KR20140130541A - 운영자 조작에 대해 경고하기 위한 방법 및 시스템 - Google Patents

운영자 조작에 대해 경고하기 위한 방법 및 시스템 Download PDF

Info

Publication number
KR20140130541A
KR20140130541A KR1020147027675A KR20147027675A KR20140130541A KR 20140130541 A KR20140130541 A KR 20140130541A KR 1020147027675 A KR1020147027675 A KR 1020147027675A KR 20147027675 A KR20147027675 A KR 20147027675A KR 20140130541 A KR20140130541 A KR 20140130541A
Authority
KR
South Korea
Prior art keywords
wheel
space
temperature
inputs
gas turbine
Prior art date
Application number
KR1020147027675A
Other languages
English (en)
Inventor
알베르토 체케리니
압둘라만 압달라 칼리디
아룰 사라바나프리얀
다비드 비아누치
안토니오 푸모
알레산드로 베티
리카르도 크로치아니
오사마 나임 아슈르
Original Assignee
누보 피그노네 에스알엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 누보 피그노네 에스알엘 filed Critical 누보 피그노네 에스알엘
Publication of KR20140130541A publication Critical patent/KR20140130541A/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • G05B23/0245Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0421Multiprocessor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B11/00Automatic controllers
    • G05B11/01Automatic controllers electric
    • G05B11/06Automatic controllers electric in which the output signal represents a continuous function of the deviation from the desired value, i.e. continuous controllers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0216Human interface functionality, e.g. monitoring system providing help to the user in the selection of tests or in its configuration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/12Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25315Module, sequence from module to module, structure
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0283Predictive maintenance, e.g. involving the monitoring of a system and, based on the monitoring results, taking decisions on the maintenance schedule of the monitored system; Estimating remaining useful life [RUL]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

가스 터빈의 휠-공간 내의 비정상을 모니터링 및 진단하기 위한 컴퓨터-구현된 방법 및 시스템이 사용자 인터페이스 및 메모리 장치에 결합된 컴퓨터 장치를 이용하여 구현되고 상기 메모리 장치 내에 복수의 규칙 세트들을 저장하는 단계를 포함하고, 상기 규칙 세트들이 상기 휠-공간에 관한 것이고, 상기 규칙 세트들이 실시간 데이터 입력에 대한 실시예 데이터 출력의 관계식으로서 표현되는 적어도 하나의 규칙을 포함하고, 상기 관계식이 상기 휠-공간의 온도에 대해서 특정적이다(specific). 상기 방법은 또한 가스 터빈과 연관된 조건 모니터링 시스템으로부터의 실시간 및 이력(historical) 데이터 입력들을 수신하는 단계로서, 상기 데이터 입력들이 상기 휠-공간을 열을 제공하는 소스들과 관련되는, 데이터 입력들을 수신하는 단계, 및 상기 휠-공간의 온도와 관련된 입력들을 이용하여 휠-공간 온도 값을 추정하는 단계를 포함한다.

Description

운영자 조작에 대해 경고하기 위한 방법 및 시스템{METHOD AND SYSTEM FOR ADVISING OPERATOR ACTION}
본원 개시 내용은 기계적/전기적 장비 동작들, 모니터링 및 진단에 관한 것이고, 보다 구체적으로, 기계류(machinery)의 비정상적인 거동(behavior)을 운영자들에게 자동적으로 경고하기 위한 시스템들 및 방법들에 관한 것이다.
기계류의 건전성을 모니터링하고 비정상적인 기계류 조건(machinery condition)들을 운영자들에게 경보하는 것은 기계들의 집단(a fleet of) 또는 그 중 하나에 있어서 중요한 부분이다. 구체적으로, 휠-공간 온도(wheel-space temperature)를 모니터링하는 것은 가스 터빈들의 건전성 모니터링에 있어서 중요하다. 이러한 온도를 온라인으로 평가하기 위한 공지된 모니터링 시스템은 현재 존재하지 않으며, 단지 측정된 온도만이 모니터링된다. 측정된 값을 예측된 값에 비교하지 않음으로써, 알람 문턱값들을 규정하기 위한 동적인(dynamic) 기준선 및 물리적 통찰(insight)을 알 수 없다. 이러한 계산이 없는 상태에서, 미리 셋팅된 값들로부터의 일정한 편차를 기초로 하는 정적인(static) 문턱값들만이 이용가능하다. 또한, 휠-공간 온도의 추정이 없는 경우에, 고장 수리(troubleshooting)가 제한된다. 예를 들어, 예측된 값과 측정된 값 사이의 편차의 소스(source) 및, 그러한 편차가 예를 들어, 그러나 비제한적으로, 냉각 부족, 누설, 또는 밀봉부들의 마모로 인한 것인지의 여부에 대한 결정이 이루어질 수 있다. 또한, 동작 조건들을 급격하게 변화시키는 것 또는 동작 조건들을 매우 서서히 변화시키는 것은 운영자로 하여금 비정상적인 조건들을 인지하기 어렵게하거나 비정상적인 조건들을 완화시키기 위해서 어떠한 동작적인 변화들이 이루어져야 하는지를 인지하기 어렵게 할 수 있을 것이다.
적어도 일부의 공지된 휠-공간 모니터링 시스템들이 단지 측정된 값들만을 모니터링하고 그리고 동일한 타입의 기계에 대한 역사적인 데이터를 이용하여, 정적인 문턱값을 미리 규정하고, 그에 따라 측정된 값이 미리 규정된 문턱값을 초과하는 경우에, 경고를 발생시킨다. 기계 동작 또는 부하(load) 조건들을 고려하지 않은 이러한 문턱값들을 규정하고 정교화하기 위한 많은 노력이 요구된다. 그러한 시스템들은 많은 잘못된 경고들을 유발하기 쉽고, 실제 오류들이 일반적으로 너무 늦게 검출된다. 또한, 그러한 시스템들에서, 제한된 고장 수리 정보만이 제공되거나 정보가 제공되지 않는다.
하나의 실시예에서, 사용자 인터페이스 및 메모리 장치에 결합된 컴퓨터 장치를 이용하여 구현된 가스 터빈의 휠-공간 내의 비정상을 모니터링 및 진단하기 위한 컴퓨터-구현된 방법이 상기 메모리 장치 내에 복수의 규칙 세트(rule set)들을 저장하는 단계를 포함하고, 상기 규칙 세트들이 상기 휠-공간에 관한 것이고, 상기 규칙 세트들이 실시간 데이터 입력에 대한 실시예 데이터 출력의 관계식으로서 표현되는 적어도 하나의 규칙을 포함하고, 상기 관계식은 상기 휠-공간의 온도에 대해서 특정적이다(specific). 상기 방법은 또한 가스 터빈과 연관된 조건 모니터링 시스템으로부터의 실시간 및 이력(historical) 데이터 입력들을 수신하는 단계로서, 상기 데이터 입력들이 상기 휠-공간으로 열을 제공하는 소스들과 관련되는, 데이터 입력들을 수신하는 단계, 및 상기 휠-공간의 온도와 관련된 입력들을 이용하여 휠-공간 온도 값을 추정하는 단계를 포함한다.
다른 실시예에서, 유동 소통하는 축류 압축기 및 저압 터빈을 포함하는 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템이 휠-공간 온도 규칙 세트를 포함하고, 상기 규칙 세트는 실시간 데이터 입력에 대한 실시예 데이터 출력의 관계식을 포함하고, 상기 관계식이 상기 휠-공간 내의 열의 소스들과 관련되는 입력들에 대해서 특정된다.
또 다른 실시예에서, 하나 이상의 비-일시적 컴퓨터-판독가능 저장 매체가 임베딩된 컴퓨터-판독가능 명령들을 가지고, 상기 컴퓨터-판독가능 명령들은, 적어도 하나의 프로세서에 의해서 실행될 때, 상기 프로세서로 하여금, 가스 터빈의 휠-공간 내의 온도의 측정된 값을 수신하도록, 상기 휠-공간 내로 열의 소스과 연관된 매개변수들의 측정된 값들 및 추측된 값들을 수신하도록, 상기 휠-공간의 예상된 온도를 추정하도록, 상기 예상된 온도를 상기 휠-공간의 측정된 온도에 비교하도록, 그리고 상기 비교를 기초로 취해져야 하는 작용을 권장하는 경고 메시지를 생성하도록 유도한다.
도 1-5는 여기에서 개시된 방법 및 시스템의 예시적인 실시예들을 도시한다.
도 1은 본원 발명의 예시적인 실시예에 따른 원격 모니터링 및 진단 시스템의 개략적인 블록도이다.
도 2는 분배형(distributed) 제어 시스템(DCS)과 같은, 지역적인(local) 산업 설비 모니터링 및 진단 시스템의 네트워크 아키텍처의 예시적인 실시예의 블록도이다.
도 3은 도 1에 도시된 LMDS와 함께 이용될 수 있는 예시적인 규칙 세트의 블록도이다.
도 4는 본원 개시 내용의 예시적인 실시예에 따른, 도 1에 부분적으로 도시된 가스 터빈 엔진의 휠-공간 냉각 시스템의 아키텍처의 측면도이다.
도 5는 본원 개시 내용의 예시적인 실시예에 따른 미리 결정된 범위를 초과하는 엔진 휠-공간 온도에 대한 경고를 결정하는 방법의 흐름도이다.
비록 여러 가지 실시예들의 구체적인 특징들이 일부 도면들에 도시되어 있고 다른 도면들에는 도시되어 있지 않지만, 이는 단지 편의성을 위한 것이다. 임의의 도면의 임의의 특징이 다른 도면의 임의의 특징과 함께 인용 및/또는 청구될 수 있을 것이다.
이하의 구체적인 설명은 예로서 그리고 비제한적인 방식으로 본원 발명의 실시예들을 기술한다. 본원 발명이 산업적, 상업적, 및 주거 적용예들에서 장비 동작을 모니터링하는 분석적 및 방법적 실시예들에 일반적으로 적용된다는 것을 이해할 수 있을 것이다.
가스 터빈들의 건전성 모니터링은 유지 보수 비용들 및 중단 기간들을 감소시키는데 있어서 중요하다. 가스 터빈의 저온 터빈(파워 터빈) 내의 휠-공간 온도는 모니터링하기 위한 중요한 신호이다. 고온 가스 경로에 노출되면, 휠-공간이 열 응력들로 인해서 피로/크리프(creep) 파단되기 쉬울 수 있을 것이다. 휠-공간 온도를 추정하는 것은 휠-공간 온도에 기여하는 온도들의 소스들을 인지하는 것이 필요하고 그리고 그러한 온도 소스들을 어떻게 모니터링하고 어떻게 보다 잘 추정해야 하는지를 인지하는 것이 필요하다. 휠-공간 내의 열 소스들에 대한 인지는 기계의 냉각 시스템의 상황(status)을 보다 잘 이해할 수 있게 하여, 휠-공간 지역 내의 부적절한 열적 거동 및 과다 온도들이 보다 잘 눈에 띄게 할 수 있다. 또한, 이러한 추정된 휠-공간 온도를 실제 측정된 휠-공간 온도에 비교하는 것에 의해서, 이러한 차이를 기초로 경고하는 것 및 고장 수리 활동들을 규정하는 것이 안출될 수 있다. 이하에서 기술된 휠-공간 온도 계산 방법은 가스 터빈의 상이한 구성요소들을 함께 링크시키고 그리고 문제점, 예를 들어, 과다한 휠-공간 온도의 소스를 식별하는 것을 단순화시킨다. 여기에서, 중지들(trips)을 방지하고 및/또는 긴 중단 기간을 방지하기 위한 그리고 의미 있는 고장 수리를 제공하기 위한, 휠-공간 온도의 온라인 추정 및 엔지니어링 규칙의 발생을 위한 방법이 설명된다.
가스 터빈 엔진 내의 휠-공간 온도에 기여하는 열의 가능한 소스들에는: 흡수될 수 있는 연소 프로세스로부터의 고온 가스, 축류 압축기 블리드(bleed)(냉각) 공기, 및 회전자 풍손(windage) 효과들이 포함된다. 블리드 온도는 휠-공간 온도에 대한 기준선으로서 초기에 사용되고 그 온도를 추정하기 위해서 다른 영향들을 보상한다. 블리드 온도는, 기계의 성능을 모니터링하기 위해서 이용되는 열역학적 시뮬레이션 소프트웨어를 이용하여 온라인으로 계산된다. 이는, 축류 압축기의 다종적(polytrophic) 효율을 계산하는 것, 그리고 이어서, 블리드 온도(블리드가 추출되는 곳에서의 기온)를 추출하는 것에 의해서 이루어진다. 휠-공간 온도와 블리드(냉각) 온도 사이의 차이가 일정하지 않고 유동 경로 온도에 의존한다. 일부 가스 터빈 엔진들에서, 터빈 배기 온도가 직접적으로 측정되는 유일한 유동 경로 온도이고, 여기에서 휠-공간 온도를 추정하기 위해서 이용된다. 한편으로 블리드 온도 이상으로의 휠-공간 온도 상승과 다른 한편으로 블리드 온도 이상으로의 배기 온도 상승 사이에 선형 관계가 존재한다. 상기 규칙이 초기에 전개될 때, 이러한 곡선의 기울기가 계산되고 적절한 시간 기간에 걸쳐서 평균화된다. 이어서, 이를 이용하여, 이하에서 더 구체적으로 기술되는 바와 같이, 측정된 배기 온도 및 계산된 블리드 온도를 이용함으로써 휠-공간 온도를 계산한다.
본원 개시 내용의 실시예들은 높은 휠-공간 온도를 검출하는 것으로 제한되지 않고, 휠-공간 온도와 예상되는 휠-공간 온도의 실시간 결정 값의 차이의의 경향들을 식별할 수 있다. 통계적인 조율(tuning) 접근방식이, 주변 유입 조건으로부터의 모든 분위기들에 대해서 기계의 작동을 직접적으로 조율하는 것을 가능하게 하고 그리고 기계 작동 조건들과 상호관련된 열역학 방정식으로 부가된다.
도 1은 본원 발명의 예시적인 실시예에 따른 원격 모니터링 및 진단 시스템(100)의 개략적인 블록도이다. 예시적인 실시예에서, 시스템(100)이 원격 모니터링 및 진단 센터(102)를 포함한다. 원격 모니터링 및 진단 센터(102)는, 관리 엔티티(entity)와 같은 분리된 사업 엔티티에 의해서 구입되고 운영되는 복수의 장비의 OEM과 같은 엔티티에 의해서 운영된다. 예시적인 실시예에서, OEM 및 운영 엔티티가 지원 배열체(arrangement) 내로 진입하고, 그에 의해서 OEM은 구매한 장비와 관련된 서비스들을 운영 엔티티로 제공한다. 운영 엔티티는 단일 사이트 또는 복수 사이트들에서 구매한 장비를 소유 및 운영할 수 있을 것이다. 또한, OEM이 복수의 운영 엔티티들로 지원 배열체들로 진입할 수 있을 것이고, 운영 엔티티 각각이 그들 자신의 단일 사이트 또는 복수 사이트들을 운영한다. 복수의 사이트들의 각각이 동일한 개별적인 장비 또는 복수의 동일한 장비의 세트들, 예를 들어 장비의 트레인들(trains)을 포함할 수 있을 것이다. 부가적으로, 장비의 적어도 일부가 하나의 사이트에 대해서 특유할 수 있거나 모든 사이트들에 대해서 특유할 수 있을 것이다.
예시적인 실시예에서, 제 1 사이트(104)가 하나 이상의 프로세스 분석기들(106), 장비 모니터링 시스템들(108), 장비 지역적 제어 센터들(110), 및/또는 모니터링 및 경고 패널들(112)을 포함하고, 상기 모니터링 및 경고 패널들(112)의 각각은 개별적인 장비의 제어 및 동작을 실시하기 위해서 개별적인 장비 센서들 및 제어 장비와 인터페이스하도록 구성된다. 하나 이상의 프로세스 분석기들(106), 장비 모니터링 시스템들(108), 장비 지역적 제어 센터들(110), 및/또는 모니터링 및 경고 패널들(112)이 네트워크(116)를 통해서 지능형 모니터링 및 진단 시스템(114)으로 통신적으로 결합된다. 지능형 모니터링 및 진단(IMAD) 시스템(114)은, 비제한적으로, 원격 모니터링 및 진단 센터(102)와 같은 오프 사이트 시스템들 및 다른 온-사이트 시스템들(도 1에 도시하지 않음)과 통신하도록 추가적으로 구성된다. 여러 실시예들에서, IMDA(114)가, 예를 들어, 전용 네트워크(118), 무선 링크(120), 및 인터넷(122)을 이용하여, 원격 모니터링 및 진단 센터(102)와 통신하도록 구성된다.
복수의 다른 사이트들의 각각, 예를 들어, 제 2 사이트(124) 및 n번째 사이트(126)가 제 1 사이트(104)와 실질적으로 유사할 수 있으나, 제 1 사이트(104)와 정확하게 유사하거나 그렇지 않을 수 있을 것이다.
도 2는 분배형 제어 시스템(DCS)(201)과 같은 지역적인 산업 설비 모니터링 및 진단 시스템의 네트워크 아키텍처(200)의 예시적인 실시예의 블록도이다. 산업 설비가 복수의 설비 장비, 예를 들어, 상호 연결 파이핑을 통해서 유동 소통식으로 결합되고 하나 이상의 원격 입/출력(I/O) 모듈들 및 상호연결 케이블링 및/또는 무선 통신을 통해서 DCS(201)와 신호 소통식으로 결합된, 가스 터빈들, 원심 압축기들, 기어 박스들, 발전기들, 펌프들, 모터들, 팬들, 및 프로세스 모니터링 센서들을 포함할 수 있을 것이다. 예시적인 실시예에서, 산업 설비가 네트워크 백본(203)을 포함하는 DCS(201)를 포함한다. 네트워크 백본(203)이, 예를 들어, 꼬여진 쌍의 케이블, 외피를 가지는 동축 케이블 또는 광섬유 케이블로 제조된 하드와이어드(hardwired) 데이터 통신 경로일 수 있고, 또는 적어도 부분적으로 무선형일 수 있을 것이다. DCS(201)이 또한, 네트워크 백본(203)을 통해서, 산업 설비 사이트에 또는 원격 위치들에 배치된, 설비 장비에 통신적으로 결합된 프로세서(205)를 포함할 수 있을 것이다. 임의의 수의 기계들이 네트워크 백본(203)에 무선으로 결합될 수 있다는 것을 이해할 수 있을 것이다. 기계들의 일부가 네트워크 백본(203)에 하드와이어링될 수 있을 것이고, 기계들의 다른 부분들이, DCS(201)에 통신적으로 결합된 무선 기지국(207)을 통해서 백본(203)에 무선으로 결합될 수 있을 것이다. 무선 기지국(207)이, 산업 설비로부터 원격지에 위치되나 산업 설비 내의 하나 이상의 시스템과 여전히 상호 연결된 장비 또는 센서들에서와 같이, DCS(201)의 유효 통신 범위를 확장하기 위해서 이용될 수 있을 것이다.
DCS(201)이 복수의 장비와 연관된 동작 매개변수들을 수신 및 디스플레이하도록, 그리고 자동 제어 신호들을 생성하고 산업 설비의 장비의 동작을 제어하기 위한 수동 제어 입력들을 수신하도록 구성될 수 있을 것이다. 예시적인 실시예에서, DCS(201)이, 산업 설비 기계들의 온라인 모니터링 및 진단을 허용하는 DCS(201)에서 수신된 데이터를 분석하기 위해서 프로세서(205)를 제어하도록 구성된 소프트웨어 코드 세그먼트를 포함할 수 있을 것이다. 데이터가, 가스 터빈들, 원심 압축기들, 펌프들 및 모터들, 연관된 프로세스 센서들, 그리고, 예를 들어, 진동, 지진, 온도, 압력, 전류, 전압, 주변 온도 및 주변 습도 센서들을 포함하는 지역적인 환경 센서들을 포함하는 각각의 기계로부터 수집될 수 있을 것이다. 데이터가 지역적인 진단 모듈 또는 원격 입/출력 모듈에 의해서 미리-프로세싱될 수 있을 것이고, 또는 미가공(raw) 형태로 DCS(201)으로 전송될 수 있을 것이다.
지역적인 모니터링 및 진단 시스템(LMDS)(213)이, 네트워크 백본(203)을 통해서 DCS(201) 및 다른 제어 시스템들(209) 및 데이터 소스들과 통신하는, 예를 들어, 개인용 컴퓨터(PC)와 같은 분리된 부가형(add-on) 하드웨어 장치일 수 있을 것이다. LMDS(213)이 또한 DCS(201) 상에서 및/또는 다른 제어 시스템들(209) 중 하나 이상에서 실행되는 소프트웨어 프로그램 세그먼트 내에서 구현될 수 있을 것이다. 따라서, LMDS(213)이 분배된 방식으로 동작할 수 있을 것이고, 그에 따라 소프트웨어 프로그램 세그먼트의 일부가 몇 개의 프로세서들 상에서 동시에 실행될 수 있을 것이다. 따라서, LMDS(213)이 DCS(201) 및 다른 제어 시스템들(209) 내로 완전히 통합될 수 있을 것이다. 산업 설비의 전반적인 고찰을 이용하여 기계들 및 기계들을 채용한 프로세스의 동작적 건전성을 결정하기 위해서, LMDS(213)은 DCS(201), 데이터 소스들, 및 다른 제어 시스템들(209)에 의해서 수신된 데이터를 분석한다.
예시적인 실시예에서, 네트워크 아키텍처(100)가 서버 등급 컴퓨터(202) 및 하나 이상의 클라이언트 시스템들(203)을 포함한다. 서버 등급 컴퓨터(202)는 데이터베이스 서버(206), 애플리케이션 서버(208), 웹 서버(210), 팩스 서버(212), 디렉토리 서버(214) 및 메일 서버(216)를 더 포함한다. 서버들(206, 208, 210, 212, 214 및 216) 각각은 서버 등급 컴퓨터(202)에서 실행되는 소프트웨어로 구현될 수 있을 것이고, 또는 서버들(206, 208, 210, 212, 214 및 216)의 임의의 조합들이 단독으로 또는 근거리 네트워크(LAN)(미도시)에 결합된 분리된 서버 등급 컴퓨터들 상에서 조합되어 구현될 수 있을 것이다. 데이터 저장 유닛(220)이 서버 등급 컴퓨터(202)에 결합된다. 또한, 시스템 관리자 워크 스테이션, 사용자 워크 스테이션, 및/또는 감독자의 워크 스테이션과 같은 워크 스테이션(222)이 네트워크 백본(203)에 결합된다. 대안적으로, 워크 스테이션(222)이 인터넷 링크(226)를 이용하여 네트워크 백본(203)에 결합되거나, 무선 연결을 통해서, 예를 들어 무선 기지국(207)을 통해서 연결된다.
각각의 워크 스테이션(222)이 웹 브라우저를 가지는 개인용 컴퓨터일 수 있을 것이다. 비록 전형적으로 워크스테이션에서 실시되는 기능들이 각각의 워크스테이션들(222)에서 실시되는 것을 설명되어 있지만, 그러한 기능들이 네트워크 백본(203)에 결합된 많은 개인용 컴퓨터들 중 하나에서 실시될 수 있을 것이다. 네트워크 백본(203)에 접속하는 개인들에 의해서 실시될 수 있는 상이한 타입들의 기능들의 이해를 돕기 위해서, 단지 분리된 예시적 기능들과 연관된 것으로 워크스테이션들(222)을 설명하였다.
서버 등급 컴퓨터(202)는, 피고용자(228) 및 제 3 자들, 예를 들어, 서비스 제공자들(230)을 포함하는, 다양한 개인들에 대해서 통신적으로 결합되도록 구성된다. 예시적인 실시예에서의 통신이 인터넷을 이용하여 실시되는 것으로 설명되어 있으나, 임의의 다른 광역 네트워크(WAN) 타입 통신이 다른 실시예에서 이용될 수 있고, 다시 말해서 시스템들 및 프로세스들은 인터넷을 이용하여 실시되는 것으로 제한되지 않는다.
예시적인 실시예에서, 워크스테이션(232)을 가지는 임의의 승인된 개인이 LMDS(213)에 접속할 수 있다. 클라이언트 시스템들 중 적어도 하나가 원격 위치에 위치된 매니저 워크스테이션(234)을 포함할 수 있을 것이다. 워크스테이션들(222)이 웹 브라우저를 가지는 개인용 컴퓨터들 사에서 구현될 수 있을 것이다. 또한, 워크스테이션들(22)이 서버 등급 컴퓨터(202)와 통신하도록 구성된다. 또한, 팩스 서버(212)가, 전화 링크(미도시)를 이용하여 클라이언트 시스템(236)을 포함하는 원격적으로 위치된 클라이언트 시스템들과 통신한다. 팩스 서버(212)가 또한 다른 클라이언트 시스템들(228, 230, 및 234)과 통신하도록 구성된다.
이하에서 보다 구체적으로 설명하는 바와 같은, LMDS(213)의 컴퓨터화된 모델링 및 분석 툴들이 서버(202) 내에 저장될 수 있고 클라이언트 시스템들(204) 중 임의의 하나에서의 요청자에 의해서 접속될 수 있다. 일 실시예에서, 클라이언트 시스템(204)이 웹 브라우저를 포함하는 컴퓨터들이고, 그에 따라 서버 등급 컴퓨터(202)가 인터넷을 이용하여 클라이언트 시스템들(204)에 접속할 수 있다. 클라이언트 시스템들(204)이, 근거리 네트워크(LAN) 또는 광역 네트워크(WAN), 다이얼-인-연결들(dial-in-connections), 케이블 모뎀들, 및 특별한 고속 ISDN 라인들과 같은, 네트워크를 포함하는 많은 인터페이스들을 통해서 인터넷에 대해서 상호 연결된다. 클라이언트 시스템들(204)이 웹-기반의 전화, 개인 정보 단말기(PDA), 또는 다른 웹-기반의 연결가능한 장비를 포함하는, 인터넷에 연결될 수 있는 임의의 장치일 수 있다. 데이터베이스 서버(206)가, 이하에서 보다 구체적으로 설명되는 바와 같은, 산업 설비(10)에 관한 정보를 포함하는 데이터베이스(240)에 연결된다. 일 실시예에서, 중앙집중형 데이터베이스(240)가 서버 등급 컴퓨터(202)에 저장되고, 클라이언트 시스템들(204) 중 하나를 통해서 서버 등급 컴퓨터(202)로 로그하는 것에 의해서, 클라이언트 시스템들(204) 하나에서 잠재적인 사용자들에 의해서 접속될 수 있다. 대안적인 실시예에서, 데이터베이스(240)가 서버 등급 컴퓨터(202)로부터 원격지에 저장되고 비-중앙집중형일 수 있을 것이다.
다른 산업 설비 시스템들이, 네트워크 백본(203)에 대한 독립적인 연결부들을 통해서 서버 등급 컴퓨터(202) 및/또는 클라이언트 시스템들(204)로 접속될 수 있는 데이터를 제공할 수 있을 것이다. 상호작용적인 전자 기술 매뉴얼 서버(242)는 각각의 기계의 구성과 관련된 기계 데이터에 대한 요청들에 대해서 서비스한다. 그러한 데이터가, 펌프 곡선들, 모터 마력 레이팅(rating), 절연 등급, 및 프레임 크기, 설계 매개변수들, 예를 들어 치수들, 회전자 바아들 또는 임펠러 블레이드들의 수, 및 기계류 유지보수 이력, 예를 들어 기계에 대한 현장 변경들(field alterations), 교정전(as-found) 및 교정후(as-left) 정렬 측정치들, 및 최초의 설계 조건으로 기계를 복귀시키지 않는 기계에서 실시되는 수리들과 같은, 동작적인 능력들을 포함할 수 있을 것이다.
휴대용 진동 모니터(244)가, 직접적으로 또는 워크스테이션들(222) 또는 클라이언트 시스템들(204) 내에 포함된 포트들과 같은 컴퓨터 입력 포트를 통해서 간헐적으로, LAN에 결합될 수 있을 것이다. 전형적으로, 진동 데이터가 루트 내에서 수집되고, 주기적으로, 예를 들어 월 단위로 또는 다른 주기로 기계들의 미리 결정된 리스트로부터 데이터를 수집한다. 또한, 진동 데이터가 고장 수리(troubleshooting), 유지보수, 및 주문 활동들과 함께 수집될 수 있을 것이다. 또한, 진동 데이터가 실시간 기반으로 또는 거의 실시간 기반으로 연속적으로 수집될 수 있을 것이다. 그러한 데이터가 LMDS(213)의 알고리즘들을 위한 새로운 기준선을 제공할 수 있을 것이다. 유사하게, 프로세스 데이터가 루트 기반으로 또는 고장 수리, 유지보수, 및 주문 활동들 중에 수집될 수 있을 것이다. 또한, 일부 프로세스 데이터가 실시간 기반으로 또는 거의 실시간 기반으로 연속적으로 수집될 수 있을 것이다. 특정 프로세스 매개변수들이 영구적으로 지시되지 않을 수 있을 것이고, LMDS(213)으로 접속될 수 있도록 워크스테이션(222)을 통해서 DCS(201)으로 다운로드될 수 있는 프로세스 매개변수 데이터를 수집하기 위해서 휴대용 프로세스 데이터 수집기(245)가 이용될 수 있을 것이다. 예를 들어 프로세스 유체 조성 분석기들 및 오염물 방출 분석기들과 같은, 다른 프로세스 매개변수 데이터가 복수의 온-라인 모니터들(246)을 통해서 DCS(201)으로 제공될 수 있을 것이다.
여러 가지 기계들로 공급되는 또는 산업 설비를 가지는 발전기들에 의해서 발전되는 전력이 각각의 기계와 연관된 모터 보호 릴레이(248)에 의해서 모니터링될 수 있을 것이다. 전형적으로, 그러한 릴레이들(248)이 모터 제어 센터(MCC) 내의 또는 기계로 공급하는 스위치기어(250) 내의 모니터링되는 장비로부터 원격지에 위치된다. 또한, 릴레이들(248)을 보호하기 위해서, 예를 들어 스위치야드(switchyard) 내의 산업 설비에 위치되는 전력 공급 또는 전력 전달 시스템(미도시) 장비 또는 원격 전송 라인 브레이커들 및 라인 매개변수들을 LMDS(213)으로 제공하는 감독자 제어 및 데이터 획득 시스템(SCADA)을 스위치기어(250)가 또한 포함할 수 있을 것이다.
도 3은 LMDS(213)(도 1에 도시됨)과 함께 이용될 수 있는 예시적인 규칙 세트(280)의 블록도이다. 규칙 세트(280)가 하나 이상의 고객 규칙들의 조합, 및 고객 규칙들의 상태 및 거동을 규정하는 일련의 특성들일 수 있을 것이다. 상기 규칙들 및 특성들이 번들화되고(bundled) XML 스트링의 포맷으로 저장될 수 있을 것이고, 상기 규칙들 및 특성들은, 파일로 저장될 때, 25개의 문자 영숫자 키를 기초로 암호화될 수 있을 것이다. 규칙 세트(280)가, 하나 이상의 입력들(282) 및 하나 이상의 출력들(284)을 포함하는 모듈형 지식 셀(knowledge cell)이다. 입력들(282)이, LMDS(213) 내의 특정 위치들로부터 규칙 세트(280)로 데이터를 지시하는 소프트웨어 포트들일 수 있을 것이다. 예를 들어, 펌프 아웃보드 진동 센서로부터의 입력이 DCS(201) 내의 하드웨어 입력 단자로 전송될 수 있을 것이다. DCS(201)은, 신호를 수신하기 위해서 해당 단자에서 신호를 샘플링할 수 있을 것이다. 이어서, 상기 신호가 프로세싱되고 DCS(201)으로 접속가능한 및/또는 DCS(201)에 일체화된 메모리 내의 위치에 저장될 수 있을 것이다. 규칙 세트(280)의 제 1 입력(286)이 메모리 내의 위치로 맵핑될 수 있을 것이고, 그에 따라 메모리 내의 위치의 콘텐츠가 입력으로서 규칙 세트(280)에 대해서 이용될 수 있을 것이다. 유사하게, 출력(288)이 DCS(201)으로 접속가능한 메모리 또는 다른 메모리 내의 다른 위치로 맵핑될 수 있을 것이고, 그에 따라 메모리 내의 위치가 규칙 세트(280)의 출력(288)을 포함할 수 있을 것이다.
예시적인 실시예에서, 규칙 세트(280)가, 예를 들어, 가스 재주입 설비, 액화 천연 가스(LNG) 설비, 발전소, 정유, 화학 처리 시설과 같은, 산업 설비 내의 장비 동작과 연관된 특정 문제들의 모니터링 및 진단과 관련된 하나 이상의 규칙들을 포함한다. 비록 규칙 세트(280)가 산업 설비와 함께 이용되는 것으로서 설명되어 있지만, 규칙 세트(280)가 임의의 지식을 캡쳐하도록 그리고 임의의 분야에서 해결책들을 결정하기 위해서 사용되도록 적절하게 구성될 수 있을 것이다. 예를 들어, 규칙 세트(280)가 경제적인 거동, 재정적인 활동, 기후 현상, 및 설계 프로세스들과 관련한 지식을 포함할 수 있을 것이다. 이어서, 규칙 세트(280)를 이용하여 이러한 분야들에서의 문제점들에 대한 해결책들을 결정할 수 있을 것이다. 규칙 세트(280)가 하나 또는 많은 소스들로부터의 지식을 포함하고, 그에 따라 그러한 지식이, 규칙 세트(280)가 적용되는 임의의 시스템으로 전달된다. 상기 지식은, 출력들(284)을 입력들(282)에 대해서 관련시키는 규칙들의 형태로 캡쳐되고, 그에 따라 입력들(282) 및 출력들(284)의 재원(specification)은 규칙 세트(280)가 LMDS(213)으로 적용될 수 있게 한다. 규칙 세트(280)가 특정 공장 설비 자산(asset)에 대해서 특정된 유일한 규칙들을 포함할 수 있을 것이고, 해당 특정 공장 설비 자산과 연관된 하나의 가능한 문제만으로 지시될 수 있을 것이다. 예를 들어, 규칙 세트(280)가, 모터 또는 모터/펌프 조합으로 적용될 수 있는 유일한 규칙들을 포함할 수 있을 것이다. 규칙 세트(280)가, 진동 데이터를 이용하여 모터/펌프 조합의 건전성을 결정하는 규칙들만을 포함할 수 있을 것이다. 규칙 세트(280)가 또한, 진동 분석 기술들에 더하여, 그러나, 예를 들어, 모터/펌프 조합에 대한 성능 계산 툴들 및/또는 재정 계산 툴들을 포함하는 한 벌의 진단 툴들을 이용하여 모터/펌프 조합의 건전성을 결정하는 규칙들을 포함할 수 있을 것이다.
동작 중에, 입력들(282)과 출력들(284) 사이의 관계를 사용자에게 알려주는 소프트웨어 개발 툴에서 규칙 세트(280)가 생성된다. 입력들(282)이, 예를 들어, 디지털 신호들, 아날로그 신호들, 파형들, 프로세싱된 신호들, 수작업으로 입력된 매개변수들 및/또는 구성 매개변수들, 그리고 다른 규칙 세트들로부터의 출력들을 나타내는 데이터를 수신할 수 있을 것이다. 규칙 세트(280) 내의 규칙들이 논리적 규칙들, 수치적 알고리즘들, 파형 및 신호 프로세싱 기술들의 적용, 전문(expert) 시스템 및 인공지능 알고리즘들, 통계적 툴들, 및 출력들(284)을 입력들(282)에 대해서 관련시킬 수 있는 임의의 다른 표현을 포함할 수 있을 것이다. 각각의 출력(284)을 수신하도록 보유되고(reserved) 구성되는 메모리 내의 개별적인 위치들로 출력들(284)이 맵핑될 수 있을 것이다. 이어서, LMDS(213) 및 DCS(201)이 임의의 모니터링 및/또는 제어 기능들을 달성하기 위해서 메모리 내의 위치들을 이용할 수 있을 것이고, LMDS(213) 및 DCS(201)이 실시를 위해서 프로그래밍될 수 있을 것이다. 비록, 직접적으로 또는 개재 장치들을 통해서 간접적으로, 입력들(282)이 규칙 세트(280)로 공급될 수 있고 출력들(284)이 규칙 세트(280)로 공급될 수 있지만, 규칙 세트(280)의 규칙들이 LMDS(213) 및 DCS(201)과 독립적으로 동작한다.
규칙 세트(280)의 생성 중에, 해당 분야의 인간 전문가가 하나 이상의 규칙들을 프로그래밍하는 것에 의해서 개발 툴을 이용하여 특정 자산에 대해서 특별한 해당 분야에 관한 지식을 전달한다. 그러한 규칙들은, 규칙들의 코팅이 필요하지 않도록, 출력들(284)과 입력들(282) 사이의 관계식들을 생성하는 것에 의해서 생성된다. 그래픽적인 방법들을 이용하여, 예를 들어, 개발 툴로 구축된 그래픽적인 사용자 인터페이스 상에서의 드래그 및 드롭을 이용하여, 피연산자들(operands)이 피연산자들의 라이브러리로부터 선택될 수 있을 것이다. 피연산자의 그래픽적인 표상이 화면 디스플레이(미도시)의 라이브러리 부분으로부터 선택될 수 있을 것이고 그리고 규칙 생성 부분 내로 드래그되고 드롭될 수 있을 것이다. 입력(282)과 피연산자들 사이의 관계들이 논리적인 디스플레이 방식으로 배열되고, 선택된 입력들(282) 중의 특정 입력들 및 특정 피연산자들을 기초로 적절한 경우에, 제약들과 같은 값들을 사용자에게 알린다. 전문가의 지식을 캡쳐하기 위해서 필요한 바와 같은 많은 규칙들이 생성된다. 따라서, 규칙 세트(280)가, 고객의 요건들 및 규칙 세트(280)의 특별한 분야에서의 기술 수준을 기초로, 보다 견실한 진단 세트 및/또는 모니터링 규칙들 또는 비교적 덜 견실한 진단 및/또는 모니터링 규칙들의 세트를 포함할 수 있을 것이다. 입력들(282)의 여러 가지 조합들 및 값들이 출력들(284)에서 예상되는 출력들을 생성하도록 보장하기 위해서, 개발 툴은 개발 중에 테스팅 규칙 세트(280)를 위한 자원들을 제공한다.
일 실시예에서, 가스 터빈 엔진의 동작 조건들에 대한 예상되는 휠-공간 온도를 계산하도록 휠-공간 온도 규칙 세트가 구성된다. 휠-공간 온도 규칙 세트의 장점은, 예상되는 휠-공간 온도의 상부 및 하부 경계들을 예측하기 위해서 상이한 GT 구성요소들과 압축기 성능을 링크시키는 예측가능하고 적응가능한(adaptable) 문턱값이다.
도 4는 본원 개시 내용의 예시적인 실시예에 따른 가스 터빈 엔진(401)(도 1에 부분적으로 도시됨)의 휠-공간 냉각 시스템(400)의 아키텍처의 측면도이다. 압축기(402)는 가스 터빈 엔진(401)의 구성요소들로 고압 공기를 제공한다. 예시적인 실시예에서, 제 1 휠-공간 전방 구역(403)이 압축기 배출 섹션(404)으로부터 루팅된(routed) 공기에 의해서 냉각된다. 제 1 휠-공간 후방(aft) 구역(403)이 압축기 배출 섹션(404)으로부터 루팅된 공기 및 압축기 배출 섹션(404) 상류의 압축기 스테이지(408), 예를 들어, 그러나 비제한적으로, 압축기(402)의 11번째 스테이지로부터 브리딩되는 공기로 냉각된다. 제 2 휠-공간 전방부(410) 및 제 2 휠-공간 후방부(412)가 상류 압축기 스테이지(408)로부터 브리딩되는 공기로 냉각된다.
가스 터빈 엔진(401)의 저압 터빈 내의 휠-공간들 온도들이, 예를 들어, 제 1 휠-공간 전방 구역(403) 내에 위치된 제 1 열전쌍(414) 및 제 2 열전쌍(416) 그리고 제 2 휠-공간 후방부(412) 내에 배치된 제 3 열전쌍(418) 및 제 2 열전쌍(420)에 의해서 모니터링된다. 각각의 공간 내의 2개의 열전쌍들이 공동들 내의 기온에 대한 정보를 제공한다.
압축기 배출 섹션(404)으로부터 루팅된 공기의 온도(CDT)가 센서들로 모니터링되고 휠-공간 온도와 직접적으로 비교될 수 있고, 직접적으로 측정되지 않는 상류 압축기 스테이지(408)의 온도가 압축기의 동작 조건들을 고려한 상호 관계에서 평가된다.
가스 터빈 엔진(401)에 대해서 규정된 규칙들이, 휠-공간 온도에 대한 예상된 값을 제공하는 것 및 그러한 값을 측정된 값들과 비교하는 것을 기초로 한다.
비정상에 대한 규칙들에 의해서 제공되는 경고는, 가스 터빈 엔진(401)에 의존하지 않는 미리 결정된 양 보다 많은 양 만큼, 측정된 값과 예상된 값이 상이할 때, 출력된다. 미리 결정된 양은 대안적으로 패키지 셋팅들, 냉각 간극들(clearances), 작동 간극들, 및 가스 터빈 엔진(401)에 장착된 팩들과 관련되고, 이들 모두는 가스 터빈 엔진(401)에 대한 최초의 제 1 규칙 적용 기간에서 규정되는 기준 값에 영향을 미칠 수 있을 것이다.
압축기 블리드 온도 계산
휠-공간 온도를 평가된 상류 압축기 스테이지(408)에 대해서 링크시키기 위해서, 이하의 상호관계들이 이용된다. 그러한 상호관계는, 상이한 스테이지들을 통해서 일정한 것으로 가정되고 그리고 각각의 시간 단계에서의 압축 프로세스를 따른 기온의 평가를 허용하는 압축기의 다종적 효율을 지칭한다.
그러한 상호관계에 대한 입력은 다음과 같다:
T2 압축기 유입구 온도(모니터링됨)
T3 압축기 배출구 온도(모니터링됨)
P2 압축기 유입구 압력(모니터링됨)
P3 압축기 배출구 압력(모니터링됨)
상기 상호관계는 제 2 휠-공간 온도와 비교되는 블리드 압력 및 온도를 출력한다.
추출 압력이 다음과 같이 압축기 배출 압력(P3)의 함수로서 평가된다:
Figure pct00001
여기에서, fP11(T)는, 계수들이 표 1에 요약된, 압축기 유입구 온도의 3차 다항식 함수이다.
실제 다종적 효율 ηact 가 다음과 같이 평가될 수 있다:
Figure pct00002
여기에서, γ(T) 및 f(T)는 표 1 내의 계수들에 의해서 규정된 3차 다항식 함수들에 의해서 표현된다.
함수 C0 C1 C2 C3
fP11(T) 2.22457469922934E+00 -4.63874892302590E-03 2.44926189613996E-05 -1.27947433407930E-07
γ(T) 1.40029450459100E+00 -1.87667861261292E-06 -9.09273412720000E-08 4.44183762000000E-11
f(T) -6.71976186797772E+01 3.75674097649753E+00 -4.16444150209530E-02 2.11683533804297E-04
표 1: 다항식들에 대한 계수들
마지막으로, 상류 스테이지(예를 들어, 스테이지 11) 기온이 다음과 같이 계산될 수 있다:
Figure pct00003
여기에서,
Figure pct00004
는 다음과 같이 계산된다:
Figure pct00005
상이한 기계들에 대한 데이터의 분석은, 단순한 ΔT 기반의 상호관계가 충분히 정확하지 않다는 것을 나타낸다. 데이터는 휠-공간 온도와 상류 스테이지(예를 들어, 스테이지 11) 기온 블리드 온도 사이의 큰 가변성을 나타낸다.
유동 경로 온도가 고려된다. 예를 들어, 가스 터빈 엔진(401) 내의 유일한 유동 경로 온도 측정이 터빈 출구 온도(T5)이다. 제 2 휠-공간 전방부(410) 및 제 2 휠-공간 후방부(412)의 온도들이 터빈 출구 온도(T5)에 밀접하게 의존하는 것으로 관찰되었다.
그러한 상호관계에서의 효율이 유용하기 때문에, 상수(constant)(θ)가 도입되고, 이는 다음과 같이 표현될 수 있다:
Figure pct00006
θ에 대한 값이 각각의 가스 터빈 엔진에 대해서 규정되고 기계의 타입에 대한 특징적인 값들을 가진다. 제 2 휠-공간의 전방 및 후방 측부(side)에 대해서 θ 값이 일단 셋팅되면, 예측된 휠-공간 온도가 다음과 같이 평가된다:
전방 측부에 대해서,
Figure pct00007
그리고, 후방 측부에 대해서,
Figure pct00008
예상된 값들 및 문턱값들 뿐만 아니라, 시스템에 의해서 획득된 또는 추측된 신호들을 기초로 하는 휠-공간 온도에 대한 규칙들이 이하에서 설명된다.
제 1 휠-공간 전방 온도가 압축기 배출 온도(T3)와 강하게 관련된다. 단순한 그러나 여전히 신뢰가능한 상호관계는 둘 사이의 일정한 온도 차이를 셋팅하기 위한 것이다. 그러한 차이는, 그 값이 0-60 ℃ 범위에 있는 것으로 가정될 수 있는 경우에, 기계의 특성이 된다. 표준 기계는 약 40-60 ℃의 전형적인 기준선 온도 차이를 가지는 반면, 다른 기계들은 약 10-15 ℃의 작은 온도 차이를 가질 수 있을 것이다. 기준선 온도 차이가 고정되면, 휠-공간 온도가 약 ± 15 ℃ 초과로 변화되지 않는 것으로 예상된다.
제 1 휠-공간 후방부 냉각이 압축기 배출 공기와 상류 압축기 스테이지, 예를 들어, 11번째 스테이지 공기의 조합으로부터 제공된다. 측정된 휠-공간 온도에 대해서 양 온도들을 비교하는 것은, 터빈 출구 온도에 대한 비교적 큰 의존성을 나타낸다.
일 실시예에서, 압축기 배출 온도 및 상류 압축기 스테이지 공기 유동들 모두가 휠-공간 온도에 영향을 미치기 때문에, 그 둘의 평균이 비교를 위해서 이용된다:
Figure pct00009
여기에서 T11은 전술한 단계들에 이어서 평가되고, 그리고 T3는 압축기 배출 온도의 측정된 값이다. (T5-Tmix)에 대한 (TTWS1AFT-Tmix)의 선형 의존성이 존재한다. 여러 실시예들에서, 압축기 배출 공기와 상류 압축기 스테이지 공기 유동들의 다른 조합들이 비교를 위해서 이용된다. 예를 들어, 각각이 다른 것에 대해서 가중될 수 있을 것이고, 또는 다른 유동들이 또한 압축기 배출 공기와 상류 압축기 스테이지 공기 유동들과 조합될 수 있을 것이다.
따라서, 이하의 단계는, 일정한 것으로 가정될 수 있고 이하와 같이 휠-공간 온도를 평가하기 위해서 이용되는, θ 비율을 평가하기 위한 것이다.
Figure pct00010
다른 실시예에서, Tmix 에 대한 질량-유동 평가 값이 이용될 수 있을 것이다.
제 2 휠-공간들 전방 및 후방을 냉각하기 위한 소스가, 예를 들어, 압축기 11번째 스테이지 블리드 공기이다. 냉각 공기 유동에 대한 온도가, 전술한 과정에 따라, 압축기의 유입구 및 배출구 섹션에서의 압력 및 온도의 측정된 값들로부터 평가된다.
휠-공간 온도의 정확한 예측을 허용하는 상수(θ)를 도입하는 것에 의해서, 휠-공간 온도가 평가될 수 있다.
하나의 경우에, θ 상수들이 θfwd = 0.289 및 θaft = 0.345 가 되도록 결정된다. 그러한 상수들을 이용하여, 약 ± 10 ℃가 포함된 오류로 휠-공간 온도를 예측할 수 있다.
제 2 휠-공간들 온도 및 제 1 휠-공간 후방부에 대한 규칙들이 터빈 출구 온도를 고려하도록 그리고 모든 경우들에서 약 ± 15 ℃ 미만의 예측 오류를 허용하도록 결정된다. 다른 매개변수들을 평가할 필요가 없이, 제 1 휠-공간 전방부 온도가 압축기 배출 온도와 상호관련된다. 전술한 모든 규칙들이 예측된 값들 및 기계 의존적 셋팅들을 고려한다. 영점교정 기간이 각각의 규칙 정의에 선행하고, 그러한 영점교정 기간 중에 모니터링되는 결과들에 따라서 특징적인 매개변수들이 셋팅된다.
도 5는, 본원 개시 내용의 예시적인 실시예에 따른, 미리 결정된 범위를 초과하는 엔진 휠-공간 온도에 대한 경고를 결정하는 방법(500)의 흐름도이다. 예시적인 실시예에서, 방법(500)이 메모리 장치 내에 복수의 규칙 세트들을 저장하는 단계(502)로서, 상기 규칙 세트들이 상기 휠-공간에 대한 것이고, 상기 규칙 세트들이 실시간 데이터 입력에 대한 실시예 데이터 출력의 관계식으로서 표현된 적어도 하나의 규칙을 포함하고, 상기 관계식은 휠-공간의 온도에 대해서 특정적인, 저장 단계(502), 상기 가스 터빈과 연관된 조건 모니터링 시스템으로부터 실시간의 그리고 이력 데이터 입력들을 수신하는 단계(504)로서, 상기 데이터 입력들이 상기 휠-공간으로 열을 제공하는 소스들과 관련되는, 수신하는 단계(504), 및 상기 휠-공간의 온도와 관련된 입력들을 이용하여 휠-공간 온도 값을 추정하는 단계(506)를 포함한다.
도면들에 도시된 논리 흐름들은, 희망하는 결과들을 달성하기 위해서, 도시된 특별한 순서, 또는 순차적인 순서를 필요로 하지 않는다. 또한, 다른 단계들이 제공될 수 있을 것이고, 또는 단계들이 전술한 흐름들로부터 배제될 수 있고, 그리고 다른 구성요소들이 전술한 시스템들로 부가되거나 그러한 시스템들로부터 제거될 수 있을 것이다. 따라서, 다른 실시예들이 이하의 청구항들의 범위 내에 포함된다.
특별한 구체적인 내용으로 설명된 상기 실시예들이 단지 예시적인 것이고 또는 가능한 실시예들이라는 것, 그리고 포함될 수 있는 많은 다른 조합들, 부가들, 또는 대체들이 존재한다는 것을 이해할 수 있을 것이다.
또한, 구성요소들의 특별한 명칭 부여, 용어들의 대문자화(capitalization), 속성들, 데이터 구조물들, 또는 임의의 다른 프로그래밍 또는 구조적 양태가 의무적이나 중요한 것이 아니고, 발명 및 발명의 특징들을 구현하는 메커니즘들이 상이한 명칭들, 포맷들, 또는 프로토콜들을 가질 수 있을 것이다. 또한, 시스템이, 전술한 바와 같이, 하드웨어 및 소프트웨어의 조합을 통해서, 또는 전적으로 하드웨어 요소들로 구현될 수 있을 것이다. 또한, 여기에서 개시된 여러 가지 시스템 구성요소들 사이의 기능의 특별한 분할은 단지 하나의 예이고, 의무적인 것이 아니며; 하나의 시스템 구성요소에 의해서 실시되는 기능들이 복수의 구성요소들에 의해서 대안적으로 실시될 수 있을 것이고, 복수의 구성요소들에 의해서 실시되는 기능들이 대안적으로 하나의 구성요소에 의해서 실시될 수 있을 것이다.
전술한 설명의 일부 부분들이 정보에서 동작들의 심볼화된 표상들 및 알고리즘들과 관련한 특징들을 제시한다. 이러한 알고리즘적인 설명들 및 표현들은, 데이터 프로세싱 분야의 당업자가 다른 당업자에게 그들의 작업 내용을 가장 효과적으로 전달하기 위해서 이용될 수 있을 것이다. 이러한 동작들은, 비록 기능적으로 또는 논리적으로 설명되었지만, 컴퓨터 프로그램들에 의해서 구현될 수 있는 것으로 이해될 수 있을 것이다. 또한, 일반성을 잃지 않고, 이러한 동작들의 배열들을 모듈들로서 또는 기능적인 명칭들로서 지칭하는 것이 종종 편리한 것으로 확인되었다.
달리 구체적인 언급이 없는 경우에, 상기 기술 내용으로부터 자명한 바와 같이, 설명 전체를 통해서, "프로세싱" 또는 "컴퓨팅" 또는 "계산하는 것" 또는 "결정하는 것" 또는 "디스플레이하는 것" 또는 "제공하는 것" 등과 같은 용어들을 이용한 설명들은, 컴퓨터 시스템 메모리들 또는 레지스터들 또는 다른 그러한 정보 저장, 전송 또는 디스플레이 장치들 내에서 물리적(전자적) 양들로서 표현되는 데이터를 조작하고 변형하는, 컴퓨터 시스템 또는 유사한 전자적 컴퓨팅 장치의 작용 및 프로세스를 지칭한다.
여러 가지 구체적인 실시예들과 관련하여 설명하였지만, 개시 내용이 청구항들의 범위 및 사상 내에서 수정되어 실행될 수 있다는 것을 인지할 수 있을 것이다.
여기에서 사용된 바와 같이, 프로세서라는 용어는 중앙 처리 유닛들, 마이크로프로세서들, 마이크로제어기들, 축약형 회로들(reduced instruction set circuit; RISC), 주문형 집적 회로들(ASIC), 논리 회로들, 및 여기에서 기술된 기능들을 실행할 수 있는 임의의 다른 회로 또는 프로세서를 지칭한다.
여기에서 사용된 바와 같이, "소프트웨어" 및 "펌웨어"라는 용어들은 상호 교환가능하고, 그리고 프로세서(205)에 의한 실행을 위해서, RAM 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 및 비휘발성 RAM(non-volatile random access memory; NVRAM) 메모리를 포함하는, 메모리 내에 저장되는 임의의 컴퓨터 프로그램을 포함한다. 상기 메모리 타입들은 단지 예시적인 것이고, 그에 따라 컴퓨터 프로그램의 저장을 위해서 이용가능한 메모리의 타입에 대한 제한을 하는 것이 아니다.
전술한 상세한 설명을 기초로 이해할 수 있는 바와 같이, 개시 내용의 전술한 실시예들은 컴퓨터 소프트웨어, 펌웨어, 하드웨어 또는 그 임의의 조합 또는 하위세트를 포함하는 컴퓨터 프로그래밍 또는 엔지니어링 기술들을 이용하여 구현될 수 있을 것이고, 기술적 효과는 (a) 메모리 장치 내에 복수의 규칙 세트들을 저장하는 단계로서, 상기 규칙 세트들은 휠-공간과 관련되고 실시간 데이터 입력에 대한 실시간 데이터 출력의 관계식으로서 표현되는 적어도 하나의 규칙을 포함하고, 상기 관계식은 휠-공간의 온도에 대해서 특정적인, 저장 단계, (b) 상기 가스 터빈과 연관된 조건 모니터링 시스템으로부터 실시간의 그리고 이력 데이터 입력들을 수신하는 단계로서, 상기 데이터 입력들이 상기 휠-공간으로 열을 제공하는 소스들과 관련되는, 수신하는 단계, (c) 상기 휠-공간의 온도와 관련된 입력들을 이용하여 휠-공간 온도 값을 추정하는 단계, (d) 상기 추정된 휠-공간 온도를 실제 측정된 휠-공간 온도에 비교하는 단계, (e) 상기 비교를 이용하여 경고 메시지를 생성하는 단계로서, 상기 경고 메시지가 상기 휠-공간 온도와 관련된 고장 수리 활동들을 포함하는, 생성 단계, (f) 상기 가스 터빈의 연소 프로세스로부터의 고온 가스, 상기 가스 터빈의 축류 압축기로부터의 블리드 냉각 공기, 및 회전자 풍손 효과들 중 적어도 하나에 포함되는 열을 나타내는 입력들을 수신하는 단계, (g) 상기 휠-공간 온도에 대한 초기 추정된 기준선을 셋팅하는 것이 축류 압축기 블리드 냉각 공기의 온도와 같아지고 그리고 휠-공간에 대한 다른 열의 소스들을 이용하여 보상되는 단계, (h) 휠-공간 온도에 대한 초기 추정된 기준선을 세팅하는 것이 연소 프로세스로부터의 고온 가스 및 회전자 풍손 효과들 중 적어도 하나를 이용하여 보상된 축류 압축기 블리드 냉각 온도의 온도와 같아지는 단계, (i) 가스 터빈의 성능의 열역학적 시뮬레이션을 이용하여 추정된 휠-공간 온도를 온라인으로 결정하는 단계, (j) 축류 압축기의 다종적 효율 및 축류 압축기 블리드 냉각 공기 온도를 이용하여 추정된 휠-공간 온도를 온라인으로 결정하는 단계, (k) 휠-공간 온도와 축류 압축기 블리드 냉각 공기 온도 사이의 선형 관계의 기울기를 결정하는 단계, (l) 터빈 배기의 온도와 축류 압축기 블리드 냉각 공기 온도 사이의 선형 관계의 기울기를 결정하는 단계, 및 (m) 선택가능한 시간의 기간에 걸쳐 기울기를 반복적으로 평균화하는 단계를 포함한다. 컴퓨터-판독가능 코드 수단을 가지는 임의의 그러한 결과적인 프로그램이 하나 이상의 컴퓨터-판독가능 매체 내에 구현되거나 제공될 수 있을 것이고, 그에 의해서 개시 내용의 설명된 실시예들에 따른, 컴퓨터 프로그램 제품 즉, 제조 물품을 제조할 수 있을 것이다. 컴퓨터 판독가능 매체가, 예를 들어, 비제한적으로, 고정형(하드) 드라이브, 디스켓, 광학적 디스크, 자기적 테입, 리드-온리 메모리(ROM)와 같은 반도체 메모리, 및/또는 인터넷이나 다른 통신 네트워크 또는 링크와 같은 임의의 전송/수신 매체일 수 있을 것이다. 하나의 매체로부터 직접적으로 코드를 실행하는 것, 하나의 매체로부터 다른 매체로 코드를 복사하는 것, 또는 네트워크를 통해서 코드를 전송하는 것에 의해서, 컴퓨터 코드를 포함하는 제조 물품이 만들어지고 및/또는 이용될 수 있을 것이다.
본원 명세서에서 설명된 많은 기능적 유닛들이, 그들의 구현 독립성을 보다 특히 강조하기 위해서, 모듈들로서 레이블링되어(labeled) 있다. 예를 들어, 모듈이 맞춤형(custom) 초대규모 집적("VLSI") 회로들 또는 게이트 어레이들, 논리 칩들과 같은 기성품(off-the-shelf) 반도체들을 포함하는 하드웨어 회로로서 구현될 수 있을 것이다. 모듈이 또한, 필드 프로그래머블 게이트 어레이들(field programmable gate arrays; FPGAs), 프로그래머블 어레이 로직(programmable array logic), 또는 프로그래머블 로직 장치들(PLDs) 등과 같은 프로그래밍이 가능한 하드웨어 장치들 내에 구현될 수 있을 것이다.
모듈들이 또한 여러 가지 타입들의 프로세서들에 의한 실행을 위해서 소프트웨어로 구현될 수 있을 것이다. 실행가능한 코드의 식별된 모듈이, 예를 들어, 대상(object), 공정, 또는 기능으로서 조직화될 수 있는 컴퓨터 명령어들의 하나 이상의 물리적 또는 논리적 블록들을 예를 들어 포함할 수 있을 것이다. 그럼에도 불구하고, 식별된 모듈의 실행가능성들이 물리적으로 함께 위치될 필요가 없고, 함께 논리적으로 조합될 때 모듈을 포함하게 되고 그리고 모듈의 기술된 목적을 달성하게 되는, 상이한 위치들에 저장된 분리된 명령어들을 포함할 수 있을 것이다.
실행가능한 코드의 모듈이 단일 명령어 또는 많은 명령어들일 수 있을 것이고, 상이한 프로그램들 사이에서, 몇몇 상이한 코드 세그먼트들에 걸쳐서 그리고 몇몇 메모리 장치들에 걸쳐서 균일하게 분포될 수 있을 것이다. 유사하게, 동작적 데이터가 모듈들 내에서 식별되고 묘사될 수 있을 것이고, 그리고 임의의 적합한 형태로 구현되고 임의의 적합한 타입의 데이터 구조 내에서 조직화될 수 있을 것이다. 그러한 동작적 데이터가 단일 데이터 세트로서 수집될 수 있을 것이고, 또는 상이한 저장 장치들에 걸쳐지는 것을 포함하여 상이한 위치들에 걸쳐서 분포될 수 있을 것이고, 그리고 적어도 부분적으로, 시스템 또는 네트워크 상의 전자적 신호들로서 단지 존재할 수 있을 것이다.
규칙 모듈을 포함하는 온라인 휠-공간 온도 모니터링 시스템 및 방법의 전술한 실시예들은 의미있는 동작적인 권장들 및 고장 수리들을 제공하기 위한 비용-효과적이고 신뢰가능한 수단을 제공한다. 또한, 시스템이 보다 정확하고 그리고 고장 경고들을 덜 발생하는 경향을 가진다. 보다 구체적으로, 여기에서 개시된 방법들 및 시스템들은 공지된 시스템들 보다 상당히 더 이른 단계에서 구성요소 고장을 예측할 수 있고, 그에 따라 중단 시간을 상당히 감소시키는데 있어서 그리고 중지들(trips)을 방지하는데 있어서 도움이 된다. 또한, 전술한 방법들 및 시스템들은 이른 단계에서 비이상성들을 예측하는 것을 촉진하여, 사이트의 작업자가 장비의 중단에 대해서 준비하고 계획을 세울 수 있게 한다. 결과적으로, 여기에서 개시된 방법들 및 시스템들은, 가스 터빈들 및 다른 장비들이 비용-효과적인 그리고 신뢰가능한 방식으로 동작될 수 있게 한다.
이러한 기술된 설명은, 최적의 모드를 포함하여, 발명을 개시하기 위해서, 그리고 또한 당업자가, 장치들 또는 시스템들을 제조 및 이용하는 것 그리고 임의의 통합된 방법들을 실시하는 것을 포함하여, 발명을 실시할 수 있게 하기 위해서 예들을 이용하였다. 개시 내용의 특허받을 수 있는 범위는 청구항들에 의해서 결정되고, 당업자들에 의해서 안출될 수 있는 다른 예들을 포함할 수 있을 것이다. 그러한 다른 예들이 청구항들의 문헌적인 언어와 상이하지 않은 구조적 요소들을 가지는 경우에, 또는 그러한 다른 예들이 청구항들의 문헌적 언어들과의 사소한 차이들을 가지는 균등한 구조적 요소들을 포함하는 경우에, 그러한 다른 예들은 청구항들의 범위 내에 포함될 것이다.

Claims (10)

  1. 가스 터빈의 휠-공간(wheel-space) 내의 비정상들을 모니터링하고 진단하기 위한 컴퓨터-구현된 방법에 있어서,
    상기 컴퓨터-구현된 방법은 사용자 인터페이스 및 메모리 장치에 결합된 컴퓨터 장치를 이용하여 구현되며,
    상기 메모리 장치 내에 복수의 규칙 세트(rule set)들을 저장하는 단계 ― 상기 규칙 세트들은 상기 휠-공간에 관한 것이고, 상기 규칙 세트들은 실시간 데이터 입력에 관한 실시예 데이터 출력의 관계식으로서 표현되는 적어도 하나의 규칙을 포함하고, 상기 관계식은 상기 휠-공간의 온도에 대해서 특정적임 ― ;
    상기 가스 터빈과 연관된 조건 모니터링 시스템으로부터의 실시간 및 이력 데이터 입력들을 수신하는 단계 ― 상기 데이터 입력들은 상기 휠-공간으로 열을 제공하는 소스들과 관련됨 ― ; 및
    상기 휠-공간의 온도와 관련된 입력들을 이용하여 휠-공간 온도 값을 추정하는 단계
    를 포함하는, 컴퓨터-구현된 방법.
  2. 제 1 항에 있어서,
    상기 추정된 휠-공간 온도를 실제 측정된 휠-공간 온도에 비교하는 단계; 및
    상기 비교를 이용하여 경고 메시지를 생성하는 단계 ― 상기 경고 메시지는 상기 휠-공간 온도와 관련된 고장 수리(troubleshooting) 활동들을 포함함 ―
    를 더 포함하는, 컴퓨터-구현된 방법.
  3. 제 1 항에 있어서,
    상기 가스 터빈의 연소 프로세스로부터의 고온 가스, 상기 가스 터빈의 축류 압축기(axial compressor)로부터의 블리드 냉각 공기(bleed cooling air), 및 회전자 풍손(windage) 효과들 중 적어도 하나에 포함되는 열을 나타내는 입력들을 수신하는 단계를 더 포함하는, 컴퓨터-구현된 방법.
  4. 제 1 항에 있어서,
    상기 휠-공간 온도에 대한 초기 추정된 기준선을 회전자 풍손 효과들 및 연소 프로세스로부터의 고온 가스의 온도 중 적어도 하나를 이용하여 보상된 축류 압축기 블리드 냉각 공기의 온도와 동일하도록 셋팅하는 단계를 더 포함하는, 컴퓨터-구현된 방법.
  5. 제 1 항에 있어서,
    축류 압축기의 다종적(polytropic) 효율 및 상기 축류 압축기 블리드 냉각 공기 온도를 이용하여 상기 추정된 휠-공간 온도를 온라인으로 결정하는 단계를 더 포함하는, 컴퓨터-구현된 방법.
  6. 유동 소통하는 축류 압축기 및 저압 터빈을 포함하는, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템에 있어서,
    상기 시스템은 휠-공간 온도 규칙 세트를 포함하고,
    상기 규칙 세트는 실시간 데이터 입력에 관한 실시예 데이터 출력의 관계식을 포함하고,
    상기 관계식은 상기 휠-공간 내의 열의 소스들과 관련되는 입력들에 대해서 특정되는 것인, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템.
  7. 제 6 항에 있어서,
    상기 규칙 세트는 상기 휠-공간 내의 열의 소스들과 관련된 입력들을 이용하여 추정된 휠-공간 온도 값을 결정하도록 구성되는 것인, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템.
  8. 제 6 항에 있어서,
    상기 규칙 세트는 연소 프로세스로부터의 고온 가스, 축류 압축기 블리드 냉각 공기, 및 회전자 풍손 효과들 중 적어도 하나 내에 포함되는 열을 나타내는 입력들을 수신하도록 구성되는 것인, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템.
  9. 제 6 항에 있어서,
    상기 휠-공간 온도에 대한 초기 추정된 기준선은 연소 프로세스로부터의 고온 가스의 온도 및 회전자 풍손 효과들 중 적어도 하나를 이용하여 보상된 축류 압축기 블리드 냉각 공기의 온도와 동일한 것인, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템.
  10. 제 6 항에 있어서,
    추정된 휠-공간 온도는 상기 축류 압축기의 다종적 효율 및 상기 축류 압축기 블리드 냉각 공기 온도를 이용하여 온라인으로 결정되는 것인, 가스 터빈을 위한 휠-공간 모니터링 및 진단 시스템.
KR1020147027675A 2012-03-01 2013-03-01 운영자 조작에 대해 경고하기 위한 방법 및 시스템 KR20140130541A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITCO2012A000008 2012-03-01
IT000008A ITCO20120008A1 (it) 2012-03-01 2012-03-01 Metodo e sistema per monitorare la condizione di un gruppo di impianti
PCT/EP2013/054157 WO2013127995A1 (en) 2012-03-01 2013-03-01 Method and system for advising operator action

Publications (1)

Publication Number Publication Date
KR20140130541A true KR20140130541A (ko) 2014-11-10

Family

ID=46051732

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020147027681A KR20140130543A (ko) 2012-03-01 2013-02-28 설비들의 그룹의 조건 모니터링을 위한 방법 및 시스템
KR1020147027658A KR102073912B1 (ko) 2012-03-01 2013-03-01 고부하 가스 터빈들에 대한 진단 규칙들을 위한 방법 및 시스템
KR1020147027665A KR20140127915A (ko) 2012-03-01 2013-03-01 실시간 가스 터빈 성능 경고를 위한 방법 및 시스템
KR1020147027708A KR20140130545A (ko) 2012-03-01 2013-03-01 실시간 건성 저질소 산화물 (dln) 및 확산 연소 모니터링을 위한 방법 및 시스템
KR1020147027674A KR20140130540A (ko) 2012-03-01 2013-03-01 설비들의 그룹의 조건 모니터링을 위한 방법 및 시스템
KR1020147027675A KR20140130541A (ko) 2012-03-01 2013-03-01 운영자 조작에 대해 경고하기 위한 방법 및 시스템
KR1020147027661A KR20140130539A (ko) 2012-03-01 2013-03-01 원심 압축기들에 대한 실시간 성능 저하 경고를 위한 방법 및 시스템

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020147027681A KR20140130543A (ko) 2012-03-01 2013-02-28 설비들의 그룹의 조건 모니터링을 위한 방법 및 시스템
KR1020147027658A KR102073912B1 (ko) 2012-03-01 2013-03-01 고부하 가스 터빈들에 대한 진단 규칙들을 위한 방법 및 시스템
KR1020147027665A KR20140127915A (ko) 2012-03-01 2013-03-01 실시간 가스 터빈 성능 경고를 위한 방법 및 시스템
KR1020147027708A KR20140130545A (ko) 2012-03-01 2013-03-01 실시간 건성 저질소 산화물 (dln) 및 확산 연소 모니터링을 위한 방법 및 시스템
KR1020147027674A KR20140130540A (ko) 2012-03-01 2013-03-01 설비들의 그룹의 조건 모니터링을 위한 방법 및 시스템

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020147027661A KR20140130539A (ko) 2012-03-01 2013-03-01 원심 압축기들에 대한 실시간 성능 저하 경고를 위한 방법 및 시스템

Country Status (12)

Country Link
US (7) US9274520B2 (ko)
EP (7) EP2820490B1 (ko)
JP (7) JP2015508928A (ko)
KR (7) KR20140130543A (ko)
CN (7) CN104254810B (ko)
AU (9) AU2013224935A1 (ko)
BR (2) BR112014019965A2 (ko)
CA (7) CA2865194C (ko)
IT (1) ITCO20120008A1 (ko)
MX (2) MX2014010464A (ko)
RU (7) RU2636095C2 (ko)
WO (7) WO2013127958A1 (ko)

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITCO20120008A1 (it) * 2012-03-01 2013-09-02 Nuovo Pignone Srl Metodo e sistema per monitorare la condizione di un gruppo di impianti
US20140244328A1 (en) * 2013-02-22 2014-08-28 Vestas Wind Systems A/S Wind turbine maintenance optimizer
US10649449B2 (en) 2013-03-04 2020-05-12 Fisher-Rosemount Systems, Inc. Distributed industrial performance monitoring and analytics
US10909137B2 (en) 2014-10-06 2021-02-02 Fisher-Rosemount Systems, Inc. Streaming data for analytics in process control systems
US10866952B2 (en) 2013-03-04 2020-12-15 Fisher-Rosemount Systems, Inc. Source-independent queries in distributed industrial system
US9665088B2 (en) 2014-01-31 2017-05-30 Fisher-Rosemount Systems, Inc. Managing big data in process control systems
US9558220B2 (en) 2013-03-04 2017-01-31 Fisher-Rosemount Systems, Inc. Big data in process control systems
US10678225B2 (en) 2013-03-04 2020-06-09 Fisher-Rosemount Systems, Inc. Data analytic services for distributed industrial performance monitoring
US10649424B2 (en) * 2013-03-04 2020-05-12 Fisher-Rosemount Systems, Inc. Distributed industrial performance monitoring and analytics
US11573672B2 (en) 2013-03-15 2023-02-07 Fisher-Rosemount Systems, Inc. Method for initiating or resuming a mobile control session in a process plant
CN104344946B (zh) * 2013-07-24 2017-12-05 中国国际航空股份有限公司 Apu涡轮叶片断裂与转轴卡阻故障的监控方法和装置
US20150075170A1 (en) * 2013-09-17 2015-03-19 General Electric Company Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine
US9234317B2 (en) * 2013-09-25 2016-01-12 Caterpillar Inc. Robust system and method for forecasting soil compaction performance
ITCO20130043A1 (it) * 2013-10-02 2015-04-03 Nuovo Pignone Srl Metodo e sistema per monitorare il funzionamento di un dispositivo flessibile di accoppiamento
US20150153251A1 (en) * 2013-11-29 2015-06-04 Johannes Izak Boerhout Systems and methods for integrated workflow display and action panel for plant assets
US20150219530A1 (en) * 2013-12-23 2015-08-06 Exxonmobil Research And Engineering Company Systems and methods for event detection and diagnosis
US20150184549A1 (en) 2013-12-31 2015-07-02 General Electric Company Methods and systems for enhancing control of power plant generating units
US9957843B2 (en) 2013-12-31 2018-05-01 General Electric Company Methods and systems for enhancing control of power plant generating units
US10139267B2 (en) 2014-01-09 2018-11-27 General Electric Company Systems and methods for storage and analysis of periodic waveform data
US20150271026A1 (en) * 2014-03-24 2015-09-24 Microsoft Technology Licensing, Llc End user performance analysis
KR102189282B1 (ko) * 2014-05-21 2020-12-09 세메스 주식회사 공정 설비 제어 방법
US9813308B2 (en) * 2014-06-04 2017-11-07 Verizon Patent And Licensing Inc. Statistical monitoring of customer devices
KR101676926B1 (ko) * 2014-12-31 2016-11-16 주식회사 포스코아이씨티 가상환경을 이용한 에너지 관리 시스템의 예측 알고리즘 검증 시스템 및 방법
US9777723B2 (en) * 2015-01-02 2017-10-03 General Electric Company System and method for health management of pumping system
US10036233B2 (en) * 2015-01-21 2018-07-31 Baker Hughes, A Ge Company, Llc Method and system for automatically adjusting one or more operational parameters in a borehole
US20160260041A1 (en) * 2015-03-03 2016-09-08 Uop Llc System and method for managing web-based refinery performance optimization using secure cloud computing
WO2016151744A1 (ja) * 2015-03-24 2016-09-29 三菱電機株式会社 プラント監視制御装置
US9864823B2 (en) 2015-03-30 2018-01-09 Uop Llc Cleansing system for a feed composition based on environmental factors
US10095200B2 (en) 2015-03-30 2018-10-09 Uop Llc System and method for improving performance of a chemical plant with a furnace
US20170315543A1 (en) * 2015-03-30 2017-11-02 Uop Llc Evaluating petrochemical plant errors to determine equipment changes for optimized operations
US10031510B2 (en) * 2015-05-01 2018-07-24 Aspen Technology, Inc. Computer system and method for causality analysis using hybrid first-principles and inferential model
US10078326B2 (en) 2015-05-14 2018-09-18 Honeywell International Inc. Apparatus and method for event detection to support mobile notifications related to industrial process control and automation system
US10021064B2 (en) 2015-05-14 2018-07-10 Honeywell International Inc. Apparatus and method for translating industrial process control and automation system events into mobile notifications
US10505790B2 (en) 2015-05-14 2019-12-10 Honeywell International Inc. Apparatus and method for automated event notification read receipt to support non-repudiated auditing or other functions in industrial process control and automation system
US20160334770A1 (en) * 2015-05-14 2016-11-17 Honeywell International Inc. Apparatus and method for using configurable rules linking triggers with actions to support notifications associated with industrial process control and automation system
US10021063B2 (en) 2015-05-14 2018-07-10 Honeywell International Inc. Apparatus and method for protecting proprietary information over public notification infrastructure
US10466688B2 (en) * 2015-05-14 2019-11-05 Honeywell International Inc. Apparatus and method for providing event context with notifications related to industrial process control and automation system
CN105157986B (zh) * 2015-06-17 2017-09-22 广东电网有限责任公司电力科学研究院 一种用于燃气轮机热端部件的可靠性监测方法
US20170038275A1 (en) * 2015-08-04 2017-02-09 Solar Turbines Incorporated Monitoring system for turbomachinery
US20170038276A1 (en) * 2015-08-04 2017-02-09 Solar Turbines Incorporated Monitoring System for Turbomachinery
US10657450B2 (en) * 2015-09-30 2020-05-19 Deere & Company Systems and methods for machine diagnostics based on stored machine data and available machine telematic data
US10495545B2 (en) * 2015-10-22 2019-12-03 General Electric Company Systems and methods for determining risk of operating a turbomachine
FR3043463B1 (fr) * 2015-11-05 2017-12-22 Snecma Systeme et procede de surveillance d'une turbomachine avec fusion d'indicateurs pour la synthese d'une confirmation d'alarme
KR102486704B1 (ko) * 2016-01-15 2023-01-10 엘에스일렉트릭(주) 감시제어데이터수집시스템에서의 클라이언트 및 서버
US10503483B2 (en) 2016-02-12 2019-12-10 Fisher-Rosemount Systems, Inc. Rule builder in a process control network
US10311399B2 (en) * 2016-02-12 2019-06-04 Computational Systems, Inc. Apparatus and method for maintaining multi-referenced stored data
US10574739B2 (en) 2016-02-26 2020-02-25 Honeywell International Inc. System and method for smart event paging
US20170300945A1 (en) * 2016-04-15 2017-10-19 International Business Machines Corporation Segmenting mobile shoppers
EP3239684A1 (en) * 2016-04-29 2017-11-01 Siemens Aktiengesellschaft Fault diagnosis during testing of turbine unit
WO2017201086A1 (en) 2016-05-16 2017-11-23 Jabil Circuit, Inc. Apparatus, engine, system and method for predictive analytics in a manufacturing system
US11914349B2 (en) 2016-05-16 2024-02-27 Jabil Inc. Apparatus, engine, system and method for predictive analytics in a manufacturing system
US10294869B2 (en) 2016-06-14 2019-05-21 General Electric Company System and method to enhance corrosion turbine monitoring
US10047679B2 (en) 2016-06-14 2018-08-14 General Electric Company System and method to enhance lean blowout monitoring
US10099804B2 (en) 2016-06-16 2018-10-16 General Electric Company Environmental impact assessment system
EP3258333A1 (en) * 2016-06-17 2017-12-20 Siemens Aktiengesellschaft Method and system for monitoring sensor data of rotating equipment
CN106089671A (zh) * 2016-06-29 2016-11-09 广东葆德科技有限公司 一种基于卫星定位的空压机及时维护方法及其***
US10643167B2 (en) * 2016-07-28 2020-05-05 Honeywell International Inc. MPC with unconstrained dependent variables for KPI performance analysis
EP3279755B1 (en) * 2016-08-02 2021-09-29 ABB Schweiz AG Method of monitoring a modular process plant complex with a plurality of interconnected process modules
US11143056B2 (en) 2016-08-17 2021-10-12 General Electric Company System and method for gas turbine compressor cleaning
US10724398B2 (en) 2016-09-12 2020-07-28 General Electric Company System and method for condition-based monitoring of a compressor
US10606254B2 (en) * 2016-09-14 2020-03-31 Emerson Process Management Power & Water Solutions, Inc. Method for improving process/equipment fault diagnosis
US10222787B2 (en) 2016-09-16 2019-03-05 Uop Llc Interactive petrochemical plant diagnostic system and method for chemical process model analysis
US20180100442A1 (en) * 2016-10-11 2018-04-12 General Electric Company Systems and Methods to Control Performance Via Control of Compressor OLL Protection Actions
US10539936B2 (en) 2016-10-17 2020-01-21 Fisher-Rosemount Systems, Inc. Methods and apparatus for configuring remote access of process control data
US10444730B2 (en) * 2016-11-30 2019-10-15 Eurotherm Limited Real-time compliance status for equipment
US10466677B2 (en) * 2016-12-15 2019-11-05 Solar Turbines Incorporated Assessment of industrial machines
US10401881B2 (en) * 2017-02-14 2019-09-03 General Electric Company Systems and methods for quantification of a gas turbine inlet filter blockage
US10466686B2 (en) 2017-02-17 2019-11-05 Honeywell International Inc. System and method for automatic configuration of a data collection system and schedule for control system monitoring
KR101933784B1 (ko) 2017-03-17 2018-12-28 두산중공업 주식회사 가스 터빈 실시간 시뮬레이션 시스템 및 그 방법
US10678272B2 (en) 2017-03-27 2020-06-09 Uop Llc Early prediction and detection of slide valve sticking in petrochemical plants or refineries
US10754359B2 (en) 2017-03-27 2020-08-25 Uop Llc Operating slide valves in petrochemical plants or refineries
US10670353B2 (en) 2017-03-28 2020-06-02 Uop Llc Detecting and correcting cross-leakage in heat exchangers in a petrochemical plant or refinery
US10794644B2 (en) 2017-03-28 2020-10-06 Uop Llc Detecting and correcting thermal stresses in heat exchangers in a petrochemical plant or refinery
US11037376B2 (en) 2017-03-28 2021-06-15 Uop Llc Sensor location for rotating equipment in a petrochemical plant or refinery
US10816947B2 (en) 2017-03-28 2020-10-27 Uop Llc Early surge detection of rotating equipment in a petrochemical plant or refinery
US10670027B2 (en) 2017-03-28 2020-06-02 Uop Llc Determining quality of gas for rotating equipment in a petrochemical plant or refinery
US10844290B2 (en) 2017-03-28 2020-11-24 Uop Llc Rotating equipment in a petrochemical plant or refinery
US11396002B2 (en) 2017-03-28 2022-07-26 Uop Llc Detecting and correcting problems in liquid lifting in heat exchangers
US11130111B2 (en) 2017-03-28 2021-09-28 Uop Llc Air-cooled heat exchangers
US10663238B2 (en) 2017-03-28 2020-05-26 Uop Llc Detecting and correcting maldistribution in heat exchangers in a petrochemical plant or refinery
US10794401B2 (en) 2017-03-28 2020-10-06 Uop Llc Reactor loop fouling monitor for rotating equipment in a petrochemical plant or refinery
US10752844B2 (en) 2017-03-28 2020-08-25 Uop Llc Rotating equipment in a petrochemical plant or refinery
US10752845B2 (en) 2017-03-28 2020-08-25 Uop Llc Using molecular weight and invariant mapping to determine performance of rotating equipment in a petrochemical plant or refinery
US10962302B2 (en) 2017-03-28 2021-03-30 Uop Llc Heat exchangers in a petrochemical plant or refinery
US10695711B2 (en) 2017-04-28 2020-06-30 Uop Llc Remote monitoring of adsorber process units
DE102017209847A1 (de) * 2017-06-12 2018-12-13 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Gasturbinenanlage
US10913905B2 (en) 2017-06-19 2021-02-09 Uop Llc Catalyst cycle length prediction using eigen analysis
US11365886B2 (en) 2017-06-19 2022-06-21 Uop Llc Remote monitoring of fired heaters
US10739798B2 (en) 2017-06-20 2020-08-11 Uop Llc Incipient temperature excursion mitigation and control
US11130692B2 (en) 2017-06-28 2021-09-28 Uop Llc Process and apparatus for dosing nutrients to a bioreactor
US10994240B2 (en) 2017-09-18 2021-05-04 Uop Llc Remote monitoring of pressure swing adsorption units
EP3462264A1 (en) * 2017-09-29 2019-04-03 Siemens Aktiengesellschaft System, method and control unit for diagnosis and life prediction of one or more electro-mechanical systems
GB2568380B (en) * 2017-10-02 2022-08-31 Fisher Rosemount Systems Inc Systems and methods for multi-site performance monitoring of process control systems
US11194317B2 (en) 2017-10-02 2021-12-07 Uop Llc Remote monitoring of chloride treaters using a process simulator based chloride distribution estimate
US11676061B2 (en) 2017-10-05 2023-06-13 Honeywell International Inc. Harnessing machine learning and data analytics for a real time predictive model for a FCC pre-treatment unit
US11105787B2 (en) 2017-10-20 2021-08-31 Honeywell International Inc. System and method to optimize crude oil distillation or other processing by inline analysis of crude oil properties
US10416661B2 (en) * 2017-11-30 2019-09-17 Abb Schweiz Ag Apparatuses, systems and methods of secure cloud-based monitoring of industrial plants
WO2019111441A1 (ja) * 2017-12-06 2019-06-13 株式会社日立産機システム 巻上機の管理システム
WO2019116368A1 (en) * 2017-12-11 2019-06-20 Halo Digital Ltd. A system and a method for continuous monitoring and verification of the operation of a microcontroller
US10395515B2 (en) * 2017-12-28 2019-08-27 Intel Corporation Sensor aggregation and virtual sensors
US10607470B2 (en) * 2018-01-23 2020-03-31 Computational Systems, Inc. Vibrational analysis systems and methods
US10255797B1 (en) * 2018-01-24 2019-04-09 Saudi Arabian Oil Company Integrated alarm management system (ALMS) KPIs with plant information system
US11773859B2 (en) 2018-02-05 2023-10-03 Ziehl-Abegg Se Method for optimizing the efficiency and/or the running performance of a fan or a fan arrangement
US10901403B2 (en) 2018-02-20 2021-01-26 Uop Llc Developing linear process models using reactor kinetic equations
US11264801B2 (en) * 2018-02-23 2022-03-01 Schlumberger Technology Corporation Load management algorithm for optimizing engine efficiency
US11119453B2 (en) * 2018-03-09 2021-09-14 Nishil Thomas Koshy System and method for remote non-intrusive monitoring of assets and entities
US11237550B2 (en) * 2018-03-28 2022-02-01 Honeywell International Inc. Ultrasonic flow meter prognostics with near real-time condition based uncertainty analysis
US10734098B2 (en) 2018-03-30 2020-08-04 Uop Llc Catalytic dehydrogenation catalyst health index
EP3553615A1 (en) * 2018-04-10 2019-10-16 Siemens Aktiengesellschaft Method and system for managing a technical installation
BR112020022541A2 (pt) * 2018-05-10 2021-02-02 Stolle Machinery Company, Llc métodos e sistemas de gerenciamento e monitoramento de fábrica
US11709480B2 (en) 2018-05-14 2023-07-25 Honeywell International Inc. System and method for automatic data classification for use with data collection system and process control system
US11042145B2 (en) 2018-06-13 2021-06-22 Hitachi, Ltd. Automatic health indicator learning using reinforcement learning for predictive maintenance
US11755791B2 (en) 2018-07-03 2023-09-12 Rtx Corporation Aircraft component qualification system and process
WO2020026071A1 (en) * 2018-07-31 2020-02-06 Abb Schweiz Ag Method for predicting performance of modules of distributed control system through network and system thereof
CN109151271A (zh) * 2018-08-22 2019-01-04 Oppo广东移动通信有限公司 激光投射模组及其控制方法、图像获取设备和电子装置
US11112778B2 (en) * 2018-09-10 2021-09-07 Aveva Software, Llc Cloud and digital operations system and method
BE1026619B1 (fr) * 2018-09-17 2020-04-14 Safran Aero Boosters Sa Systeme de mesure pour turbomachine
CZ2018517A3 (cs) 2018-09-30 2020-04-08 4Dot Mechatronic Systems S.R.O. Diagnostický systém strojů
CN109556876B (zh) * 2018-11-07 2020-09-04 国网浙江省电力有限公司电力科学研究院 一种区分燃气轮机燃烧故障和热通道设备故障的诊断方法
CN109372593A (zh) * 2018-11-16 2019-02-22 华南理工大学 一种汽轮机dcs***下的hmi控制***及控制方法
WO2020104572A1 (en) * 2018-11-21 2020-05-28 Basf Se Method and system of manufacturing an insulated member
CN109356662B (zh) * 2018-11-27 2021-06-18 中国航发沈阳黎明航空发动机有限责任公司 一种航空发动机低压涡轮转子装配的工艺方法
US10953377B2 (en) 2018-12-10 2021-03-23 Uop Llc Delta temperature control of catalytic dehydrogenation process reactors
TWI831864B (zh) * 2018-12-27 2024-02-11 美商Bl科技公司 用於製程氣體壓縮機的動態監測及控制之系統及方法
US11681280B2 (en) * 2018-12-31 2023-06-20 Andritz Inc. Material processing optimization
DE102019108415A1 (de) * 2019-04-01 2020-10-01 Pilz Gmbh & Co. Kg Verfahren zur Überwachung der Vitalität einer Anzahl von Teilnehmern eines verteilten technischen Systems
EP3726810B1 (en) * 2019-04-16 2023-12-06 ABB Schweiz AG System and method for interoperable communication of automation system components
US11927944B2 (en) * 2019-06-07 2024-03-12 Honeywell International, Inc. Method and system for connected advanced flare analytics
US11591936B2 (en) 2019-09-04 2023-02-28 Saudi Arabian Oil Company Systems and methods for proactive operation of process facilities based on historical operations data
KR102224983B1 (ko) * 2019-10-17 2021-03-08 한국서부발전 주식회사 가스터빈 연소기의 점검 진단 장치
CN110866616A (zh) * 2019-11-01 2020-03-06 许继集团有限公司 一种变电站二次设备故障预警方法及装置
WO2021105246A1 (en) * 2019-11-26 2021-06-03 Basf Se Forecasting industrial aging processes with machine learning methods
US20210165723A1 (en) * 2019-12-03 2021-06-03 Computational Systems, Inc. Graphical Indicator With History
JP7372198B2 (ja) * 2020-05-08 2023-10-31 株式会社荏原製作所 表示システム、表示装置及び表示方法
CA3178050A1 (en) * 2020-05-08 2021-11-11 Wharton Sinkler Real-time plant diagnostic system and method for plant process control and analysis
CN113721557B (zh) * 2020-05-25 2022-12-20 中国石油化工股份有限公司 基于关联参数的石化装置运行工艺参数监测方法及装置
CN115516393B (zh) * 2020-06-12 2024-07-16 利乐拉瓦尔集团及财务有限公司 用于使得能够访问食品生产工厂的工艺数据的方法和装置
CN111691985A (zh) * 2020-06-12 2020-09-22 国网天津市电力公司电力科学研究院 一种降低燃气机组dln-2.6燃烧***nox排放的控制方法
RU2737457C1 (ru) * 2020-06-26 2020-11-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Государственный морской университет имени адмирала Ф.Ф. Ушакова" Автоматическая система с нейро-нечеткой сетью для комплексной технической диагностики и управления судовой энергетической установкой
WO2022031833A1 (en) * 2020-08-04 2022-02-10 Arch Systems Inc. Methods and systems for predictive analysis and/or process control
DE102020004841A1 (de) * 2020-08-07 2022-02-10 Mettler-Toledo Gmbh Verfahren und Vorrichtung zur Ermittlung einer beobachtbaren Eigenschaft eines Objekts
CN112199370B (zh) * 2020-09-02 2024-01-26 安徽深迪科技有限公司 一种可有效提高结算效率的bom加速结算工方法
US11700567B2 (en) 2020-10-15 2023-07-11 Raytheon Technologies Corporation Waveguide system with redundancy
EP3992737A1 (de) * 2020-10-28 2022-05-04 Siemens Aktiengesellschaft Verfahren zur datenkommunikation zwischen einer leitebene und einer feldebene eines industriellen systems
US20220136404A1 (en) * 2020-10-29 2022-05-05 General Electric Company Gas turbine mass differential determination system and method
CN112539941B (zh) * 2020-12-02 2023-01-20 西安航天动力研究所 考虑真实气体效应的液体火箭发动机热试验参数设置方法
CN112364088A (zh) * 2020-12-02 2021-02-12 四川长虹电器股份有限公司 基于工厂数字化制造资源的可视化配置***
CN112817240B (zh) * 2020-12-30 2022-03-22 西安交通大学 一种基于深度强化学习算法的离心压缩机调控方法
CN113110402B (zh) * 2021-05-24 2022-04-01 浙江大学 知识与数据驱动的大规模工业***分布式状态监测方法
KR102674249B1 (ko) * 2022-02-03 2024-06-12 한국생산기술연구원 리플로우 장비의 이상 여부 확인 방법
US20230304664A1 (en) 2022-03-24 2023-09-28 Solar Turbines Incorporated Gas turbine predictive emissions modeling, reporting, and model management via a remote framework
US20240052755A1 (en) * 2022-08-10 2024-02-15 General Electric Company Controlling excitation loads associated with open rotor aeronautical engines
CN117851765B (zh) * 2024-03-07 2024-05-10 中国空气动力研究与发展中心高速空气动力研究所 考虑真实气体效应的低温轴流压缩机性能参数归一化方法

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3898439A (en) 1970-10-20 1975-08-05 Westinghouse Electric Corp System for operating industrial gas turbine apparatus and gas turbine electric power plants preferably with a digital computer control system
US4249238A (en) 1978-05-24 1981-02-03 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for sensor failure detection and correction in a gas turbine engine control system
JPS572497A (en) * 1980-06-04 1982-01-07 Hitachi Ltd Volume control method for centrifugal compressor
US4442665A (en) 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4449358A (en) 1981-07-24 1984-05-22 General Electric Company Method and apparatus for promoting a surge condition in a gas turbine
JPS60142070A (ja) 1983-12-28 1985-07-27 Ishikawajima Harima Heavy Ind Co Ltd 多段圧縮機のドライヤ装置
JPS60216098A (ja) * 1984-04-11 1985-10-29 Hitachi Ltd 流体機械の性能監視装置
JPS61241425A (ja) * 1985-04-17 1986-10-27 Hitachi Ltd ガスタ−ビンの燃料ガス制御方法及び制御装置
JPH0255807A (ja) 1988-08-18 1990-02-26 Toshiba Corp コンバインドサイクル発電プラント用の潤滑給油装置
US4969796A (en) 1989-10-30 1990-11-13 Westinghouse Electric Corp. Method and apparatus for cooling shaft seals
JPH076411B2 (ja) 1990-07-17 1995-01-30 株式会社豊田中央研究所 ガスタービン機関の消炎予測判別装置
FR2674290B1 (fr) 1991-03-18 1993-07-09 Gaz De France Systeme a turbine a gaz naturel a vapeur d'eau fonctionnant en cycle semi ouvert et en combustion stóoechiometrique.
US5367617A (en) 1992-07-02 1994-11-22 Microsoft Corporation System and method of hybrid forward differencing to render Bezier splines
JPH08189846A (ja) * 1995-01-11 1996-07-23 Yokogawa Electric Corp プラント診断システム
US5761895A (en) 1995-08-28 1998-06-09 General Electric Company Transient load controller for gas turbine power generator
DE19605736A1 (de) 1996-02-16 1997-08-21 Gutehoffnungshuette Man Verfahren zur Schnellumschaltung vom Vormischbetrieb in den Diffusionsbetrieb in einer Brennkammer einer mit Brenngas betriebenen Gasturbine
EP0915406B1 (de) 1997-11-10 2003-05-07 ALSTOM (Switzerland) Ltd Verfahren zur Überwachung des Versorgungssystems einer Gasturbine mit Mehrbrennersystem sowie Vorrichtung zur Durchführung des Verfahrens
JP3783442B2 (ja) 1999-01-08 2006-06-07 株式会社日立製作所 ガスタービンの制御方法
US7010459B2 (en) 1999-06-25 2006-03-07 Rosemount Inc. Process device diagnostics using process variable sensor signal
US6591182B1 (en) * 2000-02-29 2003-07-08 General Electric Company Decision making process and manual for diagnostic trend analysis
CA2402280C (en) * 2000-03-10 2008-12-02 Cyrano Sciences, Inc. Control for an industrial process using one or more multidimensional variables
US20020013664A1 (en) 2000-06-19 2002-01-31 Jens Strackeljan Rotating equipment diagnostic system and adaptive controller
JP3612472B2 (ja) * 2000-06-22 2005-01-19 株式会社日立製作所 遠隔監視診断システム、及び遠隔監視診断方法
US6460346B1 (en) 2000-08-30 2002-10-08 General Electric Company Method and system for identifying malfunctioning combustion chambers in a gas turbine
JP2002070584A (ja) 2000-08-30 2002-03-08 Toshiba Corp ガスタービンプラント
US6466858B1 (en) * 2000-11-02 2002-10-15 General Electric Company Methods and apparatus for monitoring gas turbine engine operation
US6795798B2 (en) * 2001-03-01 2004-09-21 Fisher-Rosemount Systems, Inc. Remote analysis of process control plant data
US7065471B2 (en) 2001-06-18 2006-06-20 Hitachi, Ltd. Method and system for diagnosing state of gas turbine
US7568000B2 (en) * 2001-08-21 2009-07-28 Rosemount Analytical Shared-use data processing for process control systems
US6796129B2 (en) 2001-08-29 2004-09-28 Catalytica Energy Systems, Inc. Design and control strategy for catalytic combustion system with a wide operating range
JP2003091313A (ja) 2001-09-17 2003-03-28 Hitachi Ltd 圧縮機の遠隔監視システム
JP3741014B2 (ja) 2001-09-18 2006-02-01 株式会社日立製作所 複数台の圧縮機の制御方法及び圧縮機システム
JP2003111475A (ja) 2001-09-28 2003-04-11 Japan Servo Co Ltd 異常回転数検出装置を備える可変速度フアンモータ
US6658091B1 (en) * 2002-02-01 2003-12-02 @Security Broadband Corp. LIfestyle multimedia security system
JP2003271231A (ja) * 2002-03-15 2003-09-26 Mitsubishi Heavy Ind Ltd 検出器ドリフトの推定装置、及び、検出器の監視システム
US20070234730A1 (en) 2002-06-28 2007-10-11 Markham James R Method and apparatus for monitoring combustion instability and other performance deviations in turbine engines and like combustion systems
RU2313815C2 (ru) 2002-09-26 2007-12-27 Сименс Акциенгезелльшафт Устройство и способ для контроля технической установки, содержащей множество систем, в частности установки электростанции
US6983603B2 (en) 2002-10-24 2006-01-10 Pratt & Whitney Canada Corp. Detection of gas turbine engine hot section condition
US6962043B2 (en) 2003-01-30 2005-11-08 General Electric Company Method and apparatus for monitoring the performance of a gas turbine system
JP2004278395A (ja) 2003-03-14 2004-10-07 Toshiba Corp ガスタービン燃焼器の燃料流量監視制御装置
US6990432B1 (en) 2003-04-04 2006-01-24 General Electric Company Apparatus and method for performing gas turbine adjustment
US6912856B2 (en) * 2003-06-23 2005-07-05 General Electric Company Method and system for controlling gas turbine by adjusting target exhaust temperature
US7233843B2 (en) * 2003-08-08 2007-06-19 Electric Power Group, Llc Real-time performance monitoring and management system
US20070104306A1 (en) 2003-10-29 2007-05-10 The Tokyo Electric Power Company, Incorporated Thermal efficiency diagnosing system for nuclear power plant, thermal efficiency diagnosing program for nuclear power plant, and thermal efficiency diagnosing method for nuclear power plant
US20050096759A1 (en) 2003-10-31 2005-05-05 General Electric Company Distributed power generation plant automated event assessment and mitigation plan determination process
JP2005147812A (ja) 2003-11-14 2005-06-09 Tokyo Electric Power Co Inc:The トルク計測装置
JP3950111B2 (ja) 2004-01-07 2007-07-25 川崎重工業株式会社 自己診断機能を有する火炎検出装置
US7676285B2 (en) 2004-04-22 2010-03-09 General Electric Company Method for monitoring driven machinery
US7831704B2 (en) * 2004-04-22 2010-11-09 General Electric Company Methods and systems for monitoring and diagnosing machinery
CA2567139A1 (en) * 2004-06-12 2005-12-29 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a process gain of a control loop
FR2872327B1 (fr) 2004-06-28 2006-10-06 Avions De Transp Regional Grou Procede et dispositif de detection de degradation de performances d'un aeronef
US7254491B2 (en) * 2004-06-28 2007-08-07 Honeywell International, Inc. Clustering system and method for blade erosion detection
US20060031187A1 (en) * 2004-08-04 2006-02-09 Advizor Solutions, Inc. Systems and methods for enterprise-wide visualization of multi-dimensional data
US20060041368A1 (en) * 2004-08-18 2006-02-23 General Electric Company Systems, Methods and Computer Program Products for Remote Monitoring of Turbine Combustion Dynamics
US7278266B2 (en) * 2004-08-31 2007-10-09 General Electric Company Methods and apparatus for gas turbine engine lean blowout avoidance
JP4625306B2 (ja) * 2004-10-28 2011-02-02 三菱重工業株式会社 流体機械の性能診断装置及びシステム
US7243042B2 (en) 2004-11-30 2007-07-10 Siemens Power Generation, Inc. Engine component life monitoring system and method for determining remaining useful component life
JP2005135430A (ja) 2004-12-03 2005-05-26 Hitachi Ltd 発電設備の遠隔運用支援方法及び発電設備の遠隔運用支援システム
US7222048B2 (en) 2005-04-21 2007-05-22 General Electric Company Methods and systems for diagnosing machinery
JP2006307855A (ja) 2005-04-26 2006-11-09 Copeland Corp 圧縮機メモリシステム、圧縮機情報ネットワークおよび保証管理方法
EP1768007A1 (en) * 2005-09-22 2007-03-28 Abb Research Ltd. Monitoring a system having degrading components
US7603222B2 (en) 2005-11-18 2009-10-13 General Electric Company Sensor diagnostics using embedded model quality parameters
US7549293B2 (en) * 2006-02-15 2009-06-23 General Electric Company Pressure control method to reduce gas turbine fuel supply pressure requirements
JP4513771B2 (ja) 2006-02-28 2010-07-28 株式会社日立製作所 一軸型コンバインドサイクルプラントの性能監視方法及びシステム
US8165723B2 (en) * 2006-03-10 2012-04-24 Power Analytics Corporation Real-time system for verification and monitoring of protective device settings within an electrical power distribution network and automatic correction of deviances found
GB0614250D0 (en) * 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing
US7746224B2 (en) * 2006-08-14 2010-06-29 Honeywell International Inc. Instant messaging applications in security systems
US8359248B2 (en) * 2006-08-24 2013-01-22 Blue Pillar, Inc. Systems, methods, and devices for managing emergency power supply systems
US7702447B2 (en) 2006-12-18 2010-04-20 United Technologies Corporation Method and system for identifying gas turbine engine faults
JP2008175149A (ja) 2007-01-19 2008-07-31 Hitachi Ltd 圧縮機の吸気噴霧装置
US7840332B2 (en) 2007-02-28 2010-11-23 General Electric Company Systems and methods for steam turbine remote monitoring, diagnosis and benchmarking
RU66447U1 (ru) * 2007-03-16 2007-09-10 Открытое акционерное общество "Газпром" (ОАО "Газпром") Агрегатно-цеховой комплекс контроля и управления "риус-квант", предназначенный для замены выработавших технический ресурс средств автоматизации газоперекачивающих агрегатов гтк-10и(р)-speedtronic и компрессорных цехов импортной поставки-geomatic
US9043118B2 (en) 2007-04-02 2015-05-26 General Electric Company Methods and systems for model-based control of gas turbines
JP2008275325A (ja) * 2007-04-25 2008-11-13 Denso Corp センサ装置
WO2008157505A1 (en) * 2007-06-15 2008-12-24 Shell Oil Company Remote monitoring systems and methods
US20090043539A1 (en) * 2007-08-08 2009-02-12 General Electric Company Method and system for automatically evaluating the performance of a power plant machine
JP4361582B2 (ja) 2007-08-21 2009-11-11 株式会社日立製作所 ガスタービンの性能診断方法及び性能診断システム
EP2053475A1 (de) 2007-10-26 2009-04-29 Siemens Aktiengesellschaft Verfahren zur Analyse des Betriebs einer Gasturbine
US20090125206A1 (en) 2007-11-08 2009-05-14 General Electric Company Automatic detection and notification of turbine internal component degradation
JP4760823B2 (ja) * 2007-12-17 2011-08-31 株式会社日立製作所 ガスタービンの監視・診断装置
US20090228230A1 (en) * 2008-03-06 2009-09-10 General Electric Company System and method for real-time detection of gas turbine or aircraft engine blade problems
EP2105887A1 (de) 2008-03-28 2009-09-30 Siemens Aktiengesellschaft Verfahren zur Diagnose einer Gasturbine
DE102008021102A1 (de) 2008-04-28 2009-10-29 Siemens Aktiengesellschaft Wirkungsgradüberwachung eines Verdichters
US8221057B2 (en) * 2008-06-25 2012-07-17 General Electric Company Method, system and controller for establishing a wheel space temperature alarm in a turbomachine
CN101621502A (zh) 2008-06-30 2010-01-06 华为技术有限公司 存储、查找路由表的方法及装置
US7861578B2 (en) 2008-07-29 2011-01-04 General Electric Company Methods and systems for estimating operating parameters of an engine
US8517663B2 (en) 2008-09-30 2013-08-27 General Electric Company Method and apparatus for gas turbine engine temperature management
PT2364360T (pt) * 2008-11-13 2017-06-27 Nogra Pharma Ltd Composições em sentido reverso e métodos de as fabricar e utilizar
US20100257838A1 (en) * 2009-04-09 2010-10-14 General Electric Company Model based health monitoring of aeroderivatives, robust to sensor failure and profiling
US20100290889A1 (en) 2009-05-18 2010-11-18 General Electric Company Turbine wheelspace temperature control
US8692826B2 (en) 2009-06-19 2014-04-08 Brian C. Beckman Solver-based visualization framework
EP2449529A1 (en) 2009-07-02 2012-05-09 Koninklijke Philips Electronics N.V. Rule based decision support and patient-specific visualization system for optimal cancer staging
GB0911836D0 (en) 2009-07-08 2009-08-19 Optimized Systems And Solution Machine operation management
US9388753B2 (en) 2009-09-17 2016-07-12 General Electric Company Generator control having power grid communications
IT1396517B1 (it) * 2009-11-27 2012-12-14 Nuovo Pignone Spa Metodo di controllo di modo basato su temperatura di scarico per turbina a gas e turbina a gas
IT1397489B1 (it) 2009-12-19 2013-01-16 Nuovo Pignone Spa Metodo e sistema per diagnosticare compressori.
IT1399156B1 (it) 2009-12-19 2013-04-11 Nuovo Pignone Spa Metodo e sistema di raffreddamento per specifici componenti di una turbina a gas e relativa turbina.
US20110162386A1 (en) 2010-01-04 2011-07-07 Shinoj Vakkayil Chandrabose Ejector-OBB Scheme for a Gas Turbine
US8478548B2 (en) * 2010-01-15 2013-07-02 Fluke Corporation User interface system and method for diagnosing a rotating machine condition not based upon prior measurement history
CN102192985A (zh) 2010-03-18 2011-09-21 上海依科赛生物制品有限公司 一种人体β淀粉样蛋白试剂盒
US8818684B2 (en) 2010-04-15 2014-08-26 General Electric Company Systems, methods, and apparatus for detecting failure in gas turbine hardware
DE102011102720B4 (de) 2010-05-26 2021-10-28 Ansaldo Energia Switzerland AG Kraftwerk mit kombiniertem Zyklus und mit Abgasrückführung
JP5302264B2 (ja) 2010-06-07 2013-10-02 株式会社日立製作所 高温部品の寿命診断方法及び診断装置
US8510060B2 (en) 2010-06-07 2013-08-13 General Electric Company Life management system and method for gas turbine thermal barrier coatings
JP2012008782A (ja) 2010-06-24 2012-01-12 Mitsubishi Heavy Ind Ltd プラントの機能を診断する方法、及びプラント監視装置
FR2962165B1 (fr) 2010-07-02 2014-05-02 Turbomeca Detection de survitesse d'une turbine libre par mesure sur couplemetre
DE102010026678B4 (de) 2010-07-09 2016-05-19 Siemens Aktiengesellschaft Überwachungs-und Diagnosesystem für ein Fluidenergiemaschinensystem sowie Fluidenergiemachinensystem
RU2010130189A (ru) 2010-07-19 2012-01-27 Сименс Акциенгезелльшафт (DE) Способ компьютеризованного анализа технической системы
US8712560B2 (en) 2010-12-08 2014-04-29 L'air Liquide Societe Anonyme Pour L'etude Et L'exploration Des Procedes Georges Claude Performance monitoring of advanced process control systems
US20120158205A1 (en) * 2010-12-17 2012-06-21 Greenvolts, Inc. Scalable backend management system for remotely operating one or more photovoltaic generation facilities
CN102226428A (zh) 2011-04-29 2011-10-26 哈尔滨工程大学 燃气轮机健康状态预测方法
FR2986507B1 (fr) * 2012-02-06 2014-01-17 Eurocopter France Procede et dispositif pour realiser un controle de l'etat de sante d'un turbomoteur d'un aeronef pourvu d'au moins un turbomoteur
ITCO20120008A1 (it) * 2012-03-01 2013-09-02 Nuovo Pignone Srl Metodo e sistema per monitorare la condizione di un gruppo di impianti
US9360864B2 (en) * 2012-04-11 2016-06-07 General Electric Company Turbine fault prediction
US20150184549A1 (en) * 2013-12-31 2015-07-02 General Electric Company Methods and systems for enhancing control of power plant generating units
US9746360B2 (en) * 2014-03-13 2017-08-29 Siemens Energy, Inc. Nonintrusive performance measurement of a gas turbine engine in real time
EP3035140B1 (en) * 2014-12-19 2018-09-12 Rolls-Royce Deutschland Ltd & Co KG Equipment health monitoring method and system
US20170284386A1 (en) * 2015-03-19 2017-10-05 Mitsubishi Heavy Industries, Ltd. Condition monitoring device and condition monitoring method for extracted-gas compression system, and extracted-gas compression system
US10125629B2 (en) * 2016-07-29 2018-11-13 United Technologies Corporation Systems and methods for assessing the health of a first apparatus by monitoring a dependent second apparatus
US10066501B2 (en) * 2016-08-31 2018-09-04 General Electric Technology Gmbh Solid particle erosion indicator module for a valve and actuator monitoring system
US10871081B2 (en) * 2016-08-31 2020-12-22 General Electric Technology Gmbh Creep damage indicator module for a valve and actuator monitoring system
US10496086B2 (en) * 2016-12-12 2019-12-03 General Electric Company Gas turbine engine fleet performance deterioration

Also Published As

Publication number Publication date
EP2820492A2 (en) 2015-01-07
EP2820497A1 (en) 2015-01-07
EP2820496A1 (en) 2015-01-07
WO2013127958A1 (en) 2013-09-06
AU2013224890A1 (en) 2014-09-11
RU2014133941A (ru) 2016-04-20
CN104254810A (zh) 2014-12-31
US20150066418A1 (en) 2015-03-05
AU2013224891B2 (en) 2016-12-22
WO2013127994A2 (en) 2013-09-06
WO2013127998A1 (en) 2013-09-06
US20150013440A1 (en) 2015-01-15
CA2865205A1 (en) 2013-09-06
CN104254809A (zh) 2014-12-31
CN104254809B (zh) 2018-10-26
KR20140130545A (ko) 2014-11-10
AU2013224935A1 (en) 2014-09-18
US9921577B2 (en) 2018-03-20
KR20140130539A (ko) 2014-11-10
WO2013127999A1 (en) 2013-09-06
KR102073912B1 (ko) 2020-02-06
RU2014133943A (ru) 2016-04-20
EP2820493A1 (en) 2015-01-07
RU2014133935A (ru) 2016-04-20
EP2820490A1 (en) 2015-01-07
RU2014133942A (ru) 2016-04-20
AU2013224891A1 (en) 2014-09-11
EP2820495A1 (en) 2015-01-07
CN104303121A (zh) 2015-01-21
AU2013224895B2 (en) 2017-03-16
US20150027212A1 (en) 2015-01-29
RU2613637C2 (ru) 2017-03-21
KR20140130538A (ko) 2014-11-10
AU2013224893C1 (en) 2017-06-15
AU2013224895A1 (en) 2014-09-11
CA2865194A1 (en) 2013-09-06
KR20140130543A (ko) 2014-11-10
AU2013224893B2 (en) 2017-02-09
US9274520B2 (en) 2016-03-01
MX2014010453A (es) 2014-10-13
RU2613548C2 (ru) 2017-03-17
RU2627742C2 (ru) 2017-08-11
EP2820494A1 (en) 2015-01-07
US20150025689A1 (en) 2015-01-22
ITCO20120008A1 (it) 2013-09-02
EP2820490B1 (en) 2020-01-08
JP2015510079A (ja) 2015-04-02
JP6122451B2 (ja) 2017-04-26
RU2014133939A (ru) 2016-04-20
BR112014019965A2 (pt) 2017-06-13
JP2015516530A (ja) 2015-06-11
RU2014133934A (ru) 2016-04-20
AU2013224892A1 (en) 2014-09-25
WO2013127993A1 (en) 2013-09-06
KR20140130540A (ko) 2014-11-10
KR20140127915A (ko) 2014-11-04
AU2013224890B2 (en) 2017-05-25
CA2865204A1 (en) 2013-09-06
CN104254810B (zh) 2017-11-17
RU2657047C2 (ru) 2018-06-09
CA2865199A1 (en) 2013-09-06
JP2015513636A (ja) 2015-05-14
JP6143800B2 (ja) 2017-06-07
JP2015514894A (ja) 2015-05-21
CA2865213A1 (en) 2013-09-06
CN104272207B (zh) 2017-12-19
CA2865200A1 (en) 2013-09-06
WO2013127995A1 (en) 2013-09-06
RU2636095C2 (ru) 2017-11-20
JP2015509565A (ja) 2015-03-30
US10088839B2 (en) 2018-10-02
CN104303121B (zh) 2017-05-24
AU2019201086B2 (en) 2020-05-21
AU2013224896A1 (en) 2014-09-04
US20150057973A1 (en) 2015-02-26
CN104471500A (zh) 2015-03-25
WO2013127996A1 (en) 2013-09-06
CA2865194C (en) 2018-01-09
RU2014134207A (ru) 2016-04-20
AU2013224892B2 (en) 2017-06-22
MX2014010464A (es) 2015-03-19
JP6228553B2 (ja) 2017-11-08
JP2015508928A (ja) 2015-03-23
JP2015509566A (ja) 2015-03-30
CA2865195A1 (en) 2013-09-06
CN104246636A (zh) 2014-12-24
CN104395848B (zh) 2017-09-19
BR112014021204A2 (pt) 2017-07-11
AU2019201086A1 (en) 2019-03-07
US20150077263A1 (en) 2015-03-19
CN104395848A (zh) 2015-03-04
US20150025814A1 (en) 2015-01-22
WO2013127994A3 (en) 2014-02-27
AU2013224893A1 (en) 2014-09-11
CN104272207A (zh) 2015-01-07
JP6220353B2 (ja) 2017-10-25
AU2017202631A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
KR20140130541A (ko) 운영자 조작에 대해 경고하기 위한 방법 및 시스템
Lee et al. A Development of EMAS (Easy Maintenance Assistance Solution) for Industrial Gas Turbine Engine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application