KR20030013351A - Carbon Nanotube synthesis method using Local Heating Pyrolysis - Google Patents

Carbon Nanotube synthesis method using Local Heating Pyrolysis Download PDF

Info

Publication number
KR20030013351A
KR20030013351A KR1020020063686A KR20020063686A KR20030013351A KR 20030013351 A KR20030013351 A KR 20030013351A KR 1020020063686 A KR1020020063686 A KR 1020020063686A KR 20020063686 A KR20020063686 A KR 20020063686A KR 20030013351 A KR20030013351 A KR 20030013351A
Authority
KR
South Korea
Prior art keywords
reactor
pyrolysis
carbon
local heating
carbon nanotube
Prior art date
Application number
KR1020020063686A
Other languages
Korean (ko)
Inventor
이영희
허정구
조영상
Original Assignee
이영희
허정구
조영상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영희, 허정구, 조영상 filed Critical 이영희
Priority to KR1020020063686A priority Critical patent/KR20030013351A/en
Publication of KR20030013351A publication Critical patent/KR20030013351A/en
Priority to AU2003269531A priority patent/AU2003269531A1/en
Priority to PCT/KR2003/002114 priority patent/WO2004035881A2/en
Priority to KR1020057006417A priority patent/KR100733482B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • D01F9/1275Acetylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Abstract

PURPOSE: Provided is a method for synthesizing a carbon nanotube using local heating pyrolysis by which it is possible to continuously produce carbon nanotube. CONSTITUTION: The transient metal and carbon supplying source are supplied to a reactor furnace in the liquid or gas phase. The apparatus has a decomposition reactor and a primary reactor furnace arranged in a parallel construction. The carbon source material and the transient metal supplied to the pyrolysis reactor are locally heated and cooled so that the concentration of the transient metal supplied to the reactor per unit volume is maintained at a constant value and the dispersion of the transient metal in the pyrolysis reactor is maximized.

Description

국부적 가열을 이용한 탄소나노튜브 열분해 합성법 { Carbon Nanotube synthesis method using Local Heating Pyrolysis }Carbon Nanotube synthesis method using Local Heating Pyrolysis}

본 발명은 열분해 반응로 내부로 유입된 액상 혹은 기상의 탄화수소및 전이금속을 국부적 가열/분해 및 재결합을 통해 탄소 나노튜브를 연속적으로 합성하는 방법이다.The present invention is a method of continuously synthesizing carbon nanotubes through local heating / decomposition and recombination of liquid or gaseous hydrocarbons and transition metals introduced into a pyrolysis reactor.

