KR20020025101A - mass production of carbon nanotubes by pyrolysis - Google Patents

mass production of carbon nanotubes by pyrolysis Download PDF

Info

Publication number
KR20020025101A
KR20020025101A KR1020020001392A KR20020001392A KR20020025101A KR 20020025101 A KR20020025101 A KR 20020025101A KR 1020020001392 A KR1020020001392 A KR 1020020001392A KR 20020001392 A KR20020001392 A KR 20020001392A KR 20020025101 A KR20020025101 A KR 20020025101A
Authority
KR
South Korea
Prior art keywords
liquid
gas
precursor
carbon nanotubes
hydrocarbon
Prior art date
Application number
KR1020020001392A
Other languages
Korean (ko)
Inventor
이택수
Original Assignee
(주) 나노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 나노텍 filed Critical (주) 나노텍
Priority to KR1020020001392A priority Critical patent/KR20020025101A/en
Publication of KR20020025101A publication Critical patent/KR20020025101A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled

Abstract

PURPOSE: A mass synthesis equipment of carbon nanotubes using pyrolysis is provided to continuously produce carbon nanotubes by supplying liquid or gas phase hydrocarbon, and a vaporized liquid or solid phase transition metal precursor to a high temperature vertical furnace, and synthesize high purity multilayered or single layered nanotubes by supplying a liquid or gas phase sulfur precursor. CONSTITUTION: The mass synthesis equipment of carbon nanotubes using pyrolysis comprises a reaction tube(110), heating units(120,121), a liquid and gas hydrocarbon supplying unit(130), a sulfur precursor and catalytic metal precursor supply unit(140), a nanotube collection unit(150) and an injection port which can be cooled(160), wherein the reaction tube(110) is vertically installed, the injection port(160) is formed at the upper part of the reaction tube(110), a buffer gas is supplied between the injection port(160) and the reaction tube(110) so as to prevent a counterflow to the upper side of a decomposed material in the gas state, and the injection port(160) is connected to the hydrocarbon supplying unit(130) and the sulfur and catalytic precursor supply unit(140), wherein the liquid phase hydrocarbon is selected from xylene, benzene and cyclohexanone, hydrofuran, the gas phase hydrocarbon is selected from acetylene, ethylene, propylene, methane, ethane, propane, butane and LPG, the sulfur precursor is selected from hydro sulfide gas and liquid phase thiophene, and a precursor comprising a catalytic metal is selected from ferrocene, cobaltocene, nickelocene, iron pentacarbonyl and iron, nickel, cobalt-phthalocyanin.

Description

열분해를 이용한 탄소나노튜브의 대량 합성법 { mass production of carbon nanotubes by pyrolysis}Mass production of carbon nanotubes by pyrolysis

본 발명은 액상및 기상의 탄화 수소를 분해하여 탄소나노튜브 합성하는 방법에 관한 것이다. 탄소 나노튜브는 직경이 수㎚ 내지 수십㎚이고 길이가 수십㎛ 내지 수백㎛로 구조의 비등방성이 크며, 단층(single wall), 다층(multi wall) 또는 다발(rope) 형태의 다양한 구조의 형상을 가진다. 이러한 탄소 나노튜브는 감긴 형태에 따라 도체 또는 반도체의 성질을 띠며, 직경에 따라 에너지 갭(energy gap)이 달라지고 준 일차원적 구조를 가지고 있어 독특한 양자 효과를 나타낸다. 또한, 탄소 나노튜브는 역학적으로 견고하고(강철의 100배정도), 화학적 안정성이 뛰어나며 열전도도가 높고 속이 비어 있는 특성을 가진다. 이와 같이 탄소 나노튜브는 상기한 특성을 나타낼 수 있어, 미시 및 거시적인 측면에서 다양한 응용이 예상되는 새로운 기능성 재료로 각광받고 있다. 이러한 탄소 나노튜브를 전자파 차폐, 전기 화학적 저장 장치(예를 들어, 2차 전지, 연료 전지 또는 수퍼 커패시터 (supercapacitor))의 전극 극판, 전계 방출 디스플레이 (Field Emission Display), 전자 증폭기 또는 가스 센서(sensor) 등에 적용하고자하는 시도 또는 연구가 활발히 이루어지고 있다. 그런데, 이러한 탄소 나노튜브의 응용 기술이 실용화되기 위해서는 고순도의 탄소나노튜브를 대량으로 합성하여야 한다. 현재, 탄소나노튜브를 합성하는 방법으로, 레이져를 이용하는 방법과 열 및 화학 기상 증착법, 플라즈마 화학 기상 증착법 등이 있으나, 이들은 순도는 높으나 대량으로 만들어내지 못하고 있다. 그리고 기존의 열분해법은 주로 수평로를 이용하여, 연속적인 나노튜브의 생산이 어려웠다. 이런 점이 탄소나노튜브의 상업성을 제한하는 요인이다.The present invention relates to a method for synthesizing carbon nanotubes by decomposing liquid and gaseous hydrocarbons. Carbon nanotubes are several nanometers to several tens of nanometers in diameter and tens of micrometers to hundreds of micrometers in length, which are largely anisotropic in structure and have various shapes in the form of single walls, multi walls, or bundles. Have These carbon nanotubes have the properties of conductors or semiconductors depending on the shape of the wound and have a unique one-dimensional structure with different energy gaps and diameters. In addition, carbon nanotubes are mechanically strong (about 100 times as much as steel), have excellent chemical stability, have high thermal conductivity, and have hollow properties. As such, carbon nanotubes may exhibit the above characteristics, and thus are attracting attention as new functional materials that are expected to have various applications in the microscopic and macroscopic aspects. These carbon nanotubes can be used for electromagnetic shielding, electrode plates of electrochemical storage devices (e.g., secondary cells, fuel cells, or supercapacitors), field emission displays, electronic amplifiers, or gas sensors. Attempts or research to apply to such has been actively made. However, in order for the application technology of the carbon nanotubes to be practical, high-purity carbon nanotubes should be synthesized in large quantities. Currently, as a method of synthesizing carbon nanotubes, there are methods using a laser, thermal and chemical vapor deposition, plasma chemical vapor deposition, and the like, but these have high purity but are not produced in large quantities. In the conventional pyrolysis method, the production of continuous nanotubes using a horizontal furnace was difficult. This is the limiting factor for the commercialization of carbon nanotubes.

본 발명이 이루고자 하는 기술적 과제는, 고온의 수직로에 액상 또는 기상의 탄화수소와 증기화한 액상 또는 고상의 전이금속 전구체 공급하여, 탄소나노튜브를 연속적으로 생산하는데 있다. 또한 액상 또는 기상의 황전구체를 공급함으로써 고순도의 다층 및 단층 나노튜브를 합성하는데 있다.The technical problem to be achieved by the present invention is to continuously produce a carbon nanotube by supplying a liquid phase or gaseous hydrocarbon and a vaporized liquid phase or solid phase transition metal precursor to a high temperature vertical furnace. In addition, by supplying a liquid or gaseous sulfur precursor to the synthesis of high-purity multi-layer and single-layer nanotubes.

도 1은 본 발명에 의한 탄소나노튜브 합성 장비의 개념도.1 is a conceptual diagram of a carbon nanotube synthesis equipment according to the present invention.

상기의 기술적 과제를 달성하기 위한 본 발명의 일 관점은, 탄화수소를 전이금속 전구체와 함께 고온의 수직 반응로 안으로 공급하여, 탄화수소를 분해시켜 기상 상태에서 나노튜브를 합성법과 합성된 나노튜브가 가스 흐름 및 중력에 의해 자동으로 아래쪽으로 이동, 수거되는 방법이다. 이를 위해 액상 또는 기상의 탄화수소를 전이금속 전구체와 함께 고온의 수직 반응로 안으로 공급하기 위한 장치와,공급된 물질을 분해시켜 기상상태에서 나노튜브를 합성하기 위한 수직의 반응로, 합성된 나노튜브를 모으는 수거장치를 포함한다.One aspect of the present invention for achieving the above technical problem, by supplying a hydrocarbon with a transition metal precursor into a high-temperature vertical reactor, the hydrocarbon is decomposed to synthesize the nanotubes in the gas phase state and the synthesized nanotubes gas flow And automatically moved downward and collected by gravity. To this end, a device for supplying liquid or gaseous hydrocarbons together with a transition metal precursor into a high temperature vertical reactor, and a vertical reaction for decomposing the supplied material to synthesize nanotubes in a gaseous state. Includes a collecting device.

도 1은 본 발명에 의한 탄소나노튜브의 합성 장치의 일실시예가 도시되어 있다.Figure 1 shows an embodiment of a device for synthesizing carbon nanotubes according to the present invention.

본 발명에 의한 탄소나노튜 대량 합성 장치(200)는 반응관 (110), 가열 장치(120, 121), 액체 및 기체의 탄화수소 공급장치(130), 황 전구체 및 촉매 금속 전구체 공급장치(140), 나노튜브 수거장치(150), 냉각할 수 있는 주입구(160)로 구성된다. 반응관(110)은 수직으로 놓여져 있으며, 위쪽에 주입구(160)가 놓이며, 분해된 가스 상태의 물질의 위쪽으로의 역류를 막기 위해, buffer 가스를 주입구와 반응로 사이로 공급해준다. 그리고, 주입구는 탄화수소 공급장치(130), 황 및 촉매 전구체 공급장치(140)와 연결되어 있다.Carbon nanotube mass synthesis apparatus 200 according to the present invention is a reaction tube 110, heating devices (120, 121), hydrocarbon and supply device 130 of the liquid and gas, sulfur precursor and catalyst metal precursor supply device 140 , Nanotube collection device 150, the cooling inlet 160 is configured. The reaction tube 110 is vertically placed, and the injection hole 160 is placed on the upper side, and the buffer gas is supplied between the injection hole and the reactor to prevent the reverse flow of the decomposed gaseous material upward. In addition, the injection port is connected to the hydrocarbon supply device 130, the sulfur and the catalyst precursor supply device 140.

본 발명에 사용되는 액체의 탄화수소로는 자이렌(xylene), 벤젠(benzene), 사이클로헥산(cyclohexane), 하이드로퓨란(hydrofuran) 등이며, 기상의 탄화수소로는 아세틸렌(acetylene), 에틸렌(etylene), 프로필렌(propylene), 메탄(methane), 에탄(ethane), 프로판(propane) 부탄(buthane) 및 LPG 등이 있으며, 황 전구체로는 황화 수소(hydrogen sulfide) 가스와 액상의 치오펜(thiophene) 등이 있으며, 촉매 금속을 포함하는 전구체로는 페로신(ferrocene),코발트신(cobaltocene), 니켈로신(nickellocene), 아이언 펜타카르보닐(iron pentacarbonyl), 및 프탈라시안류(iron, nickel, cobat-phytallocian)등이 있다.Liquid hydrocarbons used in the present invention include xylene, benzene, cyclohexane, hydrofuran, and the like. As gas phase hydrocarbons, acetylene, ethylene, Propylene, methane, ethane, propane butane and LPG, and sulfur precursors include hydrogen sulfide gas and liquid thiophene. Precursors containing catalytic metals include ferrocene, cobaltocene, nickelellocene, iron pentacarbonyl, and phthalocyanates. phytallocian).

본 발명의 탄소나노튜브 합성장치는 탄화수소및 촉매금속의 연속적인 공급과 합성된 나노튜브의 연속적인 수거도 또한 가능하여 탄소 나노튜브의 대량생산에 효과적이다.The carbon nanotube synthesis apparatus of the present invention is also capable of continuous supply of hydrocarbons and catalytic metals and continuous collection of synthesized nanotubes, which is effective for mass production of carbon nanotubes.

Claims (4)

본 발명에서 합성된 나노튜브가 반응기 밖으로 원활하게 나오기 위해 수직으로 반응기를 설치하고 그 위에 주입구를 놓은 것.The nanotubes synthesized in the present invention have a reactor installed vertically and an injection hole placed thereon to smoothly exit the reactor. 본 발명에서 주입구를 첫번째 반응로 가운데까지 오게 하고, 주입구에 냉각수를 흐르게 하여 주입구 온도를 낮춘 것.In the present invention, the inlet is brought to the center of the first reactor, and the coolant flows to the inlet to lower the inlet temperature. 본 발명에서 주입구 부분에서의 역류를 방지하기 위해 주입구와 반응기 사이에 버퍼 가스를 흘려주는 것.Flowing the buffer gas between the inlet and the reactor to prevent backflow in the inlet section in the present invention. 본 발명에서 반응기 안으로 물질의 주입을 압력이나 시간에 따라 주기적으로 하는것.In the present invention, the injection of material into the reactor periodically according to pressure or time.
KR1020020001392A 2002-01-10 2002-01-10 mass production of carbon nanotubes by pyrolysis KR20020025101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020001392A KR20020025101A (en) 2002-01-10 2002-01-10 mass production of carbon nanotubes by pyrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020001392A KR20020025101A (en) 2002-01-10 2002-01-10 mass production of carbon nanotubes by pyrolysis

Publications (1)

Publication Number Publication Date
KR20020025101A true KR20020025101A (en) 2002-04-03

Family

ID=19718352

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020001392A KR20020025101A (en) 2002-01-10 2002-01-10 mass production of carbon nanotubes by pyrolysis

Country Status (1)

Country Link
KR (1) KR20020025101A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097521A1 (en) * 2002-05-17 2003-11-27 Nano Plasma Center Co., Ltd. Inductively coupled plasma reactor for producing nano-powder
FR2841233A1 (en) * 2002-06-24 2003-12-26 Commissariat Energie Atomique METHOD AND DEVICE FOR PYROLYSIS DEPOSITION OF CARBON NANOTUBES
WO2004007361A3 (en) * 2002-07-16 2004-04-01 Univ Cambridge Tech Method of synthesis of carbon nanomaterials
EP1445236A1 (en) * 2003-02-05 2004-08-11 Université de Liège Method and apparatus for producing carbon nanotubes
CN1300259C (en) * 2005-04-20 2007-02-14 天津大学 Method for preparing nonlinear optical material of linkage nano carbon tubes of polythiophene methylene
KR101981675B1 (en) * 2017-12-11 2019-05-24 한국과학기술연구원 Apparatus for manufacturing CNT and Method of manufacturing CNT using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
KR20020009875A (en) * 2000-07-27 2002-02-02 최규술 Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
KR20020017164A (en) * 2000-08-29 2002-03-07 김성근 Apparatus and method of producing nanotube
JP2013073231A (en) * 2011-09-27 2013-04-22 Miyuki Tanigawa Spectacles holder preventing spectacles from slipping down

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6221330B1 (en) * 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
KR20020009875A (en) * 2000-07-27 2002-02-02 최규술 Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
KR20020017164A (en) * 2000-08-29 2002-03-07 김성근 Apparatus and method of producing nanotube
JP2013073231A (en) * 2011-09-27 2013-04-22 Miyuki Tanigawa Spectacles holder preventing spectacles from slipping down

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003097521A1 (en) * 2002-05-17 2003-11-27 Nano Plasma Center Co., Ltd. Inductively coupled plasma reactor for producing nano-powder
CN100439237C (en) * 2002-05-17 2008-12-03 株式会社Npc Inductively coupled plasma reactor for producing nano-powder
US7323655B2 (en) 2002-05-17 2008-01-29 Nano Plasma Center Co., Ltd. Inductively coupled plasma reactor for producing nano-powder
WO2004000727A3 (en) * 2002-06-24 2004-05-06 Commissariat Energie Atomique Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by means of pyrolysis
JP2005530671A (en) * 2002-06-24 2005-10-13 コミツサリア タ レネルジー アトミーク Method and apparatus for vapor deposition of carbon nanotubes or nitrogen doped carbon nanotubes by pyrolysis
FR2841233A1 (en) * 2002-06-24 2003-12-26 Commissariat Energie Atomique METHOD AND DEVICE FOR PYROLYSIS DEPOSITION OF CARBON NANOTUBES
US7879300B2 (en) 2002-06-24 2011-02-01 Commissariat A L'energie Atomique Method and device for depositing carbon nanotubes or nitrogen-doped carbon nanotubes by pyrolysis
JP4781674B2 (en) * 2002-06-24 2011-09-28 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method and apparatus for vapor deposition of carbon nanotubes or nitrogen doped carbon nanotubes by pyrolysis
WO2004007361A3 (en) * 2002-07-16 2004-04-01 Univ Cambridge Tech Method of synthesis of carbon nanomaterials
EP1445236A1 (en) * 2003-02-05 2004-08-11 Université de Liège Method and apparatus for producing carbon nanotubes
WO2004069742A1 (en) * 2003-02-05 2004-08-19 Universite De Liege Method and installation for making carbon nanotubes
US8241602B2 (en) 2003-02-05 2012-08-14 Universite de Liege, Interface Enterprises-Universite Method and installation for the manufacture of carbon nanotubes
US8597587B2 (en) 2003-02-05 2013-12-03 Universite de Liege, Interface Entreprises-Universite Method and installation for the manufacture of carbon nanotubes
CN1300259C (en) * 2005-04-20 2007-02-14 天津大学 Method for preparing nonlinear optical material of linkage nano carbon tubes of polythiophene methylene
KR101981675B1 (en) * 2017-12-11 2019-05-24 한국과학기술연구원 Apparatus for manufacturing CNT and Method of manufacturing CNT using the same

Similar Documents

Publication Publication Date Title
US20200230566A1 (en) Method and device to synthesize boron nitride nanotubes and related nanoparticles
Zahid et al. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review
Gupta et al. Synthesis and hydrogenation behaviour of graphitic nanofibres
US7824649B2 (en) Apparatus and method for synthesizing a single-wall carbon nanotube array
Rümmeli et al. On the graphitization nature of oxides for the formation of carbon nanostructures
EA011588B1 (en) Carbon nanostructures and process for the production of carbon-based nanotubes, nanofibers and nanostructures
Gili et al. Revealing the mechanism of multiwalled carbon nanotube growth on supported nickel nanoparticles by in situ synchrotron X-ray diffraction, density functional theory, and molecular dynamics simulations
KR20060080128A (en) Dehydrogenation of liquid fuel in microchannel catalytic reactor
CN110182788B (en) Device and method for preparing carbon nano tube with high yield
CN103691446A (en) Catalyst taking graphene as carrier and carbon nano-material prepared by catalyst
Xu et al. Evolution of nanoparticles in the gas phase during the floating chemical vapor deposition synthesis of carbon nanotubes
KR20020026663A (en) Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
KR20020025101A (en) mass production of carbon nanotubes by pyrolysis
Boufades et al. One-step synthesis and characterization of carbon nanospheres via natural gas condensate pyrolysis
KR100593423B1 (en) Apparatus for mass production of carbon nanotubes
KR100646221B1 (en) Apparatus and Method for Carbon Nanotubes Production Using a Thermal Plasma Torch
Tsuji et al. Role of hydrogen in catalyst activation for plasma-based synthesis of carbon nanotubes
TWI306834B (en) A method for manufacturing carbonaceous nanofiber
KR101590110B1 (en) Manufacturing apparatus for carbon nano tube
Bae et al. Simultaneous and Continuous Production of Carbon Nanotubes and Hydrogen by Catalytic CH4 Decomposition in a Pressurized Fluidized-Bed Reactor
KR100450027B1 (en) Apparatus for Synthesis of Carbon Nanotubes having High-temperature Pre-treatment Part
US20200149195A1 (en) Method for Producing Cables Made of Aligned Carbon Nanotubes
KR100793172B1 (en) Apparatus and method for production of carbon-nano-tube
KR100556644B1 (en) Apparatus and process for synthesis of carbon nanotubes or carbon nanofibers using flames
KR101956920B1 (en) A carbon hybrid structure comprising a graphene layer and hollow carbon tubes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application