Condensing, ultra-low nox gas-fired humidifier
US10928140B2 (en) * 2018-09-25 2021-02-23 Giles Enterprises, Inc. Baffle assembly and heat exchanger with expanding baffles
KR102120117B1 (ko) * 2018-11-23 2020-06-09 주식회사 귀뚜라미 경사형 화실을 가지는 저탕식 보일러
US20210302112A1 (en) * 2018-12-19 2021-09-30 Carrier Corporation Heat exchanger with sacrificial turbulator
KR102173136B1 (ko) * 2019-05-21 2020-11-02 최성환 보일러의 파형 연관 구조
CN110749017A (zh) * 2019-12-09 2020-02-04 佛山市顺德区雅洛特电器有限公司 顶置式上加水加湿器
CN114087909B (zh) * 2021-11-19 2022-10-25 西安交通大学 一种自振动内插折弯挠曲形翅片复合烟管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1386844A1 (ru) * 1986-10-28 1988-04-07 Одесский Технологический Институт Холодильной Промышленности Теплообменна труба
US6070657A (en) * 1994-03-24 2000-06-06 Hoval Interliz Ag Heat exchanger tube for heating boilers
JP2011191049A (ja) * 2010-02-19 2011-09-29 Tanico Corp 熱交換器及び熱交換器を用いた加熱装置
US8459342B2 (en) * 2003-11-25 2013-06-11 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1186573A (en) * 1915-07-10 1916-06-13 John T Haeusser Tubular boiler.
US1549489A (en) * 1918-10-26 1925-08-11 Griscom Russell Co Oil cooler
DE854224C (de) * 1945-02-01 1952-10-30 Siemens Ag Waermeaustauscher fuer Gasturbinenanlagen
US3232280A (en) * 1964-01-30 1966-02-01 Cleaver Brooks Co Heat exchange structure
US3724523A (en) * 1970-06-29 1973-04-03 Metallgesellschaft Ag Tubular structure for film evaporators
JPS59100397A (ja) 1982-11-04 1984-06-09 イギリス国 熱伝達法
JPS6099903A (ja) * 1983-11-04 1985-06-03 旭硝子株式会社 フエル−ル
JPS60162103A (ja) * 1984-01-31 1985-08-23 旭硝子株式会社 改良されたフエル−ル
JPS61170803A (ja) 1985-01-25 1986-08-01 Hitachi Ltd シ−ケンス制御方法
NL8500393A (nl) * 1985-02-12 1986-09-01 Jogema Holding Samengestelde buis voor het verwarmen van gassen.
JPS61170803U (ru) * 1985-04-05 1986-10-23
HU199979B (en) * 1986-04-21 1990-03-28 Energiagazdalkodasi Intezet Method and heat-exchanger insert for improving the heat transfer of media flowing in the tubes of heat exchanger and having inhomogeneous composition and/or inhomogeneous physical state
JPS6438590A (en) * 1987-08-04 1989-02-08 Toshiba Corp Heat exchanger
RU2059184C1 (ru) * 1992-07-31 1996-04-27 Ерченко Герман Николаевич Вертикальный теплообменный элемент коденсатора
DE4311034A1 (de) 1993-04-03 1994-10-06 Veba Oel Ag Verfahren zur Gewinnung von Chemierohstoffen und Kraftstoffkomponenten aus Alt- oder Abfallkunststoff
JPH0771840A (ja) 1993-09-02 1995-03-17 Hitachi Ltd 煙管式高温再生器
JPH07119903A (ja) * 1993-10-21 1995-05-12 Miura Co Ltd 煙管ボイラ
JPH07119909A (ja) * 1993-10-21 1995-05-12 Miura Co Ltd 煙管ボイラ
JPH09203501A (ja) * 1996-01-26 1997-08-05 Nippon Furnace Kogyo Kaisha Ltd 小型貫流ボイラ
US5839505A (en) * 1996-07-26 1998-11-24 Aaon, Inc. Dimpled heat exchange tube
CA2211983C (en) * 1997-02-28 2006-03-14 Miura Co., Ltd. Water-tube boiler
JPH11132404A (ja) * 1997-10-31 1999-05-21 Miura Co Ltd 水管ボイラ
JPH11351696A (ja) * 1998-06-11 1999-12-24 Mitsubishi Heavy Ind Ltd 熱交換器及び再生器及び吸収冷凍機
CA2289428C (en) * 1998-12-04 2008-12-09 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure
US7171956B2 (en) * 2002-08-28 2007-02-06 T. Rad Co., Ltd. EGR cooler
JP2004293782A (ja) 2003-03-07 2004-10-21 Mitsuboshi Co Ltd 異形チューブおよびそれを用いた流体装置
KR101216277B1 (ko) * 2004-01-05 2012-12-28 쿠퍼-스탠다드 오토모티브 인코포레이티드 열교환기용 관을 성형하기 위한 방법
US6945320B2 (en) * 2004-01-26 2005-09-20 Lennox Manufacturing Inc. Tubular heat exchanger with offset interior dimples
CN201306962Y (zh) * 2008-11-19 2009-09-09 南通华信中央空调有限公司 热交换器的凹陷型热交换管
DE102010038883C5 (de) * 2010-08-04 2021-05-20 Siemens Energy Global GmbH & Co. KG Zwangdurchlaufdampferzeuger
KR101287707B1 (ko) * 2011-11-14 2013-08-07 최성환 열교환관 및 그 제조방법
US20140131021A1 (en) * 2012-11-15 2014-05-15 Sung-hwan Choi Heat exchanger pipe and manufacturing method therefor
CN203011221U (zh) 2012-12-22 2013-06-19 天津天雷科技有限公司 一种新型换热管内的喷嘴装置
KR101427045B1 (ko) * 2013-04-30 2014-08-05 최성환 2개의 반부 쉘이 일체로 연결된 열교환핀 및 그를 포함한 열교환관
NL2011539C2 (nl) * 2013-10-02 2015-04-07 Intergas Heating Assets B V Warmtewisselaar met een buis met een althans gedeeltelijk variabele doorsnede.
KR101521353B1 (ko) * 2013-12-03 2015-05-18 주식회사 에스엠아이 보일러 열교환기용 연관 제조 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1386844A1 (ru) * 1986-10-28 1988-04-07 Одесский Технологический Институт Холодильной Промышленности Теплообменна труба
US6070657A (en) * 1994-03-24 2000-06-06 Hoval Interliz Ag Heat exchanger tube for heating boilers
US8459342B2 (en) * 2003-11-25 2013-06-11 Beckett Gas, Inc. Heat exchanger tube with integral restricting and turbulating structure
JP2011191049A (ja) * 2010-02-19 2011-09-29 Tanico Corp 熱交換器及び熱交換器を用いた加熱装置

Also Published As

Publication number Publication date
KR101956378B1 (ko) 2019-03-08
AU2017245359B2 (en) 2018-08-09
RU2016130039A (ru) 2018-01-25
ES2847858T3 (es) 2021-08-04
TW201704712A (zh) 2017-02-01
AU2016204398B2 (en) 2017-07-13
NZ721569A (en) 2017-05-26
HRP20210136T1 (hr) 2021-05-28
RS57268B1 (sr) 2018-08-31
JP2018119781A (ja) 2018-08-02
JP2017026301A (ja) 2017-02-02
KR20180039613A (ko) 2018-04-18
US9739503B2 (en) 2017-08-22
EP3301378B1 (de) 2020-12-30
JP6318195B2 (ja) 2018-04-25
HUE037245T2 (hu) 2018-08-28
CA2998329A1 (en) 2017-01-23
PL3040638T3 (pl) 2018-08-31
EP3040638B1 (de) 2018-05-09
CN106370042A (zh) 2017-02-01
UA117507C2 (uk) 2018-08-10
RU2018105848A3 (ru) 2019-02-26
AU2017245359A1 (en) 2017-11-02
AU2016204398A1 (en) 2017-02-09
HK1252095A1 (zh) 2019-05-17
HUE052530T2 (hu) 2021-05-28
CA2899479C (en) 2019-06-04
RS61336B1 (sr) 2021-02-26
ES2672244T3 (es) 2018-06-13
TR201807745T4 (tr) 2018-06-21
HRP20180853T1 (hr) 2018-06-29
PT3040638T (pt) 2018-06-14
EP3040638A1 (de) 2016-07-06
CN108426478A (zh) 2018-08-21
JP6514798B2 (ja) 2019-05-15
EP3301378A1 (de) 2018-04-04
KR20170012149A (ko) 2017-02-02
CN108426478B (zh) 2020-06-16
US20170023276A1 (en) 2017-01-26
RU2018105848A (ru) 2019-02-26
UA120547C2 (uk) 2019-12-26
CA2899479A1 (en) 2017-01-23
RU2682204C2 (ru) 2019-03-15
CN106370042B (zh) 2018-10-02
TWI618909B (zh) 2018-03-21
KR101882928B1 (ko) 2018-07-27
PL3301378T3 (pl) 2021-05-31
CA2998329C (en) 2018-11-13
SI3040638T1 (en) 2018-06-29

Similar Documents

Publication Publication Date Title
RU2647012C2 (ru) Труба теплообменника и отопительный котел, имеющий такую трубу теплообменника
RU2125219C1 (ru) Теплообменная труба для отопительного котла
KR101400833B1 (ko) 핀-튜브 방식의 열교환기
CN101846464B (zh) 用于制热和/或卫生用热水、尤其是冷凝应用的螺旋换热器
US7686072B2 (en) Heat exchanger and methods of producing the same
US20130075070A1 (en) Heat exchanger tube
KR100701799B1 (ko) 열교환기
KR20090017174A (ko) 장방형 연관을 구비한 열교환기
JP4086186B2 (ja) ボイラの水管壁における水管間閉塞用ヒレ構造
NZ721569B (en) Heat exchanger tube and heating boiler having such a heat exchanger tube
PL223582B1 (pl) Rura opalanego wymiennika ciepła
RU2721742C1 (ru) Котел с вентиляторным воздухонагревателем
US20230108472A1 (en) Tube winding for a gas heat exchange cell for a boiler
KR200360156Y1 (ko) 열교환기
EP2012072A2 (en) Heat exchanger for a gas boiler and gas boiler, in particular a condensation boiler, provided with said heat exchanger
RU2279608C1 (ru) Циклонный теплообменный элемент рекуператора
KR101020772B1 (ko) 분할형 열교환기
CA2973578A1 (en) Heating device
UA15015U (en) Water boiler