KR20030013351A - Carbon Nanotube synthesis method using Local Heating Pyrolysis - Google Patents
Carbon Nanotube synthesis method using Local Heating Pyrolysis Download PDFInfo
- Publication number
- KR20030013351A KR20030013351A KR1020020063686A KR20020063686A KR20030013351A KR 20030013351 A KR20030013351 A KR 20030013351A KR 1020020063686 A KR1020020063686 A KR 1020020063686A KR 20020063686 A KR20020063686 A KR 20020063686A KR 20030013351 A KR20030013351 A KR 20030013351A
- Authority
- KR
- South Korea
- Prior art keywords
- pyrolysis
- transition metal
- local heating
- carbon nanotubes
- reactor
- Prior art date
Links
- 238000000197 pyrolysis Methods 0.000 title claims abstract description 20
- 238000010438 heat treatment Methods 0.000 title claims abstract description 12
- 238000001628 carbon nanotube synthesis method Methods 0.000 title abstract description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 36
- 150000003624 transition metals Chemical class 0.000 claims abstract description 32
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 31
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 25
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 25
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 5
- 238000000354 decomposition reaction Methods 0.000 claims description 16
- 229910052799 carbon Inorganic materials 0.000 claims description 11
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 238000003786 synthesis reaction Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000012071 phase Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 9
- 239000007788 liquid Substances 0.000 abstract description 6
- 229930195733 hydrocarbon Natural products 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000005215 recombination Methods 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000000608 laser ablation Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1273—Alkenes, alkynes
- D01F9/1275—Acetylene
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/133—Apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/02—Single-walled nanotubes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 국부적 가열을 이용한 탄소 나노튜브의 열분해 합성법( Carbon Nanotube synthesis method using Local Heating Pyrolysis)으로써 열분해 반응로 내부로 유입된 액상 혹은 기상의 탄화수소및 전이금속을 국부적 가열 및 냉각을 통해 내부의 유입되는 전이금속의 단위 체적당 농도를 일정하게 유지 및 열분해 반응로 내부에서의 전이금속의 분산의 극대화를 이용해 탄소 나노튜브를 연속적으로 합성하는 방법이다.The present invention is a carbon nanotube synthesis method using Local Heating Pyrolysis that is introduced into the interior of the liquid or gaseous hydrocarbons and transition metals introduced into the pyrolysis reactor through local heating and cooling. It is a method of continuously synthesizing carbon nanotubes by maintaining a constant concentration per unit volume of the transition metal and maximizing the dispersion of the transition metal in the pyrolysis reactor.
Description
본 발명은 열분해 반응로 내부로 유입된 액상 혹은 기상의 탄화수소및 전이금속을 국부적 가열/분해 및 재결합을 통해 탄소 나노튜브를 연속적으로 합성하는 방법이다.The present invention is a method of continuously synthesizing carbon nanotubes through local heating / decomposition and recombination of liquid or gaseous hydrocarbons and transition metals introduced into a pyrolysis reactor.
현재 탄소 나노 튜브를 합성하는 방법에는 화학 기상 증착법, 레이져 ablation법, arc 방전법 그리고 열 분해법등이 있다. 화학 기상 증착법의 경우 기판에 전이 금속을 증착한 후 탄화 가스를 열을 통해서 분해하여 기판에 증착되어 있는 전이 금속이 탄소 나노튜브 성장의 촉매 역할을 하여 탄소 나노 튜브를 합성하는 방법으로써 기판에 전이 금속을 증착할 경우 전이금속이 증착되어 있는 기판 위에서만 탄소 나노 튜브가 합성되어 탄소 나노튜브의 연속적인 대량 합성에 어려움이 있으며, 레이져 ablation 법과 arc 방전법의 경우 chamber 내부에 탄소의 공급원으로 일정량의 흑연 가루나 탄소봉을 넣어 놓은 상태에서 탄소 나노튜브를 합성하기 때문에 탄소 나노튜브 합성의 대량화의 연속공정을 적용하기에 기술적 어려움이 있다. 하지만, 열 분해법의 경우 탄화 수소를 액상 혹은 기상의 전이 금속과 함께 가열된 반응로 안으로 공급하여, 열을 이용하여 탄화 수소를 분해시켜 기상 상태에서 탄소 나노튜브를 합성하는 방법이어서 연속적인 탄화 수소와 전이금속의 공급이 가능하여 탄소 나노튜브의 대량합성이 가능한 방법이다. 하지만, 이 열분해 법의 경우 내부에 유입된 액상 혹은 기상의 전이 금속의 농도와 전이금속의 분해 및 재결합 시간에 의해서 전이금속의 크기가 결정이 되는데 이 전이금속의 크기가 탄소 나노 튜브의 직경의 크기를 좌우한다. 하지만 기존의 열분해 법의 경우 반응로 길이와 반응로 내부에 머무르는 시간의 조절이 용이하지 못하여 전이금속의 결정크기의 조절이 용이하지 못하다.Current methods for synthesizing carbon nanotubes include chemical vapor deposition, laser ablation, arc discharge, and thermal decomposition. In the case of chemical vapor deposition, the transition metal deposited on the substrate is decomposed through heat, and the transition metal deposited on the substrate acts as a catalyst for carbon nanotube growth to synthesize carbon nanotubes. In the case of deposition, carbon nanotubes are synthesized only on the substrate on which the transition metal is deposited, which makes it difficult to continuously synthesize carbon nanotubes.In the case of laser ablation method and arc discharge method, a certain amount of graphite is supplied as a source of carbon inside the chamber Since carbon nanotubes are synthesized in powder or carbon rods, there is a technical difficulty in applying a continuous process of mass production of carbon nanotube synthesis. However, in the case of pyrolysis, hydrocarbons are supplied together with a liquid or gaseous transition metal into a heated reactor to decompose hydrocarbons using heat to synthesize carbon nanotubes in a gaseous state. It is possible to supply transition metals, and thus it is possible to mass synthesize carbon nanotubes. However, in this pyrolysis method, the size of the transition metal is determined by the concentration of the transition metal in the liquid or gas phase and the decomposition and recombination time of the transition metal, which is the size of the diameter of the carbon nanotube. Influences. However, in the conventional pyrolysis method, it is not easy to control the length of the reactor and the time to stay in the reactor, and thus it is not easy to control the crystal size of the transition metal.
본 발명이 이루고자 하는 기술적 과제로는 유입되는 액상 혹은 기상의 탄소공급원과 전이금속 공급원의 분해 및 재결합 시간의 조절을 용이하게 하고 또한 반응로 내부로 유입된 분해된 전이금속의 분산 및 단위 체적당 농도를 일정하게 유지할 수 있게 하여 전이금속 결정의 크기를 수 나노미터에서 수십 나노미터 내외의 일정한 크기로 조절할수 있게 함으로써 단층 및 다층 탄소 나노튜브의 연속적인 대량 합성을 용이하게 하는데 있다.The technical problem to be achieved by the present invention is to facilitate the control of decomposition and recombination time of the incoming liquid or gaseous carbon source and the transition metal source, and also the dispersion and concentration per unit volume of the decomposed transition metal introduced into the reactor. It is possible to maintain a constant size of the transition metal crystal to a constant size of about several nanometers to several tens of nanometers to facilitate the continuous mass synthesis of single and multilayer carbon nanotubes.
도 1은 기존의 열분해 합성법에 의한 열분해 장치도.1 is a pyrolysis apparatus according to a conventional pyrolysis synthesis method.
도 2a, 2b, 2c는 본 발명에 의한 국부적 가열을 이용한 열분해 장치의 예시도.2A, 2B and 2C are exemplary views of a pyrolysis apparatus using local heating according to the present invention.
도 3은 본 발명의 실시예에 의한 탄소 나노 뉴브의 Raman spectrum data 이미지.Figure 3 is a Raman spectrum data image of the carbon nanonub according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 의한 탄소 나노 튜브의 FE-SEM 사진의 이미지.Figure 4 is an image of the FE-SEM picture of carbon nanotubes according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 의한 단층 및 다층 탄소 나노튜브의 HRTEM사진의 이미지.5 is an image of HRTEM photographs of single and multilayer carbon nanotubes according to an embodiment of the present invention.
상기 기술적 과제를 달성하기 위해서 본 발명에서는 기존의 열분해법에 의한 열분해 합성장치(도1)와 같이 일체화된 반응로를 구성하지 않고 도 2a 에서와 같이 크게 분해 및 1차 반응로(a), 2차 반응로(b), 냉각 및 수집부(c)로 구성하여, 기존의 열분해 방법에서 사용하는 반응로 전체를 가열하지 않고 분해 및 1차 반응로(a)만을 가열하게 구성하였으며, 2차 반응로(b) 부분은 가열을 하지 않고 분해 및 1차 반응로(a)와 냉각 및 수거부(c) 사이에 구성하여 서서히 냉각과정을 거치면서 위치별로 온도변화를 갖게 구성하였다. 각각의 역할을 살펴보면, 탄소 공급원과 전이금속 공급원들이 기상 혹은 액상의 형태로 주입노즐을 통해서 분해 및 1차 반응로(a) 내부를 통과하면서 탄소 공급원은 탄소 원자로, 전이금속 공급원은 전이금속 원자로 분해후 재결합을 통해 탄소 나노튜브로의 합성을 시작 하면서, 2차 반응로(b)로 유입 되어 냉각 및 수거부(c) 벽면에 붙기 전까지 합성을 계속하게 된다. 이때 전이금속의 재결합되는 결정의 크기는 분해 및 1차 반응로(a) 내부의 단위체적당 차지하는 전이금속의 농도와 분해 및 1차 반응로(a)로 유입되는 속도에 의해 결정되게 되는데, 이때 전이금속의 단위 체적당 농도의 조절은 장치 전체의내부 압력과 이후 수거 및 냉각부(c)에서의 반응에 참여하지 않는 전이금속의 반응억제와 유입되는 전이금속 공급원 유입속도를 통해 조절할 수 있다. 분해 및 1차 반응로, 2차 반응로를 거치면서도 탄소 나노튜브의 합성에 기여를 하지 못한 전이금속과 탄소 원자들은 냉각 및 수거부(c) 벽에 의한 급격한 냉각에 의해 활성화된 에너지를 모두 잃고 재결합을 멈추면서 냉각 및 수거부(c) 벽면에 붙게되어 탄소 나노튜브의 성장 제어와 함께 분해 및 1차 반응로(a) 내부에서의 전이금속의 농도의 상승을 억제시킬 수 있다.In order to achieve the above technical problem, the present invention does not constitute an integrated reactor as in the pyrolysis synthesis apparatus by the conventional pyrolysis method (FIG. 1), and largely decomposes and primary reactors (a) and 2 as shown in FIG. 2A. It consists of a secondary reactor (b), a cooling and a collection unit (c), it is configured to heat only the decomposition and the primary reactor (a) without heating the entire reactor used in the conventional pyrolysis method, secondary reaction Furnace (b) portion was configured between the decomposition and the primary reaction furnace (a) and the cooling and collecting unit (c) without heating, and configured to have a temperature change by position while gradually cooling. In each role, the carbon source and the transition metal source are decomposed through the injection nozzle in the form of gas phase or liquid phase and passed through the inside of the primary reactor (a), while the carbon source is decomposed into the carbon atom and the transition metal source into the transition metal atom. After the synthesis of the carbon nanotubes through the recombination, the synthesis is continued until the secondary reactor (b) is introduced into the cooling and collecting (c) wall. In this case, the size of the crystal recombined in the transition metal is determined by the concentration of the transition metal occupying per unit volume in the decomposition and primary reactor (a) and the rate of decomposition and inflow into the primary reactor (a), where the transition Control of the concentration of metal per unit volume can be controlled through the internal pressure of the device as a whole and the subsequent suppression of the reaction of transition metals that do not participate in the reaction in the collection and cooling section (c) and the rate of incoming transition metal sources. Transition metals and carbon atoms that do not contribute to the synthesis of carbon nanotubes through decomposition and primary reactors and secondary reactors lose all of their energized energy by cooling and abrupt cooling by the collecting wall. The recombination may be stopped and attached to the wall of the cooling and collecting part (c), thereby controlling the growth of the carbon nanotubes and inhibiting decomposition and an increase in the concentration of the transition metal in the primary reactor (a).
본 발명에서 분해 및 1차 반응로(a)의 길이와 형태는 여러가지 다른 형태로 변형될 수 있으며, 또한 2차 반응로(b)는 분해 및 1차 반응로(a)와 냉각 및 수거부(c)의 벽면까지의 경계를 지칭하며 도 2b 에서와 같이 분해 및 1차 반응로와 냉각 및 수거부(c)가 직접 연결되어 2차 반응로(b)를 냉각 및 수거부의 안쪽 공간만으로구성할 수 있다. 또한 국부적 가열을 이용한 열분해 합성법을 이용하면 도 2c 에서와 같이 적정 거리를 떨어뜨려서 2개 이상의 분해 및 1차 반응로(b)를 병렬로 구성할 수도 있다.In the present invention, the length and shape of the decomposition and primary reactor (a) may be modified in various other forms, and the secondary reactor (b) may be the decomposition and primary reactor (a) and the cooling and collecting unit ( It refers to the boundary to the wall of c) and as shown in FIG. 2b, the decomposition and primary reactor and the cooling and collecting unit (c) are directly connected to constitute the secondary reactor (b) with only the inner space of the cooling and collecting unit. can do. In addition, when the pyrolysis synthesis method using local heating is used, two or more decomposition and primary reactors (b) may be configured in parallel by dropping an appropriate distance as shown in FIG. 2C.
도 2a에서 예시한 장치를 통해서 본 바와 같이, 본 발명은 기상 혹은 액상으로 유입되는 탄소 공급원과 전이금속의 공급원을 주입 노즐을 통해서 내부로 유입 / 국부적으로 가열된 분해 및 1차 반응로(a)를 거치면서 만들어지는 수 나노미터 내외의 전이금속 결정을 촉매로 하여 단층 및 다층의 탄소 나노 튜브를 연속적으로 합성하는 방법이다. 본 발명은 도 2a, 2b, 2c에서 예시한 장치에 한정되지 않고, 본 발명의 기술적인 사상 내에서 당 분야의 통상적인 지식을 가진자에 의해 그 변형이나 개량의 가능함이 명백하다.As seen through the apparatus illustrated in FIG. 2A, the present invention provides a carbon source and a transition metal source introduced into a gaseous or liquid phase into an inlet / locally heated decomposition and primary reactor (a) through an injection nozzle. It is a method of continuously synthesizing single- and multi-layered carbon nanotubes by using a transition metal crystal of about several nanometers made through the catalyst. The present invention is not limited to the apparatus illustrated in Figs. 2A, 2B and 2C, and it is apparent that modifications and improvements are possible by those skilled in the art within the technical idea of the present invention.
상술한 본 발명에 따르면, 국부적 가열을 이용한 단층 및 다층의 탄소나노튜브의 합성법(Carbon Nanotube synthesis method using Local Heating Pyrolysis)을 이용하여 기상 혹은 액상의 탄소 공급원과 전이금속 공급원을 연속적 공급 및 국부적 가열을 통한 탄소 및 전이금속을 분해 후 재결합을 통해 단층 및 다층의 탄소 나노 튜브를 대량 합성할 수 있다. 또한 이 방법을 이용하여 단층 및 다층의 탄소 나노 튜브를 대량 합성할 경우 탄소 나노 튜브의 대량합성으로 인한 기존의 탄소 나노 튜브의 가격을 현저히 낯출 수 있게 되어 현재 연구가 활발히 진행되고 있는 nanocomposits, 이차전지, 수소저장 및 기타의 많은 응용에 대한 연구를 더욱 활발히 진행할 수 있게 된다.According to the present invention described above, the carbon nanotube synthesis method using Local Heating Pyrolysis using a local heating and the continuous supply of gaseous or liquid carbon source and transition metal source and local heating Through decomposition and recombination of the carbon and transition metals through, single- and multi-layered carbon nanotubes can be synthesized in large quantities. In addition, when mass-producing single- and multi-layered carbon nanotubes using this method, the price of existing carbon nanotubes due to the mass synthesis of carbon nanotubes can be significantly reduced, which is currently being actively researched. Further research will be made on hydrogen storage and many other applications.
Claims (4)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020063686A KR20030013351A (en) | 2002-10-18 | 2002-10-18 | Carbon Nanotube synthesis method using Local Heating Pyrolysis |
PCT/KR2003/002114 WO2004035881A2 (en) | 2002-10-18 | 2003-10-14 | Single-walled carbon nanotube synthesis method and apparatus |
KR1020057006417A KR100733482B1 (en) | 2002-10-18 | 2003-10-14 | Single-walled carbon nanotube synthesis method and apparatus |
AU2003269531A AU2003269531A1 (en) | 2002-10-18 | 2003-10-14 | Single-walled carbon nanotube synthesis method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020063686A KR20030013351A (en) | 2002-10-18 | 2002-10-18 | Carbon Nanotube synthesis method using Local Heating Pyrolysis |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030013351A true KR20030013351A (en) | 2003-02-14 |
Family
ID=27728867
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020063686A KR20030013351A (en) | 2002-10-18 | 2002-10-18 | Carbon Nanotube synthesis method using Local Heating Pyrolysis |
KR1020057006417A Expired - Fee Related KR100733482B1 (en) | 2002-10-18 | 2003-10-14 | Single-walled carbon nanotube synthesis method and apparatus |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057006417A Expired - Fee Related KR100733482B1 (en) | 2002-10-18 | 2003-10-14 | Single-walled carbon nanotube synthesis method and apparatus |
Country Status (3)
Country | Link |
---|---|
KR (2) | KR20030013351A (en) |
AU (1) | AU2003269531A1 (en) |
WO (1) | WO2004035881A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593423B1 (en) * | 2005-05-26 | 2006-06-30 | 주식회사 비코 | Mass synthesis device for mass production of carbon nanotubes |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007010057A1 (en) * | 2005-07-15 | 2007-01-25 | Consejo Superior De Investigaciones Científicas | Novel multitube system for the gas-phase synthesis of carbon nanotubes |
KR100666359B1 (en) * | 2006-01-09 | 2007-01-11 | 세메스 주식회사 | Device for synthesizing carbon nanotubes |
KR100940044B1 (en) * | 2008-04-29 | 2010-02-04 | 성균관대학교산학협력단 | Aluminum and carbon material composite using rapid heating method and method for producing same |
DE102010005560A1 (en) * | 2010-01-22 | 2011-07-28 | Bayer MaterialScience AG, 51373 | Production of CNT |
WO2016044749A1 (en) | 2014-09-19 | 2016-03-24 | Nanosynthesis Plus. Ltd. | Methods and apparatuses for producing dispersed nanostructures |
KR102271677B1 (en) * | 2016-06-15 | 2021-07-02 | 주식회사 엘지화학 | Apparatus for drying and collecting compressed carbon nanotube pellet |
CN116495725B (en) * | 2023-05-19 | 2023-12-19 | 重庆中润新材料股份有限公司 | Carbon nanotube growth system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3077655B2 (en) * | 1997-12-22 | 2000-08-14 | 日本電気株式会社 | Apparatus and method for producing carbon nanotube |
US6333016B1 (en) * | 1999-06-02 | 2001-12-25 | The Board Of Regents Of The University Of Oklahoma | Method of producing carbon nanotubes |
KR100385867B1 (en) * | 1999-06-15 | 2003-06-02 | 일진나노텍 주식회사 | Method of synthesizing highly purified carbon nanotubes |
ATE330905T1 (en) * | 1999-06-16 | 2006-07-15 | Inst Of Metal Res Of The Chine | PRODUCTION OF SINGLE WALL CARBON NANOTUBE |
KR100342763B1 (en) * | 2000-06-08 | 2002-07-02 | 김경균 | Equpiment for fabricating Cabon nano tube and method for fabricating thereof |
-
2002
- 2002-10-18 KR KR1020020063686A patent/KR20030013351A/en active Search and Examination
-
2003
- 2003-10-14 KR KR1020057006417A patent/KR100733482B1/en not_active Expired - Fee Related
- 2003-10-14 AU AU2003269531A patent/AU2003269531A1/en not_active Abandoned
- 2003-10-14 WO PCT/KR2003/002114 patent/WO2004035881A2/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100593423B1 (en) * | 2005-05-26 | 2006-06-30 | 주식회사 비코 | Mass synthesis device for mass production of carbon nanotubes |
Also Published As
Publication number | Publication date |
---|---|
WO2004035881A3 (en) | 2004-06-24 |
AU2003269531A1 (en) | 2004-05-04 |
KR100733482B1 (en) | 2007-06-29 |
WO2004035881A2 (en) | 2004-04-29 |
AU2003269531A8 (en) | 2004-05-04 |
KR20050062775A (en) | 2005-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100415642C (en) | Method for producing carbon nanotubes using DC non-transfer thermal plasma torch | |
CA2581806C (en) | Plasma synthesis of nanopowders | |
US5486675A (en) | Plasma production of ultra-fine ceramic carbides | |
JP5159513B2 (en) | Carbon nanotube synthesizer | |
US20090269257A1 (en) | Apparatus for synthesizing a single-wall carbon nanotube array | |
CA2595872A1 (en) | Induction plasma synthesis of nanopowders | |
JPH0433490B2 (en) | ||
Belgacem et al. | Arc discharge boron nitrogen doping of carbon nanotubes | |
KR20030013351A (en) | Carbon Nanotube synthesis method using Local Heating Pyrolysis | |
KR100360686B1 (en) | Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same | |
KR20020026663A (en) | Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same | |
Gitzhofer | Induction plasma synthesis of ultrafine SiC | |
KR100892753B1 (en) | Apparatus and method for producing carbon nanotube synthesis catalyst | |
KR102541963B1 (en) | Manufacturing apparatus and manufacturing method of carbon nanotubes | |
KR100676496B1 (en) | Method for manufacturing high-crystalline carbon nanotubes using thermal plasma chemical vapor deposition | |
Chen et al. | Rapid formation of diamond-like nano-carbons in a gas bubble discharge in liquid ethanol | |
KR100905259B1 (en) | Carbon nanotube synthesis method and device | |
JP7510173B2 (en) | Method and apparatus for producing boron nitride nanotubes | |
US20100316882A1 (en) | Nanomaterial and method for generating nanomaterial | |
US20110008246A1 (en) | System and method for generating nanoparticles | |
KR20100028895A (en) | Co-feeding chemical reactor for carbon nano tube | |
WO2004035463A2 (en) | Continuous production and separation of carbon-based materials | |
KR100556644B1 (en) | Carbon nanomaterial manufacturing apparatus and method using flame | |
WO1992014576A1 (en) | Plama production of ultra-fine ceramic carbides | |
JP2003192321A (en) | Apparatus for manufacturing fullerene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20021018 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20030905 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |