KR20030051459A - Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes - Google Patents

Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes Download PDF

Info

Publication number
KR20030051459A
KR20030051459A KR1020030024614A KR20030024614A KR20030051459A KR 20030051459 A KR20030051459 A KR 20030051459A KR 1020030024614 A KR1020030024614 A KR 1020030024614A KR 20030024614 A KR20030024614 A KR 20030024614A KR 20030051459 A KR20030051459 A KR 20030051459A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
catalyst
thermal evaporator
gas
carbon nanotube
Prior art date
Application number
KR1020030024614A
Other languages
Korean (ko)
Inventor
이영희
조영상
이지영
Original Assignee
이영희
조영상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영희, 조영상 filed Critical 이영희
Priority to KR1020030024614A priority Critical patent/KR20030051459A/en
Publication of KR20030051459A publication Critical patent/KR20030051459A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

PURPOSE: Provided is a production process of a thermal plating equipment for carbon nanotube synthesis which uses a thermal evaporator to synthesize the carbon nanotube with high purity, in which transition metal is used as catalyst. CONSTITUTION: The production process of the thermal plating equipment for carbon nanotube synthesis comprises the steps of: (i) letting mass or line of transition metal put on a boat, with keeping pressure of a chamber under 10¬-3 torr and operating a heater to raise temperature at the same time; (ii) letting catalyst supplied at constant rate and controlled by a thickness monitor and getting hydrocarbon gas supplied at constant rate by a gas adjuster, with keeping pressure of the chamber under 10¬-3 torr; and (iii) after reaction, bringing gas injection and catalyst supply to an end and lowering the temperature of a furnace to recover the synthesized nanotube.

Description

탄소나노튜브 합성용 열 증착장치 제작 방법 {Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes}Manufacturing method of thermal evaporator for carbon nanotube synthesis {Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes}

본 발명은 탄소나노튜브를 연속공정과정에 의해 대량합성하는 장치를 개발하는 것으로 기존의 thermal evaporator의 촉매 증발부분을 그대로 이용하고 기체 도입부, 반응부, 시료 수거부를 새로이 부착하여 만든 장치 고안에 관한 것이다.The present invention is to develop a device for mass-synthesizing carbon nanotubes by a continuous process, using a catalytic evaporation part of an existing thermal evaporator as it is, and a device for making a device made by newly attaching a gas introduction part, a reaction part, and a sample collection part. will be.

일반적으로 탄소나노튜브는 전기방전법, 레이져 증발법, 화학기상증착법, HIPCO법, 열분해법등에 의해 합성되나, 어느 방법이건 연속적인 공정과정의 채택이 어려워 공장규모의 대량합성에는 부적절한 방법들이다. 특히 HIPCO나 열분해법의 경우 사용되는 촉매가 고가이고 독성이 있어 합성시 주의할 점이 많고 합성된 탄소나노튜브의 가격이 바싸다는 단점이 있다. 또 합성과정 중 생겨나는 탄소입자들의 함량이 높고 특히 단층탄소나노튜브의 수율이 낮다는 것이 큰 문제점으로 나타나 탄소나노튜브를 이용한 각종 에너지저장, 복합체등 응용소자의 발달에 걸림돌이 되어 왔다.In general, carbon nanotubes are synthesized by electric discharge method, laser evaporation method, chemical vapor deposition method, HIPCO method, and pyrolysis method. In particular, in the case of HIPCO or pyrolysis, the catalyst used is expensive and toxic, so there are many cautions in the synthesis and the price of the synthesized carbon nanotubes is expensive. In addition, the high content of carbon particles generated during the synthesis process, in particular, low yield of single-walled carbon nanotubes is a big problem, which has been an obstacle to the development of various energy storage and composite devices using carbon nanotubes.

본 발명이 이루고자 하는 기술적 과제는, 기존의 열분해법에서 촉매를 공급하는 장치의 불완전함을 보완한 것으로, thermal evaporator를 이용하여 값싼 전이금속 촉매, 예를 들면 철, Ni, Co 덩어리등을 boat에서 전류를 인가하여 일정한 율로 촉매를 증발시키는 것이다. 이렇게 일정하게 연속적으로 공급된 촉매금속은 탄소나노튜브 수율을 개선하는데 아주 중요한 역할을 한다. 동시에 예열된 탄화수소기체를 공급하여 촉매와 반응하게 하여 다층탄소나노튜브 혹은 단층탄소나노튜브를 대량으로 합성하는 것이다. 이 경우 탄화수소기체와 반응하는 고온 반응로를 chamber 내부에 설치하고 생성된 탄소나노튜브를 수거하기 위해 수거부를 설치하여 연속적으로 합성된 탄소나노튜브를 수거한다. 이 장치는 탄소나노튜브를 대량 합성할 수 있는 연속공정을 특징으로 한다.The technical problem to be achieved by the present invention is to compensate for the incompleteness of the device for supplying the catalyst in the conventional pyrolysis method, using a thermal evaporator to inexpensive transition metal catalyst, such as iron, Ni, Co lumps in the boat The current is applied to evaporate the catalyst at a constant rate. These continuously fed catalytic metals play an important role in improving the carbon nanotube yield. At the same time, a preheated hydrocarbon gas is supplied to react with the catalyst to synthesize a large amount of multilayer carbon nanotubes or single-layer carbon nanotubes. In this case, a high temperature reactor that reacts with a hydrocarbon gas is installed inside the chamber, and a collection part is installed to collect the generated carbon nanotubes to collect continuously synthesized carbon nanotubes. The device features a continuous process that allows the synthesis of large quantities of carbon nanotubes.

도 1은 발명의 실시 예에 따라 제조된 탄소나노튜브 합성용 thermal evaporator의 개략도이다.1 is a schematic diagram of a thermal evaporator for synthesizing carbon nanotubes prepared according to an embodiment of the present invention.

※도면의 주요 부호에 대한 간략한 설명※ Brief description of the main symbols in the drawings

heater : 반응로 가열 시스템, boat : 고체 전이금속 가열부heater: Reactor heating system, boat: Solid transition metal heating unit

gas 도입부 : 탄화수소 기체 도입부, T/monitor : boat 온도제어용 film thickness monitorgas inlet: hydrocarbon gas inlet, T / monitor: film thickness monitor for boat temperature control

electrode: boat 가열용 전극electrode: boat heating electrode

상기의 기술적 과제를 달성하기 위한 본 발명에 따른 thermal evaporator를 이용한 탄소나노튜브 합성 장치는 촉매 증발부, 기체 도입부, 반응부, 시료 수거부를 포함한다.Carbon nanotube synthesis apparatus using a thermal evaporator according to the present invention for achieving the above technical problem includes a catalyst evaporation unit, gas introduction unit, reaction unit, sample collection unit.

상기 장치는 종래의 thermal evaporator를 이용하여 촉매로 쓰이는 전이금속을 일정한 증발율로 증발시키고 촉매 증발부 상단에 고온 반응로를 설치하고 반응로 하단에 탄화수소기체와 증발된 전이금속이 만나 반응관을 통과하도록 한다. 또 증발된 촉매 원자가 덩어리를 형성하지 않도록 film thickness monitor에 의해 증발율을 제어한다. 도입된 탄화수소기체는 반응로 주변을 거쳐 어느 정도 예열을 통해 활성화시켜 반응관 내부에서 반응이 최대로 일어나도록 한다. 이때 탄화수소기체 대신 알코올이나 기타 탄소를 포함한 액체일 수도 있다. 반응관은 600 ~ 1200oC로 유지되어 유입된 탄화수소기체가 모두 반응하도록 하여 수율을 최대화한다. 유입된 탄화수소기체는 반응관 내부의 압력차 때문에 반응관 밖으로 자동적으로 유입되며 이때 반응관의 높이는 기체의 유입속도와 관련이 있다. chamber의 압력은 촉매가 쉽게 증발할 수 있도록 mtorr 정도는 유지해야 한다. 생성된 탄소나노튜브는 반응관을 빠져 나와 상부에 놓여 있는 냉각 회전 드럼에 부착되어 수거한다.The apparatus uses a conventional thermal evaporator to evaporate the transition metal used as a catalyst at a constant evaporation rate, install a high temperature reactor at the top of the catalyst evaporation unit, and allow the hydrocarbon gas and the evaporated transition metal to pass through the reaction tube at the bottom of the reactor. do. The evaporation rate is controlled by a film thickness monitor so that the evaporated catalyst atoms do not form agglomerates. The introduced hydrocarbon gas is activated through some preheating around the reactor to maximize the reaction inside the reaction tube. It may be a liquid containing alcohol or other carbon instead of hydrocarbon gas. The reaction tube is maintained at 600 ~ 1200 o C to maximize the yield by allowing all the introduced hydrocarbon gas to react. The introduced hydrocarbon gas is automatically introduced out of the reaction tube due to the pressure difference inside the reaction tube, and the height of the reaction tube is related to the gas inflow rate. The pressure in the chamber should be maintained at the mtorr level so that the catalyst can evaporate easily. The produced carbon nanotubes exit the reaction tube and are attached to a cooling rotating drum placed on the upper side and collected.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. 그러나, 본 발명의 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서, 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이며, 도면 상에서 동일한 부호로 표시된 요소는 동일한 요소를 의미한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those skilled in the art. Accordingly, the shape and the like of the elements in the drawings are exaggerated to emphasize a more clear description, and the elements denoted by the same reference numerals in the drawings means the same elements.

도 1은 본 발명의 실시 예에 따른 탄소나노튜브를 성장하기 위한 개조된 thermal evaporator의 개략도이다. 도 1을 참조하여, 탄소나노튜브 합성용 thermal evaporator장치를 설명한다.1 is a schematic diagram of a modified thermal evaporator for growing carbon nanotubes according to an embodiment of the present invention. Referring to Figure 1, a thermal evaporator device for synthesizing carbon nanotubes will be described.

먼저, Fe, Co, Ni등과 같은 전이금속 덩어리나 선을 boat 위에 올려놓는 다음 chamber의 압력을 10-3torr 이하로 유지한다. 이때 동시에 반응로 heater를 작동시켜 온도를 높인다. 그런 다음 촉매를 일정한 율로 공급하고 이 공급율은 thickness monitor에 의해 제어한다. 동시에 탄화수소기체를 기체조절기를 이용하여 일정한 율로 공급한다. 이 때 chamber 내부의 압력은 10-3torr를 유지하도록 한다. 반응이 끝나면 기체주입과 촉매 공급을 멈추고 반응로의 온도를 낮추고 합성된 나노튜브를 수거부로부터 수거한다.First, place a mass or wire of transition metal such as Fe, Co, Ni, etc. on the boat, and keep the chamber pressure below 10 -3 torr. At this time, increase the temperature by operating the heater heater at the same time. The catalyst is then fed at a constant rate, which is controlled by a thickness monitor. At the same time, the hydrocarbon gas is supplied at a constant rate using a gas regulator. At this time, the pressure inside the chamber should be maintained at 10 -3 torr. After the reaction, gas injection and catalyst supply are stopped, the temperature of the reactor is lowered, and the synthesized nanotubes are collected from the collecting part.

상술한 본 발명에 따르면, 일정하게 공급되는 값싼 전이금속 촉매를 이용하여 연속 공정으로 thermal evaporator를 이용하여 고순도의 탄소나노튜브를 대량으로 합성할 수 있다. 합성된 탄소나노튜브는 최소량의 전이금속을 포함한다. 이 방법으로 합성된 탄소나노튜브는 원료값이 싸고 전이금속값이 싸기 때문에 값싼 탄소나노튜브를 얻을 수 있다. 이 방법은 특히 고순도의 단층탄소나노튜브를 대량으로 저렴하게 합성하는데 유리하다.According to the present invention described above, it is possible to synthesize a large amount of high-purity carbon nanotubes using a thermal evaporator in a continuous process using a cheap transition metal catalyst constantly supplied. The synthesized carbon nanotubes contain a minimum amount of transition metal. The carbon nanotubes synthesized in this way have a low raw material value and a low transition metal value, so that cheap carbon nanotubes can be obtained. This method is particularly advantageous for inexpensively synthesizing high purity single layer carbon nanotubes in large quantities.

Claims (8)

상기 탄소나노튜브를 합성하기 위해 thermal evaporator를 사용하는 방법.Using a thermal evaporator to synthesize the carbon nanotubes. 제 1 항에 있어서, thermal evaporator에 기체 도입부, 반응부, 시료 수거부를 부착시킨 장치.The device according to claim 1, wherein a gas introduction part, a reaction part, and a sample collecting part are attached to the thermal evaporator. 제 1 항에 있어서, 도입되는 촉매는 판형태 또는 선형태 모두 가능하며 종류로는 Fe, Co, Ni, W 등의 모든 전이금속을 포함.2. The catalyst of claim 1, wherein the catalyst to be introduced may be in the form of a plate or a line and includes all transition metals such as Fe, Co, Ni, and W. 제 1 항에 있어서, 합성된 탄소나노튜브는 단층탄소나노튜브, 다층탄소나노튜브를 포함한다.The method of claim 1, wherein the synthesized carbon nanotubes include single-walled carbon nanotubes and multi-walled carbon nanotubes. 제 2 항에 있어서, 반응부 가열방법을 가열봉(예: SiC, graphite)이나 할로겐 램프를 사용하는 것.The method of claim 2, wherein a heating rod (eg, SiC, graphite) or a halogen lamp is used for heating the reaction section. 제 2항에 있어서, 기체도입부에 유입되는 기체는 모든 탄화수소기체를 포함하고, 액체 원료는 알코올등과 같은 탄소를 포함하고 있는 기체.3. The gas according to claim 2, wherein the gas flowing into the gas introduction portion includes all hydrocarbon gases, and the liquid raw material contains carbon such as alcohol. 제 2항에 있어서, 반응부의 열을 이용하여 도입되는 기체를 예열하는 것.The method of claim 2, wherein the gas introduced by using the heat of the reaction portion. 제 2항에 있어서, 시료수거부는 냉각 회전 드럼을 사용하는 것.The sample collection unit according to claim 2, wherein the sample collection unit uses a cooling rotary drum.
KR1020030024614A 2003-04-18 2003-04-18 Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes KR20030051459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030024614A KR20030051459A (en) 2003-04-18 2003-04-18 Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030024614A KR20030051459A (en) 2003-04-18 2003-04-18 Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes

Publications (1)

Publication Number Publication Date
KR20030051459A true KR20030051459A (en) 2003-06-25

Family

ID=29579396

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030024614A KR20030051459A (en) 2003-04-18 2003-04-18 Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes

Country Status (1)

Country Link
KR (1) KR20030051459A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004792A1 (en) * 2006-07-03 2008-01-10 Yas Co., Ltd. Multiple nozzle evaporator for vacuum thermal evaporation
KR100887528B1 (en) * 2007-06-29 2009-03-06 주식회사 디엠에스 An chemical reactor for carbon nano tube
KR101044831B1 (en) * 2010-11-29 2011-06-27 임선우 Assembling road block of multi-structures
US20160023906A1 (en) * 2008-05-01 2016-01-28 Honda Motor Co., Ltd. Synthesis Of High Quality Carbon Single-Walled Nanotubes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004792A1 (en) * 2006-07-03 2008-01-10 Yas Co., Ltd. Multiple nozzle evaporator for vacuum thermal evaporation
KR100887528B1 (en) * 2007-06-29 2009-03-06 주식회사 디엠에스 An chemical reactor for carbon nano tube
US20160023906A1 (en) * 2008-05-01 2016-01-28 Honda Motor Co., Ltd. Synthesis Of High Quality Carbon Single-Walled Nanotubes
KR101044831B1 (en) * 2010-11-29 2011-06-27 임선우 Assembling road block of multi-structures

Similar Documents

Publication Publication Date Title
JP2737736B2 (en) Method for producing carbon single-walled nanotube
RU2437832C2 (en) Carbon nanotubes functionalised with fullerenes
Abbaslou et al. The effects of carbon concentration in the precursor gas on the quality and quantity of carbon nanotubes synthesized by CVD method
JP4474409B2 (en) Carbon nanotube manufacturing method and manufacturing apparatus
KR20120094416A (en) Method for producing solid carbon by reducing carbon oxides
JP2015514054A (en) Method and structure for reducing carbon oxides with non-ferrous catalysts
WO2004052973A2 (en) Synthesis of coiled carbon nanotubes by microwave chemical vapor deposition
US20110027164A1 (en) Method and apparatus for synthesizing carbon nanotubes using ultrasonic evaporation
JP4608863B2 (en) Carbon nanotube production apparatus and method, and gas decomposer used therefor
Raji et al. A chemical kinetic model for chemical vapor deposition of carbon nanotubes
WO2009135344A1 (en) Method of self-assembly growing carbon nanotubess by chemical-vapor-deposition without the use of metal catalyst
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
CN101891184A (en) Method for continuously synthesizing single-wall carbon nano tube by high temperature chemical vapor deposition method
JP2006520733A (en) Large-scale synthesis of double-walled carbon nanotubes by vapor deposition
KR20030051459A (en) Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes
JP2010042934A (en) Nano-carbon production furnace
JP3404543B1 (en) Method for producing carbon nanotube
Xie et al. Preparation of high purity carbon nanospheres by the chemical reaction of calcium carbide and oxalic acid
Samandari-Masouleh et al. Kinetic modeling of carbon nanotube production and minimization of amorphous carbon overlayer deposition in floating catalyst method
Mubarak et al. Mass production of carbon nanofibers using microwave technology
JP2586054B2 (en) Method for producing vapor grown carbon fiber
CN107619042A (en) A kind of extensive method for preparing graphene nano wall
JP2005350308A (en) Carbon nanotube and its producing method
US20040124093A1 (en) Continuous production and separation of carbon-based materials
RU102937U1 (en) PLANT FOR PRODUCING SINGLE-LAYERED CARBON NANOTUBES

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application