현재 탄소 나노 튜브를 합성하는 방법에는 화학 기상 증착법, 레이져 ablation법, arc 방전법 그리고 열 분해법등이 있다. 화학 기상 증착법의 경우 기판에 전이 금속을 증착한 후 탄화 가스를 열을 통해서 분해하여 기판에 증착되어 있는 전이 금속이 탄소 나노튜브 성장의 촉매 역할을 하여 탄소 나노 튜브를 합성하는 방법으로써 기판에 전이 금속을 증착할 경우 전이금속이 증착되어 있는 기판 위에서만 탄소 나노 튜브가 합성되어 탄소 나노튜브의 연속적인 대량 합성에 어려움이 있으며, 레이져 ablation 법과 arc 방전법의 경우 chamber 내부에 탄소의 공급원으로 일정량의 흑연 가루나 탄소봉을 넣어 놓은 상태에서 탄소 나노튜브를 합성하기 때문에 탄소 나노튜브 합성의 대량화의 연속공정을 적용하기에 기술적 어려움이 있다. 하지만, 열 분해법의 경우 탄화 수소를 액상 혹은 기상의 전이 금속과 함께 가열된 반응로 안으로 공급하여, 열을 이용하여 탄화 수소를 분해시켜 기상 상태에서 탄소 나노튜브를 합성하는 방법이어서 연속적인 탄화 수소와 전이금속의 공급이 가능하여 탄소 나노튜브의 대량합성이 가능한 방법이다. 하지만, 이 열분해 법의 경우 내부에 유입된 액상 혹은 기상의 전이 금속의 농도와 전이금속의 분해 및 재결합 시간에 의해서 전이금속의 크기가 결정이 되는데 이 전이금속의 크기가 탄소 나노 튜브의 직경의 크기를 좌우한다. 하지만 기존의 열분해 법의 경우 반응로 길이와 반응로 내부에 머무르는 시간의 조절이 용이하지 못하여 전이금속의 결정크기의 조절이 용이하지 못하다.Current methods for synthesizing carbon nanotubes include chemical vapor deposition, laser ablation, arc discharge, and thermal decomposition. In the case of chemical vapor deposition, the transition metal deposited on the substrate is decomposed through heat, and the transition metal deposited on the substrate acts as a catalyst for carbon nanotube growth to synthesize carbon nanotubes. In the case of deposition, carbon nanotubes are synthesized only on the substrate on which the transition metal is deposited, which makes it difficult to continuously synthesize carbon nanotubes.In the case of laser ablation method and arc discharge method, a certain amount of graphite is supplied as a source of carbon inside the chamber Since carbon nanotubes are synthesized in powder or carbon rods, there is a technical difficulty in applying a continuous process of mass production of carbon nanotube synthesis. However, in the case of pyrolysis, hydrocarbons are supplied together with a liquid or gaseous transition metal into a heated reactor to decompose hydrocarbons using heat to synthesize carbon nanotubes in a gaseous state. It is possible to supply transition metals, and thus it is possible to mass synthesize carbon nanotubes. However, in this pyrolysis method, the size of the transition metal is determined by the concentration of the transition metal in the liquid or gas phase and the decomposition and recombination time of the transition metal, which is the size of the diameter of the carbon nanotube. Influences. However, in the conventional pyrolysis method, it is not easy to control the length of the reactor and the time to stay in the reactor, and thus it is not easy to control the crystal size of the transition metal.

본 발명이 이루고자 하는 기술적 과제로는 유입되는 액상 혹은 기상의 탄소공급원과 전이금속 공급원의 분해 및 재결합 시간의 조절을 용이하게 하고 또한 반응로 내부로 유입된 분해된 전이금속의 분산 및 단위 체적당 농도를 일정하게 유지할 수 있게 하여 전이금속 결정의 크기를 수 나노미터에서 수십 나노미터 내외의 일정한 크기로 조절할수 있게 함으로써 단층 및 다층 탄소 나노튜브의 연속적인 대량 합성을 용이하게 하는데 있다.The technical problem to be achieved by the present invention is to facilitate the control of decomposition and recombination time of the incoming liquid or gaseous carbon source and the transition metal source, and also the dispersion and concentration per unit volume of the decomposed transition metal introduced into the reactor. It is possible to maintain a constant size of the transition metal crystal to a constant size of about several nanometers to several tens of nanometers to facilitate the continuous mass synthesis of single and multilayer carbon nanotubes.

도 1은 기존의 열분해 합성법에 의한 열분해 장치도.1 is a pyrolysis apparatus according to a conventional pyrolysis synthesis method.

도 2a, 2b, 2c는 본 발명에 의한 국부적 가열을 이용한 열분해 장치의 예시도.2A, 2B and 2C are exemplary views of a pyrolysis apparatus using local heating according to the present invention.

도 3은 본 발명의 실시예에 의한 탄소 나노 뉴브의 Raman spectrum data 이미지.Figure 3 is a Raman spectrum data image of the carbon nanonub according to an embodiment of the present invention.

도 4는 본 발명의 실시예에 의한 탄소 나노 튜브의 FE-SEM 사진의 이미지.Figure 4 is an image of the FE-SEM picture of carbon nanotubes according to an embodiment of the present invention.

도 5는 본 발명의 실시예에 의한 단층 및 다층 탄소 나노튜브의 HRTEM사진의 이미지.5 is an image of HRTEM photographs of single and multilayer carbon nanotubes according to an embodiment of the present invention.

상기 기술적 과제를 달성하기 위해서 본 발명에서는 기존의 열분해법에 의한 열분해 합성장치(도1)와 같이 일체화된 반응로를 구성하지 않고 도 2a 에서와 같이 크게 분해 및 1차 반응로(a), 2차 반응로(b), 냉각 및 수집부(c)로 구성하여, 기존의 열분해 방법에서 사용하는 반응로 전체를 가열하지 않고 분해 및 1차 반응로(a)만을 가열하게 구성하였으며, 2차 반응로(b) 부분은 가열을 하지 않고 분해 및 1차 반응로(a)와 냉각 및 수거부(c) 사이에 구성하여 서서히 냉각과정을 거치면서 위치별로 온도변화를 갖게 구성하였다. 각각의 역할을 살펴보면, 탄소 공급원과 전이금속 공급원들이 기상 혹은 액상의 형태로 주입노즐을 통해서 분해 및 1차 반응로(a) 내부를 통과하면서 탄소 공급원은 탄소 원자로, 전이금속 공급원은 전이금속 원자로 분해후 재결합을 통해 탄소 나노튜브로의 합성을 시작 하면서, 2차 반응로(b)로 유입 되어 냉각 및 수거부(c) 벽면에 붙기 전까지 합성을 계속하게 된다. 이때 전이금속의 재결합되는 결정의 크기는 분해 및 1차 반응로(a) 내부의 단위체적당 차지하는 전이금속의 농도와 분해 및 1차 반응로(a)로 유입되는 속도에 의해 결정되게 되는데, 이때 전이금속의 단위 체적당 농도의 조절은 장치 전체의내부 압력과 이후 수거 및 냉각부(c)에서의 반응에 참여하지 않는 전이금속의 반응억제와 유입되는 전이금속 공급원 유입속도를 통해 조절할 수 있다. 분해 및 1차 반응로, 2차 반응로를 거치면서도 탄소 나노튜브의 합성에 기여를 하지 못한 전이금속과 탄소 원자들은 냉각 및 수거부(c) 벽에 의한 급격한 냉각에 의해 활성화된 에너지를 모두 잃고 재결합을 멈추면서 냉각 및 수거부(c) 벽면에 붙게되어 탄소 나노튜브의 성장 제어와 함께 분해 및 1차 반응로(a) 내부에서의 전이금속의 농도의 상승을 억제시킬 수 있다.In order to achieve the above technical problem, the present invention does not constitute an integrated reactor as in the pyrolysis synthesis apparatus by the conventional pyrolysis method (FIG. 1), and largely decomposes and primary reactors (a) and 2 as shown in FIG. 2A. It consists of a secondary reactor (b), a cooling and a collection unit (c), it is configured to heat only the decomposition and the primary reactor (a) without heating the entire reactor used in the conventional pyrolysis method, secondary reaction Furnace (b) portion was configured between the decomposition and the primary reaction furnace (a) and the cooling and collecting unit (c) without heating, and configured to have a temperature change by position while gradually cooling. In each role, the carbon source and the transition metal source are decomposed through the injection nozzle in the form of gas phase or liquid phase and passed through the inside of the primary reactor (a), while the carbon source is decomposed into the carbon atom and the transition metal source into the transition metal atom. After the synthesis of the carbon nanotubes through the recombination, the synthesis is continued until the secondary reactor (b) is introduced into the cooling and collecting (c) wall. In this case, the size of the crystal recombined in the transition metal is determined by the concentration of the transition metal occupying per unit volume in the decomposition and primary reactor (a) and the rate of decomposition and inflow into the primary reactor (a), where the transition Control of the concentration of metal per unit volume can be controlled through the internal pressure of the device as a whole and the subsequent suppression of the reaction of transition metals that do not participate in the reaction in the collection and cooling section (c) and the rate of incoming transition metal sources. Transition metals and carbon atoms that do not contribute to the synthesis of carbon nanotubes through decomposition and primary reactors and secondary reactors lose all of their energized energy by cooling and abrupt cooling by the collecting wall. The recombination may be stopped and attached to the wall of the cooling and collecting part (c), thereby controlling the growth of the carbon nanotubes and inhibiting decomposition and an increase in the concentration of the transition metal in the primary reactor (a).

본 발명에서 분해 및 1차 반응로(a)의 길이와 형태는 여러가지 다른 형태로 변형될 수 있으며, 또한 2차 반응로(b)는 분해 및 1차 반응로(a)와 냉각 및 수거부(c)의 벽면까지의 경계를 지칭하며 도 2b 에서와 같이 분해 및 1차 반응로와 냉각 및 수거부(c)가 직접 연결되어 2차 반응로(b)를 냉각 및 수거부의 안쪽 공간만으로구성할 수 있다. 또한 국부적 가열을 이용한 열분해 합성법을 이용하면 도 2c 에서와 같이 적정 거리를 떨어뜨려서 2개 이상의 분해 및 1차 반응로(b)를 병렬로 구성할 수도 있다.In the present invention, the length and shape of the decomposition and primary reactor (a) may be modified in various other forms, and the secondary reactor (b) may be the decomposition and primary reactor (a) and the cooling and collecting unit ( It refers to the boundary to the wall of c) and as shown in FIG. 2b, the decomposition and primary reactor and the cooling and collecting unit (c) are directly connected to constitute the secondary reactor (b) with only the inner space of the cooling and collecting unit. can do. In addition, when the pyrolysis synthesis method using local heating is used, two or more decomposition and primary reactors (b) may be configured in parallel by dropping an appropriate distance as shown in FIG. 2C.

도 2a에서 예시한 장치를 통해서 본 바와 같이, 본 발명은 기상 혹은 액상으로 유입되는 탄소 공급원과 전이금속의 공급원을 주입 노즐을 통해서 내부로 유입 / 국부적으로 가열된 분해 및 1차 반응로(a)를 거치면서 만들어지는 수 나노미터 내외의 전이금속 결정을 촉매로 하여 단층 및 다층의 탄소 나노 튜브를 연속적으로 합성하는 방법이다. 본 발명은 도 2a, 2b, 2c에서 예시한 장치에 한정되지 않고, 본 발명의 기술적인 사상 내에서 당 분야의 통상적인 지식을 가진자에 의해 그 변형이나 개량의 가능함이 명백하다.As seen through the apparatus illustrated in FIG. 2A, the present invention provides a carbon source and a transition metal source introduced into a gaseous or liquid phase into an inlet / locally heated decomposition and primary reactor (a) through an injection nozzle. It is a method of continuously synthesizing single- and multi-layered carbon nanotubes by using a transition metal crystal of about several nanometers made through the catalyst. The present invention is not limited to the apparatus illustrated in Figs. 2A, 2B and 2C, and it is apparent that modifications and improvements are possible by those skilled in the art within the technical idea of the present invention.

상술한 본 발명에 따르면, 국부적 가열을 이용한 단층 및 다층의 탄소나노튜브의 합성법(Carbon Nanotube synthesis method using Local Heating Pyrolysis)을 이용하여 기상 혹은 액상의 탄소 공급원과 전이금속 공급원을 연속적 공급 및 국부적 가열을 통한 탄소 및 전이금속을 분해 후 재결합을 통해 단층 및 다층의 탄소 나노 튜브를 대량 합성할 수 있다. 또한 이 방법을 이용하여 단층 및 다층의 탄소 나노 튜브를 대량 합성할 경우 탄소 나노 튜브의 대량합성으로 인한 기존의 탄소 나노 튜브의 가격을 현저히 낯출 수 있게 되어 현재 연구가 활발히 진행되고 있는 nanocomposits, 이차전지, 수소저장 및 기타의 많은 응용에 대한 연구를 더욱 활발히 진행할 수 있게 된다.According to the present invention described above, the carbon nanotube synthesis method using Local Heating Pyrolysis using a local heating and the continuous supply of gaseous or liquid carbon source and transition metal source and local heating Through decomposition and recombination of the carbon and transition metals through, single- and multi-layered carbon nanotubes can be synthesized in large quantities. In addition, when mass-producing single- and multi-layered carbon nanotubes using this method, the price of existing carbon nanotubes due to the mass synthesis of carbon nanotubes can be significantly reduced, which is currently being actively researched. Further research will be made on hydrogen storage and many other applications.

Claims (4)

국부적인 가열을 이용한 탄소 나노튜브의 열분해 합성 장치.Pyrolysis synthesis apparatus for carbon nanotubes using local heating. 1항에 있어서 수거 및 냉각부가 그 형태와는 무관하게 장비 냉각만을 목적으로 하지 않고 반응에 참여하지 않은 전이금속들의 반응 억제와 수거를 목적으로 그 안쪽 벽면에 탄소 나노튜브와 전이금속이 수집되게 구성한 열분해 합성 장치.Regardless of its type, the collection and cooling section is configured to collect carbon nanotubes and transition metals on the inner wall for the purpose of suppressing and collecting reactions of transition metals which are not intended to cool the equipment and do not participate in the reaction. Pyrolysis synthesis apparatus. 1항에 있어서 전이금속 및 탄소 공급원을 액상 혹은 기상으로 반응로에 공급하는 열분해 합성 장치.The pyrolysis synthesis apparatus according to claim 1, which supplies a transition metal and a carbon source to the reactor in a liquid phase or a gas phase. 1항에 있어서 분해 및 1차 반응로를 병렬로 2개이상 구성한 열분해 합성 장치.The pyrolysis synthesizing apparatus according to claim 1 comprising two or more decomposition and primary reactors in parallel.
KR1020020063686A 2002-10-18 2002-10-18 Carbon Nanotube synthesis method using Local Heating Pyrolysis KR20030013351A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020020063686A KR20030013351A (en) 2002-10-18 2002-10-18 Carbon Nanotube synthesis method using Local Heating Pyrolysis
AU2003269531A AU2003269531A1 (en) 2002-10-18 2003-10-14 Single-walled carbon nanotube synthesis method and apparatus
PCT/KR2003/002114 WO2004035881A2 (en) 2002-10-18 2003-10-14 Single-walled carbon nanotube synthesis method and apparatus
KR1020057006417A KR100733482B1 (en) 2002-10-18 2003-10-14 Single-walled carbon nanotube synthesis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020063686A KR20030013351A (en) 2002-10-18 2002-10-18 Carbon Nanotube synthesis method using Local Heating Pyrolysis

Publications (1)

Publication Number Publication Date
KR20030013351A true KR20030013351A (en) 2003-02-14

Family

ID=27728867

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020020063686A KR20030013351A (en) 2002-10-18 2002-10-18 Carbon Nanotube synthesis method using Local Heating Pyrolysis
KR1020057006417A KR100733482B1 (en) 2002-10-18 2003-10-14 Single-walled carbon nanotube synthesis method and apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020057006417A KR100733482B1 (en) 2002-10-18 2003-10-14 Single-walled carbon nanotube synthesis method and apparatus

Country Status (3)

Country Link
KR (2) KR20030013351A (en)
AU (1) AU2003269531A1 (en)
WO (1) WO2004035881A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593423B1 (en) * 2005-05-26 2006-06-30 주식회사 비코 Apparatus for mass production of carbon nanotubes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010057A1 (en) * 2005-07-15 2007-01-25 Consejo Superior De Investigaciones Científicas Novel multitube system for the gas-phase synthesis of carbon nanotubes
KR100666359B1 (en) * 2006-01-09 2007-01-11 세메스 주식회사 Apparatus for collection carbon nano tube
KR100940044B1 (en) * 2008-04-29 2010-02-04 성균관대학교산학협력단 Aluminum and carbon materials composites by rapid thermal annealing and method for preparing the same
DE102010005560A1 (en) * 2010-01-22 2011-07-28 Bayer MaterialScience AG, 51373 Production of CNT
WO2016044749A1 (en) 2014-09-19 2016-03-24 Nanosynthesis Plus. Ltd. Methods and apparatuses for producing dispersed nanostructures
KR102271677B1 (en) * 2016-06-15 2021-07-02 주식회사 엘지화학 Apparatus for drying and collecting compressed carbon nanotube pellet
CN116495725B (en) * 2023-05-19 2023-12-19 重庆中润新材料股份有限公司 Carbon nanotube growth system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077655B2 (en) * 1997-12-22 2000-08-14 日本電気株式会社 Apparatus and method for producing carbon nanotube
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
KR100385867B1 (en) * 1999-06-15 2003-06-02 일진나노텍 주식회사 Method of synthesizing highly purified carbon nanotubes
DE60028869T2 (en) * 1999-06-16 2007-01-18 Institute Of Metal Research Of The Chinese Academy Of Sciences Production of single-walled carbon nanotubes
KR100342763B1 (en) * 2000-06-08 2002-07-02 김경균 Equpiment for fabricating Cabon nano tube and method for fabricating thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100593423B1 (en) * 2005-05-26 2006-06-30 주식회사 비코 Apparatus for mass production of carbon nanotubes

Also Published As

Publication number Publication date
AU2003269531A8 (en) 2004-05-04
KR20050062775A (en) 2005-06-27
AU2003269531A1 (en) 2004-05-04
KR100733482B1 (en) 2007-06-29
WO2004035881A3 (en) 2004-06-24
WO2004035881A2 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
US7846414B2 (en) Method for producing carbon nanotubes using a DC non-transferred thermal plasma torch
CA2581806C (en) Plasma synthesis of nanopowders
JP5159513B2 (en) Carbon nanotube synthesizer
CA2595872A1 (en) Induction plasma synthesis of nanopowders
JPH0433490B2 (en)
Belgacem et al. Arc discharge boron nitrogen doping of carbon nanotubes
Yeheskel et al. Thermolysis of methane in a solar reactor for mass-production of hydrogen and carbon nano-materials
KR20030013351A (en) Carbon Nanotube synthesis method using Local Heating Pyrolysis
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
Akashi Progress in thermal plasma deposition of alloys and ceramic fine particles
KR100905259B1 (en) Method and apparatus of collecting carbon nano tube
KR20090014759A (en) Apparatus of collecting carbon nano tube
KR101350198B1 (en) Method and apparatus of collecting carbon nano tube
JPS5941772B2 (en) Ultrafine powder synthesis furnace
KR100556644B1 (en) Apparatus and process for synthesis of carbon nanotubes or carbon nanofibers using flames
RU2344074C1 (en) Method for obtaining nanodispersive carboneum (versions) and device for this effect
KR20020025101A (en) mass production of carbon nanotubes by pyrolysis
KR101359415B1 (en) Method and apparatus of collecting carbon nano tube
WO2004035463A2 (en) Continuous production and separation of carbon-based materials
JP3502682B2 (en) Vapor-grown carbon fiber production equipment
KR20030051459A (en) Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes
JP2003192321A (en) Apparatus for manufacturing fullerene
Kolman et al. Influence of deposition parameters on diamond thermal plasma chemical vapor deposition with liquid feedstock injection
KR100592807B1 (en) Synthesis Method and apparatus for multi-wall carbon nanotube
KR102030215B1 (en) Apparatus and method for synthesizing carbon nanotube

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant