KR20170012222A - 혼합 입자 크기를 가진 전극 물질 - Google Patents

혼합 입자 크기를 가진 전극 물질 Download PDF

Info

Publication number
KR20170012222A
KR20170012222A KR1020167031259A KR20167031259A KR20170012222A KR 20170012222 A KR20170012222 A KR 20170012222A KR 1020167031259 A KR1020167031259 A KR 1020167031259A KR 20167031259 A KR20167031259 A KR 20167031259A KR 20170012222 A KR20170012222 A KR 20170012222A
Authority
KR
South Korea
Prior art keywords
particles
particle size
electrode
electrolyte
less
Prior art date
Application number
KR1020167031259A
Other languages
English (en)
Other versions
KR102527820B1 (ko
Inventor
팀 홀름
켄 데스몬드
웨스턴 아서 헤르만
조셉 한
저보 첸
Original Assignee
콴텀스케이프 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54767209&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20170012222(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 콴텀스케이프 코포레이션 filed Critical 콴텀스케이프 코포레이션
Priority to KR1020227044508A priority Critical patent/KR102606710B1/ko
Publication of KR20170012222A publication Critical patent/KR20170012222A/ko
Application granted granted Critical
Publication of KR102527820B1 publication Critical patent/KR102527820B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 전기화학적 디바이스 및 그의 물질에 관한 것이다. 더욱 구체적으로, 본 명세서에 기술된 실시양태는 큰 입자 및 작은 입자를 포함하는 저-다공성 전극을 제공한다. 큰 입자는 전기화학적 활물질을 포함한다. 작은 입자는 이온 전도성 전해질 물질을 포함한다. 일부 실시예에서, 큰 입자 및 작은 입자는 0.5 이하의 분산도를 특징으로 한다. 다른 실시양태도 있다.

Description

혼합 입자 크기를 가진 전극 물질{ELECTRODE MATERIALS WITH MIXED PARTICLE SIZES}
본 출원은 발명의 명칭이 "혼합 입자 크기를 가진 전극 물질"인, 2014년 6월 4일자로 출원된 미국 가특허 출원 제62/007,416호에 대한 우선권을 주장하며, 그의 내용은 모든 목적을 위해 전체적으로 원용에 의해 본 명세서에 포함된다.
본 개시는 전기화학적 디바이스 및 이를 위한 물질에 관한 것이다. 특히, 본 개시는 나노치수 및/또는 고체 상태 전극에 있어서의, 전기화학적 전극 제작 및 전극 패킹 알키텍처(packing architecture)에 관한 문제점 중 일부를 고찰한다.
가전 제품(예를 들어, 이동 전화, 태블릿, 및 랩톱 컴퓨터) 및 전기구동 차량(예를 들어, 플러그-인 하이브리드 및 BEV)의 보급이 증가함에 따라, 이들 전자제품 및 차량을 구동하기 위해 필요한 더 양호한 성능의 에너지 저장 디바이스에 대한 수요 또한 증가했다. 가전 제품용으로 충전식(이차/트랙션) 리튬(Li) 이온 전지(즉, Li-충전식 전지)가 일반적이지만, 관용적인 전지는 다른 응용(예를 들어, 자동차)에 광범위한 적용을 위한 에너지 밀도 및 출력에 관련하여 여전히 너무 제한적이다. 모두 고체 상태 구성요소로 구성된 고체 상태 Li-충전식 전지는 더 높은 이론 에너지 밀도 및 전력 특성을 가지므로 관용적인 전지에 대한 매력적인 대안이며, 이는 액체 전해질을 포함하고 이에 의존한다.
이온 전도도는 전형적으로 액체에서보다 고체에서 더 낮다. 그러므로, 모든 이온 전도 경로가 고체를 통과하는 고체 상태 전지에서 고출력을 달성하기 위해서는, 이온 경로를 감소시켜야 하고 구성성분 고체의 고유 이온 전도도를 증가시켜야 한다. 상당한 노력에도 불구하고, 이들 문제는 해결되지 않았으며, 고체 상태 전지는 여전히 저출력 문제를 안고 있다.
그러므로, 고체 상태 전기화학적 전극(예를 들어, 박막 양극), 및 구성성분요소(예를 들어, 활물질 및 음극전해질(catholyte))를 나노구조화하고 나노-오더화하는 방식에 대한 관련 분야에 일련의 문제가 존재한다. 예를 들어, 고성능 고체 상태 전지에 필요한 특별한 크기의 특징을 포함하는 새로운 박막 양극의 제조 방법이 관련 분야에 필요하다. 본 개시에는, 부분적으로, 그리고 예를 들어, 이러한 나노구조화되고 나노-오더화된 양극이, 그의 제조 및 사용, 및 관련 분야에서의 다른 문제에 대한 해결책에 부가하여 기술되어 있다.
일 실시양태에서는, 전기화학적 활물질의 복수의 제1 입자(제1 입자는 0.25 이하의 제1 분산도 및 제1 중간 직경을 특징으로 하는 제1 입자 크기 분포를 가짐); 및 이온 전도성 물질의 복수의 제2 입자(제2 입자는 0.25 이하의 제2 분산도 및 제2 중간 직경을 특징으로 하는 제2 입자 크기 분포를 가지며, 제2 중간 직경은 제1 중간 직경보다 적어도 3배 더 작음)를 포함하는, 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
제2 실시양태에서는, 제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질; 제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질 물질을 포함하며; 여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고; 제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상인, 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
제3 실시양태에서는, 애노드(anode) 집전체(current collector); 애노드 집전체와 직접 접촉되는 애노드; 애노드와 직접 접촉되는 전해질(애노드는 애노드 집전체와 전해질 사이에 위치하며, 전해질은 적어도 1e-4 S/cm의 이온 전도도를 특징으로 함); 및 전해질과 직접 접촉되는 고체 상태 양극으로서, 제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질; 제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질 물질을 포함하는 고체 상태 양극을 포함하며; 여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고; 제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상인, 전기화학적 셀이 본 명세서에 기술된다.
제4 실시양태 및 제5 실시양태에서는, 전술한 전기화학적 전극의 제조 및 사용 방법이 본 명세서에 기술된다.
도 1은 활물질 및 음극전해질의 혼합 크기의 입자를 갖는 실시예 전극을 나타낸다.
도 2는 활물질 및 음극전해질의 혼합 크기의 입자를 갖는 실시예 전극을 나타낸다.
도 3은 고체 상태 캐소드 내의 음극전해질 물질에 대한 실시예 투과 네트워크를 나타낸다.
도 4는 활물질(큰 입자) 및 음극전해질(작은 입자)의 혼합 크기의 입자를 갖는 무작위로 패킹된 전극에 있어서 실시예 투과 역치를 큰 입자 크기 대 작은 입자 크기의 크기(직경) 비의 함수로서 나타낸다.
도 5는 압축 패킹된 전극에 있어서 실시예 투과 역치를 큰 입자 크기 대 작은 입자 크기의 크기 비의 함수로서 나타낸다.
도 6은 무작위 패킹 밀도를 큰 입자 크기 대 작은 입자 크기의 크기 비의 함수로서 나타낸다.
도 7은 전극 내의 큰 입자 및 작은 입자의 집합에 있어서 작은 입자에 의해 차지된 총 용기 부피 분율에 대해 재정규화된 투과 역치를 나타낸다.
도 8은 큰 입자 크기 및 작은 입자 크기를 갖는 전극에서 작은 입자에 의해 차지된 2D 단면적 분율을 작은 입자 부피의 함수로서 나타낸다.
도 9는 2% 압축을 동반하는 전극에 있어서 정규화된 2D 단면적 분율을 투과 역치의 함수로서 나타낸다.
도 10은 투과 입자와 접촉되는 큰 입자의 분율을 작은 입자의 분율의 함수로서 나타낸다.
도 11은 실질적인 압축을 동반하지 않는, 큰 입자 및 작은 입자를 가진 전극 물질을 예시하는 SEM 사진을 나타낸다. 큰 입자(1102)는 니켈 코발트 알루미늄 산화물(NCA)이고 작은 입자(1101)는 LSTPS 황화물 전해질이다.
도 12는 압축 공정을 적용한 후의, 큰 입자 및 작은 입자를 가진 전극 물질을 예시하는 SEM 사진을 나타낸다. 큰 입자(1202)는 니켈 코발트 알루미늄 산화물(NCA)이고 작은 입자(1201)는 LSTPS 황화물 전해질이다.
도 13은 큰 입자 캐소드 활물질, 투과 네트워크를 형성하기 위해 넥킹된 작은 입자 음극전해질 이온 전도체, 및 전자 전도체 첨가제를 갖는 실시예 양극 어셈블리를 나타낸다.
도 14는 단분산 집합의 큰 크기의 입자가 가우시안 분포의 작은 크기의 입자와 혼합되거나(좌측), 가우시안 분포의 큰 크기의 입자가 가우시안 분포의 작은 크기의 입자와 혼합되며(우측), 각각의 경우에 큰 입자 크기(직경) 대 작은 입자 크기의 비가 4인, 실시예 캐소드 패킹 알키텍처를 나타낸다.
도 15는 큰 입자 크기(직경) 대 작은 입자 크기의 비가 4인 경우에 단분산 집합의 큰 크기의 입자가 단분산 집합의 작은 크기의 입자와 혼합되거나(좌측); 큰 입자 크기(직경) 대 작은 입자 크기의 비가 2인 경우에 단분산 집합의 큰 크기의 입자가 단분산 집합의 작은 크기의 입자와 혼합되는(우측) 실시예 캐소드 패킹 알키텍처를 나타낸다.
도 16은 큰 입자 크기(산화물) 대 작은 입자 크기(황화물 음극전해질)에 대한 크기 비가 20:1, 5:1, 또는 1:1이었던 3개의 실시예 캐소드에서 전도도의 플롯을 큰 입자 크기 대 작은 입자 크기의 크기 비의 함수로서 나타낸다. 각각의 샘플에서, 큰 입자 크기(산화물) 대 작은 입자 크기(황화물 음극전해질)의 부피비는 80:20이었다.
도 17은 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 20:1인 실시예 캐소드에 대한 주사 전자 현미경(SEM; scanning electron microscopy) 이미지를 나타낸다.
도 18은 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 20:1인 실시예 캐소드에 대한 주사 전자 현미경(SEM) 이미지를 나타낸다.
도 19는 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 5:1인 실시예 캐소드에 대한 주사 전자 현미경(SEM) 이미지를 나타낸다.
도 20은 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 5:1인 실시예 캐소드에 대한 주사 전자 현미경(SEM) 이미지를 나타낸다.
도 21은 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 1:1인 실시예 캐소드에 대한 SEM 이미지를 나타낸다.
도 22는 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 1:1인 실시예 캐소드에 대한 SEM 이미지를 나타낸다.
도 23은 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 20:1이고, 여기에서 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 중량비가 80:18인 실시예 캐소드에 대한 주사 전자 현미경(SEM) 이미지를 나타낸다.
도 24는 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 크기 비가 20:1이고, 여기에서 큰 입자 크기(Al2O3) 대 작은 입자 크기(LSTPS 황화물 음극전해질)의 중량비가 44:54인 실시예 캐소드에 대한 주사 전자 현미경(SEM) 이미지를 나타낸다.
도 25는 본 명세서에서 소정의 실시예에 사용된 제분된 LSTPS 및 Al2O3에 대한 실시예 입자 크기 분포를 나타낸다.
도 26은 본 명세서에서 소정의 실시예에 사용된 제분된 LSTPS 및 NCA에 대한 실시예 입자 크기 분포를 나타낸다.
도 27은 다양한 큰 입자 크기:작은 입자 크기 비에 있어서 전도도의 플롯을 음극전해질 부피 분율의 함수로서 나타낸다.
하기 기재는 당업자로 하여금 본 명세서에 기술된 실시예 및 실시양태를 실행하고 사용하며 이를 특정 응용의 맥락에 포함시키는 것을 가능하게 하기 위해 제공된다. 다양한 변형과 더불어, 상이한 응용에서의 다양한 용도가 당업자에게 용이하게 명백해질 것이며, 본 명세서에 정의된 일반 원리는 광범위한 실시양태에 적용될 수 있다. 따라서, 본 개시는 제공된 실시양태로 제한되고자 하는 것이 아니라, 본 명세서에 개시된 원리 및 신규 특징과 일치하는 가장 넓은 범위가 부여되어야 한다.
본 명세서와 동시에 출원되고 본 명세서와 함께 공중 열람에 개방된 모든 논문 및 문헌에 독자의 관심이 유도되며, 이러한 논문 및 문헌의 내용은 모두 원용에 의해 본 명세서에 포함된다. 명시적으로 달리 언급되지 않는 한, 각각의 개시된 특징은 균등하거나 유사한 특징의 포괄적 계열 중 일례일 뿐이다.
추가로, 명시된 작용을 수행하기 "위한 수단", 또는 명시된 작용을 수행하기 "위한 단계"를 명백하게 언급하지 않는 청구범위 내의 임의의 요소는 35 U.S.C § 112(f)의 규정에 명시된 바와 같은 "수단" 또는 "단계" 조항으로서 해석되어서는 안된다. 특히, 본 명세서의 청구범위에서 "~의 단계" 또는 "~의 작용"의 사용은 35 U.S.C. 112 § 112(f)의 규정을 적용하고자 하는 것이 아니다.
사용되는 경우, 좌, 우, 전, 후, 상, 하, 전진, 후진, 시계 방향, 및 반시계 방향의 표지는 편의상 사용되었을 뿐이며 임의의 고정된 특정 방향을 의미하고자 하는 것이 아님에 유의하기 바란다. 대신에, 그들은 물체의 다양한 부분 사이의 상대적인 위치 및/또는 방향을 반영하기 위해 사용된다.
I. 정의
본 명세서에 사용되는 구문 "그룹 중에서 선택되는 적어도 하나의 구성원"은 그룹 중의 단일 구성원, 그룹 중의 하나 초과의 구성원, 또는 그룹 중의 구성원의 조합을 포함한다. A, B, 및 C로 구성된 그룹 중에서 선택되는 적어도 하나의 구성원은, 예를 들어, A 단독, B 단독, 또는 C 단독과 더불어, A 및 B와 더불어 A 및 C와 더불어 B 및 C와 더불어 A, B, 및 C 또는 A, B, 및 C의 임의의 다른 모든 조합을 포함한다.
본 명세서에 사용되는 구문 "전기화학적 셀"은, 예를 들어, "전지 셀"을 지칭하며 양극, 음극, 및 이들 사이에서 이들과 직접 접촉되며 이온(예를 들어, Li+)을 전도하지만 양극 및 음극을 전기적으로 절연하는 전해질을 포함한다. 일부 실시양태에서, 전지는 하나의 용기 내에 봉입된 다중 양극 및/또는 다중 음극을 포함할 수 있다.
본 명세서에 사용되는 구문 "양극"은, 전지의 방전 중에 양이온, 예를 들어, Li+가 이를 향해 전도되거나 유동하거나 이동하는 이차 전지 내의 전극을 지칭한다. 본 명세서에 사용되는 구문 "음극"은, 전지의 방전 중에 양이온, 예를 들어, Li+가 이로부터 유동하거나 이동하는 이차 전지 내의 전극을 지칭한다. Li-금속 전극 및 변환 화학(conversion chemistry) 전극(즉, 활물질; 예를 들어, NiFx)으로 구성된 전지에서는, 변환 화학 물질을 갖는 전극을 양극이라고 지칭한다. 일부 통상적인 용법에서는, 양극 대신에 캐소드(cathode)를 사용하고 음극 대신에 애노드를 사용한다. Li-이차 전지가 충전될 때, Li 이온은 양극(예를 들어, NiFx)으로부터 음극(예를 들어, Li-금속)을 향해 이동한다. Li-이차 전지가 방전될 때, Li 이온은 음극으로부터 양극을 향해 이동한다.
본 명세서에 사용되는 구문 "황화물 전해질"은, Li+ 이온을 전도하지만 실질적으로 전자 절연성인 무기 고체 상태 물질을 지칭한다. 본 명세서에 기술된 일부 황화물 전해질은 리튬, 인, 및 황, 및 임의로 1개, 2개, 또는 3개의 부가적인 원소를 포함한다. 이들 황화물 전해질 중 일부는 본 명세서에서 LXPS 물질이라고 지칭되며, 여기에서 L은 리튬을 지칭하고, P는 인을 지칭하며, S는 황을 지칭하고, X는 임의의 1개, 2개, 또는 3개의 부가적인 원소를 지칭한다. 실시예 LXPS 물질은, 예를 들어, 2014년 5월 15일자로 출원되고 발명의 명칭이 "LiAMPBSC(M=Si, Ge, 및/또는 Sn)를 사용하는 전지용 고체 상태 음극전해질 또는 전해질(SOLID STATE CATHOLYTE OR ELECTROLYTE FOR BATTERY USING LiAMPBSC(M=Si, Ge, AND/OR Sn)"인 국제 PCT 특허 출원 제PCT/US14/38283호; 또한 미국 특허 제8,697,292호(Kanno, et al.)에서 확인되며, 이들 양자 모두의 전체 내용은 모든 목적을 위해 전체적으로 원용에 의해 포함된다.
본 명세서에 사용되는 구문 "황화물 전해질"은 LSS, LTS, LXPS, LXPSO를 포함하나 이로 제한되지 않으며, 여기에서 X는 Si, Ge, Sn, As, Al; LATS이고; S는 S, Si, 또는 그의 조합이며; T는 Sn이다.
본 명세서에 사용되는 "LXPS"는 화학식 LiaMPbSc를 특징으로 하는 음극전해질 물질을 지칭하며, 여기에서 M은 Si, Ge, Sn, 및/또는 Al이고, 여기에서 2≤a≤8, 0.5≤b≤2.5, 4≤c≤12이다. "LSPS"는 화학식 LaSiPbSc를 특징으로 하는 전해질 물질을 지칭하며, 여기에서 2≤a≤8, 0.5≤b≤2.5, 4≤c≤12이다. LSPS는 화학식 LaSiPbSc를 특징으로 하는 전해질 물질을 지칭하며, 여기에서 2≤a≤8, 0.5≤b≤2.5 ,4≤c≤12, d<3이다. 예시적인 LXPS 물질은, 예를 들어, 2014년 5월 16일자로 출원되고 발명의 명칭이 "LiAMPBSC(M=Si, Ge, 및/또는 Sn)를 사용하는 전지용 고체 상태 음극전해질 또는 전해질"인 국제 특허 출원 제PCT/US2014/038283호에서 확인되며, 이는 전체적으로 원용에 의해 본 명세서에 포함된다. M이 Sn 및 Si인 경우(양자 모두 존재함), LXPS 물질은 LSTPS라고 지칭된다. 본 명세서에 사용되는 "LSTPSO"는 존재하는 O를 갖거나 이로 도핑된 LSTPS를 지칭한다. 일부 실시예에서, "LSTPSO"는 산소 함량이 0.01 내지 10 원자%인 LSTPS 물질이다. "LSPS"는 Li, Si, P, 및 S 화학적 구성성분을 갖는 전해질 물질을 지칭한다. 본 명세서에 사용되는 "LSTPS"는 Li, Si, P, Sn, 및 S 화학적 구성성분을 갖는 전해질 물질을 지칭한다. 본 명세서에 사용되는 "LSPSO"는 존재하는 O를 갖거나 이로 도핑된 LSPS를 지칭한다. 일부 실시예에서 "LSPSO"는 산소 함량이 0.01 내지 10 원자%인 LSPS 물질이다. 본 명세서에 사용되는 "LATP"는 Li, As, Sn, 및 P 화학적 구성성분을 갖는 전해질 물질을 지칭한다. 본 명세서에 사용되는 "LAGP"는 Li, As, Ge, 및 P 화학적 구성성분을 갖는 전해질 물질을 지칭한다. 본 명세서에 사용되는 "LXPSO"는 화학식 LiaMPbScOd를 특징으로 하는 음극전해질 물질을 지칭하며, 여기에서 M은 Si, Ge, Sn, 및/또는 Al이고, 여기에서 2≤a≤8, 0.5≤b≤2.5, 4≤c≤12, d<3이다. LXPSO는 0.1 내지 약 10 원자%로 산소가 도핑된 상기 정의된 바와 같은 LXPS를 지칭한다. LPSO는 0.1 내지 약 10 원자%로 산소가 도핑된 상기 정의된 바와 같은 LPS를 지칭한다.
본 명세서에 사용되는 "LSS"는 리튬 규소 황화물을 지칭하며, 이는 Li2S-SiS2, Li-SiS2, Li-S-Si, 및/또는 Li, S, 및 Si로 본질적으로 구성된 음극전해질로서 기재될 수 있다. LSS는 화학식 LixSiySz를 특징으로 하는 전해질 물질을 지칭하며, 여기에서 0.33≤x≤0.5, 0.1≤y≤0.2, 0.4≤z≤0.55이고, 이는 최대 10 원자%의 산소를 포함할 수 있다. LSS는 또한 Li, Si, 및 S를 포함하는 전해질 물질을 지칭한다. 일부 실시예에서, LSS는 Li2S 및 SiS2의 혼합물이다. 일부 실시예에서, Li2S:SiS2의 비는 90:10, 85:15, 80:20, 75:25, 70:30, 2:1, 65:35, 60:40, 55:45, 또는 50:50(몰비)이다. LSS는 LixPOy, LixBOy, Li4SiO4, Li3MO4, Li3MO3, PSx, 및/또는 LiI, LiCl, LiF, 또는 LiBr과 같으나 이로 제한되지 않는 리튬 할라이드와 같은 화합물로 도핑될 수 있으며, 여기에서 0<x≤5 및 0<y≤5이다.
본 명세서에 사용되는 "LTS"는 리튬 주석 황화물 화합물을 지칭하며, 이는 Li2S-SnS2, Li2S-SnS, Li-S-Sn, 및/또는 Li, S, 및 Sn으로 본질적으로 구성된 음극전해질로서 기재될 수 있다. 조성은 LixSnySz 일 수 있으며, 여기에서 0.25≤x≤0.65, 0.05≤y≤0.2, 및 0.25≤z≤0.65이다. 일부 실시예에서, LTS는 80:20, 75:25, 70:30, 2:1, 또는 1:1(몰비)의 비의 Li2S와 SnS2의 혼합물이다. LTS는 최대 10 원자%의 산소를 포함할 수 있다. LTS는 Bi, Sb, As, P, B, Al, Ge, Ga, 및/또는 In으로 도핑될 수 있다. 본 명세서에 사용되는 "LATS"는 비소(As)를 추가로 포함하는 상기 사용된 바와 같은 LTS를 지칭한다. LATS에서, L은 리튬을 지칭하고, A는 비소를 지칭하며, T는 주석을 지칭하고, S는 황을 지칭한다.
본 명세서에 사용되는 "LPS"는 Li, P, 및 S 화학적 구성성분을 갖는 전해질을 지칭한다. 본 명세서에 사용되는 "LPSO"는 존재하는 O를 갖거나 이로 도핑된 LPS를 지칭한다. 일부 실시예에서, "LPSO"는 산소 함량이 0.01 내지 10 원자%인 LPS 물질이다. LPS는 화학식 LixPySz를 특징으로 할 수 있는 전해질 물질을 지칭하며, 여기에서 0.33≤x≤0.67, 0.07≤y≤0.2, 및 0.4≤z≤0.55이다. LPS는 또한 Li2S:P2S5의 혼합물로부터 형성되는 산물을 특징으로 하는 전해질을 지칭하며, 여기에서 몰 비는 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 7:3, 2:1, 또는 1:1이다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 95 원자%이고 P2S5가 5 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 90 원자%이고 P2S5가 10 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 85 원자%이고 P2S5가 15 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 80 원자%이고 P2S5가 20 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 75 원자%이고 P2S5가 25 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 70 원자%이고 P2S5가 30 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 65 원자%이고 P2S5가 35 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다. LPS는 또한, 반응물 또는 전구체 양이 Li2S가 60 원자%이고 P2S5가 40 원자%인 Li2S:P2S5의 혼합물로부터 형성된 산물을 특징으로 하는 전해질을 지칭한다.
본 명세서에 사용되는 LPSO는 상기 기재 및 화학식 LixPySzOw를 특징으로 하는 전해질 물질을 포함하며, 여기에서 0.33≤x≤0.67, 0.07≤y≤0.2, 0.4≤z≤0.55, 0≤w≤0.15이다. 또한, 상기 정의된 바와 같이, LPSO는 0.01 내지 10 원자%의 산소 함량을 포함하는 LPS를 지칭한다. 일부 실시예에서, 산소 함량은 1 원자%이다. 다른 실시예에서, 산소 함량은 2 원자%이다. 일부 다른 실시예에서, 산소 함량은 3 원자%이다. 일부 실시예에서, 산소 함량은 4 원자%이다. 다른 실시예에서, 산소 함량은 5 원자%이다. 일부 다른 실시예에서, 산소 함량은 6 원자%이다. 일부 실시예에서, 산소 함량은 7 원자%이다. 다른 실시예에서, 산소 함량은 8 원자%이다. 일부 다른 실시예에서, 산소 함량은 9 원자%이다. 일부 실시예에서, 산소 함량은 10 원자%이다.
본 명세서에 사용되는 용어 "넥킹된(necked)"은, 예를 들어, 고체 용액, 중합체, 고체 매트릭스, 또는 용매 매트릭스 중의 입자에 대한 입자 대 입자 연결성을 지칭한다. 넥킹된 전해질 입자로서, 이들 입자는 입자 대 입자 접촉 또는 공유된 표면에 의해, 입자로부터 입자까지, 그리고 입자를 통해, 이온 전도 경로를 제공하도록 충분히 접촉된다. "넥킹된"은 함께 소결되거나, 면 공유(face sharing), 에지 공유(edge sharing), 코너 공유(corner sharing), 또는 다른 방식으로 함께 결합되고, 중합체, 용매, 또는 다른 고체 구성요소와 복합될 경우에 투과 네트워크(percolation network)를 형성하는 입자를 포함할 수 있다.
본 명세서에 사용되는 용어 "분산도"는 동적 광 산란과 같은 표준 기술에 의해 측정할 경우의 입자 크기 분포의 너비를 지칭한다. 수학적으로, 입자 분포는 대략 로그-정규 분포(
Figure pct00001
)이며, 이 경우에 분포의 분산도는 σ이다. 본 출원에서 수치 항으로 표현된 분산도의 척도는 실험적으로 측정된 입자 크기 분포에 대한 최적 로그 정규 분포의 분산도를 지칭한다. 분산도 값(σ)은 상기 식을 사용하여 계산할 수 있다.
본 명세서에 사용되는 구문 "황화물계 전해질"은, 이온(예를 들어, Li+)을 전도하고 전기화학적 셀(예를 들어, 이차 전지)의 양극 및 음극을 전기적으로 절연하기에 적합한 S를 함유하는 무기 물질을 포함하는 전해질을 지칭한다. 실시예 황화물계 전해질은 상기 기재되어 있으며, 예를 들어, LXPS, LSTPS, LPSO, 및 관련 황화물이다. 예시적인 황화물계 전해질은 2014년 5월 15일자로 출원되고 2014년 11월 20일자로 국제 특허 공개 제WO 2014/186634호로서 공개된 국제 특허 출원 PCT 특허 출원 제PCT/US14/38283호("LIAMPBSC(M = SI, GE, 및/또는 SN)를 사용하는 전지용 고체 상태 음극전해질 또는 전해질")에 기술되어 있다.
본 명세서에 사용되는 구문 "고체 상태 음극전해질" 또는 용어 "음극전해질"은 캐소드(즉, 양극) 활물질(예를 들어, 리튬, 리튬 코발트 산화물, 또는 리튬 망간 코발트 산화물, 또는 리튬 니켈 알루미늄 코발트 산화물을 임의로 포함하는 금속 불화물)과 밀접하게 혼합되거나 이에 의해 둘러싸인 이온 전도체를 지칭한다.
본 명세서에 사용되는 용어 "나노구조의" 또는 "나노치수의"는 구성성분요소가 나노치수로 분리되는 복합 물질을 지칭한다. 예를 들어, 나노치수의 복합 물질은 Li-함유 화합물, 예를 들어, LiF, 및 Fe-함유 화합물, 예를 들어, Fe를 포함할 수 있으며, 여기에서 Fe의 도메인 및 LiF의 도메인은, 상이한 나노도메인의 시각적 대비(visual contrast)의 영역의 동정에 의해 TEM 현미경에서 측정되는 바와 같이, 약 1-100 nm, 또는 2-50 nm, 또는 1-10 nm, 또는 2-5 nm, 또는 5-15 nm, 또는 5-20 nm 등의 중간 물리 치수(physical dimension)를 나타낸다.
본 명세서에 사용되는 용어 "전해질"은 이온 전도성이고 전기 절연성인 물질을 지칭한다. 전해질은, 이온, 예를 들어, Li+가 전해질을 통해 전도되는 것을 허용하면서 이차 전지의 양극 및 음극을 전기적으로 절연하기에 유용하다.
본 명세서에 사용되는 용어 "양극전해질(anolyte)"은 애노드 물질 또는 애노드 집전체에 라미네이트되거나, 그 위에 적층되거나, 그와 혼합되는 이온 전도성 물질을 지칭한다.
본 명세서에 사용되는 구문 "그린 필름(green film)"은 석류석(garnet) 물질, 석류석 물질에 대한 전구체, 결합제, 용매, 탄소, 분산제, 또는 그의 조합 중에서 선택되는 적어도 하나의 구성원을 포함하는 소결되지 않은 필름을 지칭한다.
본 명세서에 사용되는 용어 "제조"는, 제조되는 물체를 형성하거나 형성되도록 유발하는 공정 또는 방법을 지칭한다. 예를 들어, 에너지 저장 전극의 제조는 에너지 저장 디바이스의 전극이 형성되도록 유발하는 공정, 공정 단계, 또는 방법을 포함한다. 에너지 저장 전극의 제조를 구성하는 단계들의 최종 결과는 전극으로서 작용성인 물질의 생성이다.
본 명세서에 사용되는 구문 "에너지 저장 전극"은, 예를 들어, 에너지 저장 디바이스, 예를 들어, 리튬 충전식 전지 또는 Li-이차 전지에 사용하기에 적합한 전극을 지칭한다. 본 명세서에 사용되는 이러한 전극은 충전식 전지의 충전 및 방전에 필요한 전자 및 Li 이온의 전도가 가능하다.
본 명세서에 사용되는 구문 "제공"은 제공되는 것의 공급, 생성, 제시, 또는 전달을 지칭한다.
본 명세서에 사용되는 구문 "전도성 첨가제"는 캐소드의 전도도를 개선하기 위해 캐소드 활물질과 혼합되는 물질을 지칭한다. 예는 탄소 및 다양한 형태의 탄소, 예를 들어, 케첸 블랙(ketjen black), VGCF, 아세틸렌 블랙, 그래파이트, 그래핀, 나노튜브, 나노섬유 등, 및 그의 조합을 포함하나 이로 제한되지 않는다.
본 명세서에 사용되는 구문 "압력을 인가하는 단계"는 외부 디바이스, 예를 들어, 캘린더(calender) 또는 단축 프레스가 다른 물질 내에 압력을 유도하는 공정을 지칭한다.
본 명세서에 사용되는 용어 "약"은 단어 "약"과 연계된 숫자의 수식을 지칭한다. 일부 실시예에서, "약"은 단어 "약"에 의해 수식되는 숫자 주위의 ± 5-10% 범위를 포함한다. 예를 들어, 약 80 ℃에서 용매를 증발시키는 단계는 79 ℃, 80 ℃, 또는 81 ℃에서 용매를 증발시키는 단계를 포함한다.
본 명세서에 사용되는 구문 "리튬-함유(lithium-stuffed) 석류석 전해질"은 석류석 결정 구조에 관련된 결정 구조를 특징으로 하는 산화물을 지칭한다. 리튬-함유 석류석은 화학식 LiALaBM'cM"DZrEOF, LiALaBM'CM"DTaEOF, 또는 LiALaBM'CM"DNbEOF(여기에서 4<A<8.5, 1.5<B<4, 0≤C≤2, 0≤D≤2; 0≤E<2, 10<F<13이며, M' 및 M"은 각각 독립적으로 각각의 경우에 Al, Mo, W, Nb, Sb, Ca, Ba, Sr, Ce, Hf, Rb, 또는 Ta 중에서 선택됨), 또는 LiaLabZrcAldMe"eOf(여기에서 5<a<7.7; 2<b<4; 0<c≤2.5; 0≤d<2; 0≤e<2, 10<f<13이고 Me"은 Nb, Ta, V, W, Mo, 또는 Sb 중에서 선택되는 본 명세서에 기재된 바와 같은 금속임)를 갖는 화합물을 포함한다. 본 명세서에 사용되는 석류석은 또한, Al2O3로 도핑된 상기 기재된 석류석을 포함한다. 본 명세서에 사용되는 석류석은 또한, Al3 +가 Li+를 치환하도록 도핑된 상기 기재된 석류석을 포함한다. 본 명세서에 사용되는 리튬-함유 석류석, 및 석류석은 일반적으로 Li7.0La3(Zrt1 + Nbt2 + Tat3)O12 + 0.35Al2O3를 포함하나 이로 제한되지 않으며; 여기에서 La:(Zr/Nb/Ta) 비가 3:2가 되도록 t1+t2+t3 = 아랫첨자 2이다. 또한, 본 명세서에 사용되는 석류석은 LixLa3Zr2O12 + yAl2O3를 포함하나 이로 제한되지 않으며, 여기에서 x는 5.5 내지 9의 범위이고; y는 0 내지 1의 범위이다. 일부 실시예에서 x는 7이고 y는 1.0이다. 일부 실시예에서 x는 7이고 y는 0.35이다. 일부 실시예에서 x는 7이고 y는 0.7이다. 일부 실시예에서 x는 7이고 y는 0.4이다. 또한, 본 명세서에 사용되는 석류석은 LixLa3Zr2O12 + yAl2O3를 포함하나 이로 제한되지 않는다.
본 명세서에 사용되는 석류석은 YAG-석류석(즉, 이트륨 알루미늄 석류석 또는, 예를 들어, Y3Al5O12)을 포함하지 않는다. 본 명세서에 사용되는 석류석은 규산염계 석류석, 예를 들어 파이로프, 알만딘, 스페사틴, 그로설라, 헤소나이트, 또는 육계석, 차보라이트, 우바로바이트 및 안드라다이트 및 고체 용액 파이로프-알만딘-스페사라이트 및 우바로바이트-그로설라-안드라다이트를 포함하지 않는다. 본 명세서의 석류석은 일반식 X3Y2(SiO4)3를 나타내는 네소규산염을 포함하지 않으며, 여기에서 X는 Ca, Mg, Fe, 및, 또는 Mn이고; Y는 Al, Fe, 및, 또는 Cr이다.
본 명세서에 사용되는 용어 "다공성"은 기공, 예를 들어, 나노기공, 메조기공, 또는 마이크로기공을 포함하는 물질을 지칭한다.
II. 크기
일부 실시예에서, 다양한 충전식 전지 양극 알키텍처 및 나노구조가 본 명세서에 기술된다. 이들 실시예 중 일부에서, 양극은 활물질(삽입 화학(intercalation chemistry) 캐소드 물질, 변환 화학 캐소드 물질, 또는 그의 조합), 활물질과 함께 분쇄되고, 제분되고, 혼합된 음극전해질 물질(작은 크기의 세라믹, 산화물, 또는 황화물 전해질 물질), 및 임의로 결합제 및 전자 전도성 첨가제를 포함한다. 일부 실시예에서, 큰 캐소드 활물질 입자 크기 대 작은 음극전해질 입자 크기의 입자 크기(직경) 비가 적어도 3:1 이상이도록 적어도 캐소드 활물질 및 음극전해질 물질을 제분한다. 일부 실시예에서, 이 크기 비(큰 입자 크기: 작은 입자 크기)는 적어도 3:1, 또는 적어도 3.5:1, 또는 적어도 4:1, 또는 적어도 4.5:1, 또는 적어도 5:1, 또는 적어도 5.5:1, 또는 적어도 6:1, 또는 적어도 6.5:1, 또는 적어도 7:1, 적어도 7.5:1, 또는 적어도 8:1, 또는 적어도 8.5:1, 또는 적어도 9:1, 또는 적어도 9.5:1, 또는 적어도 10:1, 또는 적어도 10.5:1, 또는 적어도 11:1, 또는 적어도 11.5:1, 또는 적어도 12:1, 또는 적어도 12.5:1, 또는 적어도 13:1, 또는 적어도 13.5:1, 또는 적어도 14:1, 또는 적어도 14.5:1, 또는 적어도 15:1, 또는 적어도 15.5:1, 또는 적어도 16:1, 또는 적어도 16.5:1, 또는 적어도 17:1, 적어도 17.5:1, 또는 적어도 18:1, 또는 적어도 18.5:1, 또는 적어도 19:1, 또는 적어도 19.5:1, 또는 적어도 20:1, 적어도 20.5:1, 또는 적어도 21:1, 또는 적어도 21.5:1, 또는 적어도 22:1, 또는 적어도 22.5:1, 또는 적어도 23:1, 또는 적어도 23.5:1, 또는 적어도 24:1, 또는 적어도 24.5:1, 또는 적어도 25:1, 또는 적어도 25.5:1, 또는 적어도 26:1, 또는 적어도 26.5:1, 또는 적어도 27:1, 또는 적어도 27.5:1, 또는 적어도 28:1, 또는 적어도 28.5:1, 또는 적어도 29:1, 또는 적어도 29.5:1, 또는 적어도 30:1이다. 일부 실시예에서, 이 크기 비(큰 입자 크기: 작은 입자 크기)는 3:1, 3.5:1, 4:1, 4.5:1, 5:1, 5.5:1, 6:1, 6.5:1, 7:1, 7.5:1, 8:1, 8.5:1, 9:1, 9.5:1, 10:1, 10.5:1, 11:1, 11.5:1, 12:1, 12.5:1, 13:1, 13.5:1, 14:1, 14.5:1, 15:1, 15.5:1, 16:1, 16.5:1, 17:1, 17.5:1, 18:1, 18.5:1, 19:1, 19.5:1, 20:1, 20.5:1, 21:1, 21.5:1, 22:1, 22.5:1, 23:1, 23.5:1, 24:1, 24.5:1, 25:1, 25.5:1, 26:1, 26.5:1, 27:1, 27.5:1, 28:1, 28.5:1, 29:1, 29.5:1, 또는 30:1이다. 일부 실시예에서, 캐소드 활성 입자는 큰 입자이다. 이들 실시예 중 일부에서, 음극전해질 입자는 작은 입자이다.
일부 실시예에서, 다양한 충전식 전지 양극 알키텍처 및 나노구조가 본 명세서에 기술된다. 이들 실시예 중 일부에서, 양극은 활물질, 활물질과 함께 분쇄되고, 제분되고, 혼합된 음극전해질 물질, 및 임의로 결합제, 및 전자 전도성 첨가제를 포함한다. 일부 실시예에서, 큰 캐소드 활물질 입자 크기 대 작은 음극전해질 입자 크기의 입자 크기(직경) 비가 적어도 3:1 이상이도록 적어도 캐소드 활물질 및 음극전해질 물질을 제분한다. 일부 실시예에서, 활물질은 NCA이며 250-400 nm, 1-2 ㎛, 또는 5-6 ㎛의 D50을 나타낸다. 이들 실시예에서, 음극전해질은 250-300 nm의 D50을 나타낸다.
일부 실시예에서, 입자 D50 직경이 1-5 또는 5 ㎛인 활물질을 포함하는 다양한 충전식 전지 양극이 본 명세서에 기술된다. 이들 실시예 중 일부에서, 음극전해질은 1 ㎛의 입자 D50 직경을 나타낸다. 이들 실시예 중 일부에서, 음극전해질은 300 nm의 입자 D50 직경을 나타낸다.
III. 물질
실시예 1에 나타낸 바와 같이, 큰 양극 활물질 입자 크기 대 작은 음극전해질 입자 크기의 크기 비가 약 4:1 이상인 경우에 낮은 부피 분율에서 투과가 달성된다. 본 명세서에 기술된 일부 실시예에서, 양극 활물질은 LiMPO4(M=Fe, Ni, Co, Mn), LixTiyOz(여기에서 x는 0 내지 8이고, y는 1 내지 12이며, z는 1 내지 24임), LiMn2O4, LiMn2aNiaO4(여기에서 a는 0 내지 2임), LiCoO2, Li(NiCoMn)O2, Li(NiCoAl)O2, 및 니켈 코발트 알루미늄 산화물[NCA]로 구성된 그룹 중에서 선택되는 산화물 삽입 물질로부터 선택된다. 일부 다른 실시예에서, 양극 활물질은 금속 불화물 변환 화학 물질을 포함하며, FeF2, NiF2, FeOxF3 -2x, FeF3, MnF3, CoF3, CuF2 물질, 및 그의 합금 또는 조합으로 구성된 그룹 중에서 선택된다. 일부 다른 실시예에서, 양극 활물질은 삽입 산화물 및 변환 화학 금속 불화물의 조합을 포함한다.
소정의 실시예에서, 캐소드 활물질은 나노치수의 변환 화학 물질(예를 들어, FeF3)이다. 적합한 캐소드 활물질은 2013년 6월 19일자로 출원되고 2014년 6월 19일자로 미국 특허 출원 공개 제2014/0170493호로서 공개된, 발명의 명칭이 "전기화학적 변환 반응용 나노구조 물질(NANOSTRUCTURED MATERIALS FOR ELECTROCHEMICAL CONVERSION REACTIONS)"인 미국 정규 특허 출원 제13/922,214호; 또한 2015년 2월 25일자로 출원된, 발명의 명칭이 "삽입 물질 및 변환 물질 양자 모두를 가진 하이브리드 전극(HYBRID ELECTRODES WITH BOTH INTERCALATION AND CONVERSION MATERIALS)"인 국제 PCT 특허 출원 제PCT/US2015/017584호; 또한 2014년 12월 23일자로 출원된, 발명의 명칭이 "리튬 강화 니켈 망간 코발트 산화물(LR-NMC)(LITHIUM RICH NICKEL MANGANESE COBALT OXIDE (LR-NMC))"인 미국 가특허 출원 제62/096,510호에 기술되어 있다. 이들 출원의 전체 개시는 모든 목적을 위해 전체적으로 원용에 의해 본 명세서에 포함된다.
