PT1749098E - Adenovírus quimérico para utilização no tratamento do cancro - Google Patents

Adenovírus quimérico para utilização no tratamento do cancro Download PDF

Info

Publication number
PT1749098E
PT1749098E PT05753804T PT05753804T PT1749098E PT 1749098 E PT1749098 E PT 1749098E PT 05753804 T PT05753804 T PT 05753804T PT 05753804 T PT05753804 T PT 05753804T PT 1749098 E PT1749098 E PT 1749098E
Authority
PT
Portugal
Prior art keywords
quot
adenovirus
adenoviral
cell
chimeric
Prior art date
Application number
PT05753804T
Other languages
English (en)
Inventor
Terry Hermiston
Paul Harden
Irene Kuhn
Original Assignee
Bayer Schering Pharma Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Schering Pharma Ag filed Critical Bayer Schering Pharma Ag
Publication of PT1749098E publication Critical patent/PT1749098E/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/861Adenoviral vectors
    • C12N15/8613Chimaeric vector systems comprising heterologous sequences for production of another viral vector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/761Adenovirus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/45Transferases (2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10021Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10032Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10051Methods of production or purification of viral material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10321Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10332Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10311Mastadenovirus, e.g. human or simian adenoviruses
    • C12N2710/10341Use of virus, viral particle or viral elements as a vector
    • C12N2710/10344Chimeric viral vector comprising heterologous viral elements for production of another viral vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

1
DESCRIÇÃO
"ADENOVÍRUS QUIMÉRICO PARA UTILIZAÇÃO NO TRATAMENTO DO CANCRO"
DOMÍNIO DA INVENÇÃO A invenção presentemente descrita refere-se, de modo geral, ao campo da biologia molecular e, mais especificamente, a adenovirus oncoliticos com aplicações terapêuticas.
ANTECEDENTES DA INVENÇÃO 0 cancro é a causa principal de morte nos Estados Unidos e em qualquer outro país. Dependendo do tipo de cancro, este é, normalmente, tratado por meio de cirurgia, quimioterapêutica e/ou radiação. Estes tratamentos falham com alguma frequência e é evidente que são necessárias novas terapêuticas, a ser utilizadas isoladamente ou em combinação com técnicas clássicas.
Uma abordagem tem sido a utilização de adenovirus, ou isoladamente ou como vectores com capacidade de transportar proteínas terapêuticas anti-cancro contra as células tumorais. Os adenovirus são vírus de ADN de cadeia dupla sem envelope icosaédrico com um genoma linear de aproximadamente 36 pares de quilobase. Cada extremidade do genoma virai possui uma sequência curta conhecida como Repetição Terminal Invertida (Inverted terminal repeat -ITR), a qual é necessária para efeitos de replicação virai. Todos os genomas de adenovirus humanos examinados até à data possuem a mesma organização geral; isto é, os genes que codificam funções específicas encontram-se localizados 2 na mesma posição no genoma virai. 0 genoma virai contém cinco unidades de transcrição precoce (EIA, ElB, E2, E3, e E4), duas unidades precoces atrasadas (IX e Iva2), e uma unidade tardia (tardia principal) que é processada para gerar cinco familias de mARNs tardios (L1-L5) . As proteínas codificadas pelos genes precoces estão envolvidas na replicação, enquanto os genes tardios codificam proteínas estruturais virais. As porções do genoma virai podem rapidamente ser substituídas com ADN de origem exógena e os adenovírus recombinantes apresentam-se como estruturalmente estáveis, características que tornam estes adenovírus úteis para terapêutica genética {vide Jolly, D. (1994) Câncer Gene Therapy 1; 51-64).
Actualmente, os esforços de investigação para produzir uma terapêutica adenoviral clinicamente útil têm sido centrados no serotipo adenoviral, Ad5. A genética deste adenovírus humano encontra-se bem caracterizada e os sistemas encontram-se bem descritos no que se refere à sua manipulação molecular. Têm vindo a ser desenvolvidos métodos de produção de elevada capacidade para suportar as aplicações clínicas e algumas experiências clínicas com o agente encontram-se já disponíveis. Vide, Jolly, D. (1994) Câncer Gene Therapy, 1:51-64. A investigação relacionada com a utilização do adenovírus humano (Ad) no tratamento do cancro tem-se focado no desenvolvimento de adenovírus com base em Ad5, os quais possuem uma potência maior na, ou tem preferencialmente como alvo seleccionado tipos de células tumorais específicas e existe assim uma necessidade de gerar vírus oncolíticos mais potentes se o objectivo da terapia adenoviral é encontrar uma aplicação prática numa prática clínica. 3
Ad5 é apenas um dos 51 serotipos adenovirais actualmente conhecidos, os quais são classificados em subgrupos A-F, baseados em vários atributos, incluindo as suas caracteristicas de hemaglutinação {vide, Shenk, "Adenoviridae: The Viruses and Their Replication," in Fields Virology, Vol.2, Fourth Edition, Knipe, ea., Lippincott Williams & Wilkins, pp. 2265-2267 (2001)). Estes serotipos diferem a uma variedade de níveis, isto é, patologia em humanos e roedores, receptores celulares utilizados para ligações, mas estas diferenças têm sido grandemente ignoradas como meios potenciais para desenvolver adenovírus oncoliticos mais potentes (com a excepção das alterações de fibra, vide Stevenson et al: (1997) J. Virol. 71:4782- 4790; Krasnykh et al. (1996) J.
Virol. 70:6839-6846; Wickham et al. (1997) J. Virol. 71:8221-8229; Legrand et al. (2002) Curr. Gene Ther. 2:323-329; Barnett et al. (2002) Biochim. Biophys. Acta 1- 3:1- 14; Pedido de Patente norte-americana 2003/0017138). A exploração de diferenças entre serotipos adenovirais pode facultar uma fonte de terapêuticas com base em adenovírus mais eficazes, utilizando novos adenovírus com uma selectividade e potência cada vez maior. Existe uma grande necessidade de terapias baseadas em adenovírus melhoradas.
RESUMO DA INVENÇÃO
A presente invenção apresenta novos adenovírus quiméricos úteis para terapias baseadas em vírus. Em particular, a presente invenção apresenta adenovírus quiméricos que com um genoma que inclui uma região E2B em que a região E2B referida inclui uma sequência de ácidos nucleicos derivada de um primeiro serotipo adenoviral e uma sequência de ácidos nucleicos derivada de 4 um segundo serotipo adenoviral; em que o primeiro e segundo estereotiops adenovirais são, cada um, seleccionados a partir de subgrupos adenovirais B, C, D, E, ou F e são distintos uns dos outros; e em que o referido adenovírus quimérico é oncolitico e apresenta um indice terapêutico melhorado para uma célula tumoral.
Numa realização, o adenovírus quimérico inclui ainda regiões que codificam proteínas da fibra, do hexão e do pentão, em que os ácidos nucleicos que codificam estas proteínas pertencem todos ao mesmo serotipo adenoviral. Numa outra realização, o adenovírus quimérico da presente invenção inclui uma região E3 ou E4 modificada.
Numa outra realização, o adenovírus quimérico demonstra um índice terapêutico melhorado numa célula tumoral do cólon, mama, pâncreas, pulmão, próstata, ovário ou hemopoiética, numa realização particularmente preferida, o adenovírus quimérico apresenta um índice terapêutico melhorado em células tumorais do cólon.
Numa realização preferida, a região E2B do adenovírus quimérico inclui a SEQ ID NO: 3. Numa realização particularmente preferida, o adenovírus quimérico inclui a SEQ ID NO: 1.
A presente invenção apresenta um adenovírus quimérico recombinante ou uma variante ou derivado do mesmo com um genoma que incluir uma região E2B em que a região E2B referida inclui uma sequência de ácidos nucleicos derivada de um primeiro serotipo adenoviral e uma sequência de ácidos nucleicos derivada de um segundo serotipo adenoviral; 5 em que o primeiro e segundo serotipos adenovirais referidos são, cada um, seleccionados a partir de subgrupos adenovirais B, C, D, E, ou F e são distintos uns dos outros em que o referido adenovirus quimérico é oncolitico e apresenta um índice terapêutico melhorado para uma célula tumoral; e em que o referido adenovirus quimérico foi tornado deficiente em termos de replicação através da delecção de uma ou mais regiões adenovirais codificadoras de proteínas envolvidas na replicação adenoviral seleccionadas a partir do grupo que consiste em El, E2, E3 ou E4.
Numa realização, o adenovirus quimérico da presente invenção inclui ainda um gene heterólogo que codifica uma proteína terapêutica, em que o gene heterólogo referido é expresso dentro de uma célula infectada com o referido adenovirus. Numa realização preferida, a proteína terapêutica é seleccionada a partir do grupo que consiste em citocinas e quimioquinas, anticorpos, enzimas conversoras de pró-fármacos e proteínas imuno-reguladoras. A presente invenção apresenta a utilização de adenovirus quiméricos da invenção para efeitos terapêuticos. Numa realização, o adenovirus quimérico pode ser utilizado para inibir o crescimento das células cancerosas, numa realização particular, um adenovirus quimérico que inclui a SEQ ID NO: 1 é útil para inibir o crescimento de células cancerosas no cólon.
Numa outra realização, os adenovirus da presente invenção são úteis como vectores para transportar as proteínas terapêuticas para as células. 6 A presente invenção apresenta um método para produção de adenovírus quiméricos da invenção, em que o método inclui a) Agrupar os serotipos adenovirais que representam subgrupos adenovirais B-F, deste modo criando uma mistura adenoviral; b) passar a mistura adenoviral agrupada da fase (a) por uma cultura em crescimento activo de células tumorais a uma proporção de partícula para célula suficientemente alta para encorajar à recombinação entre os serotipos, mas não tão elevada que produza a morte prematura da célula c) recolher o sobrenadante da fase (b); d) infectar uma cultura quiescente de células tumorais com o sobrenadante recolhido na fase (c) ; e) recolher o sobrenadante da cultura celular da fase (d) antes da existência de qualquer sinal de CPE; f) infectar uma cultura quiescente de células tumorais com o sobrenadante recolhido na fase (e) ; e g) isolar o adenovírus quimérico a partir do sobrenadante recolhido na fase (f) por purificação em placa,
BREVE DESCRIÇÃO DAS FIGURAS
Figura 1. Perfis de tempo de retenção de Ad numa coluna TMAE HPLC. A) Perfis de retenção para os esterotipos de Ad individuais que foram utilizados para gerar o agrupamento virai de partida original. B) Perfis de retenção dos agrupamentos da passagem 20 derivados das linhagens celulares HT-29, Panc-1, MDA-231, e PC-3, respectivamente
Figura 2. Actividade citolítica dos agrupamentos individuais de vírus. As células A) HT-29, B) MDA-231, C) 7
Panc-1 e D) PC-3 foram infectadas com os respectivos agrupamentos virais a proporções VP por células de 100 a 0,01. Os ensaios MTS foram realizados em diferentes dias após a infecção (como indicado) dependendo da linhagem celular. Cada ponto de dados no painel representa um ensaio realizado em quadruplicado e os resultados são expressos como os meios +/- SD. O painel descreve uma experiência representativa e todos os agrupamentos virais foram analisados, pelo menos, três vezes independentes na linhagem celular do tumor alvo (Legenda da figura: —·— Ad5; —agrupamento virai inicial; —agrupamento derivado de célula especifica, passagem 20).
Figura 3. Actividade citolitica de ColoAdl e Ad5 nas linhagens celulares de tumor humano. Foi realizado um ensaio MTS em A) um painel amplo de linhas celulares de tumor humano e B) num painel de linhagens celulares de cancro do cólon para determinar a sua potencial especificidade de potência. O ensaio MTS foi realizado em diferentes dias dependendo da linhagem celular. Cada painel representa uma experiência representativa que foi repetida, pelo menos, três vezes. Cada ponto de dados no painel representa um ensaio realizado em quadruplicado e os resultados são expressos como os meios +/- SD (Legenda da Figura: —·— Ad5; —ColoAdl) .
Figura 4. Actividade citolitica de ColoAdl e Ad5 num painel de células normais. Células hs-27, HUVEC e SAEC (fibroblasto primário, células endoteliais e epiteliais, respectivamente) foram infectadas com ColoAdl e Ad5 em proporções VP por célula de 100 a 0,01. O ensaio MTS foi realizado em diferentes dias após infecção dependendo da célula e cada painel representa uma experiência representativa que foi repetida, pelo menos, três vezes. 8
Cada ponto de dados no painel representa um ensaio realizado em quadriplicado e os resultados são expressos como os meios +/- SD (Legenda da Figura: —·— Ad5; — ColoAdl).
Figura 5. Actividade citolitica de ColoAdl, Ad5 e ONYX-015 em células endoteliais normais primárias (HUVEC) e uma linhagem celular de tumor do cólon (HT-29) Cada painel representa uma experiência representativa que foi repetida, pelo menos, três vezes. Cada ponto de dados no painel representa um ensaio realizado em quadriplicado e os resultados são expressos como os meios +/- SD (Legenda da Figura: —·— Ad5; —ColoAdl; —Onyx-015) .
Figura 6. Actividade citolitica de ColoAdl, Adllp e Ad5 em linhas de células epiteliais normais (SAEC) e uma linhagem celular de cancro do cólon humano (HT-29). Cada painel representa uma experiência representativa que foi repetida, pelo menos, três vezes. Cada ponto de dados no painel representa um ensaio realizado em quadriplicado e os resultados são expressos como os meios +/- SD (Legenda da Figura: —·— Ad5; —0— Adllp;
ColoAdl) .
Figura 7. Actividade Citolitica de Virus Recombinantes Virus recombinantes que representam quatro populações virais (Adpll, ColoAdl, Adllp na extremidade esquerda/CotoAdl na extremidade direita (ColoAdl.1) e ColoAdl na extremidade esquerda /Adllp na extremidade direita (ColoAdl.2)) foram construídas como descrito no Exemplo 6. A actividade citolitica de cada população em células HT29 foi determinada como anteriormente descrito. (Legenda da Figura: 9 —·— Ad5; —Adllp; —ColoAdl; —D— ColoAdl,1; — A—ColoAdl, 2) .
DESCRIÇÃO DETALHADA DA INVENÇÃO
Definições
Excepto quando definido em contrário, todos os termos técnicos e cientificos utilizados têm um significado igual ao pressuposto por alguém com formação ordinária na técnica da presente invenção. Normalmente, a nomenclatura presentemente utilizada e os procedimentos laboratoriais descritos abaixo são aqueles bem conhecidos e comummente empregues na técnica.
Tal como presentemente utilizado, o termo "adenovírus", "serotipo" ou "serotipo adenoviral" refere-se a qualquer dos 51 serotipos adenovirais humanos actualmente conhecidos ou isolados no futuro. Vide, por exemplo, Strauss, "Adenovírus Infections in humans," in The Adenoviruses, Ginsberg, ea., Plenum Press, New York, NY, pp. 451-596 (1984) . Estes serotipos são classificados nos subgrupos A-F (vide, Shenk, "Adenoviridae: The Viruses and Their
Replication," in Fields Virology, Vol.2, Fourth Edition, Knipe, ea., Lippincott Williams & Wilkins, pp. 2265-2267 (2001), Tal como mostrado no Quadro 1.
Quadro 1
Subgrupo Serotipo Adenoviral A 12, 18, 31 B 3, 7, 11, 14, 16, 21, 34, 35, 51 C 1, 2, 5, 6 10 D 8-10, 13, 15, 17, 19, 20, 22- 30, 32, 33, 36-39, 42-49, 50 e 4 F 40, 41
Tal como presentemente utilizado, "adenovírus quimérico" refere-se a um adenovirus cuja sequência de ácidos nucleicos consiste em sequências de ácidos nucleicos de, pelo menos, dois dos serotipos adenovirais acima descritos.
Tal como presentemente utilizado, "serotipo adenoviral progenitor" refere-se a um serotipo adenoviral que representa o serotipo a partir do qual deriva a maior parte do genoma do adenovirus quimérico.
Tal como presentemente utilizado, o termo "recombinação homóloga" refere-se a duas moléculas de ácido nucleico, sendo que cada uma possui sequências homólogas, onde as duas moléculas de ácido nucleico se cruzam ou se submetem a recombinação na região de homologia.
Tal como presentemente utilizado, o termo "potência" refere-se ao potencial lítico do vírus e representa a sua capacidade para replicar, lisar e alastrar. Para os efeitos da presente invenção, potência é um valor que estabelece a comparação da actividade citolitica de um determinado adenovírus da invenção com a de Ad5 na mesma linhagem celular, isto é, potência = IC50 de AdX/IC50 de Ad5, em que X é o serotipo adenoviral particular que é examinado e em que à potência de Ad5 é atribuído um valor de 1. 11
Tal como presentemente utilizado, o termo "vírus oncolítico" refere-se a um vírus que mata preferencialmente células cancerosas comparativamente às células normais.
Tal como presentemente utilizado, o termo "índice terapêutico" ou "janela terapêutica" refere—se a um número que indica o potencial oncolítico de um determinado vírus e é determinado ao se dividir a potência do adenovírus numa linhagem celular cancerosa pela potência do mesmo adenovírus numa linhagem celular normal (isto é, não-cancerosa) .
Tal como presentemente utilizado, o termo "modificado" refere-se a uma molécula com uma sequência de nucleótidos ou sequência de aminoácidos que difere de uma sequência que ocorre naturalmente, por exemplo, sequência de nucleótidos ou sequência de aminoácidos do tipo selvagem. Uma molécula modificada pode reter a função ou actividade de uma molécula do tipo selvagem, isto é, um adenovírus modificado pode reter a sua actividade oncolítica. As modificações incluem mutações para os ácidos nucleicos como abaixo descrito.
Tal como presentemente utilizado, o termo "mutação" com referência a um polinucleótido ou polipeptídeo, refere-se a uma mudança sintética, recombinante ou química de ocorrência natural ou diferença relativamente à estrutura primária, secundária ou terciária de um polinucleótido ou polipeptídeo, comparativamente a um polinucleótido ou polipeptídeo de referência, respectivamente (por exemplo, quando comparado com um polinucleótido ou polipeptídeo do tipo selvagem). As mutações incluem estas mudanças como, por exemplo, delecções, inserções ou substituições. 12
Os polinucleótidos e polipeptídeos onde se verificam estas mutações podem ser isolados ou gerados utilizando métodos bem conhecidos na técnica.
Tal como presentemente utilizado, o termo "delecção" é definido como uma mudança tanto nas sequências de polinucleótidos como de aminoácidos nas quais um ou mais residuos polinucleótidos ou de aminoácidos, respectivamente, se encontram ausentes.
Tal como presentemente utilizado, "inserção" ou "adição" significam aquela mudança numa sequência de polinucleótido ou de aminoácido, a qual resultou na adição de um ou mais residuos de polinucleótidos ou de aminoácidos, respectivamente, quando comparando com a sequência de polinucleótidos ou de aminoácidos que ocorre de modo natural.
Tal como presentemente utilizado, o termo "substituição" resulta da substituição de um ou mais polinucleótidos ou aminoácidos por diferentes, respectivamente.
Tal como presentemente utilizado, o termo "derivado adenoviral" refere-se a um adenovirus da presente invenção que foi modificado de modo a que uma adição, delecção ou substituição tenha sido feita para ou no genoma virai, de modo a que o derivado adenoviral resultante exiba uma potência e/ou indice terapêutico maior do que o do adenovirus progenitor, ou, de uma outra forma, é terapeuticamente mais útil (isto é, menos imunogénica, perfil de clearance melhorado). Por exemplo, um derivado de um adenovirus da presente invenção pode ter uma delecção num dos genes precoces do genoma virai, incluindo, mas não se limitando, à região ElA ou E2B do genoma virai. 13
Tal como presentemente utilizado, o termo "variante" com referência a um polinucleótido ou polipeptideo, refere-a um polinucleótido ou polipeptideo que pode variar numa estrutura primária, secundária ou terciária, comparativamente a um polinucleótido ou polipeptideo de referência, respectivamente (por exemplo, quando comparado com um polinucleótido ou polipeptideo do tipo selvagem). Por exemplo, a sequência de aminoácidos ou de ácido nucleico pode conter uma mutação ou modificação que difira de uma sequência de aminoácidos ou de ácidos nucleicos de referência. Em algumas realizações, uma variante adenoviral pode ser uma isoforma ou polimorfismo diferente. As variantes podem ser polinucleótidos ou polipeptideos sintéticos, recombinantes que ocorrem naturalmente ou quimicamente modificados isolados ou gerados por meio de métodos bem conhecidos na técnica. As mutações na sequência de polinucleótidos da variante podem ser silenciosas. Isto é, estas não podem alterar os aminoácidos codificados pelo polinucleótido. Onde as alterações se limitam a mutações silenciosas deste tipo, uma variante irá codificar, como a referência, um polipeptideo com mesma sequência de aminoácido. Alternativamente, estas mudanças na sequência de polinucleótidos da variante podem alterar a sequência de aminoácido de um polipeptideo codificado pelo polinucleótido de referência, resultando em mutações de aminoácidos conservadoras ou não conservadoras, tal como abaixo descrito. Estas mutações de polinucleótidos podem resultar em substituições, adições, delecções, fusões e truncagens de aminoácidos, no polipeptideo codificado pela sequência de referência. Várias substituições de codões, tais como mutações silenciosas que produzem vários locais de restrição, podem ser introduzidas para optimizar a 14 clonagem num vector plasmídeo ou virai ou expressão num determinado sistema procariota ou eucariota.
Tal como presentemente utilizado, o termo "variante adenoviral " refere-se a um adenovirus, cuja sequência de polinucleótidos difere de um polinucleótido de referência, por exemplo, um adenovirus do tipo selvagem, tal como acima descrito. As diferenças são limitadas de modo a que as sequências de polinucleótidos do progenitor e da variante sejam, de modo global, semelhantes, na maioria das regiões, e idênticas. Tal como presentemente utilizado, diz-se que uma primeira sequência de nucleótidos ou de aminoácidos é "semelhante" a uma segunda sequência, quando se estabelece uma comparação entre as duas sequências e se verifica que ambas têm poucas diferenças a nivel de sequência (isto é, a primeira sequência e a segunda sequência são extremamente idênticas). Tal como presentemente utilizado, as diferenças da sequência de polinucleótidos presentes entre a variante adenoviral e o adenovirus de referência não originam uma diferença na potência e/ou indice terapêutico.
Tal como presentemente utilizado, o termo "conservador" refere-se à substituição de um resíduo de aminoácido por um resíduo de aminoácido diferente com características químicas semelhantes. Substituições de aminoácidos conservadoras incluem a substituição de uma leucina por um isoleucina ou valina, um aspartato por um glutamato, ou uma treonina por uma serina. As inserções ou delecções encontram-se tipicamente na ordem de aproximadamente a a 5 aminoácidos.
Tal como presentemente utilizado, o termo "não conservador" refere-se à substituição de um resíduo de aminoácido por um resíduo de aminoácido diferente com características químicas diferentes. Substituições não 15 conservadoras incluem, mas não se limitam a, ácido aspártico (D), substituído por glicina (G); aspargina (N), substituída por lisina (K); ou alamina (A) substituída por arginina (R).
Os códigos de uma única letra para os resíduos de aminoácidos incluem os seguintes: A = alanina, R = arginina, N = asparagina, D = ácido aspártico, C cisteína, 0 = glutamina, E = ácido glutâmico, G = glicina, H = histidina, I = isoleucina, L = leucina, K = lisina, M = metionina, F = fenilalanina, P = prolina, S = serina, T = treonina, W = triptofano, Y = tirosina, V = valina.
Será apreciado que os polipeptídeos contêm frequentemente aminoácidos que não os 20 aminoácidos comummente referidos como os 20 aminoácidos que ocorrem naturalmente e que, muitos aminoácidos podem ser modificados num determinado polipeptídeo seja por processos naturais, tais como glicosilação e outras modificações pós-traducionais, seja por técnicas de modificação química, as quais são bem conhecidas na técnica. Até mesmo as modificações comuns que ocorrem naturalmente nos polipeptídeos são demasiado numerosas para se indicarem aqui de forma exaustiva, mas, no entanto, encontram-se bem descritas em textos básicos e em monografias mais detalhadas, assim como em literatura de investigação volumosa, e são bem conhecidas pelos especialistas na técnica. Entre as modificações conhecidas, as quais podem estar presentes nos polipeptídeos da presente invenção, encontram-se, indicando apenas algumas a título ilustrativo, acetilação, acilação, ADP-ribosilação, amidação, junção covalente de flavina, junção covalente de uma fracção heme, junção covalente de um derivado de polinucleótido ou polipeptídeo, junção covalente 16 fosfotidilinositol, reticulação, ciclização, formação de ligação de dissulfureto, demetilação, formação de reticulações covalentes, formação de cistina, formação de piroglutamato, formilação, gama-carboxilação, glicação, glicosilação, formação de âncoras GPI, hidroxilação, iodação, metilação, miristoilação, oxidação, processamento proteolítico, fosforilação, prenilação, racemização, selenoilação, sulfação, adição mediada pela transferência de ARN de aminoácidos para proteínas, tais como arginilação e ubiquitinação.
Estas modificações são bem conhecidas pelos especialistas na técnica e têm sido descritas em grande detalhe na literatura científica. Algumas modificações particularmente comuns, glicosilação, junção lípida, sulfação, gama-carboxilação de resíduos de ácido glutâmico, hidroxilação e ADP-ribosilação, por exemplo, são descritas nos textos mais básicos, tais como, por exemplo, I. E. Creighton, Proteins-Structure and Molecular Properties, 2nd Ed., W.H. Freeman and Company, New York, 1993. Existem, disponíveis, muitas revisões detalhadas sobre este tema, por exemplo, as facultadas por Wold, F., em Posttranslational Covalent Modification of Proteins, B. C. Johnson, Ed., Academic Press, New York, pp 1-12,1983; Seifter et al., Meth. Enzymol 182:626-646,1990 e Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sei. 663: 48-62, 1992.
Será apreciado, assim como é bem conhecido e tal como acima indicado, que os polipeptídeos não são sempre completamente lineares. Por exemplo, os polipeptídeos podem ser ramificados como um resultado de ubiquitinação e podem ser circulares, com ou sem ramificações, normalmente como um resultado de eventos pós-traducionais, incluindo eventos 17 de processamento natural e eventos ocorridos por manipulação humana, os quais não ocorrem naturalmente. Os polipeptideos circulares, ramificados e circulares ramificados podem ser sintetizados por processos naturais não-traducionais e também por métodos completamente sintéticos.
As modificações podem ocorrer em qualquer lugar do polipeptídeo, incluindo a estrutura peptídica, as cadeias simples de aminoácidos e os terminais amino ou carboxilo. De facto, o bloqueio do grupo amino ou carboxilo num polipeptídeo, ou ambos, por uma modificação covalente, é comum em polipeptideos que ocorrem naturalmente e sintéticos, sendo que estas modificações podem também encontrar-se presentes em polipeptideos da presente invenção. Por exemplo, o resíduo de terminal amino dos polipeptideos produzido em E.coli, antes do processamento proteolítico, irá quase invariavelmente ser N-formilmetionina.
As modificações que ocorrem num polipeptídeo irão frequentemente ser uma função de como o mesmo é produzido. Para os polipeptideos produzidos por expressarem um gene clonado num hospedeiro, por exemplo, a natureza e dimensão das modificações serão, em grande parte, determinadas pela capacidade de modificação pós-traducional da célula hospedeira e os sinais de modificação presentes na sequência de aminoácidos do polipeptídeo. Por exemplo, tal como é bem conhecido, a glicosilação não ocorre em bactérias hospedeiras, tais como E. coli. Consequentemente, quando se pretende a glicosilação, um polipeptídeo deverá expressar um hospedeiro glicosilante, normalmente uma célula eucariota, as células de insectos realizam frequentemente os mesmos glicosilados pós-traducionais como 18 as células de um mamífero e, por este motivo, os sistemas de expressão de células de insectos têm sido desenvolvidas para expressar de modo eficaz as proteínas mamíferas que possuem padrões nativos de glicosilação, inter alia. Considerações semelhantes aplicam-se a outras modificações.
Será apreciado que o mesmo tipo de modificação possa estar presente para o mesmo ou diferente grau em diversos locais num determinado polipeptídeo. Igualmente, um determinado polipeptídeo pode conter muitos tipos de modificações.
Tal como presentemente utilizado, os termos que se seguem são utilizados para descrever as relações de sequência entre duas ou mais sequências de polinucleótidos ou aminoácidos. "sequência de referência", "janela de comparação", "identidade de sequência", "percentagem de identidade de sequência", "identidade substancial", "similaridade" e "homólogo". Uma "sequência de referência" é uma sequência definida utilizada como uma base para uma comparação de sequência pode se o subconjunto de uma sequência maior, por exemplo, como um segmento de um cADN de integral ou sequência genética apresentada numa listagem de sequências ou pode incluir um cADN ou sequência genética completa. Normalmente, uma sequência de referência é, pelo menos, 18 nucleótidos ou 6 aminoácidos em comprimento, frequentemente pelo menos 24 nucleótidos ou 8 aminoácidos em comprimento e frequentemente pelo menos 48 nucleótidos e 16 aminoácidos. Considerando que duas sequências de polinucleótidos ou de aminoácidos podem, cada uma, (1) incluir uma sequência (isto é, uma porção da sequência de nucleótidos ou de aminoácidos completa) que seja semelhante entre as duas moléculas, e (2) possa ainda incluir uma sequência que seja divergente entre as duas sequências de 19 polinucleótidos ou de aminoácidos, comparações de sequência entre duas (ou mais) moléculas são tipicamente realizadas por sequências de comparação das duas moléculas sobre uma "janela de comparação" para identificar e comparar regiões locais de similaridade de sequências. Uma "janela de comparação", tal como presentemente utilizada, refere-se a um segmento conceptual de, pelo menos, 18 posições de nucleótidos contíguos ou 6 aminoácidos, em que uma sequência de nucleótidos ou de aminoácidos pode ser comparada com uma sequência de referência de, pelo menos, 18 sequências de nucleótidos ou 6 aminoácidos contíguos e, em que a porção da sequência de polinucleótidos na janela de comparação pode incluir adições, delecções, substituições e semelhantes (isto é, gaps) de 20 por cento ou menos comparativamente à sequência de referência (a qual não inclui adições ou delecções) para um alinhamento ideal das duas sequências. O alinhamento ideal de sequências para efeitos de alinhamento de uma janela de comparação pode ser conduzido, por exemplo, pela homologia do algoritmo local de Smith & Waterman, Adv. Appl. Math. 2:482 (1981), pelo alinhamento homólogo do algoritmo de Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), pela procura de método de similaridade de Pearson and Lipman, Proc. Natl. Acad. Sei. (U.S.A.) 85:2444 (1988), por implementações computorizadas destes algoritmos (GAP, BESTFIT, FASTA, e TFASTA no fíisconsin Genetics Software Package, release 7.0, (Genetics Computer Group, 575 Science Dr., Madison, wis.), VectorNTl da informatix, Geneworks, ou Mac Vector software packages), ou por inspecção e é seleccionado o melhor alinhamento (isto é, resultando na percentagem mais elevada de homologia sobre a janela de comparação) gerada pelos vários métodos. 20
Tal como presentemente utilizado, o termo "identidade de sequência" significa que duas sequências de polinucleótidos ou aminoácidos são idênticas (isto é, numa base nucleótido-a-nucleótido ou residuo-a-residuo) sobre a janela de comparação. O termo "percentagem de identidade de sequência" é calculado por comparação das duas sequências idealmente alinhadas sobre a janela de comparação, determinando o número de posições nas quais a base de ácido nucleico idêntica (por exemplo, A, T, C, G, U, ou I) ou resíduo ocorre em ambas as sequências para se obter o número de posições adaptadas, dividindo o número de posições adaptadas pelo número total de posições na janela de comparação (isto é, o tamanho da janela), e multiplicando o resultado por 100 para se obter a percentagem de identidade de sequência. Os termos "identidade substancial", tal como presentemente utilizado, designa uma característica de uma sequência de polinucleótido ou aminoácido, em que o polinucleótido ou aminoácido inclui uma sequência que tem, pelo menos, uma identidade de sequência de 85%, preferencialmente, mais usualmente de, pelo menos, uma identidade de sequência de 90 a 95%, mais normalmente, pelo menos, uma identidade de sequência de 99% comparativamente a uma sequência de referência sobre uma janela de comparação de, pelo menos, 18 posições de nucleótidos (6 aminoácidos), frequentemente sobre uma janela de, pelo menos, 24-48 posições de nucleótidos (8-16 aminoácidos), em que a percentagem de identidade de sequência é calculada ao se comparar a sequência de referência com a sequência que pode incluir delecções ou adições que totalizam 20 por cento ou menos da sequência de referência 21
Sobre a janela de comparação. A sequência de referência pode ser um subgrupo de uma sequência maior. 0 termo "similaridade", quando utilizado para descrever um polipeptideo, é determinado ao se comparar a sequência de aminoácido com os substitutos de aminoácido conservador de um polipeptideo para a sequência de um segundo polipeptideo. 0 termo "homologo", quando utilizado para descrever um polinucleótido, indica que dois polinucleótidos, ou sequências designadas dos mesmos, quando idealmente alinhadas e comparadas, são idênticas, com inserções ou delecções de nucleótidos apropriadas em, pelo menos, 70% dos nucleótidos, normalmente de aproximadamente 75% a 99% e mais preferencialmente, pelo menos, aproximadamente 98 a 99% dos nucleótidos.
Tal como presentemente utilizado, o termo "homologo", quando utilizado para descrever um polinucleótido, indica que dois polinucleótidos, ou sequências designadas dos mesmos, quando idealmente alinhadas e comparadas, são idênticas, com inserções ou delecções de nucleótidos apropriadas em, pelo menos, 70% dos nucleótidos, normalmente de aproximadamente 75% a 99% e mais preferencialmente, pelo menos, aproximadamente 98 a 99% dos nucleótidos.
Tal como presentemente utilizado, "reacção em cadeia da polimerase" ou "PGR" refere-se a um procedimento em que elementos específicos de ADN são amplificados como descrito na patente norte-americana No. 4,683,195. Normalmente, a informação de sequência das extremidades do fragmento do polipetideo de interesse ou mais além necessita de estar disponível, de modo a que os iniciadores oligonucleótidos possam ser desenhados; estes iniciadores irão apontar um para o outro e serão idênticos ou semelhantes em sequência 22 a cadeias opostas do modelo a ser amplificado. Os nucleótidos 5' terminais dos dois iniciadores irão coincidir com as extremidades do material amplificado. Pode ser empregue PCR para amplificar sequências de ADN especificas de ADN genómico total, o cADN transcrito a partir de ARN celular total, sequências plasmidicas, etc. (vide em geral Mullis et al., Cold Spring Harbor Symp. Quant. Biol., 51: 263, 1987; Erlich, ed., PCR Technology, Stockton Press, NI, 1989) .
Tal como presentemente utilizado, "rigor" ocorre tipicamente numa escala entre cerca de Tm (temperatura de fusão) - 5o C (5o abaixo da Tm da sonda) até cerca de 20° C a 25° C abaixo da Tm. Os peritos na técnica subentenderão que pode ser utilizada uma hibridação rigorosa para identificar ou detectar sequências de polinucleótidos idênticas ou para identificar ou detectar sequências de polinucleótidos similares ou relacionadas. Tal como presentemente utilizado, o termo "condições de rigor" significa que a hibridação irá ocorrer apenas se houver uma identidade de pelo menos 95% e de preferência pelo menos 97% entre as sequências.
Tal como presentemente utilizado, "hibridação" incluirá "qualquer processo por meio do qual uma cadeia de polinucleótidos se une a uma cadeia complementar através de emparelhamento de bases" (Coombs, J., Dictionary of Biotechnology, Stockton Press, Nova Iorque, N.I., 1994).
Tal como presentemente utilizado, o termo "dose com eficácia terapêutica" ou "quantidade eficaz" refere-se à quantidade de adenovírus que melhora os sintomas ou condições de uma doença. Uma dose é considerada dose com eficácia terapêutica no tratamento do cancro ou respectivas metástases quando o tumor ou excrescência metástica é 23 retardada ou travada ou se constata a redução do tamanho do tumor ou metástase de forma a conduzir a um prolongamento da esperança de vida do sujeito.
Adenovirus da invenção A presente invenção apresenta adenovirus quiméricos com um genoma em que a sequência de nucleótidos da região EB2 do adenovirus quimérico compreende sequências de ácidos nucleicos derivadas de pelo menos dois serotipos adenovirais, serotipos esses que são cada um seleccionado dos subgrupos adenovirais B, C, D, E e F e são distintos entre si. Um adenovirus quimérico da invenção é oncolitico e apresenta um índice terapêutico melhorado para uma célula tumoral.
Isolamento de Adenovirus Quiméricos
Os adenovirus quiméricos da invenção podem ser produzidos utilizando uma modificação de uma técnica designada "bio-selecção", na qual um adenovirus com propriedades desejadas, tal como maior oncogenicidade ou especificidade para um tipo de célula, é gerado através da utilização de selecção genética sob condições controladas (Yan et al. (2003) J. Virol. 77:2640-2650).
Na presente invenção, reúne-se uma mistura de adenovirus de vários serotipos que é passada, de preferência pelo menos duas vezes, numa cultura subconfluente de células tumorais a uma proporção de partícula para célula suficientemente elevada para encorajar a recombinação entre serotipos, porém não tão elevada que provoque morte celular prematura. Uma proporção de partícula para célula preferida é de, aproximadamente, 500 partículas por célula e é facilmente determinada por um perito na técnica. Tal como presentemente utilizado, uma 24 "cultura subconfluente" de células refere-se a uma monocamada ou cultura suspensa na qual as células se encontram em crescimento activo. Para células que crescem em monocamada, poderia ser apontada como exemplo uma cultura em que aproximadamente 50% a 80% da área disponível para crescimento celular se encontra coberta de células. É preferida uma cultura em que aproximadamente 75% da área de crescimento se encontra coberta de células.
Numa forma de realização preferida, a mistura adenoviral inclui serotipos adenovirais representativos dos subgrupos adenovirais B, C, D, E e F. Os adenovírus do grupo A não estão incluídos na mistura uma vez que estão associados à formação de tumores em roedores. As linhas celulares tumorais preferidas, úteis no processo de bio--selecção incluem, sem constituir limitação, as que são derivadas de tumores da mama, cólon, pâncreas, pulmão e próstata. Alguns exemplos de linhas celulares de tumores sólidos úteis para a passagem "bio-selectiva" da mistura adenoviral incluem, sem constituir limitação, células MDA231, HT29, PAN-1 e PC-3. As linhas celulares hematopoiéticas incluem, sem constituir limitação, as células B linfóides de linhagens Raji e Daudi, células eritroblastóides K562, células mielóides U937 e células linfóides T HSB2.
Os adenovírus produzidos durante estas passagens iniciais são utilizados para infectar células tumorais quiescentes a uma proporção de partícula para célula suficientemente baixa para permitir a infecção de uma célula por não mais de um adenovírus. Ao fim de, no máximo, 20 passagens nestas condições, o sobrenadante da última passagem é recolhido antes do efeito citopático visível (CPE, vide Fields Virology, Vol.2, 4a Edição, Knipe, ea., 25
Lippincott Williams & Wilkins, pp. 135-136) para aumentar a selecção de virus altamente potentes. 0 sobrenadante recolhido pode ser concentrado por meio de técnicas bem conhecidas dos peritos na técnica. Um método preferido para alcançar as células quiescentes, isto é, aquelas em que o crescimento celular activo parou, numa cultura em monocamada consiste em permitir o crescimento da cultura durante 3 dias após atingir a confluência, significando "confluência" que a totalidade da área disponível para o crescimento celular está ocupada (coberta com células). De modo similar, as culturas em suspensão podem ser desenvolvidas até atingirem densidades caracterizadas pela ausência de crescimento celular activo. 0 perfil de serotipo do sobrenadante que contém o conjunto adenoviral bio-seleccionado, pode ser examinado mediante medição dos tempos de retenção do conjunto virai recolhido numa coluna de permuta aniónica, em que se sabe que os diferentes serotipos adenovirais possuem tempos de retenção caracteristicos (Blanche et al. (2000) Gene Therapy 7:1055-1062); vide Exemplo 3, figuras IA e 1B. Os adenovirus da invenção podem ser isolados do sobrenadante concentrado mediante diluição e purificação em placa ou outras técnicas bem conhecidas na técnica e cresceram para caracterização mais aprofundada. As técnicas são bem conhecidas na técnica são utilizadas para determinar a sequência dos adenovirus quiméricos isolados (ver exemplo 5) .
Um exemplo de um adenovirus quimérico da invenção é o adenovirus quimérico ColoAdl, o qual foi isolado utilizando células do cólon HT29 no processo de bio-selecção. ColoAdl possui a sequência de ácidos nucleicos da SEQ id N°: 1. A maioria da sequência de nucleótidos do ColoAdl é idêntica à 26 sequência de nucleótidos do serotipo Adll (SEQ ID NO: 2) (Stone et al. (2003) Virology 309:152- 165; Mei et al. (2003) J. Gen. Virology 84:2061-2071). Existem duas delecções na sequência de nucleótidos ColoAdl em comparação com Adll, um de 2444 pares de bases de comprimento na região da unidade de transcrição E3 do genoma (pares de bases 27979 a 30423 da SEQ ID NO: 2) e uma segunda delecção menor, de 25 pares de bases de comprimento (pares de bases 33164 a 33189 da SEQ ID NO: 2) no gene E4 ou f4. A região da unidade de transcrição E2B (SEQ ID NO: 3) de ColoAdl, que codifica a polimerase do ADN das proteínas adenovirais e proteína terminal, encontra-se localizada entre os pares de bases 5067 e 10354 da SEQ ID NO: 1 e consiste numa área de recombinação homóloga entre os serotipos Adll e Ad3. Nesta região de ColoAdl existem 198 alterações de pares de bases em comparação com a sequência Adll (SEQ ID NO: 1). As alterações são o resultado de troços de nucleótidos na região E2B de ColoAdl que são homólogas da sequência numa porção da região E2B de Ad3 (SEQ ID NO: 8), possuindo o troço mais comprido de homologia entre ColoAdl e Ad3 414 bp de comprimento. A região E2B de ColoAdl (SEQ ID NO: 3) confere uma potência maior ao adenovírus ColoAdl em comparação com os adenovírus Adll sem modificação (vide exemplo 6; fig. 7). Noutras formas de realização, um adenovírus quimérico da invenção pode compreender sequências de ácidos nucleicos de mais de dois serotipos adenovirais.
Um adenovírus quimérico da invenção pode ser avaliado quanto à sua selectividade num tipo de tumor específico mediante exame do seu potencial lítico num painel de células tumorais derivadas do mesmo tecido, o qual foi inicialmente passado pelo agrupamento adenoviral. Por 27 exemplo, o adenovírus ColoAdl (SEQ ID NO: 1), que foi derivado inicialmente de um agrupamento adenoviral passado em linhas celulares de tumor do cólon HT-29, foi reexaminado tanto em células HT-29 e num painel de outras linhas celulares de tumor derivadas do cólon, incluindo DLD-1, LS174T, LS1034, SW403, HCT116, SW48 e Colo320DM (vide figura 3B) . Quaisquer linhas celulares de tumor do cólon são igualmente úteis para esta avaliação. Os clones adenovirais isolados dos agrupamentos adenovirais seleccionados noutros tipos de células tumorais podem ser testados de modo similar num painel de células tumorais adequado, incluindo, mas sem constituir limitação, linhas celulares da próstata (por exemplo, linhas celulares DU145 e PC-3); linhas celulares do pâncreas (por exemplo, as linhas celulares MDA231) e linhas celulares dos ovários (por exemplo linhagem de células OVCAR-3). Outras linhas celulares tumorais existentes são igualmente úteis no isolamento e identificação de adenovírus da invenção.
Os adenovírus quiméricos da invenção possuem um índice terapêutico aumentado em comparação com os serotipos adenovirais dos quais foram derivados, (vide figura 6, que compara a actividade citolítica do adenovírus quimérico ColoAdl com ADllp). A invenção engloba também adenovírus quiméricos que são construídos utilizando técnicas recombinantes bem conhecidas dos peritos na técnica. Estes adenovírus quiméricos compreendem uma região de sequência de nucleótidos derivada de um serotipo adenoviral que está incorporado mediante técnicas recombinantes no genoma de um segundo serotipo adenoviral. A sequência incorporada confere uma propriedade, por exemplo especificidade tumoral ou potência intensificada, ao serotipo adenoviral 28 progenitor. Por exemplo, a região E2B de ColoAdl (SEQ ID NO: 3) pode ser incorporada no genoma de Ad35 ou Ad9.
Derivados Adenovirais A invenção engloba também e descreve um adenovirus quimérico da invenção que é modificado para proporcionar outros adenovirus quiméricos úteis do ponto de vista terapêutico. As modificações incluem, sem constituir limitação, as seguidamente descritas.
Uma modificação descrita consiste na produção de derivados do adenovirus quimérico com uma substancial falta de capacidade para ligar p53 em resultado de uma mutação no gene adenoviral que codifica a proteína E1B-55K. Estes vírus possuem parte ou a totalidade da região E1B-55K eliminada {vide, patente norte-americana n° 5,677,178) A patente norte-americana n° 6,080,578 descreve, entre outros aspectos, mutantes Ad5 que possuem delecções na região da proteína E1B-55K, que é responsável pela ligação p53. Outras modificações dos adenovirus quiméricos consistem em mutações na região EIA, como descrito nas patentes norte-americanas n°. 5,801,029 e 5,972,706. Estes tipos de modificações proporcionam derivados dos adenovirus quiméricos da invenção com maior selectividade para células tumorais.
Um exemplo de uma modificação abrangida pela invenção consiste num adenovirus quimérico que exibe um maior grau de especificidade tecidular devido à colocação de replicação virai sob o controlo de um promotor específico de um tecido, como descrito na patente norte-americana n° 5,998,205. A replicação de um adenovirus quimérico da invenção pode ainda ser colocada sob o controlo de um elemento de resposta E2F, como descrito no pedido de patente norte-americana n° 09/714,409. Esta modificação 29 proporciona um mecanismo de controlo da replicação virai baseado na presença de E2F, que resulta numa maior especificidade para tecido tumoral e é distinto do controlo realizado por um promotor especifico do tecido. Nestas duas realizações, o promotor especifico do tecido e o elemento de resposta E2F encontram-se ligados operacionalmente a um gene adenoviral que é essencial para a replicação do adenovirus.
Outra modificação abrangida pela invenção consiste no uso de um adenovirus quimérico da invenção, por exemplo, ColoAdl, como estrutura básica para a produção de novos vectores adenovirais deficientes em termos de replicação. Como descrito em Lai et al. ((2002) DNA Cell Bio. 21:895-913), os vectores adenovirais que são deficientes em termos de replicação podem ser utilizados para produzir e expressar genes terapêuticos. São presentemente apresentados, ambos os vectores de primeira geração (nos quais as regiões El e E3 se encontram eliminadas) e de segunda geração (nos quais a região E4 se encontra adicionalmente eliminada), derivados dos adenovirus quiméricos da invenção. Estes vectores são facilmente produzidos utilizando técnicas bem conhecidas dos peritos na técnica (vide Imperiale e Kochanek (2004) Curr. Top. Microbiol. Immunol. 273:335-357; Vogels et al. (2003) J. Virol. 77:8263-8271).
Uma outra modificação abrangida pela invenção consiste na inserção de um gene heterólogo, útil como marcador ou relator para registo da eficiência da infecção virai. Uma realização deste tipo de modificação consiste na inserção do gene da timidina quinase (thymidine kinase - TK) . A expressão de TK em células infectadas pode ser utilizada para detecção do nível de vírus que fica nas células após 30 infecção virai, utilizando substratos com radiomarcaçao na reacção TK (Sangro et al (2002) Mol imaging Biol 4:27-33).
Os métodos para a reconstrução dos adenovirus quiméricos modificados são geralmente conhecidos na técnica. Vide, Mittal, S. K. (1993) Vírus Res. 28:67-90 e Hermiston, T. et al. .(1999) Methods in Molecular Medicine: Adenovirus Methods and Protocols, W.S.M. Wold, ed, Humana Press. São empregues técnicas padrão para os métodos de ácido nucleico recombinante, síntese de polinucleótidos e cultura e transformação microbiana (por exemplo electroporação, lipofecção). Em geral, as reacções enzimáticas e fases de purificação são executadas de acordo com as especificações do fabricante. As técnicas e procedimentos são geralmente executados de acordo com métodos convencionais na técnica e várias referências gerais [vide em geral, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2a edição (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.I.) que são apresentada ao longo deste documento. A nomenclatura presentemente utilizada e os procedimentos laboratoriais na química analítica, química de síntese orgânica e formulação farmacêutica seguidamente descritos são bem conhecidos e vulgarmente empregues na técnica.
Determinação do Potencial Terapêutico
Os adenovirus quiméricos da invenção podem ser avaliados quanto à sua utilizada mediante exame do seu potencial lítico em células tumorais derivadas de tecidos de interesse como alvos terapêuticos. As linhas celulares úteis para testes destes adenovirus incluem, sem constituir limitação, linhas celulares do cólon, incluindo, sem constituir limitação, linhas celulares DLD-1, HCT116, HT29, LS1034 e SW48; linhas celulares da próstata, incluindo sem 31 constituir limitação, as linhas celulares DU145 e PC-3; linhas celulares pancreáticas, incluindo sem constituir limitação, as linhas celulares Panc-1; linhas celulares de tumores da mama, incluindo sem constituir limitação, as linhas celulares MDA231 e linhas celulares de ovário, incluindo sem constituir limitação a linhagem de células OVCAR-3. As linhas celulares hematopoiéticas incluem, sem constituir limitação, as células B linfóides de linhagens Raji e Daudi, células eritroblastóides K562, células mielóides U937 e células linfóides T HSB2. Pode ser utilizada qualquer outra linhagem de células que esteja disponível para a avaliação e identificação de adenovírus da invenção, destinados a utilização no tratamento da neoplasia. A actividade citolitica dos adenovirus da invenção pode ser determinada em linhas celulares tumorais representativas e os dados podem ser convertidos numa medição da potência, utilizando-se como padrão um adenovirus pertencente ao subgrupo C, de preferência Ad5 (isto é, dada uma potência de 1) . Um método preferido de determinação da actividade citolitica consiste numa análise MTS (vide exemplo 4, figura 2). 0 índice terapêutico de um adenovírus da invenção numa linhagem de células específica pode ser calculado por meio de comparação da potência do dado adenovírus numa linhagem de células de tumor com a potência do mesmo adenovírus numa linhagem de células não-cancerosas. As linhas celulares preferidas são as células SAEC, de origem epitelial, e as células HUVEC, de origem endotelial {vide, figura 4) . Estes dois tipos de células representam células normais das quais são derivados órgãos e vasculatura, respectivamente e são representativas de locais prováveis de toxicidade durante a 32 terapêutica adenoviral, conforme o modo de aplicação do adenovirus. No entanto, a prática da invenção não se encontra limitada à utilização destas células e podem igualmente ser empregues outras linhas celulares não-cancerosas (por exemplo, células B, células T, macrófagos, monócitos, fibroblastos).
Os adenovirus da invenção podem ainda ser avaliados quanto à sua capacidade de seleccionar como alvo crescimento celular neoplásico (isto é cancro) através da capacidade destas para reduzir a tumorigénese ou carga de células neoplásicas em ratinhos nude com um transplante de células neoplásicas, em comparação com ratinhos sem tratamento com uma carga de células neoplásicas equivalente (vide exemplo 7). A avaliação dos adenovirus da invenção pode ainda ser efectuada utilizando explantes de tumores humanos primários (Lam et al. (2003) Câncer Gene Therapy; Grill et al. (2003) Mot. Therapy 6:609- 614), os quais proporcionam condições de ensaio presentes em tumores que não podem normalmente ser produzidas utilizando os estudos com xenoenxertos de tumores.
Utilidade Terapêutica A presente invenção proporciona a utilização de adenovirus quiméricos da invenção para a inibição do desenvolvimento de células tumorais, bem como a utilização de vectores adenovirais derivados destes adenovirus quiméricos para transportar proteínas terapêuticas úteis no tratamento de neoplasias e outros estados patológicos.
Composições farmacêuticas e Administração A presente invenção refere-se também a composições farmacêuticas que compreendem os adenovirus quiméricos da 33 invenção formulados para administração terapêutica a um doente. Para uso terapêutico, é administrada uma composição estéril contendo uma dose farmaceuticamente eficaz de adenovírus a um doente humano ou doente veterinário não--humano para tratamento, por exemplo de uma condição neoplásica. Em geral, a composição incluirá cerca de 1011 ou mais partículas de adenovírus numa suspensão aquosa. É frequentemente empregue um veículo ou excipiente farmaceuticamente aceitável em composições estéreis destas. Pode ser empregue uma variedade de soluções aquosas, por exemplo água, água tamponada, soro fisiológico a 0,4%, glicina a 0,3% e semelhantes. Estas soluções são estéreis e normalmente livres de matéria particulada que não o vector adenoviral desejado. As composições podem conter substâncias adjuvantes farmaceuticamente aceitáveis, como necessário para aproximar às condições fisiológicas, tais como ajuste do pH e agentes tampão, agentes de ajuste da toxicidade e semelhantes, por exemplo acetato de sódio, cloreto de sódio, cloreto de potássio, cloreto de cálcio, lactato de sódio, etc. Podem ser incluindos excipientes que intensifiquem a infecção das células pelos adenovírus (vide patente norte-americana no. 6,392,069)
Os adenovírus da invenção podem ainda ser administrados em células neoplásicas por meio de administração com lipossomas ou imunolipossomas. Uma administração assim pode orientada selectivamente para células neoplásicas com base numa propriedade da superfície celular presente na população de células neoplásicas (por exemplo, a presença de uma proteína da superfície celular que liga uma imunoglobulina num imunolipossoma). Tipicamente, uma suspensão aquosa contendo os viriões é encapsulada em lipossomas ou imunolipossomas. Por exemplo, uma suspensão 34 de viriões adenovírus pode ser encapsulada em micélios para formar imunolipossomas por meio de métodos convencionais (patente norte-americana no. 5.043.164, patente norte-americana n°. 4, 957,735, patente norte-americana n°, 4,925,661; (1992) Nature 355; 279; Novel Drug Delivery (eds. Prescott and Nimmo, Wiley, Nova Iorque, 1989); Reddy et al. (1992) J. Immunol. 148:1585). Os imunolipossomas que compreendem um anticorpo que liga especificamente a um antigénio de célula cancerosa (por exemplo CALLA, CEA) presente em células cancerosas do indivíduo podem ser utilizados para definir aquelas células como alvos dos viriões (Fisher (2001) Gene Therapy 8:341-348).
Para aumentar ainda mais a eficácia dos adenovírus da invenção, estes podem ser modificados para exibir um tropismo acentuado relativamente a tipos de células tumorais específicas. Por exemplo, como se mostra na PCT/US98/04964, uma proteína na camada exterior de um adenovírus pode ser modificada para exibir um agente químico, de preferência um polipeptídeo que liga a um receptor nas células tumorais em maior escala do que nas células normais. (vide também, patente norte-americana 5, 770, 442 e 5,712,136). O polipeptídeo pode ser um anticorpo e de preferência é um anticorpo de cadeia simples.
Terapêutica Adenoviral
Os adenovírus da invenção, ou respectivas composições farmacêuticas, podem ser administrados para tratamento terapêutico de doença neoplásica ou cancro. Em aplicações terapêuticas, as composições são administradas a um doente já afectado por uma doença neoplásica específica, numa quantidade suficiente para curar ou pelo menos parar parcialmente a condição e respectivas complicações. Uma 35 quantidade adequada para se obter tais efeitos é definida como "dose terapeuticamente eficaz" ou "dose eficaz". Quantidades eficazes para esta utilização irão depender da gravidade da condição, estado geral da saúde do doente e via de administração.
Por exemplo, mas sem constituir limitação, um doente humano ou mamífero não-humano com uma doença neoplásica sólida ou hematológica (por exemplo carcinoma pancreático, do cólon, ovário, pulmão ou mama, leucemia ou mieloma múltiplo) pode ser tratado por meio de administração de uma dose com eficácia terapêutica de um adenovírus apropriado da invenção, isto é um com comprovada melhoria do índice terapêutico para esse tipo de tecido. Por exemplo, um adenovírus quimérico preferido para o tratamento do cancro do cólon seria o adenovírus ColoAdl (SEQ ID NO: 1) . Suspensões de partículas infecciosas de adenovírus podem ser aplicadas em tecido neoplásico através de várias vias, incluindo intravenosa, intraperitoneal, intramuscular, subdérmica e tópica. Uma suspensão de adenovírus contendo cerca e 103 a 1012 ou mais partículas de viriões por ml pode ser administrada por meio de perfusão (por exemplo, na cavidade peritoneal para tratamento do cancro dos ovários, na veia porta para o tratamento de hepatocarcinoma ou metástases hepáticas de outros tumores primários não-hepáticos) ou outra via adequada, incluindo injecção directa numa massa tumoral (por exemplo tumor da mama), clister (por exemplo, cancro do cólon) ou cateter (por exemplo, cancro da bexiga) . Outras vias de administração poderão ser adequadas para carcinomas de outras origens, isto é, inalação como nebulização (por exemplo administração pulmonar para tratamento de carcinoma broncogénico, carcinoma pulmonar das células pequenas, 36 carcinoma pulmonar das células não-pequenas, adenocarcinoma do pulmão ou cancro da laringe) ou aplicação directa a um local de tumor (por exemplo carcinoma broncogénico, carcinoma nasofaringico, carcinoma da laringe, carcinoma do pescoço). A terapêutica adenoviral com adenovirus da presente invenção pode ser combinada com outros protocolos antineoplásicos, tais como quimioterapêutica convencional ou terapêutica por raios-X para o tratamento de um tipo especifico de cancro. 0 tratamento pode ser simultâneo ou sequencial. Um agente quimioterapêutico preferido consiste na cisplatina e a dose pode ser escolhida pelo médico com base na natureza do cancro em tratamento e outros factores tidos em conta por rotina no caso da administração da cisplatina. De preferência, a cisplatina será administrada por via intravenosa, numa dose de 50 a 120 mg/m2 ao longo 3 a 6 horas. De preferência, será administrada por via intravenosa, numa dose de 80 mg/m2 ao longo 4 horas. Um segundo agente quimioterapêutico preferido é 5-fluorouracilo, que é frequentemente administrado em combinação com cisplatina. A dose preferida de 5-fluorouracilo situa-se entre 800 e 1.200 mg/m2 por dia, durante 5 dias consecutivos. A terapêutica adenoviral, com os adenovirus da presente invenção como vectores adenovirais pode também ser combinada com outros genes reconhecidamente úteis em terapêutica à base de virus. Vide patente norte-americana 5,648,478. Nestes casos, o adenovirus quimérico compreende ainda um gene heterólogo que codifica uma proteína terapêutica incorporada no genoma virai, de forma que o gene heterólogo seja expresso no interior da célula infectada. Uma proteína terapêutica, tal como presentemente 37 utilizada, refere-se a uma proteina que se espera que proporcione alguma vantagem terapêutica quando expressa numa dada célula.
Numa forma de realização, o gene heterólogo é um gene activador pró-fármaco, tal como uma citosina desaminase (CD) {vide, patentes norte-americanas n°s 5,631,236; 5,358,866 e 5,677,178). Noutras formas de realização, o gene heterólogo é um indutor conhecido da morte celular, por exemplo apoptina ou proteina da morte adenoviral (adenoviral death protein - ADP) ou uma proteina de fusão, por exemplo glicoproteina de membrana fusogénica (Danen-Van Oorschot et al. (1997) Proc. Nat. Acad. Sei. 94:5843-5847;
Tollefson et al.(1996) J. Virol 70:2296- 2306; Fu et al. (2003) Mol. Therapy 7: 48-754,2003; Ahmed et al. (2003)
Gene Therapy 10:1663- 1671; Galanis et al. (2001) Human
Gene Therapy 12(7): 811-821).
Outros exemplos de genes heterólogos ou respectivos fragmentos incluem os que codificam proteínas imunomoduladoras, tais como as citoquinas ou quimioquinas. Os exemplos incluem interleuquina 2, Patente norte-americana n°s. 4,738,927 ou 5,641,665; interleuquina 7, Patente norte-americana n°s. 4,965,195 ou 5,328,988; e interleuquina 12, Patente norte-americana n° 5,457,038; factor alfa da necrose do tumor, Patente norte-americana n°s. 4,677,063 ou 5,773,582; gama-interferão, Patente norte-americana n°s. 4,727,138 ou 4,762,791; ou GM CSF, Patente norte-americana n°s. 5,393,870 ou 5,391,485, Mackensen et al. (1997) Cytokine Growth Factor Rev. 8:119-128) . Proteínas imunomoduladoras adicionais incluem ainda proteínas inflamatórias de macrófagos, incluindo MIP-3. Pode também ser utilizada a proteína quimiotática monocitária (MCP-3 alfa); uma forma de realização preferida 38 de um geen heterólogo consiste num gene quimérico constituído pode um gene que codifica uma proteína que atravessa as membranas celulares, por exemplo, VP22 ou ΤΆΤ, fundida a um gene que codifica uma proteína que é preferencialmente tóxica para o cancro mas não para células normais.
Os adenovírus quiméricos da invenção podem ainda ser utilizados como vectores para proporcionar genes codificadores de moléculas de ARN terapeuticamente úteis, isto é siRNA (Dorsett e Tuschl (2004) Nature Rev Drug Disc 3:318-329).
Nalguns casos, os genes podem ser incorporados num adenovírus quimérico da invenção para intensificar ainda mais a capacidade do vírus oncolítico para irradicar o tumor embora sem um impacto directo no tumor propriamente dito - estes incluem genes codificadores de proteínas que compreentem apresentação MHC classe I (Hewitt et al. (2003) Immunology 110: 163-169), complemento do bloco, inibem mecanismos induzidos por IFNs e IFN, quimioquinas e citoquinas, morte baseada em células NK (Orange et al., (2002) Mature Immunol 3: 1006-1012; Mireille et al. (2002) immunogenetics 54:527-542; Alcami (2003) Nature Rev. Immunol. 3: 36-50; subregulam a resposta imunitária (por exemplo, IL-10, TGF-Beta, Khong e Restifo (2002) Nature Immunol. 3: 999-1005; 2002) e metaloproteases que podem fragmentar a matriz extracelular e intensificar a disseminação do vírus no tumor (Bosman e Stamenkovic (2003) J. Pathol. 2000: 423-428; Visse e Nagase (2003) Circulation Res. 92: 827- 839).
Conjuntos A invenção refere-se ainda a embalagens e conjuntos farmacêuticos compreendendo um ou mais recipientes com um 39 ou mais dos ingredientes das composições da invenção referidas anteriormente. Associado a este recipiente (s) pode encontrar-se um aviso no formato recomendado por uma agência governamental reguladora do fabrico, utilização ou venda de produtos farmacêuticos ou biológicos, aviso esse que reflecte a aprovação pela a agência de fabrico, utilização ou venda do produto para administração em seres humanos. A presente invenção é ainda descrita por meio dos exemplos seguintes, os quais constituem ilustrações de realizações especificas da invenção e vários usos desta. Estas exemplificações, ilustradoras de certos aspectos específicos da invenção, não reflectem as limitações ou circunscrevem o âmbito da invenção divulgada.
Excepto no caso de indicação em contrário, a prática da presente invenção emprega técnicas convencionais de cultura celular, biologia molecular, biologia microbiologia, manipulação de ADN recombinante e imunologia que são abrangidos pela técnica. Estas técnicas são explicadas na íntegra na literatura. Vide, por exemplo, Cell Biology: a Laboratory Handbook: J. Cells (Ed).Academic Press. N.Y. (1996); Graham, F.L. e Prevec, L. Adenovírus-based expression vectors and recombinant vaccines. Em: Vaccines: New Approaches to immunological Problems. R.W. Ellis (ed) Butterworth. Pp 363-390; Grahan e Prevec Manipulation of adenovírus vectors. Em: Methods in Molecular Biology, Vol. 7: Gene Transfer and Expression Techniques. E.J. Murray e J.M. Walker (eds) Humana Press Inc., Clifton, NJ. pp 109-128,1991; Sambrook et al. (1989), Molecular Cloning, A Laboratory Manual, 2a ed., Cold Spring Harbor Laboratory Press; Sambrook et al. (1989), e Ausubel et al. (1995), Short Protocols in Molecular Biology, John Wiley and Sons. 40
EXEMPLOS Métodos São empregues técnicas padrão para os métodos de ácido nucleico recombinante, síntese de polinucleótidos e cultura e transformação microbiana (por exemplo electroporação, lipofecção). Em geral, as reacções enzimáticas e fases de purificação são executadas de acordo com as especificações do fabricante. As técnicas e procedimentos são geralmente executados de acordo com métodos convencionais na técnica e várias referências gerais (vide em geral, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2a edição (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.l.) que são apresentada ao longo deste documento. A nomenclatura presentemente utilizada e os procedimentos laboratoriais na química analítica, química de síntese orgânica e formulação farmacêutica e administração e tratamento de doentes. Os métodos para a construção dos mutantes adenovirais são geralmente conhecidos na técnica. Vide, Mittal, S. K., Vírus Res., 1993, vol: 28, páginas 67-90; e Hermiston, T. et al, Methods in Molecular Medicine: Adenovírus Methods and Protocols, W.S.M. Wold, ed, Humana Press, 1999. Além disso, o genoma do adenovírus 5 encontra-se registado com o número de acesso #M73260 do Genbank 10 e o vírus encontra-se disponível junto da American Type Culture Collection, Rockville, Maryland, EUA, sob o número de acesso VR-5. Vírus e Linhas celulares
Os serotipos Ad Ad3 (estirpe GB), Ad4 (estirpe Ri-67) Ad5 (estirpe adenoide 75), Ad9 (estirpe de Hicks), Adllp (estirpe Slobitski), Adl6 (estirpe Ch. 79) e todas as linhas celulares, com excepção das seguintes, foram adquiridos junto da ATCC: MDA231-mtl (um derivado isolado 41 pelo Dr. Deb Zajchowski a partir de um xenoenxerto implantado subcutaneamente de rápido crescimento de células MDA231) e Pancl-sct (derivado pela Dra. Sandra Biroc de um xenoenxerto implantado subcutaneamente de rápido crescimento de células Panei), HUVEC (Vec Technologies, Rensselaer, NY) e SAEC (Clonetics, Walkersville, MD). Ad40 foi uma oferta generosa da parte do Dr. William S.M. Wold da Universidade de St. Louis.
Exemplo 1 - Purificação e Quantificação Virai
Propagaram-se estirpes virais em 293 células e purificaram-se em gradientes de CsCl (Hawkins et al., 2001). O método utilizado para quantificar as partículas virais baseia-se no método de Shabram et al. (1997) Human Gene Therapy 8:453-465, com excepção de se utilizar o permutador iónico TMAE Fractogel em vez do Resource Q. Em resumo, uma coluna de 1,25 ml foi carregada com Fractogel EMD TMAE-650 (S) (n°. catálogo 116887-7 EM Science, Gibbstown, NJ 08027). Foi efectuada separação HPLC numa coluna Agilent HP 1100 HPLC com as seguintes condições: Tampão A = 50 mM de HEPES, pH 7,5; tampão B = 1,0 M de NaCL em tampão A; caudal de 1 ml por minuto. Depois de equilibrada a coluna durante um período inferior a 30 minutos com tampão A, carregaram-se aproximadamente 109-1011 partículas virais da amostra na coluna numa coluna de 10 a 100 ul, seguido de 4 volumes da coluna de tampão A. Aplicou-se um gradiente linear estendendo-se ao longo de 16 volumes da coluna e terminando em 100% de tampão B.
O efluente da coluna foi monitorizado a A260 e A280 nm, calculadas as áreas de pico e determinou-se uma taxa de 260 a 280 nm. Os picos virais foram identificados como sendo os picos com uma proporção de A260/A280 próxima de 1,33. Foi incluído um vírus padrão com cada série de amostras. O 42 número de partículas virais por ml do padrão foi determinado utilizando o usando método de Lehmberg et al. (1999) J. Chrom. B, 732:411-423). No intervalo de concentração virai utilizado, A área de pico A260 nm de cada amostra é directamente proporcional ao número de partículas virais na amostra. 0 número de partículas virais por ml em cada amostra de ensaio foi calculado multiplicando o número conhecido de partículas virais por ml no padrão pela proporção da área de pico virai A260 nm da amostra para a área de pico virai A260 nm do padrão. A coluna foi regenerada depois de cada gradiente da amostra mediante lavagem com dois volumes da coluna de NaOH 0,5 N, seguido de dois volumes da coluna de 100% de tampão A, 3 volumes da coluna de 100% de tampão B e depois 4 volumes da coluna de 100% de tampão A.
Exemplo 2 - Bio-selecção
Os serotipos virais representando os subgrupos Ads B-F foram reunidos e passados em culturas sub-confluentes das linhas celulares tumorais alvo a uma elevada proporção de partícula-para-célula em dois ciclos para promover a ocorrência de recombinação entre os serotipos. O sobrenadante (1,0, 0,1, 0,01, 0,001 ml) do segundo ciclo das culturas subconfluentes com elevado grau de infecção de partículas virais-para-célula foi depois utilizado para infectar uma série de balões de cultura de tecido T-75 superconfluentes com as linhas celulares tumorais alvo PC-3, HT-29, Panc-1 e MDA-231. Para atingir a superconfluência, cada linhagem de células foi semeada em proporções de divisão que permitiram que cada linhagem de células atingisse a confluência entre 24 e 40 horas pós-sementeira e as células foram deixadas desenvolver-se durante um total de 72 horas pós-sementeira, antes da 43 infecção. Esta operação foi efectuada para maximizar a confluência das células para simular as condições de crescimento em tumores sólidos humanos. 0 sobrenadante da cultura celular foi recolhido do primeiro balão na série de 10 vezes de diluição que não revelou qualquer sinal de CPE ao dia 3 ou 4 pós-infecção (no caso de HT-29 e PC-3, esta foi modificada para passagens 10 a 20 para colher do segundo balão, isto é colheita 100 vezes abaixo da diluição em que CPE era detectável ao dia 3 pós-infecção). Cada colheita serviu de material de partida para a passagem sucessiva do vírus. Este processo foi repetido até o grupo virai atingir 20 passagens bio-selectivas.
Os vírus individuais de cada agrupamento bio--seleccionado foram isolados em dois ciclos de purificação em placa em células A549 utilizando métodos padrão (Tollefson, A., Hermiston, T.W., e Wold, W.S.M.; "Preparation and Titration of CsCi-banded Adenovírus Stock" in Adenovírus Methods and Protocols. Humana Press, 1999, pp 1-10, W.S.M. Wold, Ed) . Em resumo, foram utilizadas diluições do sobrenadante recolhido da 20a passagem em cada linhagem de células tumorais alvo para infectar células A549 numa análise em placa padrão, foram colhidas placas com poço individualizados e foi utilizado o mesmo método de análise da placa para gerar um segundo ciclo de placas individuais destas colheitas. As placas com poços isolados do segundo ciclo de purificação em placa foram consideradas puras, as culturas infectadas foram preparadas utilizando estas placas purificadas e a potência oncolítica destes sobrenadantes da cultura foi determinada por análise MTS como descrito.
Exemplo 3 - Caracterização do serotipo 44
Os serotipos adenovirais progenitores compreendendo os agrupamentos virais ou o adenovirus ColoAdl isolado foram identificados utilizando cromatografia de permuta aniónica idêntica à descrita por Shabram et al. (1997) Human Gene Therapy 8:453:465, apenas com excepção de se ter utilizado o permutador aniónico TMAE Fractogel media (EM industries, Gibbstown, NJ) em vez do Resource Q, como descrito no exemplo 1 (consultar figura 1) . 0 adenovirus de tipo 5 eluiu a aproximadamente 60% de tampão B durante o gradiente. Os outros serotipos (3, 4, 9, 11 p, 16, 35 e 40) eluiu cada um num tempo de retenção caracteristico, consistente com os tempos de retenção em G Sepharose XL, publicado por Blanche et al. (2000) Gene Therapy 7:1055- 1062.
Exemplo 4 - Análise citolitica A capacidade litica virai foi medida recorrendo a uma modificação da análise MTT (Shen et al., 2001). Resumidamente, a análise MTS (Promega, CellTiter 96® Aqueous Non-Radioactive Cell Proliferation Assay) foi utilizado em vez da análise MTT, uma vez que a conversão de MTS por células em formazan aquoso, solúvel reduz o tempo e elimina a utilização de um solvente orgânico volátil associado à análise MTT.
Para realizar esta análise foram semeadas células a uma densidade definida para cada linhagem de células tumoral que gerou uma monocamada confluente no espaço de 24 horas. Estas células densamente semeadas foram deixadas desenvolver-se durante mais dois dias antes da exposição ao(s) virus de ensaio. Foram executadas as infecções das células de tumor e primárias normais em quadruplicado, com diluições triplas em séries dos virus, com inicio a uma proporção de partícula para célula de 100 e terminando a 45 uma proporção de partícula para célula de 0,005. As células infectadas foram incubadas a 37° C e foi realizada a análise MTS nos momentos indicados para as células individuais primárias ou linhas celulares tumorais. Células com simulação de infecção serviram de controlos negativos e estabeleceram um ponto de sobrevivência de 100% para esta análise.
Exemplo 5 - Sequenciação de ADN A sequenciação de ADN dos ADNs genómicos de Adllp (SEQ ID NO: 2) e ColoAdl (SEQ ID NO: 1) foi realizada da seguinte forma. Em resumo, ADN de adenovírus purificado de ColoAdl e Adllp foi parcialmente digerido com a endonuclease de restrição Sau3Al e clonou-se de forma aliatória no vector plasmídico pBluescript II (Stratagene, La Jolla, CA) . Foram propagados clones positivos e foram sequenciados utilizando os iniciadores M13R e KS (Stratagene, La Jolla, CA) . As reacções de sequência individuais foram cortadas, editadas e montadas com Sequencher™ (Gene Codes Corp., Ann Arbor, Michigan). As lacunas na cobertura foram amplificadas com iniciadores oligonucleótidos adaptados e foram sequenciadas. As extremidades dos genomas virais foram sequenciadas directamente do ADN adenoviral. Ao todo, cada genoma foi senquenciado com uma cobertura 3X+ e 431 bases com cobertura 2X.
Para determinar a origem da região ColoAdl E2B, dois conjuntos de iniciadores foram gerados, um no gene E2B pTP (bp9115, 5'GGGAGTTTCGCGCGGACACGG3' (SEQ ID NO: 4) e bp 9350, 5' GCGCCGCCGCCGCGGAGAGGTT (SEQ ID NO: 5)) e um no gene polimerase de ADN (bp 7520 5'CGAGAGCCCATTCGTGCAGGTGAG3' (SEQ ID NO: 6) e bp 7982, 5'GCTGCGACTACTGCGGCCGTCTGT3' (SEQ ID NO: 7) e utilizado 46 para se isolar por PCR fragmentos de ADN dos vários serotipos (Ad3,4,5,9,llp,16 e 40) utilizando reagentes do Advantage 2 PCR kit (Clonetics, Walkersvilie, MD; N° Cat K1910-Y) e passado num termociclador da MJ Research (Watertown, MA). Estes fragmentos foram posteriormente sequenciados em conjunto com a sequência de ADN e Ad3, utilizando a sequenciação com terminador corante num analisador genético ABI 3100. A região E2B de Ad3 foi sequenciada utilizando ADN de Ad3 isolado e iniciadores sobrepostos. A informação da sequência foi analisada com o programa Vector NTI (Informatix).
Exemplo 6 - Construção de virus Recombinantes ADNs genómicos de Adllp (SEQ ID NO: 2) e ColoAdl (SEQ ID NO: 1) foram purificados a partir partículas de vírus em bada com gradiente de CsCl. Os ADNs genómicos foram digeridos com Pacl, o qual corta cada um apenas uma vez no genoma virai. O corte Pacl ocorre na base 18141 na sequência de nucleótidos ColoAdl (SEQ ID NO: 1) e na base 18140 na sequência de nucleótidos Adll (SEQ ID NO: 2) . Os ADNs digeridos foram misturados em quantidades iguais e ligados na presença de ligase T4 ADN a 16° C de um dia para o outro. Esta mistura de ligação foi transfectada para células A549, utilizando o conjunto de transfecção CaP04 da Invitrogen, Carlsbad, CA (N° Cat K2780-01). Foram recolhidas placas isoladas e foram examinadas por digestão com enzima de restrição e análise PCR para distinguir as quatro populações virais (Adllp, ColoAdl, Adllp extremidade esquerda/ColoAdl extremidade direita (ColoAdl.1) e ColoAdl extremidade esquerda/Adllp extremidade direita (ColoAdl.2)). 47 A capacidade lítica virai de cada população foi determinada em várias linhas celulares, incluindo HT29 e HUVEC, como descrito no exemplo 3. Os resultados demonstraram a ordem da potência do menos potente para o mais potente Adllp, ColoAdl.2, ColoAdl.l, ColoAdl (consultar os resultados em células HT29 na figura 7).
Foram também construídos adenovírus quiméricos pCJl44 e pCJl46 que contêm o genoma ColoAdl integral, no qual foi restaurada a região Adllp E3 e E4 de tipo selvagem, respectivamente. Estas modificações foram introduzidas por recombinação homóloga em BJ5183 E. Coli (Chartier et al. (1996) J. Virol. 70:4805-4810). Os dois adenovírus quiméricos demonstraram reduzida capacidade lítica em células HT2 9 e HUVEC em comparação com ColoAdl ou ColoAdl.2.
Exemplo 7 - Eficácia In Vivo do Adenovírus
Numa experiência típica de xenoenxerto de tumor humano em ratinhos nude, os animais foram injectados subcutaneamente com 5 χ 106 células no flanco traseiro. Quando os tumores atingiram 100-200 ul de tamanho, são injectados com veículo (PBS) ou com vírus a 2 χ 1010 partículas durante cinco dias consecutivos (1 χ 1011 partículas no total). Seria de notar uma redução do tamanho do tumor relativamente ao controlo com PBS e vírus de controlo adicionais (Ad5, ONYX-015).
Exemplo 8 - Selectividade ColoAdl em Explantes de
Tecido Humano Primários
Os espécimes de tecido de tumores colo-rectais e tecidos normais adjacentes removidos durante cirurgia foram colocados em meio de cultura e infectados com números iguais de vírus ColoAdl ou Ad5. Os sobrenadantes da cultura 48 foram recolhidos 24 horas após a infecção e determinou-se o número de partículas de vírus produzidas. ColoAdl produziu mais partículas de vírus por partícula inicial do que Ad5 em tecido tumoral, tendo produzido menos partículas por partícula inicial do que Ad5 em tecido normal.
LISTA DE SEQUÊNCIAS <110> Harden, Paul
Hermiston, Terry Kuhn, Irene <120> Adenovírus Quimérico Para Utilização No Tratamento Do Cancro <130 53183AWOM1 <150> US 60/574,851 <151> 2004-05-26 <160> 8 <170> Patenteln versão 3.2 <210> 1 <211> 32325
<212> ADN <213> Adenovírus <400> 1 49 ctatctatat aatatacctt atagatggaa tggtgccaat atgtaaatga ggtgatttta 60 aaaagtgtgg atcgtgtggt gattggctgt ggggttaacg gctaaaaggg gcggtgcgac 120 cgtgggaaaa tgacgttttg tgggggtgga gtttttttgc aagttgtcgc gggaaatgtg 180 acgcataaaa aggctttttt ctcacggaac tacttagttt tcccacggta tttaacagga 240 aatgaggtag ttttgaccgg atgcaagtga aaattgttga ttttcgcgcg aaaactgaat 300 gaggaagtgt ttttctgaat aatgtggtat ttatggcagg gtggagtatt tgttcagggc 360 caggtagact ttgacccatt acgtggaggt ttcgattacc gtgtttttta cctgaatttc 420 cgcgtaccgt gtcaaagtct tctgttttta cgtaggtgtc agctgatcgc tagggtattt 480 atacctcagg gtttgtgtca agaggccact cttgagtgcc agcgagaaga gttttctcct 540 ctgcgccggc agtttaataa taaaaaaatg agagatttgc gatttctgcc tcaggaaata 600 atctctgctg agactggaaa tgaaatattg gagcttgtgg tgcacgccct gatgggagac 660 gatccggagc cacctgtgca gctttttgag cctcctacgc ttcaggaact gtatgattta 720 gaggtagagg gatcggagga ttctaatgag gaagctgtaa atggcttttt taccgattct 780 atgcttttag ctgctaatga agggttagaa ttagatccgc ctttggacac ttttgatact 840 ccaggggtaa ttgtggaaag cggtacaggt gtaagaaaat tacctgattt gagttccgtg 900 gactgtgatt tgcactgcta tgaagacggg tttcctccga gtgatgagga ggaccatgaa 960 aaggagcagt ccatgcagac tgcagcgggt gagggagtga aggctgccaa tgrtggtttt 1020 cagttggatt gcccggagct tcctggacat ggctgtaagt cttgtgaatt tcacaggaaa 1080 aatactggag taaaggaact gttatgttcg ctttgttata tgagaacgca ctgccacttt 1140 atttacagta agtgtgttta agttaaaatt taaaggaata tgctgttttt cacatgtata 1200 50 ttgagtgtga gttttgtgct tcttattata ggtcctgtgt ctgatgctga tgaatcacca 1260 tctcctgatt ctactacctc acctcctgag attcaagcac ctgttcctgt ggacgtgcgc 1320 aagcccattc ctgtgaagct taagcctggg aaacgtccag cagtggaaaa acttgaggac 1380 ttgttacagg gtggggacgg acctttggac ttgagtacac ggaaacgtcc aagacaataa 1440 gtgttccata tccgtgttta cttaaggtga cgtcaatatt tgtgtgacag tgcaatgtaa 1500 taaaaatatg ttaactgttc actggttttt attgcttttt gggcggggac tcaggtatat 1560 aagtagaagc agacctgtgt ggttagctca taggagctgg ctttcatcca tggaggtttg 1620 ggccattttg gaagacctta ggaagactag gcaactgtta gagaacgctt cggacggagt 1680 ctccggtttt tggagattct ggttcgctag tgaattagct agggtagttt ttaggataaa 1740 acaggactat aaacaagaat ttgaaaagtt gttggtagat tgcccaggac tttttgaagc 1800 tcttaatttg ggccatcagg ttcactttaa agaaaaagtt ttatcagttt tagacttttc 1860 aaccccaggt agaactgctg ctgctgtggc ttttcttact tttatattag ataaatggat 1920 cccgcagact catttcagca ggggatacgt tttggatttc atagccacag cattgtggag 1980 aacatggaag gttcgcaaga tgaggacaat cttaggttac tggccagtgc agcctttggg 2040 tgtagcggga atcctgaggc atccaccggt catgccagcg gttctggagg aggaacagca 2100 agaggacaac ccgagagccg gcctggaccc tccagtggag gaggcggagt agctgacttg 2160 tctcctgaac tgcaacgggt gcttactgga tctacgtcca ctggacggga taggggcgtt 2220 aagagggaga gggcatctag tggtactgat gctagatctg agttggcttt aagtttaatg 2280 agtcgcagac gtcctgaaac catttggtgg catgaggttc agaaagaggg aagggatgaa 2340 gtttctgtat tgcaggagaa atattcactg gaacaggtga aaacatgttg gttggagcct 2400 gaggatgatt gggaggtggc cattaaaaat tatgccaaga tagctttgag gcctgataaa 2460 cagtataaga ttactagacg gattaatatc cggaatgctt gttacatatc tggaaatggg 2520 gctgaggtgg taatagatac tcaagacaag gcagttatta gatgctgcat gatggatatg 2580 tggcctgggg tagtcggtat ggaagcagta acttttgtaa atgttaagtt taggggagat 2640 ggttataatg gaatagtgtt tatggccaat accaaactta tattgcatgg ttgtagcttt 2700 tttggtttca acaatacctg tgtagatgcc tggggacagg ttagtgtacg gggatgtagt 2760 ttctatgcgt gttggattgc cacagctggc agaaccaaga gtcaattgtc tctgaagaaa 2820 tgcatatttc aaagatgtaa cctgggcatt ctgaatgaag gcgaagcaag ggtccgccac 2880 tgcgcttcta cagatactgg atgttttatt ttgattaagg gaaatgccag cgtaaagcat 2940 aacatgattt gcggtgcttc cgatgagagg ccttatcaaa tgctcacttg tgctggtggg 3000 cattgtaata tgctggctac tgtgcatatt gtttcccatc aacgcaaaaa atggcctgtt 3060 tttgatcaca atgtgatgac gaagtgtacc atgcatgcag gtgggcgtag aggaatgttt 3120 51 51 aaagtgttgt tggaaccaga tgccttttcc aacatgcaaa tccggaagat cctgaggtat gaatgcggag gcaagcatgc caggttccag agaccggatc atttggttat tgcccgcact actgactaag gtgagtattg ggaaaacttt taaaaatttg ttttttctgt crtgcagctg gagtcttcag cccttatctg acagggcgtc ttatgggatc tactgtggat ggaagacccg atgctacttt aagttcttca cctttggacg ccgctaacac tgtgcttgga atgggttact ctaataaccc ttctaccctg actcaggaca ctttgaccca acgtctgggt gaactttctc agtctgctgt cggcacggca aagtctaaat acaagcrtgt tgttgattta aaatcaagcg cciagaccac cgatctctat cattgagaac gtgggattga atgtttagat acatgggcat ttgaagggat tcatgctccg gggtagtgtt tgcatggtgt tgcacaatat cttttagaag gtaggtgttt acaaaccggt tgagctggga tttggattgg atttttaagt tggcaatatt atgaaggacc accaagacgg tgtatccggt tggaaaagcg tggaaaaatt tggagacacc atccatgata atagcaatgg ggccgtgggc tgacacatca tagttatgtt cctgagttaa gcggagagta ccagattggg gtatgaatgt acagatttgc atttcccaag ctttcagttc tatgaaaaac accgtttctg gggcgggggt caattgagat ttgccacatc cggtggggcc gtagtttagg gaacggcaac tgccgtcttc ttcccttaca tgcatatttt cccgcaccaa tagaagttct tgtagtgagg aaaagttttt atgccttacc agtgtaacat gaatcatgtg agaatgagcc taacaggaat ttttgacatg gatgatacga gatcgagggt acgcgcatgc ccggtgtgtg tagatgtgac tgaagatctc ggagcagagt tcggatccag tggagaagaa ggggtgggat tttcagatgg acagattgag tcatgagtgg aaacgcttct tttaaggggg tcccatcctg ggcaggagtt cgtcagaatg tccaacccgc caattcttca acgctgacct cagctgcagc tgccgccgcc gcttctgttg atggaagcat catggctaat tccacttcct agttacttgt ccttttggcc cagctggagg agcaggtggt cgagttgcga gtacaaactg aaaaaaatcc cagaatcaat gaataaataa tttttatttc arttttcgcg cacggtatgc tcggtggatt ttttccagga tcctatagag taggccgtct ttggggtgga gatagctcca gtaaatcacc cagtcataac aaggtcgcag taggctgatt gccacagata agcccttggt tgggtgcatt cggggtgaaa ttatgtgcat gccgccaaga tcccgtcttg ggttcatgtt acatttagga aatttatcgt gcagcttgga cttgtgtcct ccaagatttt ccatgcactc agcggcgcgg gcaaacacgt tccgtgggtc atcatcataa gccattttaa tgaatttggg tccttcgggc cccggagcat agttcccctc cgagggtgga atcatgtcca cctggggggc gattaattgt gatgatagea aatttctgag ataaargatt ccgattacgg gttgcaggtg tcgaagcaag ggggccacct cgttcatcat atccattagg aggcgctctc ctcctagtga 3180 3240 3300 3360 3420 3480 3540 3600 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 52 52 cagcggtttc agaccgtcag ccatgggcat tctgttccac agttcagtga tgtgttctat cgcgggtttg gacggctcct ggaatagggt gttcggtcct tccagggtct cagtgttcga tgtgcgcctg cttgggcgct tgccagggtg ttctgxcgct tggcgccctg tatgtcggcc agcgcctcgg ctgcgtggce tttggcgcgg gggcagtata ggcatttcag cgcatacaac tatgcatctg cgccgcagga ggcgcaaaca ggttcattgg ggtcaaaaac aagttttccg gtctccatga gttcgtgtcc tcgttgagtg gattttacag gcctcttctc cagtggagtg cactctgata caaaggcgcg cgtccaggcc cgatcgttgt caaccagggg gtccaccttt tcaacatcca ggaatgtgat tggcttgtag gggggggtat aaaagggggc ggttctttgc aggaacgtca gctgttgggg taggtattcc aggttgtcag tttctaagaa cgaggaggat ttcatgaggt tttcgtccat ctggtcagaa gcaaatgatc catacagggc gttggataaa ttttccttgt ccgcgcgctc tttggcggcg cacttccatt cggggaagat agttgttaat cgattatgca aggtaattaa atccacactg gtccaacaga gcctacctcc tttcctagaa tcatcgggag ggtctgcatc catggtaaag ctgatgggag tggggtcatc taaggccatt tatgggttaa ggggactgcc ccatggcatg cagatgtcat agacgtagat gggatcctca ccccctctga tacttgctcg cacatagtca ggacccaagt tggtgcgatt gggtttttct tgagaattgg aagagatggt gggtctttga acagagtctc tgacaaagtg ggcataagat tttggagaga gtttgctgca aaagttctag ggcatctcga tccagcagac ctcctcgttt atgagacgat gggcgtccag cgctgccagg gtcagggttg tttccgtcac agtgaagggg cgcttcagac tcatcctgct ggtcgaaaac aagtagcagt ttaccatgag ttcgtagttg agcttacctt tggaagtttt cttgcatacc ttgggcgcaa ggaaaacgga ttctggggag gtttcacatt ccaccagcca ggttaaatcc ccatattttt tgatgcgttt cttacctttg acaaacaggc tgtccgtgtc cccgtagact cctcggtctt cttcgtacag gaactctgac agcacaaagg aggctatgtg ggaggggtag tccaaagtat gcaaacacat gtcaccctct gtgtatttca cgtgacctgg ggtccccgct tcttcctcac tgtcttccgg atcgctgtcc ctctcgaagg cgggcatgac ctctgcactc ttgatattga cagtgccggt tgagatgcct aacacaattt ttttactgtc aagtttggtg agtttggcaa tggatcgcat ggtttggttc atgttgagtt ggacatactc gcgtgccagg tcatctggca cgattctcac ttgccaccct gtggccacct cgcctcgaag gggttcattg cagaaagggg gaagtgggtc tagcataagt actcccggaa gtaaatcctt atcaaaatag tgccattctc gagctgccag tgcgcgctca ggatgggtga gtgcagaggc atacatgcca aagatgccta tgtaggttgg atagcatcgc tatagttcat gtgatggcgc tagcagcccc gttctgtaga cgatctggcg aaagatggcg aaaatgttga aatgggcatg aggtagacct tcttgaagct tggttaccag ttcggcggtg 5040 5100 5160 5220 5280 5340 5400 5460 5520 5580 5640 5700 5750 5820 5880 5940 6000 6060 6120 6180 6240 6300 6360 6420 6480 6540 6600 6660 6720 6780 6840 6900 53 acaagcacgt ctagggcgca gtagtcaagt gtttcttgaa tgatgtcata acctggttgg 6960 tttttctttt cccacagttc gcggttgaga aggtattctt cgcgatcctt ccagtactct 7020 tctagcggaa acccgtcttt gtctgcacgg taagatccta gcatgtagaa ctgattaact 7080 gccctgtaag ggcagcagcc cttctctacg ggtagagagt atgcttgagc agcttttcgt 7140 agcgaagcgt gagtaagggc aaaggtgtct ctgaccatga ctttgaggaa ttggtatttg 7200 aagtcgatgt cgtcacaggc tccctgttcc cagagttgga agtctacccg tttcttgtag 7260 gcggggttgg gcaaagcgaa agtaacatca ttgaagagaa tcttgccggc cctgggcatg 7320 aaattgcgag tgatgcgaaa aggctgtggt acttccgctc ggttattgat aacctgggca 7380 gctaggacga tctcgtcgaa accgttgatg ttgtgtccta cgatgtataa ttctatgaaa 7440 cgcggcgtgc ctctgacgtg aggtagctta ctgagctcat caaaggttag gtctgtgggg 7500 tcagataagg cgtagtgttc gagagcccat tcgtgcaggt gaggattcgc tttaaggaag 7560 gaggaccaga ggtccactgc cagtgctgtt tgtaactggt cccggtactg acgaaaatgc 7620 cgtccgactg ccattttttc tggggtgacg caatagaagg tttgggggtc ctgccgccag 7680 cgatcccact tgagttttat ggcgaggtca taggcgatgt tgacgagccg ctggtctcca 7740 gagagtttca tgaccagcat gaaggggatt agctgcttgc caaaggaccc catccaggtg 7800 taggtttcca catcgtaggt gagaaagagc ctttctgtgc gaggatgaga gccaatcggg 7860 aagaactgga tctcctgcca ccagttggag gaatggctgt tgatgtgatg gaagtagaac 7920 tccctgcgac gcgccgagca ttcatgcttg tgcttgtaca gacggccgca gtagtcgcag 7980 cgttgcacgg gttgtatxtc gtgaatgagt tgtacctggc trcccttgac gagaaatttc 8040 agtgggaagc cgaggcctgg cgattgtatc tcgtgcttta ctatgttgtc tgcatcggcc 8100 tgttcatctt ctgtctcgat ggtggtcatg ctgacgagcc ctcgcgggag gcaagtccag 8160 acctcggcgc ggcaggggcg gagctcgagg acgágagcgc gcaggctgga gctgtccagg 8220 gtcctgagac gctgcggact caggttagta ggcagtgtca ggagattaac ttgcatgatc 8280 ttttggaggg cgtgcgggag gttcagatag tacttgatct caacgggtcc gttggtggag 8340 atgtcgatgg cttgcagggt tccgtgtccc ttgggcgcta ccaccgtgcc cttgtttttc 8400 attttggacg gcggtggctc tgttgcttct tgcatgttta gaagcggtgt cgagggcgcg 8460 caccgggcgg caggggcggc tcgggacccg gcggcatggc tggcagtggt acgtcggcgc 8520 cgcgcgcggg taggttctgg tactgcgccc tgagaagact cgcatgcgcg acgaegcggc 8580 ggttgacatc ctggatctga cgcctctggg tgaaagctac cggccccgtg agcttgaacc 8640 tgaaagagag ttcaacagaa tcaatctcgg tatcgttgac ggcggcttgc ctaaggattt 8700 cttgcacgtc accagagttg tcctggtagg cgatctccgc catgaactgc tcgatctctt 8760 54 cctcttgaag atctccgcgg gcccaatgag ttgagagaat cggcccccac gggatctctc gggtgaagac cgcatagttg gctcggtgac gaagaaatac gagcttccaa gcgctccatg ttcgcgcgga cacggteaac gcacctcgcg ctcgaaagcc tctcttcctc ttcaggtggg cgggcagacg gtcgatgaat tgacggcgcg gccgttctcg agtggtgact gggaggttct attggcccgt agggactgca acctttcgac gaaagcgtct gtgggcgggg gtggttatgt gtgagacgat gctgctggtg cgaggagcac caggtctttg aagcattatc ctgacatcta gcacttcttc ctcacccgtt gtaccagtgc caagtcagct gggtggcttg aaagtcatca aagcacagtt ggccatgact tgtatttaag gcgcgaatag gatactggta ccctataaga tagctggagc gccaggggcg tggacatcca ggtgattcct tccaaatgtt gcgtagcggc gcgcgcagtc attgatgctc ccgtagcctg gaggaacgtg ctcgagccgg ccggagccgc caaaaatcca ggatacggaa tcctattttt tttttttgcc cccgctctct cgacggtggc gcattcatgc ccgcctcgtt gcgcgcatga ccacctgggc cataggcgct ggaaaaggta atgatccatc gtctcagcgg gcctcgtaga agtccacggc tcctcttcca gaagacggat cctgggattt cttcctcaat gctgcaggag gagggggaac ctttcaatga cctctccgcg cgcggtcgca gagtaaaaac ccgtttggga gggagagggc cgcagagatc tgatcgtgtc aaccagtcac agtcacaagg gttcggtctg ggtcttctgt atgaaattaa agtaggcagt ggtccggctt gctggatacg gcaagatctt tgtagtagtc ctgccatgca tacgrgtgag acgactcttt cggcgaggat aaatccacaa agcggtggta gaccagttaa ctgtctggtg gcgcgggtgt caaagatgta aaatgcggcg gtggttggcg aggtcttcca acataaggcg gcggcggtag tagaagcccg atgaagtagt tcattgtagg tatagacacg gagaaaatga aacgggttgg gtcgcggtgt ggctaacgtg gtattggcac tcgagtcgtt ttgctggttt gctcagatgc atcccgtgct cgcgaggtcg ttggagatgc ccagacgcgg ctgtagacca gaggttgagc tccacgtggc gttgagtgtg gtggcgatgt catctcgctg acatcgccca aaaattaaaa aactgggagt aagttcggcg atggtggtgc ctcttcttct tccactaaca gcggcgacgc cggcggcgca gcggcggcgc atggtttcag accgccgcgc atctccttaa gctgattata cattttatta aagatccacg ggatctgaaa taggctgagt acggcttctt ttcttcttca tctcgggaag tctaagacgg cggatggtgg caggcgattg gccattcccc ttgcatgagc cgttctacgg tccaaatccg cgcattggtt ggcttgctgt acttgggtaa agctcctgta ttaatggtgt accagggcgc acgagctcgg atcgttgcag gtgcgcacca gtagagaggc catcgttctg gtgatagccg tagatgtacc aggaaactcg cgtacgcggt cacggtttga ccagtgaggc aagcgttcag cgactcgact accccggttc gagacttgta tcccgtctcg acccagccta ccgaatggca gggaagtgag gcgacagatg cgcccccaac 8820 8880 8940 9000 9060 9120 9180 9240 9300 9360 9420 9480 9540 9600 9660 9720 9780 9840 9900 9960 10020 10080 10140 10200 10260 10320 10380 10440 10500 10560 10620 10680 55 aacagccccc ctcgcagcag cagcagcagc aatcaeaaaa ggctgtccct gcaactactg 10740 caactgccgc cgtgagcggt gcgggacagc ccgcctatga tctggacttg gaagagggcg 10800 aaggactggc acgtctaggt gcgccttcac ccgagcggca tccgcgagtt caactgaaaa 10860 aagattctcg cgaggcgtat gtgccccaac agaacctatt tagagacaga agcggcgagg 10920 agccggagga gatgcgagct tcccgcttta acgcgggtcg tgagctgcgt cacggtttgg 10980 accgaagacg agtgttgcgg gacgaggatt tcgaagttga tgaaatgaca gggatcagtc 11040 ctgccagggc acacgtggct gcagccaacc ttgtatcggc ttacgagcag acagtaaagg 11100 aagagcgtaa cttccaaaag tcttttaata atcatgtgcg aaccctgatt gcccgcgaag 11160 aagttaccct tggtttgatg catttgtggg atttgatgga agctatcatt cagaacccta 11220 ctagcaaacc tctgaccgcc cagctgtttc tggtggtgca acacagcaga gacaatgagg 11280 ctttcagaga ggcgctgctg aacatcaccg aacccgaggg gagatggttg tatgatctta 11340 tcaacattct acagagtatc atagtgcagg agcggagcct gggcctggcc gagaaggtgg 11400 ctgccatcaa ttactcggtt ttgagcttgg gaaaatatta cgctcgcaaa atctacaaga 11460 ctccatacgt tcccatagac aaggaggtga agatagatgg gttctacatg cgcatgacgc 11520 tcaaggtctt gaccctgagc gatgatcttg gggtgtatcg caatgacaga atgcatcgcg 11580 cggttagcgc cagcaggagg cgcgagttaa gcgacaggga actgatgcac agtttgcaaa 11640 gagctctgac tggagctgga accgagggtg agaattactt cgacatggga gctgacttgc 11700 agtggcagcc tagtcgcagg gctctgagcg ccgcgacggc aggatgtgag cttccttaca 11760 tagaagaggc ggatgaaggc gaggaggaag agggcgagta cttggaagac tgatggcaca 11820 acccgtgttt tttgctagat ggaacagcaa gcaccggatc ccgcaatgcg ggcggcgctg 11880 cagagccagc cgtccggcat taactcctcg gacgattgga cccaggccat gcaacgtatc 11940 atggcgttga cgactcgcaa ccccgaagcc tttagacagc aaccccaggc caaccgtcta 12000 tcggccatca tggaagctgt agtgccttcc cgctctaatc ccactcatga gaaggtcctg 12060 gccatcgtga acgcgttggt ggagaacaaa gctattcgtc cagatgaggc cggactggta 12120 tacaacgctc tcttagaacg cgtggctcgc tacaacagta gcaatgtgca aaccaatttg 12180 gaccgtatga taacagatgt acgcgaagcc gtgtctcagc gcgaaaggtt ccagcgtgat 12240 gccaacccgg gttcgctggt ggcgttaaat gctttcttga gtactcagcc tgctaatgtg 12300 ccgcgtggtc aacaggatta tactaacttt ttaagtgctt tgagactgat ggtatcagaa 12360 gtacctcaga gcgaagtgta tcagtccggt cctgattact tctttcagac tagcagacag 12420 ggcttgcaga cggtaaatct gagccaagct tttaaaaacc tttaaaggtt tgtggggagt 12480 gcatgccccg gtaggagaaa gagcaaccgt gtctagcttg ttaactccga acteccgcct 12540 56 attattactg ttggtagctc ctttcaccga cagcggtagc atcgaccgta attcctattt 12600 gggttaccta ctaaacctgt atcgcgaagc catagggcaa agtcaggtgg acgagcagac 12660 ctatcaagaa attacccaag tcagtcgcgc tttgggacag gaagacactg gcagtttgga 12720 agccactctg aacttcttgc ttaccaatcg gtctcaaaag atccctcctc aatatgctct 12780 tactgcggag gaggagagga tccttagata tgtgcagcag agcgtgggat tgtttctgat 12840 gcaagagggg gcaactccga ctgcagcact ggacatgaca gcgcgaaata tggagcccag 12900 catgtatgcc agtaaccgac ctttcattaa caaactgctg gactacttgc acagagctgc 12960 cgctatgaac tctgattatt tcaccaatgc catcttaaac ccgcactggc tgcccccacc 13020 tggtttctac acgggcgaat atçacatgcc cgaccctaat gacggatttc tgtgggacga 13080 cgtggacagc gatgtttttt cacctctttc tgatcatcgc acgtggaaaa aggaaggcgg 13140 cgatagaatg cattcttctg catcgctgtc cggggtcatg ggtgctaccg cggctgagcc 13200 cgagtctgca agtccttttc ctagtctacc cttttctcta cacagtgtac gtagcagcga 13260 agtgggtaga ataagtcgcc cgagtttaat gggcgaagag gagtatctaa acgattcctt 13320 gctcagaccg gcaagagaaa aaaatttccc aaacaatgga atagaaagtt tggtggataa 13380 aatgagtaga tggaagactt atgctcagga tcacagagac gagcctggga tcatggggat 13440 tacaagtaga gcgagccgta gacgccagcg ccatgacaga cagaggggtc ttgtgtggga 13500 cgatgaggat tcggccgatg atagcagcgt gctggacttg ggtgggagag gaaggggcaa 13560 cccgtttgct catttgcgcc ctcgcttggg tggtatgttg taaaaaaaaa taaaaaaaaa 13620 actcaccaag gccatggcga cgagcgtacg ttcgttcttc tttattatct gtgtctagta 13680 taaxgaggcg agtcgtgcta ggcggagcgg tggtgtatcc ggagggtcct cctccttcgt 13740 acgagagcgt gatgcagcag cagcaggcga cggcggtgat gcaatcccca ctggaggctc 13800 cctttgtgcc tccgcgatac ctggcaccta cggagggcag aaacagcatt cgttattcgg 13860 aactggcacc tcagtacgat accaccaggt tgtatctggt ggacaacaag tcggcggaca 13920 ttgcttctct gaactatcag aatgaccaca gcaacttctt gaccacggtg gtgcaaaaca 13980 atgactttac ccctacggaa gccagcaccc agaccattaa ctttgatgaa cgatcgcggt 14040 ggggcggtca gctaaagacc 3tCcTtgcã*tâ ctaacatgcc aaacgtgaac gagtatatgt 14100 ttagtaacaa gttcaaagcg cgtgtgatgg tgtccagaaa acctcccgac ggtgctgcag 14160 ttggggatac ttatgatcac aagcaggata ttttgaaata tgagtggttc gagtttactt 14220 tgccagaagg caacttttca gttactatga ctattgattt gatgaacaat gccatcatag 14280 ataattactt gaaagtgggt agacagaatg gagtgcttga aagtgacatt ggtgttaagt 14340 tcgacaccag gaacttcaag ctgggatggg atcccgaaac caagttgatc atgcctggag 14400 tgtatacgta tgaagccttc catcctgaca ttgtcttact gcctggctgc ggagtggatt 14460 57 ttaccgagag tcgtttgagc aaccttcttg gtatcagaaa aaaacagcca tttcaagagg 14S20 gttttaagat tttgtatgaa gatttagaag gtggcaatat tccggccctc ttggatgtag 14580 atgcctatga gaacagtaag aaagaacaaa aagccaaaat agaagctgct acagctgctg 14640 cagaagctaa ggcaaacata gttgccagcg actctacaag ggttgctaac gctggagagg 14700 tcagaggaga caattttgcg ccaacacctg ttccgactgc agaatcatta ttggccgatg 14760 tgtctgaagg aacggacgtg aaactcacta ttcaacctgt agaaaaagat agtaagaata 14820 gaagctataa tgtgttggaa gacaaaatca acacagccta tcgcagttgg tatctttcgt 14880 acaattatgg cgatcccgaa aaaggagcgc gttcctggac attgctcacc acctcagatg 14940 tcacctgcgg agcagagcag gtctactggt cgcttccaga catgatgaag gatcctgtca 15000 ctttccgctc cactagacaa gtcagtaact accctgtggt gggtgcagag cttatgcccg 15060 tcttctcaaa gagcttctac aacgaacaag ctgtgtactc ccagcagctc cgccagtcca 15120 cctegcttac gcacgtcttc aaccgctttc ctgagaacca gattttaatc cgtccgccgg 15180 cgcccaccat taccaccgtc agtgaaaacg ttcctgctxt cacagatcac gggaccctgc 15240 cgttgcgcag cagtatccgg ggagtccaac gtgtgaccgt tactgacgcc agacgccgca 15300 cctgtcccta cgtgtacaag gcactgggca tagtcgcacc gcgcgtcctt tcaagccgca 15360 ctttctaaaa aaaaaaaaaa tgtccattct tatctcgccc agtaataaca ccggttgggg 15420 tctgcgcgct ccaagcaaga tgtacggagg cgcacgcaaa cgttctaccc aacatcctgt 15480 ccgtgttcgc ggacattttc gcgctccatg gggcgccctc aagggccgca ctcgcgttcg 15540 aaccaccgtc gatgatgtaa tcgatcaggt ggttgccgac gcccgtaatt atactcctac 15600 tgcgcctaca tctactgtgg atgcagttat tgacagtgta gtggctgacg ctcgcaacta 15660 tgctcgacgt aagagccggc gaaggcgcat tgccagacgc caccgagcta ccactgccat 15720 gcgagccgca agagctctgc tacgaagagc tagacgcgtg gggcgaagag ccatgcttag 15780 ggcggccaga cgtgcagctt cgggcgccag cgccggcagg tcccgcaggc aagcagccgc 15840 tgtcgcagcg gcgactattg ccgacatggc ccaatcgcga agaggcaatg tatactgggt 15900 gcgtgacgct gccaccggtc aacgtgtacc cgtgcgcacc cgtccccctc gcacttagaa 15960 gatactgagc agtctccgat gttgtgtccc agcggcgagg atgtccaagc gcaaataeaa 16020 ggaagaaatg ctgcaggtta tcgcacctga agtctacggc caaccgttga aggatgaaaa 16080 aaaaccccgc aaaatcaagc gggttaaaaa ggacaaaaaa gaagaggaag atggcgatga 16140 tgggctggcg gagtttgtgc gcgagtttgc cccacggcga cgcgtgcaat ggcgtgggcg 16200 caaagttcga catgtgttga gacctggaac ttcggtggtc tttacacccg gcgagcgttc 16260 aagcgctact tttaagcgtt cctatgatga ggtgtacggg gatgatgata ttcttgagca 16320 58 ggçggctgac cgattaggcg agtttgctta tggcaagcgt agtagaataa cttccaagga 16380 tgagacagtg tcgataccct tggatcatgg aaaccccacc cctagtctta aaccggtcac 16440 tttgcagcaa gtgttacccg taactccgcg aacaggtgtt aaacgcgaag gtgaagattt 16500 gtatcccact atgcaactga tggtacccaa acgccagaag ttggaggacg ttttggagaa 16560 agtaaaagtg gatccagata ttcaacctga ggttaaagtg agacccatta agcaggtagc 16620 gcctggtctg ggggtacaaa ctgtagacat taagattccc actgaaagta tggaagtgca 16680 aactgaaccc gcaaagccta ctgccacctc cactgaagtg caaacggatc catggatgcc 16740 catgcctatt acaactgacg ccgccggtcc cactcgaaga tcccgacgaa agtacggtcc 16800 agcaagtctg ttgatgccca attatgttgt acacccatct attattccta ctcctggtta 16860 ccgaggcact cgctactatc gcagccgaaa cagtacctcc cgccgtcgcc gcaagacacc 16920 tgcaaatcçc agtcgtcgcc gtagacgcac aagcaaaccg actcccggcg ccctggtgcg 16980 gcaagtgtac cgcaatggta gtgcggaacc tttgacactg ccgcgtgcgc gttaccatcc 17040 gagtatcatc acttaatcaa tgttgccgct gcctccttgc agatatggcc ctcacttgtc 17100 gccttcgcgt tcccatcact ggttaccgag gaagaaactc gcgccgtaga agagggatgt 17160 tgggacgcgg aatgcgacgc tacaçgcgac ggcgtgctat ccgcaagcaa ttgcggggtg 17220 gttttttacc agccttaatt ccaattatcg ctgctgcaat tggcgcgata ccaggcatag 17280 cttccgtggc ggttcaggcc tcgcaacgac attgacattg gaaaaaaacg tataaataaa 17340 aaaaaaaaaa tacaatggac tctgacactc ctggtcctgt gactatgttt tcttagagat 17400 ggaagacatc aatttttcat ccttggctcc gcgacacggc acgaagccgt acatgggcac 17460 ctggagcgac atcggcacga gccaactgaa cgggggcgcc ttcaattgga gcagtatctg 17520 gagcgggctt aaaaattttg gctcaaccat aaaaacatac gggaacaaag cttggaacag 17580 cagtacagga caggcgctta gaaataaact taaagaccag aacttccaac aaaaagtagt 17640 cgatgggata gcttccggca tcaatggagt ggtagatttg gctaaccagg ctgtgcagaa 17700 aaagataaac agtcgtttgg acccgccgcc agcaacccca ggtgaaatgc aagtggagga 17760 agaaattcct ccgccagaaa aacgaggcga caagcgtccg cgtcccgatt tggaagagac 17820 gctggtgacg cgcgtagatg 33CCyCCttC ttatgaggaa gcaacgaagc ttggaatgcc 17880 caccactaga ccgatagccc caatggccac cggggtgatg aaaccttctc agttgcatcg 17940 acccgtcacc ttggatttgc cccctccccc tgctgctact gctgtacccg cttctaagcc 18000 tgtcgctgcc ccgaaaccag tcgccgtagc caggtcacgt cccgggggcg ctcctcgtcc 18060 aaatgcgcac tggcaaaata ctctgaacag catcgtgggt ctaggcgtgc aaagtgtaaa 18120 acgccgtcgc tgcttttaat taaatatgga gtagcgctta acttgcctat ctgtgtatat 18180 gtgtcattac acgccgtcac agcagcagag gaaaaaagga agaggtcgtg cgtcgacgct 18240 59 gagttacttt caagatggcc accccatcga tgctgcccca atgggcatac atgcacatcg 18300 ccggacagga tgcttcggag tacctgagtc cgggtctggt gcagttcgcc cgcgccacag 18360 acacctactt caatctggga aataagttta gaaatcccac cgtagcgccg acccacgatg 18420 tgaccaecga ccgtagccag cggctcatgt tgcgcttcgt gcccgttgac cgggaggaca 18480 atacatactc ttacaaagtg cggtacaccc tggccgtggg cgacaacaga gtgctggata 18540 tggccagcac gttctttgac attaggggtg tgttggacag aggtcccagt ttcaaaccct 18600 attctggtac ggcttacaac tccctggctc ctaaaggcgc tccaaataca tctcagtgga 18660 ttgcagaagg tgtaaaaaat acaactggtg aggaacacgt aacagaagag gaaaccaata 18720 ctactactta cacttttggc aatgctcctg taaaagctga agctgaaatt acaaaagaag 18780 gactcccagt aggtttggaa gtttcagatg aagaaagtaa accgatttat gctgataaaa 18840 catatcagcc agaacctcag ctgggagatg aaacttggac tgaccttgat ggaaaaaccg 18900 aaaagtatgg aggcagggct ctcaaacccg atactaagat gaaaccatgc tacgggtcct 18960 ttgccaaacc tactaatgtg aaaggcggtc aggcaaaaca aaaaacaacg gagcagccaa 19020 atcagaaagt cgaatatgat atcgacatgg agttttttga tgcggcatcg cagaaaacaa 19080 acttaagtcc taaaattgtc atgtatgcag aaaatgtaaa tttggaaact ccagacactc 19140 atgtagtgta caaacctgga acagaagaca caagttccga agctaatttg ggacaacaat 19200 ctatgcccaa cagacccaac tacattggct tcagagataa ctttattgga cttatgtact 19260 ataacagtac tggtaacatg ggggtgctgg ctggtcaagc gtctcagtta aatgcagtgg 19320 *5 ggacagaaac αν-α^ααί líí. cttaccaaçt cttgcttgac LC 19380 acagaaccag atactttagc atgtggaatc aggctgtgga cagttatgat cctgatgtac 19440 gtgttattga aaatcatggt gtggaagatg aacttcccaa ctactgtttt ccactggacg 19500 gcataggtgt tccaacaacc agttacaaat caatagttcc aaatggagac aatgcgccta 19560 attggaagga acctgaagta aatggaacaa gtgagatcgg acagggtaat ttgtttgcca 19620 tggaaattaa ccttcaagcc aatctatggc gaagtttcct ttattccaat gtggctctat 19680 atctcccaga ctcgtacaaa tacaccccgt ccaatgtcac tcttccagaa aacaaaaaca 19740 cctacgacta catgaacggg cgggtggtgc cgccatctct agtagacacc tatgtgaaca 19800 ttggtgccag gtggtctctg gatgccatgg acaatgtcaa cccattcaac caccaccgta 19860 acgctggctt gcgttaccga tccatgcttc tgggtaacgg acgttatgtg cctttccaca 19920 tacaagtgcc tcaaaaattc ttcgctgrta aaaacctgct gcttctccca ggctcctaca 19980 cttatgagtg gaactttagg aaggatgtga acatggttct acagagttcc ctcggtaacg 20040 acctgcgggt agatggcgcc agcatcagtt tcacgagcat caacctctat gctacttttt 20100 60 tccccatggc tcacaacacc gcttccaccc tcgaagccat gctgcggaat gacaccaatg 20160 atcagtcatt caacgactac ctatctgcag ctaacatgct ctaccccatt cctgceaatg 20220 caaccaatat tcccatttcc attccttctc gcaactgggc ggctttcaga ggctggtcat 20280 ttaccagact gaaaaccaaa gaaactccct ctttggggtc tggatttgac ccctactttg 20340 tctattctgg ttctattccc tacctggatg gtaccttcta cctgaaccac acttttaaga- 20400 aggtttccat catgtttgac tcttcagtga gctggcctgg aaatgacagg ttactatctc 20460 ctaacgaatt tgaaataaag cgcactgtgg atggcgaagg ctacaacgta gcccaatgca 20520 acatgaccaa agactggttc ttggtacaga tgctcgccaa ctacaacatc ggctatcagg 20580 gcttctacat tccagaagga tacaaagatc gcatgtattc atttttcaga aacttccagc 20640 ccatgagcag gcaggtggtt gatgaggtca attacaaaga cttcaaggcc gtcgccatac 20700 cctaccaaca caacaactct ggctttgtgg gttacatggc tccgaccatg cgccaaggtc 20760 aaccctatcc cgctaactat ccctatccac tcattggaac aactgccgta aatagtgtta 20820 cgcagaaaaa gttcttgtgt gacagaacca tgtggcgcat accgttctcg agcaacttca 20880 tgtctatggg ggcccttaca gacttgggac agaatatgct ctatgccaac tcagctcatg 20940 ctctggacat gacctttgag gtggatccca tggatgagcc caccctgctt tatcttctct 21000 tcgaagtttt cgacgtggtc agagtgcatc agccacaccg cggcatcatc gaggcagtct 21060 acctgcgtac accgttctcg gccggtaacg ctaccacgta agaagcttct tgcttcttgc 21120 aaatagcagc tgcaaecatg gcctgcggat cccaaaacgg ctccagcgag caagagctca 21180 gagccattgt ccaagacctg ggttgcggac cctatttttt gggaacctac gataagcgct 21240 tcccggggtt catggccccc gataagctcg cctgtgccat tgtaaatacg gccggacgtg 21300 agacgggggg agagcactgg ttggctttcg gttggaaccc acgttctaac acctgctacc 21360 tttttgatcc ttttggattc tcggatgatc gtctcaaaca gatttaccag tttgaatatg 21420 agggtctcct gcgccgcagc gctcttgcta ccaaggaccg ctgtattacg ctggaaaaat 21480 ctacccagac cgtgcagggt ccccgttctg ccgcctgcgg acttttctgc tgcatgttcc 21540 rtcacgcctt tgtgcactgg cctgaccgtc ccatggacgg aaaccccacc atgaaattgc 21600 taactggagt gccaaacaac atgcttcatt ctcctaaagt CCayCCCctC C ctgtgtgaca ííuuu atcaaaaagc actctaccat tttcttaata cccattcgcc ttattttcgc tcccatcgta 21720 cacacatega aagggccact gcgttcgacc gtatggatgt tcaataatga ctcatgtaaa 21780 caacgtgttc aataaacatc actttatttt tttacatgta tcaaggctct gcattactta 21840 tttatttaca agtegaatgg gttctgacga gaatcagaat gacccgcagg cagtgatacg 21900 ttgcggaact gatacttggg ttgccacttg aattcgggaa tcaccaactt gggaaccggt 21960 atatcgggca ggatgtcact ecacagcttt ctggtcagct gcaaagctcc aagcaggtca 22020 61 ggagccgaaa tcttgaaatc acaattagga ccagtgcttt gagcgcgaga gttgcggtac 22080 aceggattgc agcactgaaa caccatcagc gacggacgtc tcacgcttgc cagcacggtg 22140 ggatctgcaa tcatgcccac atccagatct tcagcattgg caatgctgaa cggggtcatc 22200 ttgcaggtct gcctacccat ggcgggcacc caattaggct tgtggttgca atcgcagtgc 22260 agggggatca gtatcatctt ggcctgatcc tgtctgattc ctggatacac ggctctcatg 22320 aaagcatcat attgcttgaa agcctgctgg gctttactac cctcggtata aaacatcccg 22380 caggacctgc tcgaaaactg gttagctgca cagccggcat cattcacaca gcagcgggcg 22440 tcattgttag ctatttgcac cacacrtctg ccccagcggt tttgggtgat tttggttcgc 22500 tcgggattct cctttaaggc tcgttgtccg ttctcgctgg ccacatccat ctcgataatc 22560 tgctccttct gaatcataat attgccatgc aggcacttca gcttgccctc ataatcattg 22620 cagccatgag gccacaacgc acagcctgta cattcccaat tatggtgggc gatctgagaa 22680 aaagaatgta tcattccctg cagaaatctt cccatcatcg tgctcagtgt cttgtgacta 22740 gtgaaagtta actggatgcc tcggtgctcc txgtttacgt actggtgaca gatgcgcttg 22800 tattgttcgt gttgctcagg cattagttta aaagaggttc taagttcgtt atccagcctg 22860 tacttctcca tcagcagaca catcacttcc atgcctttct cccaagcaga caccaggggc 22920 aagctaatcg gattcttaac agtgcaggca gcagctcctt tagccagagg gtcatcttta 22980 gcgatcttct caatgcttct tttgccatcc ttctcaacga tgcgcacggg cgggtagctg 23040 aaacccactg ctacaagttg cgcctcttct ctttcttctt cgctgtcttg actgatgtct 23100 tgcatgggga tatgtttggt cttccttggc ttctttttgg ggggtatcgg aggaggagga 23160 ctgtcgctcc gttccggaga cagggaggat tgtgacgttt cgctcaccat taecaactga 23220 ctgtcggtag aagaacctga ccccacacgg cgacaggtgt ttctcttcgg gggcagaggt 23280 ggaggcgatt gcgaagggct gcggtccgac ctggaaggcg gatgactggc agaacccctt 23340 ccgcgttcgg gggtgtgctc cctgtggcgg tcgcttaact gatttccttc gcggctggce 23400 attgtgttct cctaggcaga gaaacaacag acatggaaac tcagccattg ctgtcaacat 23460 cgccacgagt gccatcacat ctcgtcctca gcgacgagga aaaggagcag agcttaagca 23520 ttccaccgcc cagtcctgcc accacctcta ccctagaaga taaggaggtc gacgcatctc 23580 atgacatgca gaataaaaaa gcgaaagagt ctgagacaga catcgagcaa gacccgggct 23640 atgtgacacc ggtggaacac gaggaagagt tgaaacgctt tctagagaga gaggatgaaa 23700 actgcccaaa acaacgagca gataactatc accaagatgc tggaaatagg gatcagaaca 23760 ccgactacct catagggctt gacggggaag acgcgctcct taaacatcta gcaagacagt 23820 cgctcatagt caaggatgca ttattggaca gaactgaagt gcccatcagt gtggaagagc 23880 62 tcagccgcgc ctacgagctt aacctctttt cacctcgtac tccccccaaa cgtcagccaa 23940 acggcacctg cgagccaaat cctcgcttaa acttttatcc agcttttgct gtgccagaag 24000 tactggctac ctatcacatc ttttttaaaa atcaaaaaat tccagtctcc tgccgcgcta 24060 atcgcacccg cgccgatgcc ctactcaatc tgggacctgg ttcacgctta cctgatatag 24120 cttccttgga agaggttcca aagatcttcg agggtctggg caataatgag actcgggccg 24180 caaatgctct gcaaaaggga gaaaatggca tggatgagca tcacagcgtt ctggtggaat 24240 tggaaggcga taatgccaga ctcgcagtac tcaagcgaag catcgaggtc acacacttcg 24300 catatcccgc tgtcaacctg ccccctaaag tcatgacggc ggtcatggac cagttactca 24360 ttaagcgcgc aagtcccctt tcagaagaca tgcatgaccc agatgcctgt gatgagggta 24420 aaccagtggt cagtgatgag cagctaaccc gatggctggg caccgactct cccagggatt 24480 tggaagagcg tcgcaagctt atgatggccg tggtgctggt taccgtagaa ctagagtgtc 24540 tccgaegttt ctttaccgat tcagaaacct tgcgcaaact cgaagagaat ctgcactaca 24600 cttttagaca cggctttgtg cggcaggcat gcaagatatc taacgtggaa ctcaccaacc 24660 tggtttccta catgggtatt ctgcatgaga atcgcctagg acaaagcgtg ctgcacagca 24720 ccctgaaggg ggaagcccgc cgtgattaca tccgcgattg tgtctatctg tacctgtgcc 24780 acacgtggca aaccggcatg ggtgtatggc agcaatgttt agaagaacag aacttgaaag 24840 agcttgacaa gctcttacag aaatctctta aggttctgtg gacagggttc gacgagcgca 24900 ccgtcgcttc cgacctggca gacctcatct tcccagagcg tctcagggtt actttgcgaa 24960 acggattgcc tgactttatg agccagagca tgcttaacaa ttttcgctct ttcatcctgg 25020 aacgctccgg tatcctgccc gccacctgct gcgcactgcc ctccgacttt gtgcctctca 25080 cctaccgcga gtgccccccg ccgctatgga gtcactgcta cctgttccgt ctggccaact 25140 atctctccta ccactcggat gtgatcgagg atgtgagcgg agacggcttg ctggagtgtc 25200 actgccgctg caatctgtgc acgccccacc ggtccctagc ttgcaacccc cagtrgatga 25260 gcgaaaccca gataataggc acctttgaat tgcaaggccc cagcagccaa ggcgatgggt 25320 cttctcctgg gcaaagttta aaactgaccc cgggactgtg gacctccgcc tacttgcgca 25380 agtttgctcc ggaagattac cacccctatg aaatcaagtt ctatgaggac caatcacagc 25440 ctccaaaggc cgaactttcg gcctgcgtca tcacccaggg ggcaattctg gcccaattgc 25500 aagccatcca aaaatcccgc caagaatttc tactgaaaaa gggtaagggg gtctaccttg 25560 acccccagac cggcgaggaa ctcaacacaa ggttccctca ggatgtccca acgacgagaa 25620 aacaagaagt tgaaggtgca gccgccgccc ccagaagata tggaggaaga ttgggacagt 25680 caggcagagg aggcggagga ggacagtctg gaggacagtc tggaggaaga cagtttggag 25740 gaggaaaacg aggaggcaga ggaggtggaa gaagtaaccg ccgacaaaca gttatcctcg 25800 63 63 gctgcggaga caagcaacag cgctaccatc cccagcagta gatgggacga gaccggacgc ggtaagaagg atcggeaggg atacaagtcc tgcttgcatg agtgcggggg caacatatcc ggggtgaact ttccgcgcaa tgttttgcat agccagcaaa tcccggcagt ctcgacagat accagcagcg gcagttagaa aatacacaac agccaacgag ccagcgcaaa cccgagagtt catcttccag cagagtcggg gtcaagagca ttcgctcacc agaagttgtt tgtatcacaa ggacgccgag gctctcttca acaagtactg cgcgcttatt caãaaaaggc gggaattaca cgccttacat gtggagttat caaccccaaa actccacccg catgaattgg ctcagcgccg tacgcgccta ccgaaaccaa atacttttgg aacaccttaa tcccagaaat rggcccgccg ccactgtatt acttcctcga gacgcccagg agttagctgg cggctccacc ctatgtcgtc tgatcagagg ecgaggtatc cagctcaacg gaccagacgg aatctttcag attgccggct ctgttctgac tttggaaagt tcgccttcgc aatttgtgga ggagtttact ccctctgtct attacccgga cgagttcata ccgaacttcg attgatgtct ggtgacgcgg ctgagctatc ctttcgctgc tttgcccggg aactcattga ccctcaaggt ccggcccacg gagtgcggat gcaacgaatt ttctcccagc ggcccgtgct ttccatctac tgcatttgta atcaccccgg tactgagttt aataaaaact gaattaagac gattrtacaa ccagaagaac gaaacttttc ttcctactca caaactagaa gctcaacgac tccgctccga gtcgaggaac ccggcggcgt ttcccgaacc caaccagcgc ttccaagacc tggcgggggc ataagaatgc catcatctcc ttcacgcggc gctacttgct attccaccat tactaccgtc acctccacag cccctactat aaagacagcg gcggcgacct ccaacagaaa aagtgcagca acaggaggac taaagattac aagaaatcgg atctttccaa ccctgtatgc ggaactgaaa ataaaaaacc gatctctgcg gagcgaagat caacttcagc gcactctcga cgcgctgact cttaaagagt aggcagcgac tcatcctcga catgagtaaa gaaattccca tgggattggc ggcaggcgcc tcccaggact ggccttctat gatttctcga gttaatgata aacagtcagc tcttaccacc acgccccgcc ccctagtgta ccaggaaagt cccgctccca ccgaagtcca aatgactaat gcaggtgcgc acaggcctcg gcataatata aaacgcctga acgagtcggt gagctctccg cttggtctac gcgggagatc ttccttcacc cctcgtcagg aaccccgctc gggcggaatc gggaccgttc acrtcaaccc cttctccgga tctcctgggc acgcgattag cgagtcagtg gacggctacg tcggctgcga catctagacc actgccgccg gttcatctac ttcgaactcc ccaaggatca ttctatcgaa ggcaaaatag actctcgcct gatcgagcga gaccagggaa acaccacggt attgcatgaa agcctttgct gtcttatgtg tctcctacgg actgccgctt cttcaacccg ctgtcgtcca ggactctgtt aacttcacct tacaccgctt ttccagaagc attttcccta 25860 25920 25980 26040 26X00 26160 26220 26280 26340 26400 26460 26520 26580 26640 26700 26760 26820 26880 26940 27000 27060 27120 27180 27240 27300 27360 27420 27480 27540 27600 27660 64 ctaatactac tttcaaaacc tggaagcggg ccttgtagtg acctatacac accttgcttc gcccatacta gtcttgcttg tccatgtcta gacttcgacc catctgtgga gttcatcgcc catggtggga atcaacccca tcactgctcc tgcgattcca aagagacctg ctaccaatga gcaataaggt ctctgttgaa tggtattcta aaccccgttc tttagctcct ctcctgtacc ccggctcagt gactccttca cccctttata aacccagggt tcttacttta aaatgtttaa gggaggggga cttacagtgg cacaccactc gttaagactg gaatgaaaat aaactttgta ttgcattgat gacaatatta tcaaatcatg aactccagtg tggagcacta gtcactgcat aactacacac agaaatataa actaactaga ctctcatccc tactggtgcc attactaatg tgataattct agagaaaaag tcgcactgct tttcccattg gacatcatat tgtattcgta aacctctgct acaaccctag ctgacaaata aagtttaact tttgcctccc ccttcccatt catttggata ccattagata gcgagccaat ctggggtcag ggaggtgagc tccaaggtct ctaggaattc ttgcgggtgg actttcttag tggtgttgtg ttttactttc gcttttggaa cagaaaactg cacacttact tctcttacga acttggcccc tagttatcac ccagcaaagt tcgagtgcac ctacaccctg attaaaaaat gattaataaa attttctccc agcagcacct agcggcatac tttctccata cacaatcttc atgtctttct accctgrcta cccctatgaa ttatttcccc aaatggcttc ccccactaac aaccacaggc atgacaccaa cggttttttg gtcactctat aggtttacca tcaaattagg acaaggactt acaccttatg gacaggagtc aatctaatga ttgcaaatta ttgtttatgt tataggagta attttactgc agagctgttt tcaaaactcc acttaatcat ctaaaggttt catgcccagc aaaactacat ttacggaact acatatctgt catgcttaac taacttggtc ctggaacaca tcacctcccc atttaccttt tgtttatttg aaaatcaatt taacagaata caccaatctc tagacatggt tttagattcc tgatagataa a&atccatcg tcctacagaa aacccttggg gcttgtgatt attctttgct gtattggttt aaaaaatggg ccgggttctg ccaattacga tttgcacccg acacaagccg caacgacaaa aatttacctg ggagatacta agggttgcat ctgaagaccc tatgcggcct aaatcactta cttgaaatca cacttccctc ttcccaactc ctttaaaggg gatgtcaaat tcccagatga ccaagagagt gatgaaagca cctcccaaca acacaaagcc caaacggagt ggatctctac agctaaaagt aaagaaaaca taagtgccac ctaggagccg gattgggaac acattcaatt caaacaacat aaccccaccg aagccaactg attctaacac tagttaaaac tctaacaatt ttaatatgct ttcgattcta ctggtaattt aaatcaggac aaaacatggc acgactgcct atcctttcaa tgttactaca cagctagtga cgaagagcaa taaatgacga ggagatgccc cagaggtgca tactacatca gagaagacga cacaaaatcc gagtagttat tccccacgca cagctttaaa acattccaaa cagtttcaga ggatagtctt ttaaagcgct ^ /* 27720 27780 27840 27900 27960 28020 28080 28140 28200 28260 28320 28380 28440 28500 28560 28620 28680 28740 28800 28860 28920 28980 29040 29100 29160 29220 29280 29340 29400 29460 29520 29580 65 ttcacagtcc aactgctgcg gatgcgactc cggagtctgg atcacggtca tctggaagaa 29640 gaacgatggg aatcataatc cgaaaacggt atcggacgat tgtgtctcat caaacccaca 29700 agcagccgct gtctgcgtcg ctccgtgcga ctgctgttta tgggatcagg gtccacagtg 29760 tcctgaagca tgattttaat agcccctaac atcaactttc tggtgcgatg cgcgcagcaa 29820 cgcattctga tttcactcaa atctttgcag taggtacaac acattattac aatattgttt 29880 aataaaccat aattaaaagc gctccagcca aaactcatat ctgatataat cgcccctgca 29940 tgaccatcat accaaagttt aatataaatt aaatgacgtt ccctcaaaaa cacactaccc 30000 acatacatga tctcttttgg catgtgcata ttaacaatct gtctgtacca tggacaacgt 30060 tggttaatca tgcaacccaa tataacottc cggaaccaca ctgccaacac cgctccccca 30120 gccatgcatt gaagtgaacc ctgctgatta caatgacaat gaagaaccca attctctcga 30180 ccgtgaatca cttgagaatg aaaaatatct atagtggcac aacatagaca taaatgcatg 30240 catcttctca taatttttaa ctcctcagga tttagaaaca tatcccaggg aataggaagc 30300 tcttgcagaa cagtaaagct ggcagaacaa ggaagaccac gaacacaact tacactatgc 30360 atagtcatag tatcacaatc tggcaacagc gggtggtctt cagtcataga agctcgggtt 30420 tcattttcct cacaacgtgg taactgggct ctggtgtaag ggtgatgtct ggcgcatgat 30480 gtcgagcgtg cgcgcaacct tgtcataatg gagttgcttc ctgacattct cgtattttgt 30540 atagcaaaac gcggccctgg cagaacacac tcttcttcgc cttctatcct gccgcttagc 30600 gtgttccgtg tgatagttca agtacaacca cactcttaag ttggtcaaaa gaatgctggc 30660 ttcagttgta atcaaaactc catcgcatct aatcgttctg aggaaatcat ccaagcaatg 30720 caactggatt gtgtttcaag caggagagga gagggaagag acggaagaac catgttaatt 30780 tttattccaa acgatctcgc agtacttcaa attgtagatc gcgcagatgg catctctcgc 30840 ccccactgtg ttggtgaaaa agcacagcta gatcaaaaga aatgcgattt tcaaggtgct 30900 caacggtggc ttccagcaaa gcctccacgc gcacatccaa gaacaaaaga ataccaaaag 30960 aaggagcatt ttctaactcc tcaatcatca tattacattc ctgcaccatt cccagataat 31020 tttcagcttt ccagccttga attattcgtg tcagttcttg tggtaaatcc aatccacaca 31080 ttacaaacag gtcccggagg gcgccctcca ccaccattct taaacacacc ctcataatga 31140 caaaatatct tgctcctgtg tcacctgtag cgaattgaga atggcaacat caattgacat 31200 gcccttggct ctaagttctt ctttaagttc tagttgtaaa aactctctca tattatcacc 31260 aaactgctta gccagaagcc ccccgggaac aagagcaggg gacgctacag tgcagtacaa 31320 gcgcagacct ccccaattgg ctccagcaaa aacaagattg gaataagcat actgggaacc 31380 gccagtaata tcatcgaagt tgctggaaat ataatcaggc agagtttctt gtaaaaattg 31440 66 aataaaagaa aaatttgcca aaaaaacatt caaaacctct gggatgcaaa tgcaataggt 31500 taccgcgctg cgctccaaca ttgttagttt tgaattagtc tgcaaaaata aaaaaaaaaa 31560 caagcgtcat atcatagtag cctgacgaac agatggataa atcagtcttt ccatcacaag 31620 acaagccaca gggtctccag ctcgaccctc gtaaaacctg tcatcatgat taaacaacag 31680 caccgaaagt tcctcgcggt gaccagcatg aataattctt gatgaagcat acaatccaga 31740 catgttagca tcagttaacg agaaaaaaca gccaacatag cctttgggta taattatgct 31800 taatcgtaag tatagcaaag ccacccctcg cggatacaaa gtaaaaggca caggagaata 31860 aaaaatataa ttatttctct gctgctgttc aggcaacgtc gcccccggtc cctctaaata 31920 cacatacaaa gcctcatcag ccatggctta ccagacaaag tacagcgggc acacaaagca 31980 caagctctaa agtgactctc caacctctcc acaatatata tatacacaag ccctaaactg 32040 acgtaatggg agtaaagtgt aaaaaatccc gccaaaccca acacacaccc cgaaactgcg 32100 tcaccaggga aaagtacagt ttcacttccg caatcccaac aggcgtaact tcctctttct 32160 cacggtacgt gatatcccac taacttgcaa cgtcattttc ccacggtcgc accgcccctt 32220 ttagccgtta accccacagc caatcaccac acgatccaca ctttttaaaa tcacctcatt 32280 tacatattgg caccattcca tctataaggt atattatata gatag 32325 <210> 2 <211> 34794 <212> ADN <213> Adenovírus <400> 2 ctatctatat aatatacctt atagatggaa tggtgccaat atgtaaatga ggtgatttta 60 aaaagtgtgg atcgtgtggt gattggctgt ggggttaacg gctaaaaggg gcggtgcgac 120 cgtgggaaaa tgacgttttg tgggggtgga gtttttttgc aagttgtcgc gggaaatgtg 180 acgcataaaa aggctttttt ctcacggaac tacttagttt tcccacggta tttaacagga 240 aatgaggtag ttttgaccgg atgcaagtga aaattgttga ttttcgcgcg aaaactgaat 300 gaggaagtgt ttttctgaat aatgtggtat ttatggcagg gtggagtatt tgttcagggc 360 caggtagact ttgacccatt acgtggaggt ttcgattacc gtgtttttta cctgaatttc 420 cgcgtaccgt gtcaaagtct tctgttttta cgtaggtgtc agctgatcgc tagggtattt 480 atacctcagg gtttgtgtca agaggccact cttgagtgcc agcgagaaga gttttctcct 540 ctgcgccggc agtttaataa taaaaaaatg agagatttgc gatttctgcc tcaggaaata 600 atctctgctg agactggaaa tgaaatattg gagcttgtgg tgcacgccct gatgggagac 660 gatccggagc cacctgtgca gctttttgag cctcctacgc ttcaggaact gtatgattta 720 gaggtagagg gatcggagga ttctaatgag gaagctgtaa atggcttttt taccgattct 780 67 atgcttttag ctgctaatga agggttagaa ttagatccgc ctttggacac ttttgatact 840 ccaggggtaa ttgtggaaag cggtacaggt gtaagaaaat tacctgattt gagttccgtg 900 gactgtgatt tgcactgcta tgaagacggg tttcctccga gtgatgagga ggaccatgaa 960 aaggagcagt ccatgcagac tgcagcgggt gagggagtga aggctgccaa tgttggtttt 1020 cagttggatt gcccggagct tcctggacat ggctgtaagt cttgtgaatt tcacaggaaa 1080 aatactggag taaaggaact gttatgttcg ctttgttata tgagaacgca ctgccacttt 1140 atttacagta agtgtgttta agttaaaatt taaaggaata tgctgttttt cacatgtata 1200 ttgagtgtga gttttgtgct tcttattata ggtcctgtgt ctgatgctga tgaatcacca 1260 tctcctgatt ctactacctc acctcctgag attcaagcac ctgttcctgt ggacgtgcgc 1320 aagcccattc ctgtgaagct taagcctggg aaacgtccag cagtggaaaa acttgaggac 1380 ttgttacagg gtggggacgg acctttggac ttgagtacac ggaaacgtcc aagacaacaa 1440 gtgttccata tccgtgttta cttaaggtga cgtcaatatt tgtgtgacag tgcaatgtaa 1500 taaaaatatg ttaactgttc actggttttt attgcttttt gggcggggac tcaggtatat 1560 aagtagaagc agacctgtgt ggttagctca taggagctgg ctttcatcca tggaggtttg 1620 ggccattttg gaagacctta ggaagactag gcaactgtta gagaacgctt cggacggagt 1680 ctccggtttt tggagattct ggttcgctag tgaattagct agggtagttt ttaggataaa 1740 acaggactat aaacaagaat ttgaaaagtt gttggtagat tgcccaggac tttttgaagc 1800 tcttaatttg ggccatcagg ttcactttaa agaaaaagtt ttatcagttt tagacttttc 1860 aaccccaggt agaactgctg ctgctgtggc ttttcttact tttatattag ataaatggat 1920 cccgcagact catttcagca ggggatacgt tttggatttc atagccacag cattgtggag 1980 aacatggaag gttcgcaaga tgaggacaat cttaggttac tggccagtgc agcctttggg 2040 tgtagcggga atcctgaggc atccaccggt catgccagcg gttctggagg aggaacagca 2100 agaggacaac ccgagagccg gcctggaccc tccagtggag gaggcggagt agctgacttg 2160 tctcctgaac tgcaacgggt gcttactgga tctacgtcca ctggacggga taggggcgtt 2220 aagagggaga gggcatctag tggtactgat gctagatctg agttggcttt aagtttaatg 2280 agtcgcagac gtcctgaaac catttggtgg catgaggttc agaaagaggg aagggatgaa 2340 gtttctgtat tgcaggagaa atattcactg gaacaggtga aaacatgttg gttggagcct 2400 gaggatgatt gggaggtggc cattaaaaat tatgccaaga tagctttgag gcctgataaa 2460 cagtataaga ttactagacg gattaatatc cggaatgctt gttacatatc tggaaatggg 2520 gctgaggtgg taatagatac tcaagacaag gcagttatta gatgctgcat gatggatatg 2580 tggcctgggg tagtcggtat ggaagcagta acttttgtaa atgttaagtt taggggagat 2640 ggttataatg gaatagtgtt tatggccaat accaaactta tattgcatgg ttgtagcttt 2700 68 tttggtttca acaatacctg tgtagatgcc tggggacagg ttagtgtacg gggatgtagt 2760 ttctatgcgt gttggattgc cacagctggc agaaccaaga gtcaattgtc tctgaagaaa 2820 tgcatatttc aaagatgtaa cctgggcatt ctgaatgaag gcgaagcaag ggtccgccac 2880 tgcgcttcta cagatactgg atgttttatt ttgattaagg gaaatgccag cgtaaagcat 2940 aacatgattt gcggtgcttc cgatgagagg ccttatcaaa tgctcacttg tgctggtggg 3000 cattgtaata tgctggctac tgtgcatatt gtttcccatc aacgcaaaaa atggcctgtt 3060 tttgatcaca atgtgatgac gaagtgtacc atgcatgcag gtgggcgtag aggaatgtrt 3120 atgccttacc agtgtaacat gaatcatgtg aaagtgttgt tggaaccaga tgccttttcc 3180 agaatgagcc taacaggaat ttttgacatg aacatgcaaa tctggaagat cctgaggtat 3240 gatgatacga gatcgagggt acgcgcatgc gaatgcggag gcaagcatgc caggttccag 3300 ccggtgtgtg tagatgtgac tgaagatctc agaccggatc atttggttat tgcccgcact 3360 ggagcagagt tcggatccag tggagaagaa actgactaag gtgagtattg ggaaaacttt 3420 ggggtgggat tttcagatgg acagattgag taaaaatttg ttttttctgt cttgcagctg 3480 tcatgagtgg aaacgcttct tttaaggggg gagtcttcag cccttatctg acagggcgtc 3540 tcccatcctg ggcaggagtt cgtcagaatg ttatgggatc tactgtggat ggaagacccg 3600 tccaacccgc caattcttca acgctgacct atgctacttt aagttcttca cctttggacg 3660 cagctgcagc tgccgccgcc gcttctgttg ccgctaacac tgtgcttgga atgggttact 3720 atggaagcat catggctaat tccacttcct ctaataaccc ttctaccctg actcaggaca 3780 agttacttgt ccttttggcc cagctggagg ctttgaccca acgtctgggt gaactttctc 3840 agcaggtggt cgagttgcga gtacaaactg agtctgctgt cggcacggca aagtctaaat 3900 aaaaaaatcc cagaatcaat gaataaataa acaagcttgt tgttgattta aaatcaagtg 3960 tttttatttc atttttcgcg cacggtatgc cctagaccac cgatctctat cattgagaac 4020 tcggtggatt ttttccagga tcctatagag gtgggattga atgtttagat acatgggcat 4080 taggccgtct ttggggtgga gatagctcca ttgaagggat tcatgctccg gggtagtgtt 4140 gtaaatcacc cagtcataac aaggtcgcag tgcatggtgt tgcacaatat cttttagaag 4200 taggctgatt gccacagata agcccttggt gtaggtgttt acaaaccggt tgagctggga 4260 tgggtgcatt cggggtgaaa ttatgtgcat tttggattgg atttttaagt tggcaatatt 4320 gccgccaaga tcccgtcttg ggttcatgtt atgaaggacc accaagacgg tgtatccggt 4380 acatttagga aatttatcgt gcagcttgga tggaaaagcg tggaaaaatt tggagacacc 4440 cttgtgtcct ccaagatttt ccatgcactc atccatgata atagcaatgg ggccgtgggc 4500 agcggcgcgg gcaaacacgt tccgtgggtc tgacacatca tagttatgtt cctgagttaa 4560 69 atcatcataa gccattttaa tgaatttggg gcggagagta ccagattggg gtatgaatgt 4620 tccttcgggc cccggagcat agttcccctc acagatttgc atttcceaag ctttcagttc 4680 egagggtgga atcatgtcca cctggggggc tatgaaaaac accgtttctg gggcgggggt 4740 gattaattgt gatgatagca aatttctgag caattgagat ttgccacatc cggtggggcc 4800 ataaatgatt ccgattacgg gttgcaggtg gtagtttagg gaacggcaac tgccgtcttc 4860 tcgaaacaag ggggccacct cgttcatcat ttcccttaca tgcatatttt cccgcaccaa 4920 atccattagg aggcgctctc ctcctagtga tagaagttct tgtagtgagg aaaagttttt 4980 cagcggtttc agaccgtcag ccatgggcat tttggagaga gtttgctgca aaagttctag 5040 tctgttccac agttcagtga tgtgttctat ggcatctcga tccagcagac ctcctcgttt 5100 cgcgggtttg gacggctcct ggaatagggt atgagacgat gggcgtccag cgctgccagg 5160 gttcggtcct tccagggtct cagtgttcga gtcagggttg tttccgtcac agtgaagggg 5220 tgtgcgcctg cttgggcgct tgccagggtg cgcttcagac tcatcctgct ggtcgaaaac 5280 ttctgtcgct tggcgccctg tatgtcggcc aagtagcagt ttaccatgag ttcgtagttg 5340 agcgcctcgg ctgcgtggcc tttggcgcgg agcttacctt tggaagtttt cttgcatacc 5400 gggcagtata ggcatttcag cgcatacaac ttgggcgcaa ggaaaacgga ttctggggag 5460 tatgcatctg cgccgcagga ggcgcaaaca gtttcacatt ccaccagcca ggttaaatcc 5520 ggttcattgg ggtcaaaaac aagttttccg ccatattttt tgatgcgttt cttacctttg 5580 gtctccatga gttcgtgtcc tcgttgagtg acaaacaggc tgtccgtgtc cccgtagact 5640 gattttacag gcctcttctc cagtggagtg cctcggtctt cttcgtacag gaactctgac 5700 cactctgata caaaggcgcg cgtccaggcc agcacaaagg aggctatgtg ggaggggtag 5760 cgatcgttgt caaccagggg gt-ccaccttt tccaaagtat gcaaacacat gtcaccctct 5820 tcaacatcca ggaatgtgat tggcttgtag gtgtatttca cgtgacctgg ggrccccgct 5880 gggggggtat aaaagggggc ggttctttgc tctttctcac tgtcttccgç atcgctgtcc 5940 aggaacgtca gctgttgggg taggtattcc ctctcgaagg cgggcatgac ctctgcactc 6000 aggttgtcag tttctaagaa cgaggaggat ttgatattga cagtgccggt tgagatgcct 6060 tLcatgaggt r-r-1 +» U LULy U.LQL ttggtcagaa aacacaattt títtattQtC aagtttggtg 6120 gcaaatgatc catacagggc gttggataaa agtttggcaa tggatcgcat ggtttggttc 6180 ttttccttgt ccgcgcgctc tttggcggcg atgttgagtt ggacatactc gcgtgccagg 6240 cacttccatt cggggaagat agttgttaat tcatctggca cgattctcac ttgccaccct 6300 cgattatgca aggtaattaa atccacactg gtggccacct cgcctcgaag gggttcattg 6360 gtccaacaga gcctacctcc tttcctagaa cagaaagggg gaagtgggtc tagcataagt 6420 tcatcgggag ggtctgcatc catggtaaag attcccggaa gtaaatcctt atcaaaatag 6480 70 ctgatgggag tggggtcatc taaggccatt tgccattctc gagctgccag tgcgcgctca 6540 tatgggttaa ggggactgcc ccatggcatg ggatgggtga gtgcagaggc atacatgcca 6600 cagatgtcat agacgtagat gggatcctca aagatgccta tgtaggttgg atagcatcgc 6660 ccccctctga tacttgctcg cacatagtca tatagttcat gtgatggcgc tagcagcccc 6720 ggacccaagt tggtgcgatt gggtttttct gttctgtaga cgatctggcg aaagatggcg 6780 tgagaattgg aagagatggt gggtctttga aaaatgttga aatgggcatg aggtagacct 6840 acagagtctc tgacaaagtg ggcataagat tcttgaagct tggttaccag ttcggcggtg 6900 acaagtacgt ctagggcgca gtagtcaagt gtttcttgaa tgatgtcata acctggttgg 6960 tttttctttt cccacagttc gcggttgaga aggtattctt cgcgatcctt ccagtactct 7020 tctagcggaa acccgtcttt gtctgcacgg taagatccta gcatgtagaa ctgattaact 7080 gccttgtaag ggcagcagcc cttctctacg ggtagagagt atgcttgagc agcttttcgt 7X40 agcgaagcgt gagtaagggc aaaggtgtct ctgaccatga ctttgagaaa ttggtatttg 7200 aagtcgatgt cgtcacaggc tccctgttcc cagagttgga agtctacccg tttcttgtag 7260 gcggggttgg gcaaagcgaa agtaacatca ttgaagagaa tcttaccggc tctgggcata 7320 aaattgcgag tgatgcgaaa aggctgtggt acttccgctc gattgttgat cacctgggca 7380 gctaggacga tctcgtcgaa accgttgatg ttgtgtccta cgatgtataa ctctatgaaa 7440 cgcggcgtgc ctctgacgtg aggtagctta ctgagctcat caaaggttag gtctgtgggg 7500 tcagataagg cgtagtgttc gagagcccat tcgtgcaggt gaggatttgc atgtaggaat 7560 gatgaccaaa gatctaccgc cagtgctgtt tgtaactggt cccgatactg acgaaaatgc 7620 cggccaattg ccattttttc tggagtgaca cagtagaagg ttctggggtc ttgttgccat 7680 cgatcccact tgagtttaat ggctagatcg tgggccatgt tgacgagacg ctcttctcct 7740 gagagtttca tgaccagcat gaaaggaact agttgtttgc caaaggatcc catccaggtg 7800 taagtttcca catcgtaggt caggaagagt ctttctgtgc gaggatgaga gccgatcggg 7860 aagaactgga tttcctgcca ccagttggag gattggctgt tgatgtgatg gaagtagaag 7920 tttctgcggc gcgccgagca ttcgtgtttg tgcttgtaca gacggccgca gtagccgcag 7980 cgttgcacgg gttgtatctc gtgaatgagt tgtacctggc ttcccttgac gagaaatttc 8040 agtgggaagc cgaggcctgg cgattgtatc tcgtgctctt ctatattcgc tgtatcggcc 8100 tgttcatctt ctgtttcgat ggtggtcatg ctgacgagcc cccgcgggag gcaagtccag 8160 acctcggcgc gggaggggcg gagctgaagg acgagagcgc gcaggctgga gctgtccaga 8220 gtcctgagac gctgcggact caggttagta ggtagggaca gaagattaac ttgcatgatc 8280 ttttccaggg cgtgcgggag gttcagatgg tacttgattt ccacaggttc gtttgtagag 8340 71 acgtcaatgg cttgcagggt tccgtgtcct ttgggcgcca ctaccgtacc tttgtttttt 8400 cttttgatcg gtggtggctc tcttgcttct tgcatgctca gaagcggtga cggggacgcg 8460 cgccgggcgg cagcggttgt tccggacccg agggcatggc tggtagtggc acgtcggcgc 8520 cgcgcacggg caggttctgg tactgcgctc tgagaagact tgcgtgcgcc accacgcgtc 8580 gattgacgtc ttgtatctga cgtctctggg tgaaagctac cggccccgtg agcttgaacc 8640 tgaaagagag ttcaacagaa tcaatttcgg tatcgttaac ggcagcttgt ctcagtattt 8700 cttgtacgtc accagagttg tcctggtagg cgatctccgc catgaactgc tcgatttctt 8760 cctcctgaag atctccgcga cccgctcttt cgacggtggc cgcgaggtca ttggagatac 8820 ggcccatgag ttgggagaat gcattcatgc ccgcctcgtt ccagacgcgg ctgtaaacca 8880 cggccccctc ggagtctctt gcgcgcatca ccacctgagc gaggttaagc tccacgtgtc 8940 tggtgaagac cgcatagttg cataggcgct gaaaaaggta gttgagtgtg gtggcaatgt 9000 gttcggcgac gaagaaatac atgatccatc gtctcagcgg catttcgcta acatcgccca 9060 gagcttccaa gcgctccatg gcctcgtaga agtccacggc aaaattaaaa aactgggagt 9120 ttcgcgcgga cacggtcaat tcctcctcga gaagacggat gagttcggct atggtggccc 9180 gtacttcgcg ttcgaaggct cccgggatct cttcttcctc ttctatctct tcttccacta 9240 acatctcttc ttcgtcttca ggcgggggcg gagggggcac gcggcgacgt cgacggcgca 9300 cgggcaaacg gtcgatgaat cgttcaatga cctctccgcg gcggcggcgc atggtttcag 9360 tgacggcgcg gccgttctcg cgçggtcgca gagtaaaaae accgccgcgc atctccttaa 9420 agtggtgact gggaggttct ccgtttggga gggagagggc gctgattata cattttatta 9480 attggcccgt agggactgca cgcagagatc tgatcgtgtc aagatccacg ggatctgaaa 9540 acctttcgac gaaagcgtct aaccagtcac agtcacaagg taggctgagt acggcttctt 9600 gtgggcgggg gtggttatgt gttcggtctg f ggtcttctgt ttcttcttca tctcgggaag 9660 gtgagacgat gctgctggtg atgaaattaa agtaggcagt tctaagacgg cggatggtgg 9720 cgaggagcac caggtctttg ggtccggctt gccggatacg caggcgattg gccattcccc 9780 aagcattatc ctgacatcta gcaagatctt tgtagtagtc ttgcatgagc cgttctacgg 9840 gcacttcttc ctcacccgtt ctgccatgca tacgtgtgag tccaaatccg cgcattggtt 9900 gtaccagtgc caagtcagct acgactcttt cggcgaggat ggcttgctgt acttgggtaa 9960 gggtggcttg aaagtcatca aaatccacaa agcggtggta agctcctgta ttaatggtgt 10020 aagcacagtt ggccatgact gaccagttaa ctgtctggtg accagggcgc acgagctcgg 10080 tgtatttaag gcgcgaatag gcgcgggtgt caaagatgta atcgttgcag gtgcgcacca 10140 gatactggta ccctataaga aaatgcggcg gtggttggcg gtagagaggc catcgttctg 10200 tagctggagc gccaggggcg aggtcttcca acataaggcg gtgatagccg tagatgtacc 10260 72 tggacatcca ggtgattcct gcggcggtag tagaagcccg aggaaactcg cgtacgcggt 10320 tccaaatgtt gcgtagcggc atgaagtagt tcattgtagg cacggtttga ccagtgaggc 10380 gcgcgcagtc attgatgctc tatagacacg gagaaaatga aagcgttcag cgactcgact 10440 ccgtagcctg gaggaacgtg aacgggttgg gtcgcggtgt accccggttc gagacttgta 10500 ctcgagccgg ccggagccgc ggctaacgtg gtattggcac tcccgtctcg acccagccta 10560 caaaaatcca ggatacggaa tcgagtcgtt ttgctggttt ccgaatggca gggaagtgag 10620 tcctattttt tttttttgcc gctcagatgc atcccgtgct gcgacagatg cgcccccaac 10680 aacagccccc ctcgcagcag cagcagcagc aatcacaaaa ggctgtccct gcaactactg 10740 caactgccgc cgtgagcggt gcgggacagc ccgcctatga tctggacttg gaagagggcg 10800 aaggactggc acgtctaggt gcgccttcac ccgagcggca tccgcgagtt caactgaaaa 10860 aagattctcg cgaggcgtat gtgccccaac agaacctatt tagagacaga agcggcgagg 10920 agccggagga gatgcgagct tcccgcttta acgcgggtcg tgagctgcgt cacggtttgg 10980. accgaagacg agtgttgcgg gacgaggatt tcgaagttga tgaaatgaca gggatcagtc 11040 ctgccagggc acacgtgtct gcagccaacc ttgtatcggc ttacgagcag acagtaaagg 11100 aagagcgtaa cttccaaaag tcttttaata atcatgtgcg aaccctgatt gcccgcgaag 11160 aagttaccct tggtttgatg catttgtggg atttgatgga agctatcatt cagaacccta 11220 ctagcaaacc tctgaccgcc cagctgtttc tggtggtgca acacagcaga gacaatgagg 11280 ctttcagaga ggcgctgctg aacatcaccg aacccgaggg gagatggttg tatgatctta 11340 tcaacattct acagagtatc atagtgcagg agcggagcct gggcctggcc gagaaggtgg 11400 ctgccatcaa ttactcggtt ttgagcttgg gaaaatatta cgctcgcaaa atctacaaga 11460 ctccatacgt tcccatagac aaggaggtga agatagatgg gttctacatg cgcatgacgc 11520 tcaaggtctt gaccctgagc gatgatcttg gggtgtatcg caatgacaga atgcatcgcg 11580 cggttagcgc cagcaggagg cgcgagttaa gcgacaggga actgatgcac agtttgcaaa 11640 gagctctgac tggagctgga accgagggtg agaattactt cgacatggga gctgacttgc 11700 agtggcagcc tagtcgcagg gctctgagcg ccgcgacggc aggatgtgag cttccttaca 11760 tagaagaggc ggacgaaggc gaggaggaag agggcgagta cctggaagac tgatggcaca 11820 acccgtgttt tttgctagat ggaacagcaa gcaccggatc ccgcaatgcg ggcggcgctg 11880 cagagccagc cgtccggcat taactcctcg gacgattgga cccaggccat gcaacgtatc 11940 atggcgttga cgactcgcaa ccccgaagcc tttagacagc aaccccaggc caaccgtcta 12000 tcggccatca tggaagctgt agtgccttcc cgctctaatc ccactcatga gaaggtcctg 12060 gccatcgtga acgcgttggt ggagaacaaa gctattcgtc cagatgaggc cggactggta 12120 73 tacaacgctc tcttagaacg cgtggctcgc tacaacagta gcaatgtgca aaccaatttg 12180 gaccgtatga taacagatgt acgcgaagcc gtgtctcagc gcgaaaggtt ccagcgtgat 12240 gccaacctgg gttcgcrggt ggcgttaaat gctttcttga gtactcagcc tgctaatgtg 12300 ccgcgtggtc aacaggatta tactaacttt ttaagtgctt tgagactgat ggtatcagaa 12360 gtacctcaga gcgaagtgta tcagtccggt cctgattact tctttcagac tagcagacag 12420 ggcttgcaga cggtaaatct gagccaagct tttaaaaacc ttaaaggttt gtggggagtg 12480 catgccccgg taggagaaag agcaaccgtg tctagcttgt taactccgaa ctcccgccta 12540 ttattactgt tggtagctcc tttcaccgac agcggtagca tcgaccgtaa ttcctatttg 12600 ggttacctac taaacctgta tcgcgaagcc atagggcaaa gtcaggtgga cgagcagacc 12660 tatcaagaaa ttacccaagt cagtcgcgct ttgggacagg aagacactgg cagtttggaa 12720 gccactctga acttcttgct taccaatcgg tctcaaaaga tccctcctca atatgctctt 12780 actgcggagg aggagaggat ccttagatat gtgcagcaga gcgtgggatt gtttctgatg 12840 caagaggggg caactccgac tgcagcactg gacatgacag cgcgaaatat ggagcccagc 12900 atgtatgcca gtaaccgacc tttcattaac aaactgctgg actacttgca cagagctgcc 12960 gctatgaact ctgattattt caccaatgcc atcttaaacc cgcactggct gcccccacct 13020 ggtttctaca cgggcgaata tgacatgccc gaccctaatg acggatttct gtgggacgac 13080 gtggacagcg atgttttttc acctctttct gatcatcgca cgtggaaaaa ggaaggcggc 13140 gatagaatgc attcttctgc atcgctgtcc ggggtcatgg gtgctaccgc ggctgagccc 13200 gagtctgcaa gtccttttcc tagtctaccc ttttctctac acagtgtacg tagcagcgaa 13260 gtgggtagaa taagtcgccc gagtttaatg ggcgaagagg agtatctaaa cgattccttg 13320 ctcagaccgg caagagaaaa aaatttccca aacaatggaa tagaaagttt ggtggataaa 13380 atgagtagat ggaagactta tgctcaggat cacagagacg agcctgggat catggggatt 13440 acaagtagag cgagccgtag acgccagcgc catgacagac agaggggtct tgtgtgggac 13500 gatgaggatt cggccgatga tagcagcgtg ctggacttgg gtgggagagg aaggggcaac 13560 ccgtttgctc atttgcgccc tcgcttgggt ggtatgttgt aaaaaaaaat aaaaaaaaaa 13620 ctcatcaugg ccatyycgac gagcytacgt tcgttcttct ttaLLãtCty tgtctagtat η 9ΓΟΛ J-3DOU aatgaggcga gtcgtgctag gcggagcggt ggtgtatccg gagggtcctc ctccttcgta 13740 cgagagcgtg atgcagcagc agcaggcgac ggcggtgatg caatccccac tggaggctcc 13800 ctttgtgcct ccgcgatacc tggcacctac ggagggcaga aacagcattc gttattcgga 13860 actggcacct cagtacgata ccaccaggtt gtatctggtg gacaacaagt cggcggacat 13920 tgcttctctg aactatcaga atgaccacag caacttcttg accacggtgg tgcaaaacaa 13980 tgactttacc cctacggaag ccagcaccca gaccattaac tttgatgaac gatcgcggtg 14040 74 gggcggtcag ctaaagacca tcatgcatac taacatgcca aacgtgaacg agtatatgtt 14100 tagtaacaag ttcaaagcgc gtgtgatggt gtccagaaaa cctcccgacg gtgctgcagt 14160 tggggatact tatgatcaca agcaggatat tttgaaatat gagtggttcg agtttacttt 14220 gccagaaggc aacttttcag ttactatgac tattgatttg atgaacaatg ccatcataga 14280 taattacttg aaagtgggta gacagaatgg agtgcttgaa agtgacattg gtgttaagtt 14340 cgacaccagg aacttcaagc tgggatggga tcccgaaacc aagttgatca tgcctggagt 14400 gtatacgtat gaagccttcc atcctgacat tgtcttactg cctggctgcg gagtggattt 14460 taccgagagt cgtttgagca accttcttgg tatcagaaaa aaacagccat ttcaagaggg 14520 ttttaagatt ttgtatgaag atttagaagg tggtaatatt ccggccctct tggatgtaga 14580 tgcctatgag aacagtaaga aagaacaaaa agccaaaata gaagctgcta cagctgctgc 14640 agaagctaag gcaaacatag ttgccagcga ctctacaagg gttgctaacg ctggagaggt 14700 cagaggagac aattttgcgc caacacctgt tccgactgca gaatcattat tggccgatgt 14760 gtctgaagga acggacgtga aactcactat tcaacctgta gaaaaagata gtaagaatag 14820 aagctataat gtgttggaag acaaaatcaa cacagcctat cgcagttggt atctttcgta 14880 caattatggc gatcccgaaa aaggagtgcg ttcctggaca ttgctcacca cctcagatgt 14940 cacctgcgga gcagagcagg tctactggtc gcttccagac atgatgaagg atcctgtcac 15000 tttccgctcc actagacaag tcagtaacta ccctgtggtg ggtgcagagc ttatgcccgt 15060 cttctcaaag agcttctaca acgaacaagc tgtgtactcc cagcagctcc gccagtccac 15120 ctcgcttacg cacgtcttca accgctttcc attttaatcc gtccgccggc 15180 gcccaccatt accaccgtca gtgaaaacgt tcctgctctc acagatcacg ggaccctgcc 15240 gttgcgcagc agtatccggg gagtccaacg tgtgaccgtt actgacgcca gacgccgcac 15300 ctgtccctac gtgtacaagg cactgggcat agtcgcaccg cgcgtccttt caagccgcac 15360 tttctaaaaa aaaaaaaaat gtccattctt atctcgccca gtaataacac cggttggggt 15420 ctgcgcgctc caagcaagat gtacggaggc gcacgcaaac gttctaccca acatcctgtc 15480 cgtgttcgcg gacattttcg cgctccatgg ggcgccctca agggccgcac tcgcgttcga 15540 accaccgtcg atgatgtaat cgatcaggtg gttgccgacg cccgtaatta tactcctact 15600 gcgcctacat ctactgtgga tgcagttatt gacagtgtag tggctgacgc tcgcaactat 15660 gctcgacgta agagccggcg aaggcgcatt gccagacgcc accgagctac cactgccatg 15720 cgagccgcaa gagctctgct acgaagagct agacgcgtgg ggcgaagagc catgcttagg 15780 gcggccagac gtgcagcttc gggcgccagc gccggcaggt cccgcaggca agcagccgct 15840 gtcgcagcgg cgactattgc cgacatggcc caatcgcgaa gaggcaatgt atactgggtg 15900 75 cgtgacgctg ccaccggtca acgtgtaccc gtgcgcaccc gtccccctcg cacttagaag 15960 atactgagca gtctccgatg ttgtgtccca gcggcgagga tgtccaagcg caaatacaag 16020 gaagaaatgc tgcaggttat cgcacctgaa gtctacggcc aaccgttgaa ggatgaaaaa 16080 aaaccccgca aaatcaagcg ggttaaaaag gacaaaaaag aagaggaaga tggcgatgat 16140 gggctggcgg agtttgtgcg cgagtttgcc ccacggcgac gcgtgcaatg gcgtgggcgc 16200 aaagttcgac atgtgttgag acctggaact tcggtggtct ttacacccgg cgagcgttca 16260 agcgctactt ttaagcgttc ctatgatgag gtgtacgggg atgatgatat tcttgagcag 16320 gcggctgacc gattaggcga gtttgcttat ggcaagcgta gtagaataac ttccaaggat 16380 gagacagtgt cgataccctt ggatcatgga aatcccaccc ctagtcttaa accggtcact 16440 ttgcagcaag tgttacccgt aactccgcga acaggtgtta aacgcgaagg tgaagatttg 16500 tatcccacta tgcaactgat ggtacccaaa cgccagaagt tggaggacgt tttggagaaa 16560 gtaaaagtgg atccagatat tcaacctgag gttaaagtga gacccattaa gcaggtagcg 16620 cctggtctgg gggtacaaac tgtagacatt aagattccca ctgaaagtat ggaagtgcaa 16680 actgaacccg caaagcctac tgccacctcc actgaagtgc aaacggatcc atggatgccc 16740 atgcctatta caactgacgc cgccggtccc actcgaagat cccgacgaaa gtacggtcca 16800 gcaagtctgt tgatgcccaa ttatgttgta cacccatcta ttattcctac tcctggttac 16860 cgaggcactc gctactatcg cagccgaaac agtacctccc gccgtcgccg caagacacct 16920 gcaaatcgca gtcgtcgccg tagacgcaca agcaaaccga ctcccggcgc cctggtgcgg 16980 caagtgtacc gcaatggtag tgcggaacct ttgacactgc cgcgtgcgcg ttaccatccg 17040 agtatcatca cttaatcaat gttgccgctg cctccttgca gatatggccc tcacttgtcg 17100 ccttcgcgtt cccatcactg gttaccgagg aagaaactcg cgccgtagaa gagggatgtt 17160 gggacgcgga atgcgacgct acaggcgacg gcgtgctatc cgcaagcaat tgcggggtgg 17220 ttttttacca gccttaattc caattatcgc tgctgcaatt ggcgcgatac caggcatagc 17280 ttccgtggcg gttcaggcct cgcaacgaca ttgacattgg aaaaaaacgt ataaataaaa 17340 aaaaaaaaat acaatggact ctgacactcc tggtcctgtg actatgtttt cttagagatg 17400 gaagacatca atttttcatc cttggctccg cgacacggca cgaagccgta catgggcacc 17460 tggagcgaca tcggcacgag ccaactgaac gggggcgcct tcaattggag eagtatctgg 17520 agcgggctta aaaattttgg ctcaaccata aaaacatacg ggaacaaagc ttggaacagc 17580 agtacaggac aggcgcttag aaataaactt aaagaccaga acttccaaca aaaagtagtc 17640 gatgggataç cttccggcat caatggagtg gtagatttgg ctaaccaggc tgtgcagaaa 17700 aagataaaca gtcgtttgga cccgccgcca gcaaccccag gtgaaatgca agtggaggaa 17760 gaaattcctc cgccagaaaa acgaggcgac aagcgtccgc gtcccgattt -a «* ggaagagacg 17820 76 76 ctggtgacgc gcgtagatga accactagac cgatagcccc cccgtcacct tggatttgcc gtcgctgccc cgaaaccagt aatgcgcact ggcaaaatac cgcegtcgct gcttttaatt tgtcattaca cgccgtcaca agttactttc aagatggcca cggacaggat gcttcggagt cacctacttc aatctgggaa gaccaccgac cgtagccagc tacatactct tacaaagtgc ggccagcacg ttctttgaca ttctggtacg gcttacaact tgcagaaggt gtaaaaaata tactacttac acttttggca actcccagta ggtttggaag atatcagcca gaacctcagc aaagtatgga ggcagggctc tgccaaacct actaatgtga tcagaaagtc gaatatgata cttaagtcct aaaattgtca tgtagtgtac aaacctggaa tatgcccaac agacccaact taacagtact ggtaacatgg tgacttgcag gacagaaaca cagaaccaga tactttagca tgttattgaa aatcatggtg cataggtgtt ccaacaacca ttggaaggaa cctgaagtaa ggaaattaac cttcaagcca accgccttct tatgaggaag aatggccacc ggggtgatga ccctccccct gctgctactg cgccgtagct aggtcacgtc tctgaacagc atcgtgggtc aaatatggag tagcgcttaa gcagcagagg aaaaaaggaa ccccatcgat gctgccccaa acctgagtcc gggtctggtg ataagtttag aaatcccacc ggctcatgtt gcgcttcgtg ggtacaccct ggccgtgggc ttaggggtgt gttggacaga ccctggctcc taaaggcgct caactggtga ggaacacgta atgctcctgt aaaagctgaa tttcagatga agaaagtaaa tgggagatga aacttggact tcaaacccga tactaagatg aaggcggtca ggcaaaacaa tcgacatgga gttttttgat tgtatgtaga aaatgtaaat cagaagacac aagttccgaa acattggctt cagagataac gggtgctggc tggtcaagcg cagaactttc ttaccaactc tgtggaatca ggctgtggac tggaagatga acttcccaac gttacaaatc aatagttcca atggaacaag tgagatcgga atctatggcg aagtttcctt caacgaagct tggaatgccc aaccttctca gttgcatcga ctgtacccgc ttctaagcct ccgggggcgc tectcgtcca taggcgtgca aagtgtaaaa cttgcctatc tgtgtatatg gaggtcgtgc gtcgacgctg tgggcataca tgcacatcgc cagttcgccc gcgccacaga gtagcgccga cccacgatgt cccgttgacc gggaggacaa gacaacagag tgctggatat ggtcccagtt tcaaacccta ccaaatacat ctcagtggat acagaagagg aaaccaatac gctgaaatta caaaagaagg ccgatttatg ctgataaaac gaccttgatg gaaaaaccga aaaccatgct acgggtcctt aaaacaacgg agcagccaaa gcggcatcgc agaaaacaaa ttggaaactc cagacactca gctaatttgg gacaacaatc tttattggac ttatgtacta tctcagttaa atgcagtggt ttgcttgact ctctgggcga agttatgatc ctgatgtacg tactgttttc cactggacgg aatggagaca atgcgcctaa cagggtaatt tgtttgccat tattccaatg tggctctata 17880 17940 18000 18060 18120 18180 18240 18300 18360 18420 18480 18540 18600 18660 18720 18780 18840 18900 18960 19020 19080 19140 19200 19260 19320 19380 19440 19500 19560 19620 19680 77 77 tctcccagac tcgtacãaat acaccccgtc ctacgactac atgaacgggc gggtggtgcc tggtgccagg tggtctctgg atgccatgga cgctggcttg cgttaccgat ccatgcttct acaagtgcct caaaaattct tcgctgttaa ttatgagtgg aactttagga aggatgtgaa cctgcgggta gatggcgcca gcatcagttt ccccatggct cacaacaccg cttccaccct tcagtcattc aacgactacc tatctgcagc aaccaatatt cccatttcca ttccttctcg taccagactg aaaaccaaag aaactccctc ctattctggt tctattccct acctggatgg ggtttccatc atgtttgact cttcagtgag taacgaattt gaaataaagc gcactgtgga catgaccaaa gactggttct tggtacagat cttctacart ccagaaggat acaaagatcg catgagcagg caggtggttg atgaggtcaa ctaccaacac aacaactctg gctttgtggg accctatccc gctaactatc cctatccact gcagaaaaag ttcttgtgtg acagaaccat gtctatgggg gcccttacag acttgggaca tctggacatg acctttgagg tggatcccat cgaagttttc gacgtggtca gagtgcatca cctgcgtaca ccgttctcgg ccggtaacgc aatagcagct gcaaccatgg cctgcggatc agccattgtc caagacctgg gttgcggacc cccggggttc atggcccccg ataagctcgc gacgggggga gagcactggt tggctttcgg ttttgatcct tttggattct cggatgatcg gggtctcctg cgccgcagcg ctcttgctac tacccagacc gtgcagggtc cccgttctgc tcacgccttt gtgcactggc ctgaccgtcc caatgtcact cttccagaaa acaaaaacac gccatctcta gtagacacct atgtgaacat caatgtcaac ccattcaacc accaccgtaa gggtaacgga cgttatgtgc ctttccacat aaacctgctg cttctcccag gctcctacac catggttcta cagagttccc tcggtaacga cacgagcatc aacctctatg ctactttttt tgaagccatg ctgcggaatg acaccaatga taacatgctc taccccattc ctgccaatgc caactgggcg gctttcagag gctggtcatt tttggggtct ggatttgacc cctactttgt taccttctac ctgaaccaca cttttaagaa ctggcctgga aatgacaggt tactatctcc tggcgaaggc tacaacgtag cccaatgcaa gctcgccaac tacaacatcg gctatcaggg catgtattca tttttcagaa acttccagcc ttacaaagac ttcaaggccg tcgccatacc ttacatggct ccgaccatgc gccaaggtca cattggaaca actgccgtaa atagtgttac gtggcgcata ccgttctcga gcaacttcat gaatatgctc tatgccaact cagctcatgc ggatgagccc accctgcttt atcttctctt gccacaccgc ggcatcatcg aggcagtcta taccacgtaa gaagcttctt gcttcttgca ccaaaacggc tccagcgagc aagagctcag ctattttttg ggaacctacg ataagcgctt ctgtgccatt gtaaatacgg ccggacgtga ttggaaccca cgttctaaca cctgctacct tctcaaacag atttaccagt ttgaatatga caaggaccgc tgtattacgc tggaaaaatc cgcctgcgga cttttctgct gcatgttcct catggacgga aaccccacca tgaaattgct __ 19740 19800 19860 19920 19980 20040 20100 20160 20220 20280 20340 20400 20460 20520 20580 20640 20700 20760 20820 20880 20940 21000 21060 21120 21180 21240 21300 21360 21420 21480 21540 21600 78 aactggagtg ccaaacaaca tgcttcattc tcetaaagtc cagcccaccc tgtgtgacaa 21660 tcaaaaagca ctctaccatt ttcttaatac ccattcgcct tattttcgct cccatcgtac 21720 acacatcgaa agggccactg cgttcgaccg tatggatgtt caataatgac tcatgtaaac 21780 aacgtgttca ataaacatca ctttattttt ttacatgtat caaggctctg eattacttat 21840 ttatttacaa gtcgaatggg ttctgacgag aatcagaatg acccgcaggc agtgatacgt 21900 tgcggaactg atacttgggt tgccacttga attcgggaat caccaacttg ggaaccggta 21960 tatcgggcag gatgtcactc cacagctttc tggtcagctg caaagctcca agcaggtcag 22020 gagccgaaat cttgaaatca caatcaggac cagtgctttg agcgcgagag ttgcggtaca 22080 ccggattgca gcactgaaac accatcagcg acggatgtct cacgcttgcc agcacggtgg 22140 gatctgcaat catgcccaca tccagatctt cagcattggc aatgctgaac ggggtcatct 22200 tgcaggtctg cctacccatg gcgggcaccc aattaggctt gtggttgcaa tcgcagtgca 22260 gggggatcag tatcatcttg gcctgatcct gtctgattcc tggatacacg gctetcatga 22320 aagcatcata ttQCttyãaà gcctgctggg ctttactacc ctcggtataa aacatcccgc 22380 aggacctgct cgaaaactgg ttagctgcac agccggcatc attcacacag cagcgggcgt 22440 cattgttagc tatttgcacc acacttctgc cccagcggtt ttgggtgatt ttggttcgct 22500 cgggattctc ctttaaggct cgttgtccgt tctcgctggc cacatccatc tcgataatct 22560 gctccttctg aatcataata ttgccatgca ggcacttcag cttgccctca taatcattgc 22620 agccatgagg ccacaacgca cagcctgtac attcccaatt atggtgggcg atctgagaaa 22680 aagaatgtat cattccctgc agaaatcttc ccatcatcgt gctcagtgtc ttgtgactag 22740 tgaaagttaa ctggatgcct cggtgctcct cgtttacgta ctggtgacag atgcgcttgt 22800 attgttcgtg ttgctcaggc attagtttaa aagaggttct aagttcgtta tccagcctgt 22860 acttctccat cagcagacac atcacttcca tgcctttctc ccaagcagac accaggggca 22920 agctaatcgg attcttaaca gtgcaggcag cagctccttt agccagaggg tcatctttag 22980 cgatcttctc aatgcttctt ttgccatcct tctcaacgat gcgcacgggc gggtagctga 23040 aacccactgc tacaagttgc gcctcttctc tttcttcttc gctgtcttga ctgatgtctt 23100 gcatggggat atgtttggtc ttccttggct tctttttggg gggtatcgga ggaggaggac 23160 tgtcgctccg ttccggagac agggaggatt gtgacgtttc gctcaccatt accaactgac 23220 tgtcggtaga agaacctgac cccacacggc gacaggtgtt tctcttcggg ggcagaggtg 23280 gaggcgattg cgaagggctg cggtccgacc tggaaggcgg atgactggca gaaccccttc 23340 cgcgttcggg ggtgtgctcc ctgtggcggt cgcttaactg atttccttcg cggctggcca 23400 ttgtgttctc ctaggcagag aaacaacaga catggaaact cagccattgc tgtcaacatc 23460 79 79 gccacgagtg ccatcacatc tegtcctcag tccaccgccc agtcctgcca ccacctctac tgacatgcag aataaaaaag cgaaagagtc tgtgacaccg gtggaacacg aggaagagtt ctgcccaaaa caacgagcag ataactatca cgactacctc atagggcttg acggggaaga gctcatagtc aaggatgcat tattggacag cagccgcgcc tacgagctta acctcttttc cggcacctgc gagccaaatc ctcgcttaaa actggctacc tatcacatct tttttaaaaa tcgcacccgc gccgatgccc tactcaatct ttccttggaa gaggttccaa agatcttcga aaatgctctg caaaagggag aaaatggcat ggaaggcgat aatgccagac tcgcagtact atatcccgct gtcaacctgc cccctaaagt taagcgcgca agtccccttt cagaagacat accagtggtc agtgatgagc agctaacccg ggaagagcgt cgcaagctta tgatggccgt ccgacgtttc tttaccgatt cagaaacctt ttttagacac ggctttgtgc ggcaggcatg ggtttcctac atgggtattc tgcatgagaa cctgaagggg gaagcccgcc gtgattacat cacgtggcaa accggcatgg gtgtatggca gcttgacaag ctcttacaga aatctcttaa cgtcgcttcc gacctggcag acctcatctt cggattgcct gactttatga gccagagcat acgctccggt atcctgcccg ccacctgctg ctaccgcgag tgccccccgc cgctatggag tctctcctac cactcggatg tgatcgagga ctgccgctgc aatctgtgca cgccccaccg cgaaacccag ataataggca cctttgaatt ttctcctggg caaagtttaa aactgacccc cgacgaggaa aaggagcaga gcttaagcat cctagaagat aaggaggtcg acgcatctca tgagacagac atcgagcaag acccgggcta gaaacgcttt ctagagagag aggatgaaaa ccaagatgct ggaaataggg atcagaacac cgcgctcctt aaacatctag caagacagtc aactgaagtg cccatcagtg tggaagagct acctcgtact ccccccaaac gtcagccaaa cttttatcca gcttttgctg tgccagaagt tcaaaaaatt ccagtctcct gccgcgctaa gggacctggt tcacgcttac ctgatatagc gggtctgggc aataatgaga ctcgggccgc ggatgagcat cacagcgttc tggtggaatt caagcgaagc atcgaggtca cacacttcgc catgacggcg gtcatggacc agttactcat gcatgaccca gatgcctgtg atgagggtaa atggctgggc accgactctc ccagggattt ggtgctggtt accgtagaac tagagtgtct gcgcaaactc gaagagaatc tgcactacac caagatatct aacgtggaac tcaccaacct tcgcctagga caaagcgtgc tgcacagcac ccgcgattgt gtctatctgt acctgtgcca gcaatgttta gaagaacaga acttgaaaga ggttctgtgg acagggttcg acgagcgcac cccagagcgt ctcagggtta ctttgcgaaa gcttaacaat tttcgctctt tcatcctgga cgcactgccc tccgactttg tgcctctcac tcactgctac ctgttccgtc tggccaacta tgtgagcgga gacggcttgc tggagtgtca gtccctagct tgcaaccccc agttgatgag gcaaggcccc agcagccaag gcgatgggtc gggactgtgg acctccgcct acttgcgcaa
A* OO 23520 23580 23640 23700 23760 23820 23880 23940 24000 24060 24120 24180 24240 24300 24360 24420 24480 24540 24600 24660 24720 24780 24840 24900 24960 25020 25080 25140 25200 25260 25320 25380 80 gtttgetccg gaagattacc acccctatga tccaaaggcc gaactttcgg cctgcgtcat agccatccaa aaatcccgcc aagaatttct cccccagacc ggcgaggaac tcaacacaag acaagaagtt gaaggtgcag ccgccgcccc aggcagagga ggcggaggag gacagtctgg aggaaaacga ggaggcagag gaggtggaag ctgcggagac aagcaacagc gctaccatct ccagcagtag atgggacgag accggacgct gtaagaagga tcggcaggga tacaagtcct gcttgcatga gtgcgggggc aacatatcct gggtgaactt tccgcgcaat gttttgcatt gccagcaaat cccggcagtc tcgacagata ccagcagcgg cagttagaaa atacacaaca gccaacgagc cagcgcaaac ccgagagtta atcttccagc agagtcgggg tcaagagcag tcgctcacca gaagttgttt gtatcacaag gacgccgagg ctctcttcaa caagtactgc gcgcttatcc aaaaaaggcg ggaattacat gccttacatg tggagttatc aaecccaaat ctccacccgc atgaattggc tcagcgccgg acgcgcctac cgaaaccaaa tacttttgga acaccttaat cccagaaatt ggcccgccgc cactgtatta cttcctcgag acgcccaggc gttagctggc ggctccaccc tatgtcgtca gatcagaggc cgaggtatcc agctcaacga accagacgga atctttcaga ttgccggctg tgttctgact ttggaaagtt cgtcttcgca atttgtggag gagtttactc cctctgtcta ttacccggac gagttcatac cgaacttcga ttgatgtctg gtgacgcggc tgagctatct aatcaagttc tatgaggacc aatcacagcc cacccagggg gcaattctgg cccaattgca actgaaaaag ggtaaggggg tctacettga gttccctcag gatgtcccaa cgacgagaaa cagaagatat ggaggaagat tgggacagtc aggacagtct ggaggaagac agtttggagg aagtaaccgc cgacaaacag ttatcctcgg ccgctccgag tcgaggaacc cggcggcgtc tcccgaaccc aaccagcgct tccaagaccg ggcgggggca taagaatgcc atcatctcct tcacgcggcg ctacttgcta ttccaccatg actaccgtca cctccacagc ccctactata aagacagcgg cggcgacctc caacagaaaa agtgcagcaa caggaggatt aaagattaca agaaatcgga tctttccaac cctgtatgcc gaactgaaaa taaaaaaccg atctctgcgt agcgaagatc aacttcagcg cactctcgag gcgctgactc ttaaagagta ggcagcgacc catcctcgac atgagtaaag aaattcccac gggattggcg gcaggcgcct cccaggacta gccttctatg atttctcgag ttaatgatat acagtcagct cttaccacca cgccccgcca cctagtgtac caggaaagtc ccgctcccac cgaagtccaa atgactaatg caggtgcgca caggcctcgg cataatataa aacgcctgat cgagtcggtg agctctccgc ttggtctacg cgggagatct tccttcaccc ctcgtcaggc accccgctcg ggcggaatcg ggaccgttca cttcaacccc ttctccggat ctcctgggca cgcgattagc gagtcagtgg acggctacga cggctgcgac atctagacca ctgccgccgc 25440 25500 25560 25620 25680 25740 25800 25860 25920 25980 26040 26100 26160 26220 26280 26340 26400 26460 26520 26580 26640 26700 26760 26820 26880 26940 27000 27060 27120 27180 27240 81 tttcgctgct ttgcccggga actcattgag ttcatctact tcgaactccc caaggatcac 27300 cctcaaggtc cggcccacgg agtgcggatt tctatcgaag gcaaaataga ctctcgcctg 27360 caacgaattt tctcccagcg gcccgtgctg atcgagcgag accagggaaa caccacggtt 27420 tccatctact gcatttgtaa tcaccccgga ttgcatgaaa gcctttgctg tcttatgtgt 27480 actgagttta ataaaaactg aattaagact ctcctacgga ctgccgcttc ttcaacccgg 27540 attttacaac cagaagaacg aaacttttcc tgtcgtccag gactctgtta acttcacctt 27600 tcctactcac aaactagaag ctcaacgact acaccgcttt tccagaagca ttttccctac 27660 taatactact ttcaaaaccg gaggtgagct ccaaggtctt cctacagaaa acccttgggt 27720 ggaagcgggc cttgtagtgc taggaattct tgcgggtggg cttgtgatta ttctttgcta 27780 cctatacaca ccttgcttca ctttcttagt ggtgttgtgg tattggttta aaaaatgggg 27840 cccatactag tcttgcttgt tttactttcg cttttggaac cgggttctgc caattacgat 27900 ccatgtctag acttcgaccc agaaaactgc acacttactt ttgcacccga cacaagccgc 27960 atctgtggag ttcttattaa gtgcggatgg gaatgcaggt ccgttgaaat tacacacaat 28020 aacaaaacct ggaacaatac cttatccacc acatgggagc caggagttcc cgagtggtac 28080 actgtctctg tccgaggtcc tgacggttcc atccgcatta gtaacaacac tttcattttt 28140 tctgaaatgt gcgatctggc catgttcatg agcaaacagt attctctatg gcctcctagc 28200 aaggacaaca tcgtaacgtt ctccattgct tattgcttgt gcgcttgcct tcttactgct 28260 ttactgtgcg tatgcataca cctgcttgta accactcgca tcaaaaacgc caataacaaa 28320 gaaaaaatgc cttaacctct ttctgtttac agacatggct tctcttacat ctctcatatt 28380 tgtcagcatt gtcactgccg ctcatggaca aacagtcgtc tctatccctc taggacataa 28440 ttacactctc ataggacccc caatcacttc agaggtcatc tggaccaaac tgggaagcgt 28500 tgattacttt gatataatcc gcaacaaaac aaaaccaata atagtaactt gcaacataca 28560 aaatcttaca ttgattaatg ttagcaaagt ttacagcggt tactattatg gttatgacag 28620 atacagtagt caatatagaa attacttggt tcgtgttacc cagttgaaaa ccacgaaaat 28680 gccaaatatg gcaaagattc gatccgatga caattctcta gaaactttta catctcccac 28740 cacacccgac gaaaaaaaca tcccagattc aatgattgca attgttgcag cggtggcagt 28800 ggtgatggca ctaataataa tatgcatgct tttatatgct tgtcgctaca aaaagtttca 28860 tcctaaaaaa caagatctcc tactaaggct taacatttaa tttcttttta tacagccatg 28920 gtttccacta ccacattcct tatgcttact agtctcgcaa ctctgacttc tgctcgctca 28980 cacctcactg taactatagg ctcaaactgc acactaaaag gacctcaagg tggtcatgtc 29040 ttttggtgga gaatatatga caatggatgg tttacaaaac catgtgacca acctggtaga 29100 tttttctgca acggcagaga cctaaccatt atcaacgtga cagcaaatga caaaggcttc 29160 82 tattatggaa ccgactataa aagtagtcta gattataaca ttattgtact gccatctacc 29220 actccagcac cccgcacaac tactttctct agcagcagtg tcgctaacaa tacaatttcc 29280 aatccaacct ttgccgcgct tttaaaacgc actgtgaata attctacaac ttcacataca 29340 acaatttcca cttcaacaat cagcattatc gctgcagtga caattggaat atctattctt 29400 gtttttacca taacctacta cgcctgctgc tatagaaaag acaaacataa aggtgatcca 29460 ttacttagat ttgatattta atttgttctt ttttttttta tttacagtat ggtgaacacc 29520 aatcatggta cctagaaatt tcttcttcac catactcatt tgtgcattta atgtttgcgc 29580 tactttcaca gcagtagcca cagcaacccc agactgtata ggagcatttg cttcctatgc 29640 actttttgct tttgttactt gcatctgcgt atgtagcata gtctgcctgg ttattaattt 29700 tttccaactt atagactgga tccttgtgcg aattgcctac ctgcgccacc atcccgaata 29760 ccgcaaccaa aatatcgcgg cacttcttag actcatctaa aaccatgcag gctatactac 29820 caatattttt gcttctattg cttccctacg ctgtctcaac cccagctgcc tatagtactc 29880 caccagaaca ccttagaaaa tgcaaattcc aacaaccgtg gtcatttctt gcttgctatc 29940 gagaaaaatc agaaattccc ccaaatttaa taatgattgc tggaataatt aatataatct 30000 gttgcaccat aatttcattt ttgatatacc ccctatttga ttttggctgg aatgctccca 30060 atgcacatga tcatccataa gacccagagg aacacattcc cctacaaaac atgcaacatc 30120 caatagcgct aatagattac gaaagtgaac cacaaecccc actactccct gctattagtt 30180 acttcaacct aaccggcgga gatgactgaa acactcacca cctccaattc cgccgaggat 30240 ctgctcgata tggacggccg cgtctcagaa cagcgactcg cccaactacg catccgccag 30300 cagcaggaac gcgcggccaa agagctcaga gatgtcatcc aaattcacca atgcaaaaaa 30360 ggcatattct gtttggtaaa acaagccaag atatcctacg agatcaccgc tactgaccat 30420 cgcctctctt acgaacttgg cccccaacga caaaaattta cctgcatggt gggaatcaac 30480 cccatagtta tcacccagca aagtggagat actaagggtt gcattcactg ctcctgcgat 30540 tccatcgagt gcacctacac cctgctgaag accctatgcg gcctaagaga cctgctacca 30600 atgaattaaa aaatgattaa taaaaaatca cttacttgaa atcagcaata aggtctctgt 30660 tgaaattttc tcccagcagc acctcacttc cctcttccca actctggtat tctaaacccc 30720 gttcagcggc atactttctc catactttaa aggggatgtc aaattttagc tcctctcctg 30780 tacccacaat cttcatgtct ttcttcccag atgaccaaga gagtccggct cagtgactcc 30840 ttcaaccctg tctaccccta tgaagatgaa agcacctccc aacacccctt tataaaccca 30900 gggtttattt ccccaaatgg cttcacacaa agcccaaacg gagttcttac tttaaaatgt 30960 ttaaccccac taacaaccac aggcggatct ctacagctaa aagtgggagg gggacttaca 31020 83 gtggatgaca ccaacggttt tttgaaagaa aacataagtg ccaccacacc actcgttaag 31080 actggtcact ctataggttt accactagga gccggattgg gaacgaatga aaataaactt 31140 tgtatcaaat taggacaagg acttacattc aattcaaaca acatttgcat tgatgacaat 31200 attaacacct tatggacagg agtcaacccc accgaagcca actgtcaaat catgaactcc 31260 agtgaatcta atgattgcaa attaattcta acactagtta aaactggagc actagtcact 31320 (jcatttgttt atgttatagg agtatctaac aattttaata tgctaactac acacagaaat 31380 ataaatttta ctgcagagct gtttttcgat tctactggta atttactaac tagactctca 31440 tccctcaaaa ctccacttaa tcataaatca ggacaaaaca tggctactgg tgccattact 31500 aatgctaaag gtttcatgcc cagcacgact gcctatcctt tcaatgataa ttctagagaa 31560 aaagaaaact acatttacgg aacttgttac tacacagcta gtgatcgcac tgcttttccc 31620 attgacatat ctgtcatgct taaccgaaga gcaataaatg acgagacatc atattgtatt 31680 cgtataactt ggtcctggaa cacaggagat gccccagagg tgcaaacctc tgctacaacc 31740 ctagtcacct ccccatttac ctttractac atcagagaag acgactgaca aataaagttt 31800 aacttgttta tttgaaaatc aattcacaaa atccgagtag ttattttgcc tcccccttcc 31860 catttaacag aatacaccaa tctctcccca cgcacagctt taaacatttg gataccatta 31920 gatatagaca tggtcttaga ttccacattc caaacagttt cagagcgagc caatctgggg 31980 tcagtgatag ataaaaatcc atcgggatag tcttttaaag cgctttcaca gtccaactgc 32040 tgcggatgcg actccggagt ctggatcacg gtcatctgga agaagaacga tgggaatcat 32100 aatccgaaaa cggtatcgga cgattgtgtc tcatcaaacc cacaagcagc cgctgtctgc 32160 gtcgctccgt gcgactgctg tttatgggat cagggtccac agtgtcctga agcatgattt 32220 taatagccct taacatcaac tttctggtgc gatgcgcgca gcaacgcatt ctgatttcac 32280 tcaaatcttt gcagtaggta caacacatta ttacaatatt gtttaataaa ccataattaa 32340 aagcgctcca gccaaaactc atatctgata taatcgcccc tgcatgacca tcataccaaa 32400 gtttaatata aattaaatga cgttccctca aaaacacact acccacatac atgatctctt 32460 ttggcatgtg catattaaca atctgtctgt accatggaca acgttggtta atcatgcaac 32520 ccaatataac cttccggaac cacactgcca acaccgctcc cccagccatg cattgaagtg 32580 aaccctgctg attacaatga caatgaagaa cccaattctc tcgaccgtga atcacttgag 32640 aatgaaaaat atctatagtg gcacaacata gacataaatg catgcatctt ctcataattt 32700 ttaactcctc aggatttaga aacatatccc agggaatagg aagctcttgc agaacagtaa 32760 agctggcaga acaaggaaga ccacgaacac aacttacact atgcatagtc atagtatcac 32820 aatctggcaa cagcgggtgg tcttcagtca tagaagctcg ggtttcattt tcctcacaac 32880 gtggtaactg ggctctggtg taagggtgat gtctggcgca tgatgtcgag Λ r cgtgcgcgca 32940 84 accttgtcat aatggagttg cttcctgaca ctggcagaac acactcttct tcgccttcta ttcaagtaca accacactct taagttggtc actccatcgc atctaatcgt tctgaggaaa caagcaatgc aactggattg tgtttcaagc atgttaattt ttattccaaa cgatctcgca atctctcgcc cccactgtgt tggtgaaaaa caaggtgctc aaeggtggct tccagcaaag taccaaaaga aggagcattt tctaactcct ccagataatt ttcagctttc cagccttgaa atccacacat tacaaacagg tcccggaggg tcataatgac aaaatatctt gctcctgtgt aattgacatg cccttggctc taagttcttc attatcacca aactgcttag ccagaagccc gcagtacaag cgcagacctc cccaattggc ttgggaaccg ccagtaatat catcgaagtt taaaaattga ataaaagaaa aatttgccaa gcaataggtt accgcgctgc gctccaacat aaaaaaaaac aagcgtcata tcatagtagc catcacaaga caagccacag ggtctccagc aaacaacagc accgaaagtt cctcgcggtg caatccagac atgttagcat cagttaacga aattatgctt aatcgtaagt atagcaaagc aggagaataa aaaatataat tatttctctg ctctaaatac acatacaaag cctcatcagc cacaaagcac aagctctaaa gtgactctcc cctaaactga cgtaatggga gtaaagtgta gaaactgcgt caccagggaa aagtacagtt cctctttctc acggtacgtg atatcccacc ccgccccttt tagccgttaa ccccacagcc cacctcattt acatattggc accattccat <210> 3 <211> 5287 ttctcgtatt ttgtatagca aaacgcggcc tcctgccgct tagcgtgttc cgtgtgatag aaaagaatgc tggcttcagt tgraatcaaa tcatccacgg tagcatatgc aaatcccaac aggagaggag agggaagaga cggaagaacc gtacttcaaa ttgtagatcg cgcagatggc gcacagctag atcaaaagaa atgcgatttt cctccacgcg cacatccaag aacaaaagaa caatcatcat attacattcc tgcaccattc ttattcgtgt cagttcttgt ggtaaatcea cgccctccac caccattctt aaacacaccc cacctgtagc gaattgagaa tggcaacatc tttaagttct agttgtaaaa actctctcat cccgggaaca agagcagggg acgctacagt tccagcaaaa acaagattgg aataagcata gctggaaata taatcaggca gagtttcttg aaaaacattc aaaacctctg ggatgcaaat tgttagtttt gaattagtct gcaaaaataa ctgacgaaca gatggataaa tcagtctttc tcgaccctcg taaaacctgt catcatgatt accagcatga ataattcttg atgaagcata gaaaaaacag ccaacatagc ctttgggtat cacccctcgc ggatacaaag taaaaggcac ctgctgttca ggcaacgtcg cccccggtcc catggcttac cagacaaagt acagcgggca aacctctcca caatatatat atacacaagc aaaaatcccg ccaaacccaa cacacacccc tcacttccgc aatcccaaca ggcgtaactt aacttgcaac gtcattttcc cacggtcgca aatcaccaca cgatccacac tttttaaaat ctataaggta tattatatag atag 33000 33060 33120 33180 33240 33300 33360 33420 33480 33540 33600 33660 33720 33780 33840 33900 33960 34020 5 Anor, j*tygv 34140 34200 34260 34320 34380 34440 34500 34560 34620 34680 34740 34794
<212> ADN 85 <213> Adenovírus <400> 3 ctatggcatc tcgatccagc agacctcctc gtttcgcggg tttggacggc tcctggaata 60 gggtatgaga cgatgggcgt ccagcgctgc cagggttcgg tccttccagg gtctcagtgt 120 tcgagtcagg gttgtttccg tcacagtgaa ggggtgtgcg cctgcttggg cgcttgccag 180 ggtgcgcttc agactcatcc tgctggtcga aaacttctgt cgcttggcgc cctgtatgtc 240 ggccaagtag cagtttacca tgagttcgta gttgagcgcc tcggctgcgt ggcctttggc 300 gcggagctta cctttggaag ttttcttgca taccgggcag tataggcatt tcagcgcata 360 caacttgggc gcaaggaaaa cggattctgg ggagtatgca tctgcgccgc aggaggcgca 420 aacagtttca cattccacca gccaggttaa atccggttca ttggggtcaa aaacaagttt 480 tccgccatat tttttgatgc gtttcttacc tttggtctcc atgagttcgt gtcctcgttg 540 agtgacaaac aggctgtccg tgtccccgta gactgatttt acaggcctct tctccagtgg 600 agtgcctcgg tcttcttcgt acaggaactc tgaccactct gatacaaagg cgcgcgtcca 660 ggccagcaca aaggaggcta tgtgggaggg gtagcgatcg ttgtcaacca gggggtccac 720 cttttccaaa gtatgcaaac acatgtcacc ctcttcaaca tccaggaatg tgattggctt 780 gtaggtgtat ttcacgtgac ctggggtccc cgctgggggg gtataaaagg gggcggttct 840 ttgctcttcc tcactgtctt ccggatcgct gtccaçgaac gtcagctgtt ggggtaggta 900 ttccctctcg aaggcgggca tgacctctgc actcaggttg tcagtttcta agaacgagga 960 ggatttgata ttgacagtgc cggttgagat gcctttcatg aggttttcgt ccatctggtc 1020 agaaaacaca atttttttat tgtcaagttt ggtggcaaat gatccataca gggcgttgga 1080 taaaagtttg gcaatggatc gcatggtttg gttcttttcc ttgtccgcgc gctctttggc 1140 ggcgatgttg agttggacat actcgcgtgc caggcacttc cattcgggga agatagttgt 1200 taattcatct ggcacgattc tcacttgcca ccctcgatta tgcaaggtaa ttaaatccac 1260 actggtggcc acctcgcctc gaaggggttc attggtccaa cagagcctac ctcctttcct 1320 agaacagaaa gggggaagtg ggtctagcat aagttcatcg ggagggtctg catccatggt 1380 aaagattccc ggaagtaaat ccttatcaaa atagctgatg ggagtggggt catctaaggc 1440 catttgccat tctcgagctg ccagtgcgcg ctcatatggg ctaaggggac tgccccatgg 1500 catgggatgg gtgagtgcag aggcatacat gccacagatg tcatagacgt agatgggatc 1560 ctcaaagatg cctatgtagg ttggatagca tcgcccccct ctgatacttg ctcgcacata 1620 gtcatatagt tcatgtgatg gcgctagcag ccccggaccc aagttggtgc gattgggttt 1680 86 ttctgttctg tagacgatct ggcgaaagat ggcgtgagaa ttggaagaga tggtgggtct 1740 ttgaaaaatg ttgâaatggg catgaggtag acctacagag tctctgacaa agtgggcata 1800 agattcttga agcttggtta ccagttcggc ggtgacaagt acgtctaggg cgcagtagtc 1860 aagtgtttct tgaatgatgt cataacctgg ttggtttttc ttttcccaca gttcgcggtt 1920 gagaaggtat tcttcgcgat ccttccagta ctcttctagc ggaaacccgt ctttgtctgc 1980 acggtaagat cctagcatgt agaactgatt aactgccttg taagggcagc agcccttctc 2040 tacgggtaga gagtatgctt gagcagcttt tcgtagcgaa gcgtgagtaa gggcaaaggt 2100 gtctctgacc atgactttga ggaattggta tttgaagtcg atgtcgtcac aggctccctg 2150 ttcccagagt tggaagtcta cccgtttctt gtaggcgggg ttgggcaaag cgaaagtaac 2220 atcattgaag agaatcttgc cggccctggg catgaaattg cgagtgatgc gaaaaggctg 2280 tggtacttcc gctcggttat tgataacctg ggcagctagg acgatctcgt cgaaaccgtt 2340 gatgttgtgt cctacgatgt ataattctat gaaacgcggc gtgcctctga cgtgaggtag 2400 cttactgagc tcatcaaagg ttaggtctgt ggggtcagat aaqqcqtagt gttcgagaqc 2460 ccattcgtgc aggtgaggat tcgctttaag gaaggaggac cagaggtcca ctgccagtgc 2520 tgtttgtaac tggtcccggt actgacgaaa atgccgtccg actgccattt tttctggggt 2580 gacgcaatag aaggtttggg ggtcctgccg ccagcgatcc cacttgagtt ttatggcgag 2640 gtcataggcg atgttgacga gccgctggtc tccagagagt ttcatgacca gcatgaaggg 2700 gattagctgc ttgccaaagg accccatcca ggtgtaggtt tccacatcgt aggtgagaaa 2760 gagcctttct gtgcgaggat gagagccaat cgggaagaac tggatctcct gccaccagtt 2820 ggaggaatgg ctgttgatgt gatggaagta gaactccctg cgacgcgccg agcattcatg 2880 cttgtgcttg tacagacggc cgcagtagtc gcagcgttgc acgggttgta tctcgtgaat 2940 gagttgtacc tggcttccct tgacgagaaa tttcagtggg aagcegaggc ctggcgattg 3000 tatctcgtgc tttactatgt tgtctgcatc ggcctgttca tcttctgtct cgatggtggt 3060 catgctgacg agccctcgcg ggaggcaagt ccagacctcg gcgcggcagg ggcggagctc 3120 gaggacgaga gcgcgcaggc tggagctgtc cagggtcctg agacgctgcg gactcaggtt 3180 agtaggcagt gtcaggagat taacttgcat gatcttttgg agggcgtgcg ggaggttcag 3240 atagtacttg atctcaacgg gtccgttggt ggagatgtcg atggcttgca gggttccgtg 3300 tcccttgggc gctaccaccg tgcccttgtt tttcattttg gacggcggtg gctctgttgc 3360 ttcttgcatg tttagaagcg gtgtcgaggg cgcgcaccgg gcggcagggg cggctcggga 3420 cccggcggca tggctggcag tggtacgtcg gcgccgcgcg cgggtaggtt ctggtactgc 3480 gccctgagaa gactcgcatg cgcgacgacg cggcggttga catcctggat ctgacgcctc 3540 tgggtgaaag ctaccggccc cgtgagcttg aacctgaaag agagttcaac agaatcaatc 3600 87 tcggtatcgt taggcgatct ctctcgacgg atgcccgcct atgaccacct cgetggaaaa catcgtctca tagaagtcca tccagaagac atttcttcct ggaggagggg atgacctctc cgcagagtaa gggagggaga gatctgatcg tcacagtcac tctgggtctt ttaaagtagg gcttgctgga tctttgtagt tgcatacgtg ctttcggcga acaaagcggt ttaactgtct gtgtcaaaga ggcggtggtt tccaacataa gtagtagaag tagttca tgacggcggc ccgccatgaa tggccgcgag cgttccagac gggcgaggtt ggtagttgag gcggcatctc cggcaaaatt ggataagttc caatctcttc gaacgcggcg cgcggcggcg aaacaccgcc gggcgctgat tgtcaagatc aaggtaggct ctgtttcttc cagttctaag tacgcaggcg agtcttgcat tgagtccaaa ggatggcttg ggtaagctcc ggtgaccagg tgtaatcgtt ggcggtagag ggcggtgata cccgaggaaa ttgcctaagg ctgctcgatc gtcgttggag gcggctgtag gagctccacg tgtggtggcg gctgacatcg aaaaaactgg ggcgatggtg ttcttccact acgccggcgg gcgcatggtt gcgcatctcc tatacatttt cacgggatct gagtacggct ttcatctcgg acggcggatg attggccatt gagccgttct tccgcgcatt ctgtacttqg tgtattaatg gcgcacgagc gcaggtgcgc aggccatcgt gccgtagatg ctcgcgtacg atttcttgca tcttcctctt atgcgcccaa accacggccc tggcgggtga atgtgctcgg cccagagctt gagtttcgcg gtgcgcacct aacatctctt cgcacgggca tcagtgacgg ttaaagtggt attaattggc gaaaaccttt tcttgtgggc gaaggtgaga gtggcgagga ccccaagcat acgggcactt ggttgtacca gtaagggtgg gtgtaagcac tcggtgtatt accagatact tctgtagctg tacctggaca cggttccaaa cgtcaccaga gaagatctcc tgagttgaga ccacgggatc agaccgcata tgacgaagaa ccaagcgctc cggacacggt cgcgctcgaa cctcttcagg gacggtcgat cgcggccgtt gactgggagg ccgtagggac cgacgaaagc gggggtggtt cgatgctgct gcaccaggtc tatcctgaca cttcctcacc gtgccaagtc cttgaaagtc agttggccat taaggcgcga ggtaccctat gagcgccagg tccaggtgat tgttgcgtag gttgtcctgg gcggcccgct gaatgcattc tctcgcgcgc gttgcatagg atacatgatc catggcctcg caactcctct agcccctggg tggggctgca gaatctttca ctcgcgcggt ttctccgttt tgcacgcaga gtctaaccag atgtgttcgg ggtgatgaaa tttgggtccg tctagcaaga cgttctgcca agctacgact atcaaaatcc gactgaccag ataggcgcgg aagaaaatgc ggcgaggtct tcctgcggcg cggcatgaag 3660 3720 3780 3840 3900 3960 4020 4080 4140 4200 4260 4320 4380 4440 4500 4560 4620 4680 4740 4800 4860 4920 4980 5040 5100 5160 5220 5280 5287
<210> 4 <211> 21 <212> ADN <213> Sequência artificial <220> 88 <223> iniciador <4 0 0> 4 gggagtttcg cgcggacacg g <210 > 5 <211 > 21 <212> ADN <213> Sequência artificial <220> <223> iniciador <4 0 0> 5 gcgccgccgc cgcggagagg t < 210 > 6 <211 > 24 <212> ADN <213> Sequência artificial <220> <223> iniciador <4 0 0> 6 cgagagccca ttcgtgcagg tgag <210 > 7 <211 > 24 <212> ADN <213> Sequência artificial <220> 89 <223> iniciador <400> 7 gçtgcgacta ctgcggccgt ctgt <210> 8 <211> 4195 <212> ADN <213> Adenovirus <400> 8 tcataagact ctcgtccatc tggtcagaaa acacaatctt cttgttgtcc agcttggtgg 60 caaatgatcc atagagggca ttggatagaa gcttggcgat ggagcgcatg gtttggttct 120 tttccttgtc cgcgcgctcc ttggcggtga tgttaagctg gacgtactcg cgcgccacac 180 atttccattc aggaaagatg gttgtcagtt catccggaac tattctgatt cgccatcccc 240 tattgtgcag ggttatcaga tccacactgg tggccacctc gcctcggagg ggctcattgg 300 tccagcagag tcgacctcct tttcttgaac agaaaggggg gagggggtct agcatgaact 360 90 catcaggggg gtccgcatct atggtaaata ttcccggtag caaatctttg tcaaaatagc 420 tgatggtggc gggatcatcc aaggtcatct gccattctcg aactgccagc gcgcgctcat 480 aggggttaag aggggtgccc cagggcatgg ggtgggtgag cgcggaggca tacatgccac 540 agatatcgta gacatagagg ggctcttcga ggatgccgat gtaagtggga taacatcgcc 600 cccctctgat gcttgctcgc acatagtcat agagttcatg tgagggggca agaagacccg 660 ggcccagatt ggtgcggttg ggtttttccg ccctgtaaac gatctggcga aagatggcat 720 gggaattgga agagatagta ggtctctgga atatgttaaa atgggcatga ggtaagccta 780 cagagtccct tatgaagtgg gcatatgact cttgcagctt ggctaccagc tcggcggtga 840 tgagtacatc cagggcacag tagtcgagag tttcctggat gatgtcataa cgcggttggc 900 ttttcttttc ccacagctcg cggttgagaa ggtattcttc gtgatccttc cagtactctt 960 cgaggggaaa cccgtctttt tctgcacggt aagagcccaa catgtagaac tgattgactg 1020 ccttgtaggg acagcatccc ttctccactg ggagagagta tgcttgggct gcattgcgca 1080 gcgaggtatg agtgagggca aaagtgtccc tgaccatgac tttgaggaat tgatacttga 1140 agtcgatgtc atcacaggcc ccctgttccc agagttggaa gtccacccgc ttcttgtagg 1200 cggggttggg caaagcgaaa gtaacatcat tgaagaggat cttgccggcc ctgggcatga 1260 aatttcgggt gattttgaaa ggctgaggaa cctctgctcg gttattgata acctgagcgg 1320 ccaagacgat ctcatcaaag ccattgatgt tgtgccccac tatgtacagt tctaagaatc 1380 gaggggtgcc cctgacatga ggcagcttct tgagttcttc aaaagtgaga tctgtagggt 1440 cagtgagagc atagtgttcg agggcccatt cgtgcacgtg agggttcgct ttaaggaagg 1500 aggaccagag gtccactgcc agtgctgttt gtaactggtc ccggtactga cgaaaatgct 1560 gtccgactgc catcttrtct ggggtgacgc aatagaaggt ttgggggtcc tgccgccagc 1620 gatcccactt gagttttatg gcgaggtcat aggcgatgtt gacgagccgc tggtctccag 1680 agagtttcat gaccagcatg aaggggatta gctgcttgcc aaaggacccc atccaggtgt 1740 aggtttccac atcgtaggtg agaaagagcc tttctgtgcg aggatgagag ccaatcggga 1800 agaactggat ctcctgccac cagttggagg aatggctgtt gatgtgatgg aagtagaact 1860 ccctgcgacg cgccgagcat tcatgcttgt gcttgtacag acggccgcag tactcgcagc 1920 gattcacggg atgcacctta tgaatgagtt gtacctgact tcctttgacg agaaatttca 1980 gtggaaaatt gaggcctggc gcttgtacct cgcgctttac tatgttgtct gcatcggcat 2040 gaccatcttc tgtctcgatg gtggtcatgc tgacgagccc tcgcgggagg caagtccaga 2100 cctcggcgcg gcaggggcgg agctcgagga cgagagcgcg caggccggag ctgtccaggg 2160 tcctgagacg ctgcggagtc aggttagtag gcagtgtcag gagattaact tgcatgatct 2220 tttggagggc gtgagggagg ttcagatagt acttgatctc aacgggtccg ttggtggaga 2280 91 tgtcgatggc ttgcagggtt ccgtgtccct tgggcgctac caccgtgccc ttgtttttca 2340 ttttggacgg cggtggctct gttgcttctt gcatgtttag aagcggtgtc gagggcgcgc 2400 accgggcggc aggggcggct cgggacccgg cggcatggct ggcagtggta cgtcggcgcc 2460 gcgcgcgggt aggttctggt actgcgccct gagaagactc gcatgcgcga cgacgcggcg 2520 gttgacatcc tggatctgac gcctctgggt gaaagctacc ggccccgtga gcttgaacct 2580 gaaagagagt tcaacagaat caatctcggt atcgttgacg gcggcttgcc taaggatttc 2640 ttgcacgtcg ccagagttgt cctggtaggc gatctcggcc atgaactgct cgatctcttc 2700 ctcttgaaga tctccgcggc ccgctctctc gacggtggcc gcgaggtcgt tggagatgcg 2760 cccaatgagt tgagagaatg cattcatgcc cgcctcgttc cagacgcggc tgtagaccac 2820 agcccccacg ggatctctcg cgcgcatgac cacctgggcg aggttgagct ccacgtggcg 2880 ggtgaagacc gcatagttgc ataggcgctg gaaaaggtag «gagtgtgg tggcgatgtg 2940 ctcggtgacg aagaaataca tgatccatcg tctcagcggc atctcgctga catcgcccag 3000 cgcttccaag cgctccatgg cctcgtagaa gtccacggca aagttaaaaa actgggagtt 3060 acgcgcggac acggtcaact cctcttccag aagacggata agttcggcga tggtggtgcg 3X20 cacctcgcgc tcgaaagccc ctgggatttc ttcctcaatc tcttcttctt ccactaacat 3180 ctcttcctct tcaggtgggg ctgcaggagg agggggaacg cggcgacgcc ggcggcgcac 3240 gggcagacgg tcgatgaatc tttcaatgac ctctccgcgg cggcggcgca tggtctcggt 3300 gacggcacga ccgttctccc tgggtctcag agtgaagacg cctccgcgca tctccctgaa 3360 gtggtgactg ggaggctctc cgttgggcag ggacaccgcg ctgattatgc attttatcaa 3420 ttgccccgta ggtactccgc gcaaggacct gatcgtctca agatccacgg gatctgaaaa 3480 cctttcgacg aaagcgtcta accagtcgca atcgcaaggt aggctgagca ctgtttcttg 3540 cgggcggggg cggctagacg ctcggtcggg gttctctctt tcttctcctt cctcctcttg 3600 ggagggtgag acgatgctgc tggtgatgaa attaaaatag gcagttttga gacggcggat 3660 ggtggcgagg agcaccaggt ctttgggtcc ggcttgttgg atacgcaggc gatgagccat 3720 tccccaagca ttatcctgac atctggccag atctttatag tagtcttgca tgagtcgttc 3780 cacgggcact tcttcttcgc ccgctctgcc atgcatgcga gtgatcccga acccgcgcat 3840 gggctggaca agtgccaggt ccgctacaac cctttcggcg aggatggctt gctgcacctg 3900 ggtgagggtg gcttggaagt cgtcaaagtc cacgaagcgg tggtaggccc cggtgttgat 3960 tgtgtaggag cagttggcca tgactgacca gttgacrgtc tggtgcccag ggcgcacgag 4020 ctcggtgtac ttgaggcgcg agtatgcgcg ggtgtcaaag atgtaatcgt tgcaggtgcg 4080 caccaggtac tggtagccaa tgagaaagtg tggcggtggc tggcggtaca ggggccatcg 4140 ctctgtagcc ggggcrccgg gggcgaggtc ttccagcatg aggcggtggt agccg 4195

Claims (25)

1/9 REIVINDICAÇÕES 1. Adenovírus quimérico recombinante com um genoma que inclui uma região E2B, em que a região E2B referida inclui uma sequência de ácidos nucleicos derivada de um primeiro serotipo adenoviral e uma sequência de ácidos nucleicos derivada de um segundo serotipo adenoviral; em que o primeiro e segundo serotipos adenovirais referidos são, cada um, seleccionados a partir de subgrupos adenovirais B, C, D, E, ou F e são distintos uns dos outros e em que o referido adenovírus quimérico é oncolítico e apresenta um índice terapêutico melhorado para uma célula tumoral.
2. Adenovírus de acordo com a reivindicação 1, caracterizado por incluir ainda regiões que codificam proteínas da fibra, do hexão e do pentão, em que os ácidos nucleicos que codificam estas proteínas pertencem todos ao mesmo serotipo adenoviral.
3. Adenovírus de acordo com a reivindicação 1 ou 2, caracterizado por incluir uma região E3 modificada ou incluir ainda uma região E4 modificada.
4. Adenovírus de acordo com qualquer uma das reivindicações 1 a 3, caracterizado por a célula tumoral referida ser uma célula tumoral do cólon, mama, pâncreas, pulmão, próstata, ovário ou hemopoiética.
5. Adenovírus de acordo com a reivindicação 4, caracterizado por a célula tumoral ser uma célula tumoral do cólon.
6. Adenovírus de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por a sequência de 2/9 nucleótidos da região E2B do referido adenovirus incluir a SEQ ID NO:3.
7. Adenovirus de acordo com qualquer uma das reivindicações 1 a 5, caracterizado por a sequência de nucleótidos do referido adenovirus incluir a SEQ ID NO: 1.
8. Adenovirus quimérico recombinante com um genoma que inclui uma região E2B, em que a região E2B referida inclui uma sequência de ácidos nucleicos derivada de um primeiro serotipo adenoviral e uma sequência de ácidos nucleicos derivada de um segundo serotipo adenoviral e em que o primeiro e segundo serotipos adenovirais referidos são, cada um, seleccionados a partir de subgrupos adenovirais B, C, D, E, ou F e são distintos uns dos outros e em que o referido adenovirus quimérico é oncolítico e apresenta um indice terapêutico melhorado para uma célula tumoral; e em que o referido adenovirus quimérico foi tornado deficiente em termos de replicação através da delecção de uma ou mais regiões adenovirais codificadoras de proteínas envolvidas na replicação adenoviral seleccionadas a partir do grupo que consiste em El, E2, E3 ou E4.
9. Adenovirus deficiente em termos de replicação de acordo com a reivindicação 8, caracterizado por as regiões El e E3 terem sido eliminadas.
10. Adenovirus deficiente em termos de replicação de acordo com a reivindicação 9, caracterizado por incluir ainda as delecções da região E4.
11. Adenovirus quimérico de acordo com qualquer uma das reivindicações anteriores, caracterizado por incluir 3/9 ainda um gene heterólogo, gene heterólogo esse que é expresso dentro de uma célula infectada com o referido adenovirus.
12. Adenovirus de acordo com a reivindicação 11, caracterizado por gene heterólogo ser uma timidina quinase.
13. Adenovirus de acordo com a reivindicação 11, caracterizado por o referido gene heterólogo codificar uma proteina terapêutica seleccionada a partir do grupo que consiste em citocinas e quimioquinas, anticorpos, enzimas conversoras de pró-fármacos e proteínas imuno--reguladoras.
14. Adenovirus de acordo com qualquer uma das reivindicações 1 a 13 para utilização em terapêutica.
15. Adenovirus de acordo com qualquer uma das reivindicações 1 a 13, caracterizado por se destinar ao tratamento de doença neoplásica ou cancro ou para a inibição do crescimento de uma célula cancerosa.
16. Método de inibição do crescimento de uma célula cancerosa, compreendendo a infecção da referida célula cancerosa in vitro com o adenovirus de qualquer uma das reivindicações 1 a 13.
17. Adenovirus de acordo com a reivindicação 15 ou método de acordo com a reivindicação 16, caracterizado por a referida célula cancerosa ser uma célula cancerosa do cólon.
18. Adenovirus ou método de acordo com a reivindicação 17, caracterizado por a sequência de nucleótidos do referido adenovirus incluir a SEQ ID NO: 1.
19. Adenovirus de acordo com qualquer uma das reivindicações 1 a 13 para utilização na aplicação de uma proteina terapêutica numa célula. 4/9
20. Método de isolamento do adenovírus de qualquer uma das reivindicações 1 a 13, caracterizado por o referido método incluir a) agrupar os serotipos adenovirais que representam subgrupos adenovirais B-F, deste modo criando uma mistura adenoviral; b) passar a mistura adenoviral agrupada da fase (a) por uma cultura em crescimento activo de células tumorais numa proporção de particula para célula suficientemente alta para encorajar à recombinação entre os serotipos, mas não tão elevada que produza a morte prematura da célula C) recolher o sobrenadante da fase (b); d) infectar uma cultura quiescente de células tumorais com o sobrenadante recolhido na fase (c) ; e) recolher o sobrenadante da cultura celular da fase (d) antes da existência de qualquer sinal de CPE; f) infectar uma cultura quiescente de células tumorais com o sobrenadante recolhido na fase (e) ; e g) isolar o vírus de acordo com qualquer uma das reivindicações 1 a 13 a partir do sobrenadante recolhido na fase (f) por purificação de placa.
21. Método de acordo com a reivindicação 20, caracterizado por se executar duas vezes a fase (b) antes de recolher o sobrenadante na fase (c).
22. Método de acordo com a reivindicação 20, caracterizado por as fases (e) e (f) serem repetidas até 20 vezes antes da fase (g). 5/9
23. Método de acordo com a reivindicação 20, caracterizado por se executar um segundo ciclo de purificação em placa na sequência da fase (g).
24. Método de acordo com a reivindicação 20, caracterizado por a célula tumoral ser uma célula tumoral do cólon, mama, pâncreas, pulmão, próstata, ovário ou hemopoiética.
25. Adenovirus quimérico recombinante com um genoma que inclui uma região E2B, em que a região E2B referida inclui uma sequência de ácidos nucleicos derivada de um primeiro serotipo adenoviral e uma sequência de ácidos nucleicos derivada de um segundo serotipo adenoviral; em que o primeiro e segundo serotipos adenovirais referidos são, cada um, seleccionados a partir de subgrupos adenovirais B, C, D, E, ou F e são distintos uns dos outros e em que o referido adenovirus quimérico é oncolítico e apresenta um indice terapêutico melhorado para uma célula tumoral; produzido pelo método de qualquer uma das reivindicações 20 a 24. 6/9 SSSsSS\\VV\\y^\yy*NW^ UíliÇfO de pãíÍKÍ i:# M -4 i J& Jf ? .... íl Wv ::·: 4: § S -SS.V íí: f 1 1 ¥ S: <!? \ 1 S ** ;P í >SS:. ΪΪ λ :$&>: ¥:;: 1 *1 % Φ S :·: w- S -è: :> ! i A&ofvéncra 7/9 m •H5· 1 v. ,.y:;'|; l $ ‘Ό X;., F m v | v v F II :&ou :·!· $; 1.1 ç 1 *3 Φεζϋΰ \.:· >33 c: C3 <sí m !v .;s! o-:£L: Mi *0m ··...> !7 íií φmM m; mp:5 yv.·. ί·ί· :* V :v í 0$ :·: 0, .¾ M . S. .O . :¾ >: ;:i .,£i .'A*·.· ' m. Λ&- O O /-\. •0 "V- X y :: p ^T| 1 ? 1 ::Í^T> v '> χ·ά m í :: .· :x :< TA m Q> 1 fF ® V â> :$ *1: X: ív. $**s íS:^: xnsS^SSs&s Λ?*;* s»tv |p| , ,x F^SSSsSSsssSSsSxw^ 8/9 nW * "?4' ··&$&* **> .xxx·.·, Ç£ ÇSi μ* < igf· :«>' s^\·.·..·.·^.·.·.·.· ^XVX-X-i^vX -¾ Sí, ΐΏ \ iO m M:1 :ΐ·“\.·ί: ¥VX&'VX à Ξ3 -v ; Xv: x-':' £ -T :¥ x*· <··*··< & -x •:Q. * Λ: X .. ,·χ x-mJL««ss;sss\\^^^ ft *»W :¾ $ & :$ .£; :¥ Lu- m m. Ό' *£> }. :j: . #'f; . '•vMr. ¥O'1:;' oxxX .X' #. £ :í: •^:xí¥ s? ^s> í ¥¥ . :.v< :·>!?: *^í «fc· :¥ : -ΆΧ· ~ S ÍSSS * 1 $ ^.SN^N * :·: $: •c;·· χχ$£' «í M: Xs¥S^*S*Sx¥x:xssvXn |: ' $ % coíilfdo <N- i-x zsÍTl f ---'-•'•:·:·:·:·:·:·:·>/:Χ>>>:·:·:·:·:·:·;'Χ;^χ·Λ·>·>^χ%Ν·>>>·.\. | -* ^ «í μ > vp· S-f:-:-;v l¥ & —·> $ .·** .-¾ __ ,...>··' V '*·&& μ * >:·$£ S -.í-. ¥:¥: :¥ :¥ $: Λ**>· w-X" -:5· »»:·; xs-^ss· x és·· w% ^.x .-:-· ·:· ·% X X 'w' “Λ “5> O | y ^í>5f: í 8: gsl Jfi :Çj)· !·' i 1 «sSsxxx :: μ * $>> :¥ ;S; 8; /¾ X: * ·> :v •rxxxxxxxxxxxxxxxxxxx· í :v :¥· ;^s v $ 'A,· $3 c: M CL dOj >S*: ·>··:·»£·> m ,m í.0 § m | #κ*;: tZj X -.3. w¥«· O 1
1:&θ#0§0 w 't-CS^v-^I-XvvssSS^^SSSSSSV^-X^-X^ssss^ssssssssí . $ :S ' :S :& -8-% controle? 9/9 SSSXXsXss vSSSxyvv^vSSSÁ-^ X· $ ’*·$ v A # t #> χ&χ/ x $ .¾] «<*:· A»; Cv < - -' .&· 0¾ \X>\ \X\ :;: A· "3 a/' ·ΛΪί £L £L £ -Φ :·: SSSS^SS^SS: :·/ ;ϊ: -Sív m 8! fcfí | yxgSxy <<& :·: S· & m*·: ÍCí o X· w· <·.·...X" :«w ¢8 o mi o Q ;SS^Sxí: xvjsjíSSxl: cx u ::;: X; v"· _.ν^:· 1 :j:. $: "^vv . Λ„. Í" ! snsx^sxx^: | ;-· :;· & $ & :«:^>fv.....v.v.....v. <$ $ ·¥· * •í $ ·& ' $í *: é ·» « ^ voiía h 1 < KS $κη Τ3 ÍL 'ÍSf $ .s x 5:· y;X: Xgv >wt. OBDV Q ÊL. ,ΑΚ A: .*' xtf' c £ ol s* X; ;$: ro m ÍB iMCU'' Q , _\ j3 o **&·· c- "is& u ϊ £ :vA‘ u φ\>Ν· •ÍNS· w: ,;’-A .*: & X $. :: A: ífè I % <y* «Μ . ! "ΖΖ ΐΧ. ϊ ®..... Μ JS ί®U χχχχχχνχνή&χ. :A: '-i :¥: :;Á; ô«; mlr > h ν:νΧΝ>;.ν.;.;.;.ν.:.χ.>Χ^ %.ψ. s* 11 AnÀ-::: A ψ Φ Tççij ^S: x^;: :;: A: \φ & ?. S·: $**. ^.'".'.'.•líiK-SsSSSSWViVrtWiVrtVlWSSS· § 1.....1 # S% dôinlrèk <χ«χχ <$· *<? Ο>ο wf* Χν ^;- >-— U a» r-«?o ::S^S:SSS>: '>*-<** ^x-xx-xx^xv: s '^*sSs'A'·' \Α·:·χχ í AE: .*·**. .'.l· T • í :ix '-Τ'. "> % control % coníroÍQ 10/9 s# s\\\ VJ. I m MC W( Jg ¢5 «2 Q & u «d· m tL «j .S J3 ® w» u O d 4» « a KS Õ !?> áSi Imw x a: «9 *£ϊ JS w Ξ 5 >«> o •#SS>Sí>SS:· ψ< fc\V>S^\\,X\X,X'X'\<<'X'X‘.'.V.'.1.1.1.1.;NV.VvV.·.' ................&.....V% conlrolo "0 1 j <Ά V .nV-:^:v. :>φ: -¾ « a x\\\ :(í- 1 il·.. CL· o/ * :¾ Bi Wt XXXv ta íe >χν·: J3 1$ Q , u ·;·-¾1 '33· \ !3£ :· >χ3 v í: £cL ir. l ^ im V '» —* % controlo ijiwwmwww. .·.·:/ ·\·:·|·:· || *· .?; φ. >φ·>· ψ ήΛ· vXjÍiv •^xfcSSS: ·χ·:$:*χ·. ;>>χ&>χ<: ::;Χ>&.;Χ ^::Χ: vã: :^>>>^XXs^:-Xvs':-xS\XXvXS;.-.;Xss :^: $ & $; . ^ ;i; % Côntfofo ^VvXvV;\>frX<<vX\VXvX< ^SSSSSSS χ£: λ - :.¾ • ^‘v xí*V x·:·^·:·: <s<i *:· -j* ;\^X^Xsssssssssssssssssss·. , , , V. $ «: *: > \ ^>>>>X'XwX'X'X<'X'X'X'Xsss^'.;^,s;^'.'.'.>. ;/ wS ;xjw :ij; .jjf & XV· Mv ; •XX\ ;4· XsÍ^»»SSS> v. % ....... ""S‘......" % carteio m r5 vOS· . Q í.Wv. : >. "Ο:/ :::: χ: V-- m ·<!> m Q jgf; 5 ϋ: m"· Q· m Vi £L -Φ Ξ Q *«* O -^«>··Χ>·Λ X^SX^X; SS^Sílx :sss&$&x #·· V' ~"ύ :SS--SS>\<:-nX\\v·;·;·;·;;;·;·.·.·.·.......... :$ :$: ·$ . :$: . X >\ % omiroí» - **· yrr: TT* X ΪΛ jra „2 3 α ^ *>| α * φ m ^ 3 % 3 Q o ·>:<···: ·»::· y-w-x·: ·>:·.\ν:;: λ···»»'»»': £ ·χ···:4’·:·:···χ :«$&: ::: !v .·*' •j φ:,ί: ♦ * * * S;QSi1Í®ÍS & CL Sxy-Sx->: •J4>· sx- A * ' à ' XV· «· X*·· •'•ÍÇS-:' -SSSSl· .ySiiSxX^V"^ í: x- y x x·% eoniroiò W :>Φ m ' J3 , JX 11/9
S·" ΐ u m ¢¢¢¢5 ·,ν “E íj*! m ® Γ^' 3 s * u s '
S&r^Sj-í ^í1 1 % (; Φ Ç S: «· oísIijIo pç Ste Ξ3gs iT <Sj th«y<<58jjg J3^Sí O :¾) V I ,.^: I .£>& | £ Λ%ν:·· s | <? #.ww:· i ·$: ;.^‘- $ ;$· *>··>'' Ç X· jfe·' 1 $ -:$ν 'V ;Χ 1 || u m < J .ss®: # D/ "'f' X$: "3. m l&. *£?. . Ϊ& «Sí i v JS* s. ¢3 s ,«$** 1 lx 3 3s* Q |: «*¥< ív :«./ 1 ; \\ ... ^ t ll :x<jX>%NV· v Λ χ: $ :: \x .XvV-i^sV.y.v.;.;. *SSSSX<SSSWSXXX\^ .* :·χ<·χ·:·χ·χ·χ·χ·χ· :.:.:·:·χνν:·:·:·χ<^^^^χ<<ν;·;·;ν;'.·»: I :$: S $j :$: & $ % .& ' $ * 12/9 u LU>X s» ÍS U Sí ''.Φ li |"" ,ίφ ,φ'" # 1 ,/ |pi fepsp ssí v.| | spf $ - § ‘‘3 £L id£> s® ¥ ij»' | í| / : ^ ;>δ·: sá: :'£L· 6 1 -ff í’^.· ¥ f:¥ 2§í !s Lft p|: í$ iw 13 2¾ iifca É è n IpiÉriii: snnSSSSSSSSSSSSSSSSSSSSSSSS» :$&*$:· :¾¾¾ ί^·5$^¥ 'S>SSSS^ÍSSÍ<: ií> -3 CJ >j»x D m ;v>: ¥ O N 1 $fc4' Φ ls.v f' -p" <*** 1 *#<**«* ^SNSX-X-Xsssvs^sNyX\\-X<\ ΐ; ss & ,¾ X·: $ :~® ;v _iO i; 1> v.sSl·· ·: ·· .?> I o 13/9 «\χχ»\χ.\\\\\\χχ·;· I js# I ! | _; JM β II ACv;V: ;% :1χ N1 $ a'*'''' .,11 (8 $ i^i s i; .;·::: | 'Μ' u ! i? 35 UJ ν- 1 ^ < i| 1 χΐ' . λ xo -.^1' jí &>|Ni | νίώ. λ £χ . j « 1 5: ..... 3 ν' ;.·': •Λ·'’’ ,ν· λ·. «s^r ΐ 4. o X ί '$ χ 1.' | íMÍ#. 5 :¾ :f $ i :: ? | Figura % l: f li 1 % controlo x ..£$ ,·ί. 1 >5S^·.* d a, 10 $Ç Q n X (3 ¢3 J§ a £ " J"s > #· ϊ 1 / I | ::y 7:' 1 Z! .¾. ϊ iv :¾ <x· § Η&&* χ#: Λ; 3?·' 1 &· :| Ά. $ V 1: 1 1 #: 5' ί4·|··> '1 N* m '^^^xv.SSv-y· É _ |; t . % s«nfrolo 14/9 r- 5jWVZí
::\v:y:-:>>>\^^SSxySSSSSSSSSSSS^VsS^ # # ·& :>« ^ SÍ*: % c<:>n!rek>
PT05753804T 2004-05-26 2005-05-24 Adenovírus quimérico para utilização no tratamento do cancro PT1749098E (pt)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US57485104P 2004-05-26 2004-05-26

Publications (1)

Publication Number Publication Date
PT1749098E true PT1749098E (pt) 2011-02-02

Family

ID=35355425

Family Applications (1)

Application Number Title Priority Date Filing Date
PT05753804T PT1749098E (pt) 2004-05-26 2005-05-24 Adenovírus quimérico para utilização no tratamento do cancro

Country Status (33)

Country Link
US (6) US7510868B2 (pt)
EP (1) EP1749098B1 (pt)
JP (1) JP4787936B2 (pt)
KR (1) KR101169109B1 (pt)
CN (3) CN1997746B (pt)
AR (2) AR049188A1 (pt)
AT (1) ATE491799T1 (pt)
AU (1) AU2005250396B2 (pt)
BR (2) BRPI0510475B8 (pt)
CA (2) CA2836987C (pt)
CR (1) CR8794A (pt)
DE (1) DE602005025340D1 (pt)
DK (1) DK1749098T3 (pt)
EC (1) ECSP067088A (pt)
ES (1) ES2358204T3 (pt)
GT (1) GT200500129A (pt)
HK (3) HK1109421A1 (pt)
HR (1) HRP20110179T1 (pt)
IL (2) IL179098A (pt)
MX (1) MXPA06013570A (pt)
MY (1) MY140829A (pt)
NO (1) NO340708B1 (pt)
NZ (1) NZ551443A (pt)
PA (1) PA8634201A1 (pt)
PE (1) PE20060277A1 (pt)
PL (1) PL1749098T3 (pt)
PT (1) PT1749098E (pt)
RU (1) RU2448157C2 (pt)
TW (1) TWI366603B (pt)
UA (1) UA89957C2 (pt)
UY (1) UY28926A1 (pt)
WO (1) WO2005118825A2 (pt)
ZA (1) ZA200610763B (pt)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ551443A (en) * 2004-05-26 2010-01-29 Schering Ag Chimeric adenoviruses for use in cancer treatment
US20070258952A1 (en) * 2006-05-04 2007-11-08 Baylor Research Institute Anti-Tumor Activity of an Oncolytic Adenovirus-Delivered Oncogene siRNA
WO2008108890A2 (en) * 2006-10-18 2008-09-12 University Of Rochester Conditionally replicating viruses for cancer therapy
WO2008060510A2 (en) * 2006-11-13 2008-05-22 Sangamo Biosciences, Inc. Zinc finger nuclease for targeting the human glucocorticoid receptor locus
WO2008080003A2 (en) * 2006-12-22 2008-07-03 Bayer Schering Pharma Aktiengesellschaft Generation of oncolytic adenoviruses and uses thereof
KR100856310B1 (ko) 2007-02-28 2008-09-03 삼성전기주식회사 이동통신 단말기
GB201022007D0 (en) 2010-12-24 2011-02-02 Imp Innovations Ltd DNA-sensor
AU2013231423B2 (en) * 2012-03-12 2018-10-04 Janssen Vaccines & Prevention B.V. Batches of recombinant adenovirus with altered terminal ends
US8932607B2 (en) 2012-03-12 2015-01-13 Crucell Holland B.V. Batches of recombinant adenovirus with altered terminal ends
US9119813B2 (en) 2012-03-22 2015-09-01 Crucell Holland B.V. Vaccine against RSV
CN104334188B (zh) * 2012-03-22 2016-08-24 克鲁塞尔荷兰公司 抗rsv疫苗
WO2014131898A1 (en) * 2013-02-28 2014-09-04 Psioxus Therapuetics Limited A process for the production of adenovirus
EP2971008B1 (en) 2013-03-14 2018-07-25 Salk Institute for Biological Studies Oncolytic adenovirus compositions
CN112516179A (zh) 2013-06-14 2021-03-19 普赛奥克苏斯治疗公司 用于b型腺病毒的给药方案及制剂
GB201322851D0 (en) * 2013-12-23 2014-02-12 Psioxus Therapeutics Ltd Method
LT3021859T (lt) * 2013-10-25 2018-06-11 Psioxus Therapeutics Limited Onkolitiniai adenovirusai su heterologiniais genais
GB2531821A (en) * 2013-10-25 2016-05-04 Psioxus Therapeutics Ltd Oncolytic adenoviruses armed with heterologous genes
GB201415579D0 (en) 2014-09-03 2014-10-15 Psioxus Therapeutics Ltd A process
MA39818A (fr) 2014-03-30 2017-02-08 Benevir Biopharm Inc Virus oncolytiques « armés » comprenant un inhibiteur de tap exogène et leurs utilisations thérapeutiques
GB201406608D0 (en) 2014-04-12 2014-05-28 Psioxus Therapeutics Ltd Virus
GB201510197D0 (en) 2014-06-12 2015-07-29 Psioxus Therapeutics Ltd Method of treating ovarian cancer
US20170313990A1 (en) 2014-08-27 2017-11-02 Psioxus Therapeutics Limited A process for the production of adenovirus
EP3391892A1 (en) * 2015-04-30 2018-10-24 Psioxus Therapeutics Limited Oncolytic adenovirus encoding a b7 protein
JP7064437B2 (ja) 2015-12-17 2022-05-10 サイオクサス セラピューティクス リミテッド 抗tcr複合体抗体又は断片をコードするb群アデノウイルス
WO2017147265A1 (en) 2016-02-23 2017-08-31 Salk Institute For Biological Studies High throughput assay for measuring adenovirus replication kinetics
KR102471633B1 (ko) 2016-02-23 2022-11-25 솔크 인스티튜트 포 바이올로지칼 스터디즈 바이러스 동역학에 미치는 영향 최소화를 위한 치료용 아데노바이러스의 외인성 유전자 발현
US11273170B2 (en) * 2016-07-25 2022-03-15 Ascend Biopharmaceuticals Ltd Methods of treating cancer
EP3503918B1 (en) 2016-08-29 2020-09-30 Psioxus Therapeutics Limited Adenovirus armed with bispecific t cell engager (bite)
GB201713765D0 (en) 2017-08-28 2017-10-11 Psioxus Therapeutics Ltd Modified adenovirus
WO2018083257A1 (en) 2016-11-03 2018-05-11 Psioxus Therapeutics Limited Oncolytic adenovirus encoding transgenes
WO2018083258A1 (en) 2016-11-03 2018-05-11 Psioxus Therapeutics Limited Oncolytic adenovirus encoding at least three transgenes
CN110062630A (zh) 2016-12-12 2019-07-26 萨克生物研究学院 肿瘤靶向合成腺病毒及其用途
BR112019024918A2 (pt) 2017-06-01 2020-06-23 Psioxus Therapeutics Limited Vírus oncolítico e método
EP3679128A1 (en) 2017-09-05 2020-07-15 GLAdiator Biosciences, Inc. Method of targeting exosomes
GB201801614D0 (en) 2018-01-31 2018-03-14 Psioxus Therapeutics Ltd Formulation
KR20210093303A (ko) 2018-11-21 2021-07-27 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 아데노바이러스 및 아데노바이러스의 사용 방법
JP7381604B2 (ja) 2019-04-29 2023-11-15 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 癌を治療するための多価pd-l1結合化合物
GB201909081D0 (en) 2019-06-25 2019-08-07 Psioxus Therapeutics Ltd Method
CA3207359A1 (en) 2021-02-05 2022-08-11 Cecile Chartier-Courtaud Adjuvant therapy for cancer
GB202102049D0 (en) 2021-02-13 2021-03-31 Psioxus Therapeutics Ltd Viruses

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358866A (en) 1991-07-03 1994-10-25 The United States Of America As Represented By The Department Of Health And Human Services Cytosine deaminase negative selection system for gene transfer techniques and therapies
US5801029A (en) 1993-02-16 1998-09-01 Onyx Pharmaceuticals, Inc. Cytopathic viruses for therapy and prophylaxis of neoplasia
FR2705361B1 (fr) 1993-05-18 1995-08-04 Centre Nat Rech Scient Vecteurs viraux et utilisation en thérapie génique.
DK0667912T3 (da) 1993-07-13 2008-11-10 Centelion Defekte adenovirusvektorer og anvendelse heraf i genterapi
US5631236A (en) 1993-08-26 1997-05-20 Baylor College Of Medicine Gene therapy for solid tumors, using a DNA sequence encoding HSV-Tk or VZV-Tk
US5830686A (en) 1994-01-13 1998-11-03 Calydon Tissue-specific enhancer active in prostate
US5677170A (en) 1994-03-02 1997-10-14 The Johns Hopkins University In vitro transposition of artificial transposons
US5877011A (en) * 1996-11-20 1999-03-02 Genzyme Corporation Chimeric adenoviral vectors
CN1242051A (zh) 1996-12-31 2000-01-19 昂尼克斯药物公司 用于肿瘤治疗和预防的致细胞病变病毒
EP1036183B1 (en) 1997-02-20 2007-10-03 The Johns Hopkins University School Of Medicine Mutations in atp-dependent transposition proteins that reduce target-site specificity
US6291214B1 (en) 1998-05-11 2001-09-18 Glaxo Wellcome Inc. System for generating recombinant viruses
US20020019051A1 (en) * 1998-05-27 2002-02-14 Monika Lusky Chimeric adenoviral vectors
US20030017138A1 (en) 1998-07-08 2003-01-23 Menzo Havenga Chimeric adenoviruses
CN1110553C (zh) 1998-07-15 2003-06-04 杭州赛狮生物技术开发有限公司 基因工程腺病毒及其用途
WO2000070071A1 (en) * 1999-05-17 2000-11-23 Crucell Holland B.V. Adenovirus derived gene delivery vehicles comprising at least one element of adenovirus type 35
EP1083228A1 (en) * 1999-09-10 2001-03-14 Introgene B.V. Modified adenoviral vectors for use in gene therapy
US7396679B2 (en) 1999-11-15 2008-07-08 Onyx Pharmaceuticals, Inc. Oncolytic adenovirus
EP1301612A2 (en) 2000-05-31 2003-04-16 Genvec, Inc. Method and composition for targeting an adenoviral vector
ATE449859T1 (de) * 2001-01-04 2009-12-15 Goeran Wadell Virusvektor zur gentherapie
AU2003223775A1 (en) 2002-04-30 2003-11-17 Duke University Adeno-associated viral vectors and methods for their production from hybrid adenovirus and for their use
CN1327899C (zh) * 2003-05-10 2007-07-25 彭朝晖 腺病毒载体与p53基因的基因重组体的应用
NZ551443A (en) 2004-05-26 2010-01-29 Schering Ag Chimeric adenoviruses for use in cancer treatment
EP1819823A2 (en) 2004-12-01 2007-08-22 Bayer Schering Pharma Aktiengesellschaft Generation of replication competent viruses for therapeutic use
WO2008080003A2 (en) 2006-12-22 2008-07-03 Bayer Schering Pharma Aktiengesellschaft Generation of oncolytic adenoviruses and uses thereof

Also Published As

Publication number Publication date
US20120231524A1 (en) 2012-09-13
IL226820A (en) 2017-07-31
UA89957C2 (ru) 2010-03-25
ZA200610763B (en) 2009-06-24
IL179098A (en) 2015-09-24
BR122013008865B8 (pt) 2021-05-25
NO20066002L (no) 2006-12-22
US20130209409A1 (en) 2013-08-15
MXPA06013570A (es) 2007-02-08
US20130230902A2 (en) 2013-09-05
ES2358204T3 (es) 2011-05-06
JP4787936B2 (ja) 2011-10-05
JP2008500051A (ja) 2008-01-10
US20150037874A1 (en) 2015-02-05
CA2567094C (en) 2014-11-25
MY140829A (en) 2010-01-29
GT200500129A (es) 2006-03-23
HK1179655A1 (en) 2013-10-04
UY28926A1 (es) 2006-01-31
BRPI0510475B8 (pt) 2021-05-25
ECSP067088A (es) 2007-01-26
US7510868B2 (en) 2009-03-31
AU2005250396B2 (en) 2010-11-11
BR122013008865B1 (pt) 2020-11-24
WO2005118825A3 (en) 2006-11-23
US20090227000A1 (en) 2009-09-10
US20050265973A1 (en) 2005-12-01
TW200611974A (en) 2006-04-16
US8765463B2 (en) 2014-07-01
HK1109421A1 (en) 2008-06-06
BRPI0510475A (pt) 2007-11-06
CN102816742A (zh) 2012-12-12
BRPI0510475B1 (pt) 2020-09-29
CN104263703A (zh) 2015-01-07
CN102816742B (zh) 2014-04-09
CR8794A (es) 2007-08-28
US8158599B2 (en) 2012-04-17
KR101169109B1 (ko) 2012-07-26
CN1997746A (zh) 2007-07-11
RU2448157C2 (ru) 2012-04-20
HK1205529A1 (en) 2015-12-18
CN1997746B (zh) 2012-09-26
CA2836987A1 (en) 2005-12-15
US9034344B2 (en) 2015-05-19
PA8634201A1 (es) 2006-11-09
TWI366603B (en) 2012-06-21
RU2006145071A (ru) 2008-07-10
US9115337B2 (en) 2015-08-25
EP1749098A2 (en) 2007-02-07
CN104263703B9 (zh) 2019-12-17
US9234185B2 (en) 2016-01-12
CN104263703B (zh) 2018-01-09
DE602005025340D1 (de) 2011-01-27
HRP20110179T1 (hr) 2011-04-30
US20130217095A1 (en) 2013-08-22
KR20070020302A (ko) 2007-02-20
NO340708B1 (no) 2017-06-06
PE20060277A1 (es) 2006-05-25
ATE491799T1 (de) 2011-01-15
AR090647A2 (es) 2014-11-26
WO2005118825A2 (en) 2005-12-15
DK1749098T3 (da) 2011-04-04
AR049188A1 (es) 2006-07-05
CA2836987C (en) 2016-07-05
CA2567094A1 (en) 2005-12-15
IL226820A0 (en) 2013-07-31
IL179098A0 (en) 2007-03-08
EP1749098B1 (en) 2010-12-15
NZ551443A (en) 2010-01-29
AU2005250396A1 (en) 2005-12-15
PL1749098T3 (pl) 2011-05-31

Similar Documents

Publication Publication Date Title
PT1749098E (pt) Adenovírus quimérico para utilização no tratamento do cancro
KR102609021B1 (ko) 아데노바이러스 벡터
JP6277213B2 (ja) サルアデノウイルスベクターの増殖方法
Jager et al. A rapid protocol for construction and production of high-capacity adenoviral vectors
Rivera et al. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo
EP3998341A2 (en) Adenoviral vectors
Ugai et al. Thermostability/infectivity defect caused by deletion of the core protein V gene in human adenovirus type 5 is rescued by thermo-selectable mutations in the core protein X precursor
AU2004304915B2 (en) An oncolytic adenovirus
Carette et al. Replication‐dependent transgene expression from a conditionally replicating adenovirus via alternative splicing to a heterologous splice‐acceptor site
US20060008884A1 (en) Hybrid adenovirus/adeno-associated virus vectors and methods of use thereof
CZ20011129A3 (cs) Selektivně se replikující rekombinantní virový vektor a způsob jeho přípravy, farmaceutická formulace, způsob usmrcení buňky s defektní dráhou, transformovaná buňka a promotor reagující na dráhu p53 a TGF-ß
Palmer et al. Rescue, amplification, and large-scale production of helper-dependent adenoviral vectors
Lu et al. Enhanced growth of recombinant human adenovirus type 41 (HAdV-41) carrying ADP gene
Davydova et al. Oncolytic adenoviruses: design, generation, and experimental procedures
Chaurasiya et al. Adenoviral vector construction I: mammalian systems
Wu et al. Generation of a replication-deficient recombinant human adenovirus type 35 vector using bacteria-mediated homologous recombination
Xie et al. Construction of recombinant adenovirus-5 vector to prevent replication-competent adenovirus occurrence
WO2002053760A2 (en) Chimeric cytolytic viruses for cancer treatment
Uil Rational and random approaches to adeno iral ector engineering