소정의 실시예에서, 양극 활물질은 NCA이며 약 5-6 ㎛의 중간 입자 크기를 나타낸다. 이 특정 실시예에서, 적어도 4:1 이상의 입자 크기 비를 유지하기 위해 필요한 음극전해질은 1.5 ㎛ 미만(예를 들어, 1.2 - 1.5 ㎛)의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 NCA이며 약 5-6 ㎛의 중간 입자 크기를 나타낸다. 이 특정 실시예에서, 적어도 4:1 이상의 입자 크기 비를 유지하기 위해 필요한 음극전해질은 1.5 ㎛ 미만(예를 들어, 1.2 - 1.5 ㎛)의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 FeF3이며 약 300 nm의 중간 입자 크기를 나타낸다. 이 특정 실시예에서, 적어도 4:1 이상의 입자 크기 비를 유지하기 위해 필요한 음극전해질은 80 nm 미만(예를 들어, 60 - 80 nm)의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 NCA이며 약 4-10 ㎛의 중간 입자 크기(D50)를 나타낸다. 이 특정 실시예에서, 적어도 20:1 이상의 입자 크기 비를 유지하기 위해 필요한 음극전해질은 500 nm 미만(예를 들어, 200 nm)의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 FeF3, 탄소, 및 이온 전도체의 복합체를 포함하며, 여기에서 복합체 직경 크기는 1 ㎛이다. 이 특정 실시예에서, 적어도 20:1 입자 크기 비, 4:1 입자 크기 비, 또는 1:1 입자 크기 비를 유지하기 위해 필요한 음극 전해질은, 예를 들어, 각각 약 50 nm, 250 nm, 또는 1 ㎛의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 FeF3, 탄소, 및 이온 전도체의 복합체를 포함하며, 여기서 복합체 직경은 10 ㎛이다. 이 특정 실시예에서, 적어도 20:1 입자 크기 비, 4:1 입자 크기 비, 또는 1:1 입자 크기 비를 유지하기 위해 필요한 음극전해질은, 각각 약 500 nm, 2.5 ㎛, 또는 10 ㎛의 입자 크기를 나타내는 음극전해질일 것이다.
소정의 실시예에서, 양극 활물질은 FeF3, 탄소, 및 이온 전도체의 복합체를 포함하며, 여기서 복합체 직경은 100 ㎛이다. 이 특정 실시예에서, 적어도 20:1 입자 크기 비, 4:1 입자 크기 비, 또는 1:1 입자 크기 비를 유지하기 위해 필요한 음극전해질은, 각각 약 5 ㎛, 25 ㎛, 또는 100 ㎛의 입자 크기를 나타내는 음극전해질일 것이다.
IV. 방법
본 개시는 전기화학적 디바이스 및 그의 물질에 관한 것이다. 더욱 구체적으로, 본 명세서에 기술된 실시양태는 큰 입자 및 작은 입자를 포함하는 저-다공성 전극을 기재한다. 큰 입자는 전기화학적 활물질을 포함한다. 작은 입자는 황화물계 또는 석류석계 음극전해질(예를 들어, 리튬 함유 석류석)과 같은 이온 전도성 물질을 포함한다. 일부 실시예에서, 큰 입자 및 작은 입자는 0.5 이하의 분산도를 특징으로 한다. 다른 실시양태도 있다.
일부 실시예에서, 복수의 제1 입자 및 복수의 제2 입자를 제공하는 단계로서, 복수의 제1 입자는 10 ㎛ 미만의 제1 중간 직경을 특징으로 하고, 복수의 제2 입자는 적어도 5e-4 S/cm의 이온 전도도를 특징으로 하며, 제1 중간 직경은 제2 중간 직경보다 적어도 3배 더 크고, 복수의 제1 입자 및 복수의 제2 입자는 0.25 미만의 분산도를 특징으로 하는 단계; 복수의 제1 입자 및 복수의 제2 입자를 혼합하여 혼합 물질을 형성하는 단계; 및 혼합물을 전극 내로 침착시키는 단계; 및 전극을 압축하는 단계를 포함하는, 전극 물질의 형성 방법이 본 명세서에 기술된다.
일부 실시예에서, 혼합 물질을 건조시키는 단계를 포함하는 방법이 본 명세서에 기술된다.
일부 실시예에서, 혼합 물질을 기재 상에 침착시키는 단계를 포함하는 방법이 본 명세서에 기술된다.
일부 실시예에서, 침착 공정 전에 혼합하는 단계를 수행하는 방법이 본 명세서에 기술된다.
일부 실시예에서, 혼합 물질을 베이킹(baking)하는 단계를 포함하는 방법이 본 명세서에 기술된다.
물질을 제분하는 실시예에서, 다양한 제분 기술을 사용할 수 있다. 예를 들어, 제분 기술은 건식 제분(dry milling), 플래니터리 제분(planetary milling), 극저온 제분(cryomilling), 제트 제분(jet milling), 습식 제분(wet milling), 또는 비드를 이용하는 제분, 및/또는 매질 밀(mill)로 구성된 그룹 중에서 선택될 수 있다.
상기 설명된 바와 같이, 고체 상태 전지 디바이스는 다수의 응용에 유용할 수 있다. 예를 들어, 고체 전해질 물질을 갖는 고체 상태 전지는 액체 전해질을 채용하는 관용적인 전지에 비해 이점을 가질 수 있으며, 이들 이점은 안전성 및 고온 작동 역량을 포함할 수 있을 것이다. 고체 상태 전지가 효율적으로 작동하기 위해서는, 고체 상태 전지의 다양한 구성요소가 높은 전도도, 에너지 밀도, 및 용량과 같은 특이적 특징을 나타내는 것이 바람직하다. 더욱 구체적으로, 고체 상태 전지 전극은 높은 전력 역량을 위해 활물질이 신속한 리튬 이온 전도 물질과 혼합되는 것을 필요로 할 수 있다. 전극은 전극 응집 및 접착을 위한 결합제 및 전자 전도 구성요소를 추가로 필요로 할 수 있다. 이들 고체의 효율적인 패킹은 고 에너지 밀도 전극의 제조를 위해 결정적일 수 있다. 본 명세서에 기재된 실시양태는 고 에너지 밀도 전극에 유용한 전극 알키텍처의 효율적인 패킹을 제공하는 구조 및 알고리듬을 포함한다는 것이 인정되어야 한다.
고체 상태 전극의 다양한 구성요소가 효율적으로 패킹되지 않을 경우, 빈 기공 공간이 생성될 수 있으며, 이는 낭비되는 부피(wasted volume)의 도입으로 인해 적어도 에너지 밀도를 감소시킨다. 저 다공성에 부가하여, 저율(low rate) 역량을 유발하는 음극전해질의 비-투과 네트워크로부터 불량한 이온 전도가 유발될 수 있다. 부가적으로, 음극전해질의 비-투과 네트워크는 전기화학적 활물질에 대한 불량한 이온 접근을 유발할 수 있으며, 이는 저 에너지 용량을 유발한다.
일부 실시예에서, 하기 단계들을 포함하는 방법이 본 명세서에 기술된다. 제1 단계에서는, 황화물 전해질이 제공된다. 황화물 전해질은 본 명세서에 기재된 임의의 황화물 전해질을 포함할 수 있다. 제2 단계에서는, 습식 제분과 같은 제분 기술에 의해 전해질의 입자 크기를 감소시킨다. 제3 단계에서는, 제분된 전해질을 원심분리하고 처리하여 용매를 감소시킨다. 일부 실시예에서, 처리는 제분된 전해질이 약 50 %(w/w) 고체/액체 혼합물(액체는 제분 용매임)이도록 용매를 증발시키는 단계를 포함한다. 제분 조건에 따라, 다양한 크기 및 분포의 입자 크기가 달성될 수 있다. 이어서, 제분된 전해질을 캐소드 활물질(또는 Al2O3와 같은 대체물)과 혼합하며, 여기에서 활물질은 공지의 언급된 입자 크기를 나타낸다. 일부 실시예에서는, 이 단계에서 결합제 및 임의로 탄소 또한 전해질 및 활물질과 혼합된다. 다음 단계에서는, 물질의 혼합물을 혼합한다. 다음 단계에서는, 혼합된 혼합물을 주조 기술(예를 들어, 슬롯 다이, 인상 코팅, 또는 닥터 블레이드)을 이용하여 필름으로 주조한다. 다음 단계에서는, 주조된 필름을, 예를 들어, 열판 상에서 또는 오븐 내에서(사용되는 용매에 따라 ~40-200 ℃) 건조시킨다. 일부 실시예에서, 본 방법은 캘린더링 기술을 사용하여 건조된 필름에 압력 또는 압축을 인가하는 단계를 추가로 포함한다.
V. 혼합 입자 크기를 갖는 전극 알키텍처
도 1은 본 발명의 실시양태에 따른 전극 물질을 예시하는 단순화된 다이어그램이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 1에 나타낸 바와 같이, 전극 물질(100)은 큰 크기의 입자(102) 및 작은 크기의 입자(101)를 포함한다. 큰 입자와 작은 입자 사이의 상대적인 크기 및 비는 축척에 따라 그려진 것이 아니고, 단지 예시를 제공할 뿐이다. 큰 크기의 입자는 전기화학적 활물질이다. 작은 크기의 입자는 이온 전도성 물질이다. 예를 들어, 큰 크기의 입자는, 2013년 6월 19일자로 출원되고 2014년 6월 19일자로 미국 특허 출원 공개 제2014/0170493호로서 공개된, 발명의 명칭이 "전기화학적 변환 반응용 나노구조 물질"인 미국 정규 특허 출원 제13/922,214호; 또한 2015년 2월 25일자로 출원된, 발명의 명칭이 "삽입 물질 및 변환 물질 양자 모두를 가진 하이브리드 전극"인 국제 PCT 특허 출원 제PCT/US2015/017584호; 또한 2014년 12월 23일자로 출원된, 발명의 명칭이 "리튬 강화 니켈 망간 코발트 산화물(LR-NMC)"인 미국 가특허 출원 제62/096,510호에 기술된 것과 같은 변환 화학 물질을 포함하며, 이들 각각은 모든 목적을 위해 원용에 의해 본 명세서에 포함된다. 예를 들어, 전기화학적 활물질은 철 불화물 물질, 구리 불화물 물질, 니켈 불화물 물질, 및/또는 다른 유형의 물질을 포함할 수 있으나 이로 제한되지 않는다. 작은 크기의 입자는 고체 전해질 또는 음극전해질 물질을 포함한다. 소정의 구현예에서, 작은 크기의 입자는 LiaXbPcSdOe를 포함하는 이온-전도성 전해질 물질일 수 있으며, 여기에서 X=Si, Ge, Al, Sn, 및 그의 조합이고, 5≤a≤15, 0≤b≤3, 1≤c≤4, 6≤S≤18, 0<e≤5이다. 예를 들어, 이온-전도성 전해질 물질은 2014년 5월 15일자로 출원되고 발명의 명칭이 "LiAMPBSC(M=Si, Ge, 및/또는 Sn)를 사용하는 전지용 고체 상태 음극전해질 또는 전해질"인 국제 PCT 특허 출원 제PCT/US14/38283호; 또한 미국 특허 제8,697,292호(Kanno, et al.)에 기재되어 있으며, 이들 양자 모두의 전체 내용은 모든 목적을 위해 전체적으로 원용에 의해 포함된다. 다양한 실시양태에서, 큰 입자(전기화학적 활물질)의 상대적인 중간 크기는 작은 입자(이온 전도성 물질)의 상대적인 중간 크기보다 적어도 3배 더 크다. 예를 들어, 큰 입자의 중간 직경은 1 내지 10 ㎛ 또는 약 0.1 내지 1 ㎛일 수 있고, 작은 입자의 중간 직경은 약 200 nm 내지 2 ㎛ 또는 약 50-200 nm일 수 있다.
본 명세서에 사용되는 D50 은 부피 평균 중간 입자 크기의 척도이다.
관용적인 전지에서, 전기화학적 활물질은 주어진 전류에서 주어진 시간 내에 실질적으로 충전 및 방전되기에 충분한 크기의 입자로 구성된다. 관용적인 활물질의 간극은 활물질의 표면에 높은 리튬 이온 전도도를 제공하는 액체 전해질로 습윤된다. 고체 상태 전지에서는, 이온 전도도가 높고 액체에 필적하는 고체 음극전해질 물질로 액체를 대체해야 한다. 본 명세서의 전극은 최소한의 부피를 소비하면서 음극전해질이 전극을 통해 투과하여 캐소드 전체에 걸쳐 리튬 이온을 전도하도록 설계된다. 음극전해질은 에너지 밀도에 기여하지 않으므로, 임의의 음극전해질 부피는 에너지 밀도를 임의의 음극전해질의 부재하의 에너지 밀도보다 감소시키는 경향이 있다.
본 명세서에 기재된 전기화학적 셀에서는, 다공성 또한 에너지 저장에 기여하지 않으므로, 입자 크기 비의 선택을 통해, 또는 압축 수단을 통해 다공성을 최소화한다. 본 명세서에 기재된 전기화학적 셀에서는, 작은 입자를 통한 높은 이온 전도도를 유지하면서도 큰 입자에 의해 차지되는 공간이 가능한 한 커야 한다. 본 명세서에 기재된 전기화학적 셀에서는, 전극을 통한 높은 이온 전도도를 유지하면서도 작은 입자에 의해 차지되는 공간이 가능한 한 작아야 한다. 본 명세서에 기재된 전기화학적 셀에서는, 기공 부피가 가능한 한 작아야 한다. 또한, 본 명세서에 기재된 전기화학적 셀에서는, 작은 입자의 총량에 대한, 투과 네트워크에 참여하는 작은 입자의 분율이 가능한 한 커야 한다. 본 명세서에 기재된 전기화학적 셀에서는, 작은 입자의 투과 네트워크에 의해 접촉되는 큰 입자의 분율이 가능한 한 높아야 한다.
본 명세서에 기술된 실시예의 전기화학적 전극에서, 음극전해질은 활물질의 더 큰 입자 사이의 공간을 효율적으로 충전하는 작은 입자를 포함한다. 작은 크기의 입자는 큰 입자의 갭 및 공간 내로 충전되며, 동시에 전극을 통해 이온 전도성 경로를 제공한다. 전기화학적으로 활성인 큰 입자는 에너지 용량에 대한 주요 기여자이므로, 그들은 바람직하게 전극 물질의 총 부피의 50% 초과를 이룬다. 작은 크기의 입자는 바람직하게 전극 물질의 총 부피의 20% 미만을 이룬다. 충전제로서 작은 크기의 입자를 가진 전극 물질은 치밀할 수 있으며, 다공성이 25% 미만임이 인정되어야 한다.
전극 물질용 큰 입자 및 작은 입자 양자 모두의 크기 및 분포가 고체 상태 전지 디바이스의 성능에 영향을 준다는 것이 인정되어야 한다. 예를 들어, 본 명세서의 실시양태에 따른 전극은 2 시간 이내에 총 에너지 용량의 80%까지 충전될 수 있다. 큰 입자 및 작은 입자의 분산도(절대 및 상대 양자 모두)는 전극 물질의 성능 특징에 맞게 구성된다. 예를 들어, 큰 입자 및 작은 입자의 분산도는 전극 물질의 이온 전도도, 전자 전도도, 및 재충전 특징을 조정한다. 다양한 실시양태에 따라, 전극 물질의 큰 입자 및 작은 입자 양자 모두의 분산도는 0.25보다 더 낮다. 예를 들어, 일 세트의 입자가 가우시안 분포(
Figure pct00002
)를 나타낼 경우, 분포의 분산도(σ)는 분포의 표준 편차이다. 다른 실시예에서, 입자 분포는 대략 로그-정규 분포(
Figure pct00003
)이며, 이 경우에 분포의 분산도는 σ이다. 다양한 실시양태에서, 작은 입자 및 큰 입자는 균일하게 혼합된다. 바람직한 분산도 및 큰 입자 대 작은 입자의 크기 비를 동반하여, 투과 네트워크(예를 들어, 이온의)에 참여하는 작은 입자의 분율은 80%를 초과할 수 있다. 투과 네트워크에 의해 접촉되는 큰 입자의 분율은 80%를 초과할 수 있다. 예로서, 본 출원에서 수치 항으로 표현된 분산도의 척도는 실험적으로 측정된 입자 크기 분포에 대한 최적 로그 정규 분포의 분산도를 지칭한다. 예를 들어, 분산도 값(σ)은 상기 식을 사용하여 계산할 수 있다. 특정 구현예에 따라 다양한 분산도 값을 사용할 수 있다는 것이 인정되어야 한다. 상기 설명된 바와 같이, 큰 입자 및 작은 입자 양자 모두에 대한 0.25 미만의 분산도 값이 소정의 응용에 적합하다. 일부 응용에서는, 큰 입자 및 작은 입자 양자 모두에 대한 0.5 미만의 분산도 값이 음극전해질 물질의 형성에 사용된다.
전기화학적 활물질의 큰 입자 및 이온 전도성 물질의 작은 입자에 부가하여, 전극 물질은 전자 전도성 첨가제 물질 및/또는 결합제 물질을 추가로 포함할 수 있다. 예를 들어, 전자 전도성 첨가제 물질은 아세틸렌 블랙, 카본 블랙, 그래핀, 그래파이트, 활성탄, C65, C45, VGCF, 탄소 섬유, 탄소 나노튜브, 케첸 블랙, 및/또는 다른 것들을 포함한다. 결합제 물질은 고무, 중합체, 및/또는 다른 유형의 물질을 포함할 수 있다.
도 2는 본 발명의 실시양태에 따른 전극 물질을 예시하는 단순화된 다이어그램이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 2에 나타낸 바와 같이, 전기화학적 활물질은, 전기화학적 활물질 사이의 공간 내로 충전되는 이온 전도성 입자보다 더 크다. 예를 들어, 전기화학적 활물질은 캐소드 활성 입자를 포함하고, 이온 전도성 입자는 전해질(또는 음극전해질) 입자를 포함한다.
도 3은 본 발명의 실시양태에 따른 투과 네트워크를 예시하는 단순화된 다이어그램이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 3에서, 전극 물질은 이온 전도성 입자만 가진 것으로 나타내어지며, 여기에서 작은 입자의 투과 네트워크를 더 양호하게 예시하기 위해 큰 전기화학적 활물질을 이미지로부터 제거하였다. 이온 전도성 물질은 충전 및 방전 주기 중에 리튬 이온과 같은 물질이 전극을 통해 투과하는 것을 가능하게 하므로, 이온 전도성 물질은 음극전해질 물질로서 적합하다.
도 4는 무작위로 패킹된 전극 물질의 큰 입자와 작은 입자 사이의 입자 크기(직경) 비에 대해 투과 역치(percolation threshold)(ρs*, 여기서 ρs는 작은 입자(Vs) 대 총 입자 부피의 부피비, Vs/(Vs+Vl)임)를 예시하는 단순화된 그래프이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 4는 전극 내의 큰 입자와 작은 입자 사이의 크기 비와 투과 역치 ρS* 사이의 관계를 예시한다. 예를 들어, 그래프 상에서 6의 크기 비는 큰 입자의 중간 직경이 중간 작은 입자보다 직경에 있어서 약 6배 더 크다는 것을 의미한다. 일반적으로, 크기 비가 증가함에 따라 투과 역치 ρS*는 감소한다. 그러나, 더 큰 크기 비의 경우, 효과적인 전도도를 제공하지 않을 수 있는 다수의 작은 접촉을 통해 투과가 달성될 수 있다. 예를 들어, 접촉 반경이 1 nm 미만인 접촉을 무시하면, 투과 역치는 증가하고 크기 비에 대해 훨씬 덜 민감하게 된다. 도 4는 입자가 압축 없이 패킹된 7개의 샘플 분포에 대한 투과 역치를 예시한다. ρS* 는 소정 범위 이내인 것으로 결정됨이 이해되어야 한다. 크기 비 6의 경우, ρS*는 약 [0, 0.12] 사이를 경계로 한다. 다른 크기 비에서는 ρS*가 전형적으로 0.15 초과로 유지되었으므로, ρS*<0.12는 예상보다 더 낮다는 것이 인정되어야 한다. 예를 들어, 도 4는 ρS*가 크기 비와 함께 감소하고 분산도와 함께 증가한다는 것을 나타낸다.
도 5는 본 명세서에 기술된 실시양태에 따른 압축 패킹된 물질의 큰 입자와 작은 입자 사이의 크기 비를 예시하는 단순화된 그래프이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 5에서 알 수 있는 바와 같이, 입자의 압축은 투과 역치의 변화를 유발한다. 더욱 구체적으로, 2%의 미약한 압축 하에 7개 분포에 대한 투과 역치는 투과 역치를 낮추며, 이는 압축의 바람직함을 예시한다.
도 6은 본 명세서에 기술된 실시양태에 따른 입자 크기 비와 관련된 무작위 패킹 밀도를 예시하는 단순화된 다이어그램이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 6에서, φrcp=입자의 총 부피/용기의 부피이다. 예를 들어, φrcp=1은 용기의 부피가 완전히 패킹됨을 의미한다. 크기 비가 1인 경우, 무작위 조밀 패킹된 구의 최대 패킹은 φrcp
Figure pct00004
0.64인 것으로 공지되어 있다. 도 6은 투과 시스템에 대한 무작위 조밀 패킹 분율을 나타낸다. φrcp는 크기 비와 함께 증가하고 분산도와 함께 감소할 수 있음을 알 수 있다. 1을 초과하는 크기 비를 동반하여, φrcp>0.64의 값을 달성할 수 있으며, 이는 전극 내의 활성 입자와 음극전해질 사이에 크기 차이를 갖는 이익을 예시한다. 상기 설명된 바와 같이 전극 물질이 높은 패킹 밀도를 갖는 것이 바람직하다.
도 7은 상이한 입자 크기 비에 대해 작은 입자에 의해 차지된 용기의 부피의 총 분율에 대해 재정규화된(renormalize) 투과 역치를 예시하는 단순화된 그래프이다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 더욱 구체적으로, 도 7의 수직 축 상의 곱 φrcpρS* 값은 투과 역치에서 작은 입자에 의해 차지된 용기의 부피의 총 분율 φS를 제공한다. 도 7에서 예시의 목적상, 2% 압축(부피)을 패킹에 사용하고, RC<1 nm인 접촉은 무시한다. 본 명세서에서 압축은, 시뮬레이션 상자 크기가 2% 만큼 감소되어, 약 2%의 입자-입자 중첩을 유발함을 의미한다. 이는 입자 넥킹에 대한 모델이다. 그래프는 투과 역치에서 φS가 크기 비 및 분산도에 따라 거의 일정함을 나타낸다. 그래프는, 충분히 낮은 분산도 및 충분히 높은 크기 비를 위해 작은 입자가 총 용기 부피의 >14%를 차지하는 경우, 투과가 일어날 것임을 시사한다.
몇몇 실시예에서는, 전극에 압축이 인가된다. 롤러 직경이 90 mm, 100 mm, 110 mm, 또는 120 mm 초과이고, 라인 압력이 8 MPa, 9 MPa, 10 MPa, 11 MPa 초과인 캘린더링 밀에 의해 5 cm/s 미만의 공급 속도로 너비가 300 mm 미만인 전극 스트립 상에 압축을 인가할 수 있다.
도 8은 본 명세서에 기술된 실시양태에 따라 작은 입자에 의해 차지된 2D 단면적 분율을 작은 입자 부피의 함수로서 예시한다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 도 8에 나타낸 바와 같이, 7개 분포에 대해 단면적 φ2D는 작은 입자에 의해 차지된 부피, ρS의 함수로서 수직 축 상에 있다. 도 8은 투과된 입자에 의해 덮인 단면적이 ρS와 거의 선형으로 성장하며, 크기 비 2 및 절단 분포(truncated distribution)의 경우를 제외하고는 모든 분포에 대해 거의 동일함을 나타낸다.
본 명세서의 도면에서, δ는 분산도이고 η는 중간 입자 직경 비(dl/ds)이다.
도 9는 본 발명의 실시양태에 따라 2% 압축을 동반하는 전극에 있어서 정규화된 2D 단면적 분율을 투과 역치의 함수로서 예시한다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 변수 φS는 모든 작은 입자에 의해 차지된 3D 용기의 부피의 2D 단면의 분율을 지칭한다. 변수 φ2D는 투과 네트워크의 일부인 작은 입자에 의해 차지된 3D 용기의 부피의 2D 단면의 분율을 지칭한다. 도 9는 φS에 의해 정규화된 단면적 분율을 작은 입자 부피, ρS의 함수로서 나타낸다. 모든 작은 입자가 투과 클러스터에 기여하는 경우, 비 φ2DS는 1과 동일하다. 그래프에 나타낸 바와 같이, 크기 비 2 및 절단 분포를 제외하고는, ρS>0.20인 경우에 거의 모든 작은 입자가 투과 클러스터에 기여한다. 결과는 ρS>0.20인 경우에, φ2D
Figure pct00005
φS의 가정은 양호한 근사값을 제공함을 나타낸다.
도 10은 본 명세서에 기술된 실시양태에 따라 투과 입자와 접촉되는 큰 입자의 분율 사이의 관계를 작은 입자의 분율의 함수로서 예시한다. 이 다이어그램은 단지 예일 뿐이며, 이는 청구범위를 부당하게 제한해서는 안된다. 당업자는 다수의 변경, 대안, 및 변형을 인식할 것이다. 이들 실시예에서, 그래프 내의 물질은 2% 부피로 압축된다. 더욱 구체적으로, 그래프는 7개 분포에 대해 작은 투과 입자와 접촉되는 큰 입자의 분율을 ρS의 함수로서 나타낸다. 데이터는 투과 역치(ρS ~ 10 - 15%)에 근접하면, 거의 모든 큰 입자가 작은 투과 입자와 접촉됨을 나타낸다.
도 11은 실질적인 압축 없이 큰 입자 및 작은 입자를 가진 전극 물질을 예시하는 SEM 사진이다. 도 11에서 알 수 있는 바와 같이, 큰 입자와 작은 입자는 균질하게 혼합되며, 여기에서 큰 입자는 작은 입자와 접촉된다. 도 11에서, 큰 입자의 중간 직경은 약 5 ㎛이고 작은 입자의 중간 직경은 약 300 nm이다.
도 12는 압축 공정을 적용한 후에 큰 입자 및 작은 입자를 가진 전극 물질을 예시하는 SEM 사진이다. 도 12에서 알 수 있는 바와 같이, 작은 입자는 큰 입자 사이의 공간 내로 치밀하게 충전된다. 알 수 있는 바와 같이, 큰 입자의 중간 직경은 약 5 ㎛이고 작은 입자의 중간 직경은 약 300 nm이다. 나타낸 전극의 다공성은, 예측된 바와 같이, 20% 미만인 것으로 측정되었다. 일부 실시예에서, 압축 공정은 단축 압축 또는 캘린더링 밀을 포함한다.
도 13은 도 11에 나타낸 전극 물질의 예시이다. 도 13에서, 가장 큰 평균 크기의 입자는 캐소드 활물질 입자이다. 그 다음으로 큰 평균 크기의 입자는 음극전해질 입자이다. 마지막으로, 가장 작은 평균 크기의 입자는 전자 전도성 첨가제이다.
상기 내용은 특정 실시양태의 완전한 기재이지만, 다양한 변형, 대안적 작제, 및 균등물이 사용될 수 있다. 그러므로, 상기 기재 및 예시는 첨부된 청구범위에 의해 정의되는 본 발명의 범위를 제한하는 것으로 이해되어서는 안된다.
VI. 전기화학적 전극
일부 실시예에는, 전기화학적 활물질의 복수의 제1 입자를 포함하는 전기화학적 디바이스의 고체 상태 전극이 본 명세서에 기술되며, 제1 입자는 0.25 이하의 제1 분산도 및 제1 중간 직경을 특징으로 하는 제1 입자 크기 분포를 갖는다. 일부 실시예에서, 제1 중간 직경은 약 10 nm 내지 약 10 ㎛이다. 소정의 실시예에서, 제1 중간 직경은 약 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 또는 500 nm이다. 소정의 실시예에서, 제1 중간 직경은 약 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 또는 10 ㎛이다. 일부 실시예에서, 전극은 이온 전도성 물질의 복수의 제2 입자를 포함하며, 제2 입자는 0.25 이하의 제2 분산도 및 제2 중간 직경을 특징으로 하는 제2 입자 크기 분포를 갖고, 제2 중간 직경은 제1 중간 직경보다 적어도 3배 더 작다.
일부 실시예에서, 전극은 전극의 총 입자 부피에 대해 20% 미만인 제2 입자의 부피 분획을 갖는다.
일부 실시예에서, 전극은 20 부피% 미만의 다공성을 특징으로 한다. 소정의 실시예에서, 다공성은 15%(v/v) 미만이다. 소정의 다른 실시예에서, 다공성은 10%(v/v) 미만이다.
일부 실시예에서, 전극 내의 이온 전도성 물질은 LiaXbPcSdOe를 포함하며, 여기에서 X=Si, Ge, Al, Sn, 및 그의 조합이고, 5≤a≤15, 0<b≤3, 1≤c≤4, 6≤S≤18, 0<e≤5이다. 일부 실시예에서, X는 Si이다. 다른 실시예에서, X는 Si 및 Sn이다. 일부 다른 실시예에서, X는 Sn이다. 또 다른 실시예에서, X는 Ge이다. 일부 실시예에서, X는 Si 및 Ge이다.
일부 실시예에서, 본 명세서의 전극은 두(2) 시간 이내에 전극 용량의 80% 이상인 용량을 갖도록 충전될 수 있다.
일부 실시예에서, 본 명세서의 전극은 아세틸렌 블랙, 그래핀, 그래파이트, 카본 블랙, 활성탄, C65, C45, VGCF, 탄소 섬유, 탄소 나노튜브, 케첸 블랙, 또는 그의 조합 중에서 선택되는 전자 전도성 첨가제를 추가로 포함한다.
일부 실시예에서, 본 명세서의 전극은 결합제 물질을 추가로 포함하며, 여기에서 결합제 물질은 고무 및/또는 중합체를 포함한다.
일부 실시예에서, 본 명세서의 전극은 80% 초과의 비로 투과 네트워크에 참여하는 제2 입자의 분율로 구성된 투과 네트워크를 추가로 포함한다. 일부 실시예에서, 80%의 제2 입자가 투과 네트워크 내에 결합된다. 일부 다른 실시예에서, 85%의 제2 입자가 투과 네트워크 내에 결합된다. 일부 다른 실시예에서, 90%의 제2 입자가 투과 네트워크 내에 결합된다. 일부 다른 실시예에서, 95%의 제2 입자가 투과 네트워크 내에 결합된다. 일부 다른 실시예에서, 100%의 제2 입자가 투과 네트워크 내에 결합된다. 일부 실시예에서, 본 명세서의 전극은 투과 네트워크를 추가로 포함하며, 복수의 제1 입자의 분율은 80% 초과의 비로 투과 네트워크에 접촉된다.
일부 실시예에는, 제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질; 및 제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질 물질을 포함하는 고체 상태 전기화학적 전극이 본 명세서에 기술되며; 여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고; 여기에서 제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상이다.
일부 실시예에는, 제1 입자 크기 분포의 분산도가 0.25 이하인 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
일부 실시예에는, 제2 입자 크기 분포의 분산도가 0.25 이하인 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
일부 실시예에는, 전극의 다공성이 20 부피% 미만인 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
일부 실시예에는, 전자 전도성 첨가제를 추가로 포함하는 고체 상태 전기화학적 전극이 본 명세서에 기술되며, 전자 전도성 첨가제는 아세틸렌 블랙, 카본 블랙, 활성탄, C65, C45, VGCF, 탄소 섬유, 탄소 나노튜브, 및/또는 케첸 블랙을 포함한다. 이들 실시예 중 일부에서, 전기화학적 셀은 결합제 물질을 추가로 포함하며, 결합제 물질은 고무 또는 중합체 중에서 선택된다.
일부 실시예에는, 음극전해질 입자가 투과 네트워크를 형성하는 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
일부 실시예에는, 전극 내의 80% 초과의 음극전해질 입자가 투과 네트워크 내부에 결합된 고체 상태 전기화학적 전극이 본 명세서에 기술된다.
VII. 실시예
본 명세서에 기재된 실시예에서, 달리 제공되지 않는 한, 본 명세서에 기술된 고체 상태 전해질에서 아랫첨자 값은 청구된 조성물을 제조하기 위해 사용되는 전구체 화학물질의 원소 몰비를 나타낸다. 분석 기술에 의해 결정될 경우, 전해질의 실제 원소 실험 몰비는 상이할 수 있으며, 기술(예를 들어, x-선 형광 분광법 또는 유도 결합 플라즈마 분광법)에 따라 변동될 수 있다.
실시예 1: 패킹 비
본 실시예에서는 다양한 패킹 시나리오를 고려하였으며, 패킹 밀도 및 투과 전도도를 결정하였다. 도 14에 나타낸 바와 같이, 1개의 패킹 시나리오는 전극 내에 2개의 입자 크기를 포함하였다. 도 14의 좌측에 나타낸 바와 같이, 큰 크기의 입자(1401, 캐소드 활물질)는 단분산인 반면에, 작은 크기의 입자는 가우시안 분포의 작은 입자 크기(1402, 음극전해질 이온 전도체)를 포함하였다. 도 14의 우측에 나타낸 바와 같이, 큰 크기의 입자 및 작은 크기의 입자 양자 모두가 가우시안 분포의 입자 크기인 다른 시나리오를 고려하였다. 본 실시예에서 각각의 경우에 큰 크기의 입자 대 작은 크기의 입자의 직경의 비는 4로 고정되었다.
본 실시예에서, 제2 측면에서는, 다른 패킹 시나리오 또한 고려하였으며, 패킹 밀도 및 투과 전도도를 결정하였다. 도 15에 나타낸 바와 같이, 1개의 패킹 시나리오는 전극 내에 2개의 입자 크기를 포함하였다. 도 15에 나타낸 바와 같이, 큰 크기의 입자(1501, 캐소드 활물질) 및 작은 크기의 입자(1502, 음극전해질 이온 전도체) 양자 모두가 단분산 입자 크기 집합이었다. 도 15의 좌측에 나타낸 바와 같이, 1개의 시나리오는 작은 크기의 입자에 대한 큰 크기의 입자에 있어서 4로 고정된 입자 크기(직경) 비를 포함하였다. 도 15의 우측에 나타낸 바와 같이, 다른 시나리오는 작은 크기의 입자에 대한 큰 크기의 입자에 있어서 2로 고정된 입자 크기(직경) 비를 포함하였다.
실시예 2: 입자 크기 비의 함수로서의 전도도
본 실시예에서는, Al2O3 및 LSTPS를 각각 5-6 ㎛ 및 200-250 nm로 개별적으로 제분하였다. 이들 크기는 약 20:1의 큰 입자 크기 대 작은 입자 크기 비를 제공한다. 별도의 배치에서, Al2O3 및 LSTPS를 각각 1.25-1.5 ㎛ 및 200-250 nm로 개별적으로 제분하였다. 이들 크기는 약 5:1의 큰 입자 크기 대 작은 입자 크기 비를 제공한다. 세번째 별도의 배치에서, Al2O3 및 LSTPS를 각각 200-250 nm의 동일한 크기로 개별적으로 제분하였다. 이들 크기는 약 1:1의 큰 입자 크기 대 작은 입자 크기 비를 제공한다. 본 실시예에서는, 이온 전도도를 측정하였다. 캐소드 활물질에 대한 대체물로서 Al2O3를 사용하였다.
일반적으로, 제분된 Al2O3, LSTPS, 결합제, 및 용매를 포함하는 슬러리를 제공함으로써 전극 제형을 제조하였다. 기재(예를 들어, Al 또는 스테인리스강) 상에 슬러리를 주조하고 건조시켰다. 약 200 내지 300 MPa의 압력을 인가하기 위해, 생성된 건조 물질에 단축 프레스를 사용하여 압축을 인가하였다. 본 실시예에서, LSTPS 입자 크기는 250-300 nm의 D50 으로 설정되었고 Al2O3의 입자 크기는 전술한 입자 크기 비를 유발하도록 변동되었다.
각각의 샘플을 Li-포함 전극과 접촉되도록 위치시키고 전극 제형의 전도도를 관찰하였다. 결과는 도 16에 나타낸다.
도 16에 나타낸 바와 같이, 큰 입자 크기 대 작은 입자 크기의 입자 크기 비가 20:1 및 5:1인 전극 제형은 큰 입자 크기 대 작은 입자 크기의 입자 크기 비가 1:1인 전극 제형보다 더 높은 측정가능한 이온 전도도를 갖는 것으로 관찰되었다. 큰 입자 크기 대 작은 입자 크기의 입자 크기 비가 1:1인 전극 제형은 큰 입자 크기 대 작은 입자 크기의 입자 크기 비가 적어도 5:1 이상인 전극 제형보다 거의 2 자릿수 더 낮은 전도도 값을 가지고 있었다. 본 실시예에서, 큰 입자 크기 대 작은 입자 크기의 입자 크기 비가 적어도 5:1 이상인 전극 제형은 σi(이온 전도도)가 약 5-7e-6 S/cm인 것으로 관찰되었다. 도 16의 데이터가 시사하는 경향에 기초하여, 4:1 이상의 큰 입자 크기 대 작은 입자 크기 비에서 가장 높은 투과 전도도가 결정되었다.
도 17에 나타낸 바와 같이, Al2O3 입자(1702)의 근사 입자 직경은 4-6 ㎛였고 LSTPS 입자(1701)의 근사 입자 직경은 약 250 nm였다. 도 18에 나타낸 바와 같이, Al2O3 입자(1802)와 LSTPS 입자(1801)는 균질하게 혼합된다. LSTPS 입자(1801)는 Al2O3 입자(1802)보다 훨씬 더 많이 넥킹되거나, 표면을 공유하거나 접촉하는 것으로 관찰된다. 이 방식으로, LSTPS 입자(1801)는 전극 제형 내에 투과 네트워크를 형성하며, 이를 통해 Li+ 이온이 전도될 수 있는 것으로 관찰된다.
도 19에 나타낸 바와 같이, Al2O3 입자(1902)의 근사 입자 직경은 약 0.75-4 ㎛였고 LSTPS 입자(1901)의 근사 입자 직경은 약 250 nm였다. 도 20에 나타낸 바와 같이, Al2O3 입자(2002)와 LSTPS 입자(2001)는 균질하게 혼합된다. LSTPS 입자(2001)는 함께 넥킹되어 투과 네트워크를 형성하는 것으로 관찰된다.
도 21에 나타낸 바와 같이, Al2O3 입자(2102)의 근사 입자 직경은 약 250 nm였고 LSTPS 입자(2101)의 근사 입자 직경은 약 250 nm였다. 도 22에 나타낸 바와 같이, Al2O3 입자(2202)와 LSTPS 입자(2201)는 균질하게 혼합된다. LSTPS 입자(2201)는 함께 넥킹되지만 약 5-20 ㎛의 더 작은 도메인 내부에서만 그러한 것으로 관찰된다. Al2O3 입자(2202) 및 LSTPS 입자(2001)는 도 18에서의 경우와 같이 동일한 대규모 투과 네트워크가 형성되는 것을 가능하게 하지 않는다.
도 27에 나타낸 바와 같이, 관련 실험을 수행하여 전도도의 변화를 전극 내의 음극전해질의 부피 양의 함수로서 관찰하였다. 전기화학적 셀 내에 높은 에너지 밀도를 달성하기 위하여, 양극의 대부분(majority)은 활물질이어야 하고 양극의 소부분(minority)은 음극전해질 물질이어야 한다(소량의 음극전해질). 도 27은 낮은 음극전해질 부피 분율에서, 큰 입자 크기 대 작은 입자 크기 비가 1:1인 전극에 있어서 전도도의 차이는, 큰 입자 크기 대 작은 입자 크기 비가 적어도 5:1 이상인 전극의 전도도보다 2 자릿수 더 작다는 것을 나타낸다.
실시예 3: 큰 입자 로딩의 증가
상기 언급된 바와 같이, 황화물 음극전해질의 더 작은 크기의 입자는 큰 입자 크기:작은 입자 크기 비가 적어도 4:1 이상인 경우에 투과 네트워크를 형성하는 경향이 있다. 본 실시예에서 큰 입자는 캐소드 활물질을 나타내므로, 높은 이온 전도도를 보장하기 위해 음극전해질 입자의 충분한 양을 여전히 유지하면서도 전극 제형 내의 캐소드 활물질의 양을 최대화하기를 원할 것이다. 도 23 및 도 24는 Al2O3 입자(2302 및 2402) 및 LSTPS 입자(2301 및 2401)의 전극 제형을 나타내며, 여기에서 Al2O3:LSTPS 입자 크기 비는 20:1이었다. 도 23 및 24에 나타낸 바와 같이, Al2O3 입자(2302 및 2402)와 LSTPS 입자(2301 및 2201)는 균질하게 혼합된다. LSTPS 입자(2301 및 2401)는 함께 넥킹되는 것으로 관찰된다. 도 23에서, Al2O3:LSTPS 입자에 대한 부피비는 80:20이었다. 도 24에서, Al2O3:LSTPS 입자에 대한 부피비는 44:54였다. 개선된 혼합 공학을 이용하여 Al2O3:LSTPS 입자에 대한 더 많은 양이 가능할 것이다.
실시예 4: 전극 입자의 제분
본 명세서의 실시예에서, 특정 Al2O3:LSTPS 입자 크기 비를 나타내는 전극 제형을 제조하기 위해 Al2O3 및 LSTPS를 다양한 크기로 제분한다. 일 실시예에서, 입자는 도 25에 나타낸 바와 같이 제분되었다.
도 25에 나타낸 바와 같이, 본 실시예에서 Al2O3:LSTPS 입자는 하기 크기를 나타내도록 제분되었다:
입자 크기(직경, ㎛) D10 D50 D90
LSTPS 0.17 0.4 1.7
Al2O3 2.6 4.0 5.6
실시예 5: 전극 입자의 제분
본 명세서의 실시예에서, 특정 NCA:LSTPS 입자 크기 비를 나타내는 전극 제형을 제조하기 위해 니켈 코발트 알루미늄 산화물(NCA) 및 LSTPS를 다양한 크기로 제분한다. 일 실시예에서, 입자는 도 26에 나타낸 바와 같이 제분되었다.
도 26에 나타낸 바와 같이, 본 실시예에서 NCA:LSTPS 입자는 하기 크기를 나타내도록 제분되었다:
입자 크기(직경, ㎛) D10 D50 D90
LSTPS 0.15 0.34 0.71
NCA 5.91 8.6 12.7
전기의 실시양태들이 명확한 이해를 목적으로 다소 상세히 기재되었지만, 첨부된 청구범위 내에서 소정의 변화 및 변형이 실행될 수 있음은 자명하다. 본 실시양태의 공정, 시스템, 및 장치를 구현하는 다수의 대안적인 방식이 존재함에 유의하여야 한다. 따라서, 본 실시양태들은 한정적인 것이 아니라 예시적인 것으로 간주되어야 하며, 실시양태들이 본 명세서에 주어진 상세 사항으로 제한되어서는 안된다.

Claims (41)

  1. 전기화학적 활물질의 복수의 제1 입자로서, 복수의 제1 입자는 0.25 이하의 제1 분산도 및 제1 중간 직경을 특징으로 하는 제1 입자 크기 분포를 가지는, 복수의 제1 입자; 및
    이온 전도성 물질의 복수의 제2 입자로서, 복수의 제2 입자는 0.25 이하의 제2 분산도 및 제2 중간 직경을 특징으로 하는 제2 입자 크기 분포를 가지며, 제2 중간 직경은 제1 중간 직경보다 적어도 3배 더 작은, 복수의 제2 입자를 포함하는, 전기화학적 디바이스의 고체 상태 전극.
  2. 제1항에 있어서,
    전극의 총 입자 부피에 대해 20% 미만의 부피 분율의 제2 입자를 포함하는 전극.
  3. 제1항에 있어서,
    20 부피% 미만의 다공성을 특징으로 하는 전극.
  4. 제1항에 있어서,
    이온 전도성 물질이 LiaXbPcSdOe를 포함하며, 여기에서 X=Si, Ge, Al, Sn, 및 그의 조합이고, 여기에서 5≤a≤15, 0<b≤3, 1≤c≤4, 6≤S≤18, 및 0<e≤5인 전극.
  5. 제1항에 있어서,
    이온 전도성 물질이 Li2S-SiS2, Li2S-SiS2-LiI, Li2S-SiS2-Li3MO4, Li2S-SiS2-Li3MO3, Li2S-P2S5-LiI, 및 LATS로 구성된 그룹 중에서 선택되는 구성원을 포함하며, 여기에서 M은 Si, P, Ge, B, Al, Ga, 및 In으로 구성된 그룹 중에서 선택되는 구성원인 전극.
  6. 제1항에 있어서,
    전극 용량의 80% 이상의 용량이 2 시간 이내에 충전가능한 전극.
  7. 제1항에 있어서,
    아세틸렌 블랙, 카본 블랙, 활성탄, C65, C45, VGCF, 탄소 섬유, 탄소 나노튜브, 케첸 블랙(ketjen black), 또는 그의 조합을 포함하는 전자 전도성 첨가제를 추가로 포함하는 전극.
  8. 제1항에 있어서,
    고무 또는 중합체 중에서 선택되는 결합제 물질을 추가로 포함하는 전극.
  9. 제1항에 있어서,
    투과 네트워크(percolating network)를 추가로 포함하며, 여기에서 복수의 제2 입자의 분율이 80% 초과의 비로 투과 네트워크에 참여하는 전극.
  10. 제1항에 있어서,
    전극의 총 이온 전도도가 벌크(bulk) 이온 전도성 물질의 전도도의 1% 초과인 전극.
  11. 제1항에 있어서,
    투과 네트워크를 추가로 포함하며, 여기에서 복수의 제1 입자의 분율이 80% 초과의 비로 투과 네트워크에 접촉되는 전극.
  12. 제1항에 있어서,
    제2 중간 직경이 제1 중간 직경보다 적어도 4배 더 작은 전극.
  13. 제1항에 있어서,
    제2 중간 직경이 제1 중간 직경보다 적어도 5배 더 작은 전극.
  14. 제1항에 있어서,
    제2 중간 직경이 제1 중간 직경보다 적어도 10배 더 작은 전극.
  15. 제1항에 있어서,
    제2 중간 직경이 제1 중간 직경보다 적어도 20배 더 작은 전극.
  16. 제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질;
    제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질(catholyte) 물질을 포함하며;
    여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고;
    여기에서 제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상인, 고체 상태 전기화학적 전극.
  17. 제16항에 있어서,
    제1 입자 크기 분포의 분산도가 0.25 이하인 전극.
  18. 제16항 또는 제17항에 있어서,
    제2 입자 크기 분포의 분산도가 0.25 이하인 전극.
  19. 제16항에 있어서,
    전극의 다공성이 20 부피% 미만인 전극.
  20. 제16항에 있어서,
    아세틸렌 블랙, 카본 블랙, 활성탄, C65, C45, VGCF, 탄소 섬유, 탄소 나노튜브, 케첸 블랙, 또는 그의 조합을 포함하는 전자 전도성 첨가제를 추가로 포함하는 전극.
  21. 제16항에 있어서,
    고무 또는 중합체 중에서 선택되는 결합제 물질을 추가로 포함하는 전극.
  22. 제16항에 있어서,
    음극전해질 물질이 투과 네트워크를 형성하는 전극.
  23. 제22항에 있어서,
    전극 내의 80% 초과의 음극전해질 물질이 투과 네트워크 내부에 결합되는 전극.
  24. 애노드(anode) 집전체(current collector);
    애노드 집전체에 접속된 애노드;
    애노드에 접속되는 고체-상태 전해질로서, 애노드는 애노드 집전체와 고체-상태 전해질 사이에 위치하며, 고체-상태 전해질은 적어도 1e-4 S/cm의 이온 전도도를 특징으로 하는, 고체-상태 전해질; 및
    혼합 전극 물질을 포함하는 고체-상태 전해질에 접속되는 캐소드(cathode)로서, 혼합 전극 물질은 복수의 제1 입자 및 복수의 제2 입자를 포함하며, 복수의 제1 입자는 10 ㎛ 미만의 제1 중간 직경을 특징으로 하고, 복수의 제2 입자는적어도 5e-4 S/cm의 이온 전도도를 특징으로 하며, 제1 중간 직경은 제2 중간 직경보다 적어도 3배 더 크고, 복수의 제1 입자 및 복수의 제2 입자는 0.25 미만의 분산도를 특징으로 하는, 캐소드를 포함하는, 전지 디바이스.
  25. 제24항에 있어서,
    다공성이 캐소드의 25 부피% 미만이도록 혼합 전극 물질이 압축되는 디바이스.
  26. 제24항에 있어서,
    혼합 전극 물질이 총 부피를 특징으로 하며, 여기에서 복수의 제2 입자가 총 부피의 25% 미만을 차지하는 디바이스.
  27. 제24항에 있어서,
    복수의 제1 입자가 변환 화학(conversion chemistry) 물질을 포함하는 디바이스.
  28. 제24항에 있어서,
    복수의 제2 입자가 고체 전해질 물질을 포함하는 디바이스.
  29. 애노드 집전체;
    애노드 집전체와 직접 접촉되는 애노드;
    애노드와 직접 접촉되는 전해질로서, 애노드는 애노드 집전체와 전해질 사이에 위치하며, 전해질은 적어도 1e-4 S/cm의 이온 전도도를 특징으로 하는, 전해질; 및
    전해질과 직접 접촉되는 고체 상태 양극으로서,
    제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질;
    제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질 물질을 포함하는, 고체 상태 양극을 포함하며;
    여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고;
    제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상인, 전기화학적 셀.
  30. 제29항에 있어서,
    제1 입자 크기 분포의 분산도가 0.25 이하인 셀.
  31. 제29항 또는 제30항에 있어서,
    제2 입자 크기 분포의 분산도가 0.25 이하인 셀.
  32. 제29항에 있어서,
    양극의 다공성이 20 부피% 미만인 셀.
  33. 제29항에 있어서,
    음극전해질 물질이 투과 네트워크를 형성하는 셀.
  34. 제33항에 있어서,
    양극 내의 80% 초과의 음극전해질 물질이 투과 네트워크 내부에 결합되는 셀.
  35. 복수의 제1 입자 및 복수의 제2 입자를 제공하는 단계로서, 복수의 제1 입자는 10 ㎛ 미만의 제1 중간 직경을 특징으로 하고, 복수의 제2 입자는 적어도 5e-4 S/cm의 이온 전도도를 특징으로 하며, 제1 중간 직경은 제2 중간 직경보다 적어도 3배 더 크고, 복수의 제1 입자 및 복수의 제2 입자는 0.25 미만의 분산도를 특징으로 하는 단계;
    복수의 제1 입자 및 복수의 제2 입자를 혼합하여 혼합 물질을 형성하는 단계;
    혼합 물질을 전극 내로 침착시키는 단계; 및
    전극을 압축하는 단계를 포함하는, 전극 물질의 형성 방법.
  36. 제35항에 있어서,
    혼합 물질을 건조시키는 단계를 추가로 포함하는 방법.
  37. 제35항에 있어서,
    혼합 물질을 기재 상에 침착시키는 단계를 추가로 포함하는 방법.
  38. 제35항에 있어서,
    침착시키는 단계 전에 혼합하는 단계를 수행하는 방법.
  39. 제35항에 있어서,
    혼합 물질을 베이킹(baking)하는 단계를 추가로 포함하는 방법.
  40. 전기화학적 활물질의 복수의 제1 입자로서, 복수의 제1 입자는 0.5 이하의 제1 분산도 및 제1 중간 직경을 특징으로 하는 제1 입자 크기 분포를 가지는 복수의 제1 입자;
    이온 전도성 물질의 복수의 제2 입자로서, 복수의 제2 입자는 0.5 이하의 제2 분산도 및 제2 중간 직경을 특징으로 하는 제2 입자 크기 분포를 가지며, 제2 중간 직경은 제1 중간 직경보다 적어도 3배 더 작은 복수의 제2 입자를 포함하며;
    여기에서 전극은 전극의 총 입자 부피에 대해 20% 미만의 부피 분율의 복수의 제2 입자를 포함하는, 전기화학적 디바이스의 고체 상태 전극.
  41. 제1 중간 입자 크기를 갖는 제1 입자 크기 분포를 특징으로 하는 활물질;
    제2 중간 입자 크기를 갖는 제2 입자 크기 분포를 특징으로 하는 음극전해질 물질을 포함하며;
    여기에서 활물질 대 음극전해질 물질의 부피비는 99:1 내지 1:1이고;
    여기에서 제1 중간 입자 크기 대 제2 중간 입자 크기의 입자 크기 비는 적어도 3:1 이상인, 전기화학적 디바이스의 고체 상태 전극.
KR1020167031259A 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질 KR102527820B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227044508A KR102606710B1 (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462007416P 2014-06-04 2014-06-04
US62/007,416 2014-06-04
PCT/US2015/033027 WO2015187466A1 (en) 2014-06-04 2015-05-28 Electrode materials with mixed particle sizes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227044508A Division KR102606710B1 (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질

Publications (2)

Publication Number Publication Date
KR20170012222A true KR20170012222A (ko) 2017-02-02
KR102527820B1 KR102527820B1 (ko) 2023-05-02

Family

ID=54767209

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020237040264A KR20230164760A (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질
KR1020227044508A KR102606710B1 (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질
KR1020167031259A KR102527820B1 (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020237040264A KR20230164760A (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질
KR1020227044508A KR102606710B1 (ko) 2014-06-04 2015-05-28 혼합 입자 크기를 가진 전극 물질

Country Status (6)

Country Link
US (1) US9859560B2 (ko)
EP (1) EP3152795B1 (ko)
JP (3) JP7018258B2 (ko)
KR (3) KR20230164760A (ko)
CN (2) CN112072090A (ko)
WO (1) WO2015187466A1 (ko)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384822B1 (ko) 2014-02-25 2022-04-08 퀀텀스케이프 배터리, 인코포레이티드 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극
US20200006773A1 (en) * 2015-11-19 2020-01-02 Qatar Foundation For Education, Science And Community Development Orthophosphate electrodes for rechargeable batteries
WO2017111132A1 (ja) * 2015-12-25 2017-06-29 富士フイルム株式会社 全固体二次電池、全固体二次電池用粒子、全固体二次電池用固体電解質組成物および全固体二次電池用電極シートならびにこれらの製造方法
US10854912B2 (en) 2016-01-12 2020-12-01 Lg Chem, Ltd. Sulfide-based solid electrolyte and all-solid-state battery applied therewith
JP6593381B2 (ja) * 2017-04-18 2019-10-23 トヨタ自動車株式会社 全固体リチウムイオン二次電池用の負極合材、当該負極合材を含む負極、及び当該負極を備える全固体リチウムイオン二次電池
US11691518B2 (en) * 2017-07-21 2023-07-04 Quantumscape Battery, Inc. Predictive model for estimating battery states
US20210135292A1 (en) 2018-06-15 2021-05-06 Quantumscape Corporation All sulfide electrochemical cell
CN109616601A (zh) * 2018-08-30 2019-04-12 溧阳天目先导电池材料科技有限公司 一种高锂含量的预锂化膜及其制备方法和应用
CN109638360B (zh) * 2018-11-09 2022-03-08 哈尔滨工业大学无锡新材料研究院 一种全固态锂硫电池的制备方法及制备模具
GB2610331B (en) * 2018-12-21 2023-11-15 Ilika Tech Limited Composite material
GB2580146B (en) * 2018-12-21 2023-05-24 Ilika Tech Limited Composite material
CN109755637B (zh) * 2018-12-29 2022-04-19 浙江南都电源动力股份有限公司 氧化物陶瓷复合固态电解质、其制备方法及其应用
KR102660233B1 (ko) * 2019-02-20 2024-04-23 유미코아 충전식 리튬 이온 고체 전지용 분말상 고체 전해질 화합물
CN114128007A (zh) * 2019-08-19 2022-03-01 富士胶片株式会社 电极用成型体的制造方法
US20240178441A1 (en) * 2021-03-31 2024-05-30 Ohio State Innovation Foundation Methods of improving electrode stability in high voltage energy storage devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047448A (ja) * 2002-05-20 2004-02-12 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2013218838A (ja) * 2012-04-06 2013-10-24 Toyota Motor Corp 電極焼結体の製造方法および電極焼結体

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (ja) 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
US6656641B1 (en) 1997-08-21 2003-12-02 University Of Dayton Methods of enhancing conductivity of a polymer-ceramic composite electrolyte
JP3744665B2 (ja) 1997-12-09 2006-02-15 トヨタ自動車株式会社 リチウムイオン伝導性固体電解質および電池
JPH11297358A (ja) 1998-04-14 1999-10-29 Matsushita Electric Ind Co Ltd リチウム二次電池
EP1052718B1 (en) 1998-12-03 2007-08-01 Sumitomo Electric Industries, Ltd. Lithium storage battery
DK1135824T3 (da) 1999-10-08 2007-04-16 Versa Power Systems Ltd Kompositelektroder til elektrokemiske faststofindretninger
JP2001316583A (ja) 2000-05-02 2001-11-16 Tsutomu Minami リチウムイオン伝導性有機−無機コンポジット
US7579112B2 (en) * 2001-07-27 2009-08-25 A123 Systems, Inc. Battery structures, self-organizing structures and related methods
US6680145B2 (en) 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
JP2003059492A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd リチウム二次電池およびその製造方法
US20030157409A1 (en) 2002-02-21 2003-08-21 Sui-Yang Huang Polymer lithium battery with ionic electrolyte
JP2003272620A (ja) * 2002-03-15 2003-09-26 Japan Storage Battery Co Ltd 非水電解質二次電池
CN1300869C (zh) * 2002-05-20 2007-02-14 日亚化学工业株式会社 非水电解液二次电池用正极活性物质及其电池
JP2004193115A (ja) * 2002-11-27 2004-07-08 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質および非水電解質二次電池
JP2004265806A (ja) 2003-03-04 2004-09-24 Canon Inc リチウム金属複合酸化物粒子、前記リチウム金属複合酸化物粒子の製造方法、前記リチウム金属複合酸化物粒子を含有す電極構造体、前記電極構造体の製造方法、及び前記電極構造体を有するリチウム二次電池
US7041239B2 (en) 2003-04-03 2006-05-09 Valence Technology, Inc. Electrodes comprising mixed active particles
JP4813767B2 (ja) 2004-02-12 2011-11-09 出光興産株式会社 リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法
IL165965A (en) 2004-04-01 2009-12-24 Sumitomo Electric Industries Lithium secondary battery negative electrode component material and method of its manufacture
KR20060091486A (ko) 2005-02-15 2006-08-21 삼성에스디아이 주식회사 양극 활물질, 그 제조 방법 및 이를 채용한 양극과 리튬 전지
KR100659851B1 (ko) 2005-04-27 2006-12-19 삼성에스디아이 주식회사 리튬 이차 전지
US7968231B2 (en) 2005-12-23 2011-06-28 U Chicago Argonne, Llc Electrode materials and lithium battery systems
JP4834442B2 (ja) 2006-03-31 2011-12-14 出光興産株式会社 固体電解質、その製造方法及び全固体二次電池
JP4392618B2 (ja) 2006-05-15 2010-01-06 住友電気工業株式会社 固体電解質の形成方法
JP4949971B2 (ja) * 2007-08-21 2012-06-13 エア・ウォーター・ベルパール株式会社 炭素電極材、炭素電極材混合物および炭素電極材の製造方法、ならびに電気二重層キャパシタ、リチウムイオン電池およびリチウムイオンキャパシタ
JP5319879B2 (ja) 2006-10-31 2013-10-16 株式会社オハラ リチウム二次電池およびリチウム二次電池用の電極
EP2093824A4 (en) 2006-11-14 2014-08-06 Ngk Insulators Ltd FIXED ELECTROLYTE STRUCTURE FOR A THRESHOLD SOLID BODY BATTERY, THRESHOLD FIXED BODY BATTERY AND MANUFACTURING METHOD THEREFOR
WO2008078784A1 (ja) 2006-12-26 2008-07-03 Santoku Corporation 非水電解質二次電池用正極活物質、正極及び二次電池
US20160111715A9 (en) 2008-06-20 2016-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Electrode material with core-shell structure
US8546019B2 (en) 2008-11-20 2013-10-01 Lg Chem, Ltd. Electrode active material for secondary battery and method for preparing the same
JP4728385B2 (ja) * 2008-12-10 2011-07-20 ナミックス株式会社 リチウムイオン二次電池、及び、その製造方法
JP5414075B2 (ja) 2008-12-26 2014-02-12 独立行政法人産業技術総合研究所 リチウム二次電池
US20110262816A1 (en) 2009-01-12 2011-10-27 Glenn Amatucci Polyhydrogen fluoride based battery
JP5287739B2 (ja) 2009-05-01 2013-09-11 トヨタ自動車株式会社 固体電解質材料
WO2011027430A1 (ja) 2009-09-02 2011-03-10 トヨタ自動車株式会社 硫化物系全固体リチウム二次電池システム
JP5272995B2 (ja) 2009-09-29 2013-08-28 トヨタ自動車株式会社 固体電解質層、電極活物質層、全固体リチウム電池、固体電解質層の製造方法、および電極活物質層の製造方法
CA2775316C (en) 2009-09-29 2014-04-22 Lg Chem, Ltd. Method for manufacturing separator, separator manufactured therefrom and method for manufacturing electrochemical device having the same
JP5747506B2 (ja) 2009-11-25 2015-07-15 トヨタ自動車株式会社 電極積層体の製造方法および電極積層体
JP2011142007A (ja) * 2010-01-07 2011-07-21 Toyota Motor Corp 固体電解質電極体の製造方法
CN102823049B (zh) 2010-03-26 2015-04-01 国立大学法人东京工业大学 硫化物固体电解质材料、电池和硫化物固体电解质材料的制造方法
WO2012017544A1 (ja) 2010-08-05 2012-02-09 トヨタ自動車株式会社 硫化物固体電解質ガラス、リチウム固体電池および硫化物固体電解質ガラスの製造方法
JP2012155994A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 固体電池用電極
KR20120122674A (ko) 2011-04-29 2012-11-07 삼성전자주식회사 리튬 이차 전지용 음극, 그 제조방법 및 이를 채용한 리튬 이차 전지
JP2012243644A (ja) 2011-05-20 2012-12-10 Sumitomo Electric Ind Ltd 電極、および全固体型非水電解質電池
JP5443445B2 (ja) 2011-07-06 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法
US9543622B2 (en) 2011-07-26 2017-01-10 Toyota Jidosha Kabushiki Kaisha Lithium solid state secondary battery system
JP2013045683A (ja) 2011-08-25 2013-03-04 Sumitomo Electric Ind Ltd 固体電解質電池用電極、固体電解質層、固体電解質電池およびこれに用いられるバインダー
US20130108920A1 (en) 2011-11-01 2013-05-02 Isalah O. Oladeji Composite electrodes for lithium ion battery and method of making
WO2013069083A1 (ja) * 2011-11-07 2013-05-16 トヨタ自動車株式会社 全固体電池
JP5888610B2 (ja) 2011-12-22 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP5888609B2 (ja) 2012-02-06 2016-03-22 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
KR101660609B1 (ko) 2012-02-06 2016-09-27 도요타지도샤가부시키가이샤 황화물 고체 전해질 재료, 전지 및 황화물 고체 전해질 재료의 제조 방법
WO2013136446A1 (ja) 2012-03-13 2013-09-19 株式会社 東芝 リチウムイオン伝導性酸化物、固体電解質二次電池および電池パック
WO2013136524A1 (ja) 2012-03-16 2013-09-19 株式会社 東芝 リチウムイオン伝導性硫化物、固体電解質二次電池および電池パック
WO2013141241A1 (ja) * 2012-03-23 2013-09-26 公立大学法人大阪府立大学 固体電解質層及び全固体リチウム二次電池
US8597838B2 (en) 2012-05-03 2013-12-03 Ut-Battelle, Llc Lithium sulfide compositions for battery electrolyte and battery electrode coatings
EP2683005B1 (en) 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
JP6139864B2 (ja) * 2012-11-06 2017-05-31 出光興産株式会社 固体電解質成形体及びその製造方法、並びに全固体電池
KR101935365B1 (ko) 2012-12-14 2019-01-04 삼성전자주식회사 플렉서블 고체전해질, 이를 포함하는 전고체형 리튬전지, 및 이의 제조방법
KR20140095658A (ko) 2013-01-24 2014-08-04 엘지전자 주식회사 태양 전지
WO2014132333A1 (ja) 2013-02-26 2014-09-04 株式会社 日立製作所 全固体リチウムイオン二次電池
EP2973800B1 (en) 2013-03-13 2023-09-27 QuantumScape Battery, Inc. Iron, fluorine, sulfur compounds for cathodes
CN105518906B (zh) 2013-05-15 2019-04-16 量子世界公司 用于使用LiAMPBSC的电池的固态阴极电解质或电解质(M=Si、Ge和/或Sn)
JP6075219B2 (ja) 2013-06-12 2017-02-08 トヨタ自動車株式会社 硫化物全固体電池の製造方法
JP6025981B2 (ja) 2013-07-04 2016-11-16 三井金属鉱業株式会社 結晶性固体電解質及びその製造方法
US9466834B2 (en) 2013-08-23 2016-10-11 Ut-Battelle, Llc Lithium-conducting sulfur compound cathode for lithium-sulfur batteries
JP5673760B1 (ja) 2013-09-13 2015-02-18 トヨタ自動車株式会社 硫化物固体電解質の製造方法
US9853323B2 (en) 2013-10-31 2017-12-26 Samsung Electronics Co., Ltd. Positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
KR102384822B1 (ko) 2014-02-25 2022-04-08 퀀텀스케이프 배터리, 인코포레이티드 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
EP3041066B1 (en) 2014-12-19 2017-11-29 Samsung Electronics Co., Ltd Composite membrane, preparation method thereof, anode structure including the composite membrane, and lithium secondary battery including the anode structure
CN107210419B (zh) 2014-12-23 2021-06-08 昆腾斯科普电池公司 富锂镍锰钴氧化物(lr-nmc)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047448A (ja) * 2002-05-20 2004-02-12 Nichia Chem Ind Ltd 非水電解液二次電池用正極活物質
JP2013218838A (ja) * 2012-04-06 2013-10-24 Toyota Motor Corp 電極焼結体の製造方法および電極焼結体

Also Published As

Publication number Publication date
KR102527820B1 (ko) 2023-05-02
JP7018258B2 (ja) 2022-02-10
EP3152795B1 (en) 2019-10-02
US20150357644A1 (en) 2015-12-10
KR20230012056A (ko) 2023-01-25
CN106605329B (zh) 2020-08-25
US9859560B2 (en) 2018-01-02
WO2015187466A1 (en) 2015-12-10
KR20230164760A (ko) 2023-12-04
JP2017517852A (ja) 2017-06-29
EP3152795A1 (en) 2017-04-12
JP2020119899A (ja) 2020-08-06
JP6983942B2 (ja) 2021-12-17
JP2022031771A (ja) 2022-02-22
CN106605329A (zh) 2017-04-26
CN112072090A (zh) 2020-12-11
EP3152795A4 (en) 2017-10-25
KR102606710B1 (ko) 2023-11-29

Similar Documents

Publication Publication Date Title
JP6983942B2 (ja) 混合粒径を有する電極材料
JP2024056867A (ja) 改善された性能を有するエネルギー貯蔵装置についての組成および方法
JP2023011777A (ja) 固体電解質物質を含むイオン伝導性バッテリー
US9831502B2 (en) Free-standing active material/carbon nanomaterial network film as light-weight and high-power electrodes for lithium ion batteries
US11196082B2 (en) Anode mixture, anode comprising the anode mixture, and all-solid-state lithium ion secondary battery comprising the anode
CN103460458B (zh) 活性物质、电极、锂离子二次电池、以及活性物质的制造方法
KR101649804B1 (ko) 리튬 2차 전지
CN106797020A (zh) 非水电解质二次电池用负极和非水电解质二次电池
US10910666B2 (en) Method for producing all-solid-state lithium ion secondary battery
CN111194492B (zh) 固体电解质组合物以及含固体电解质片材、全固态二次电池和两者的制造方法
US11258053B2 (en) Lithium ion solid-state battery and method for producing the same
JP2011081915A (ja) 固体電解質、当該固体電解質を含む固体電解質膜及び当該固体電解質を用いた全固体リチウム二次電池
EP3751642A1 (en) Solid electrolyte composition and method for producing same, solid electrolyte-containing sheet, and methods for manufacturing all-solid secondary battery electrode sheet and all-solid secondary battery
CN117296164A (zh) 用于阴极预锂化层的方法和***
KR20140108380A (ko) 실리콘-금속 합금계 음극 활물질을 포함하는 이차전지
CN111247673B (zh) 活性物质层形成用组合物、电池、电极片及相关制造方法
CN110931842A (zh) 全固体电池
US20180301689A1 (en) Method for producing all-solid-state lithium ion secondary battery
CN115050919A (zh) 二次电池用电极的制造方法及二次电池的制造方法
JP7334200B2 (ja) 二次電池用電極および該電極の製造方法
WO2023054235A1 (ja) 全固体電池

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X091 Application refused [patent]
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant