WO2007010057A1 - Novel multitube system for the gas-phase synthesis of carbon nanotubes - Google Patents

Novel multitube system for the gas-phase synthesis of carbon nanotubes Download PDF

Info

Publication number
WO2007010057A1
WO2007010057A1 PCT/ES2005/070103 ES2005070103W WO2007010057A1 WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1 ES 2005070103 W ES2005070103 W ES 2005070103W WO 2007010057 A1 WO2007010057 A1 WO 2007010057A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
carbon nanotubes
nanotubes
gas
phase synthesis
Prior art date
Application number
PCT/ES2005/070103
Other languages
Spanish (es)
French (fr)
Inventor
Antonio Guerrero Ruiz
Vicenta MUÑOZ ANDRES
Daniela Martin Nevskaia
Patricia Sampedro Tejedor
Inmaculada Rodriguez Ramos
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Nacional De Educacion Distancia (U.N.E.D.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Nacional De Educacion Distancia (U.N.E.D.) filed Critical Consejo Superior De Investigaciones Científicas
Priority to PCT/ES2005/070103 priority Critical patent/WO2007010057A1/en
Publication of WO2007010057A1 publication Critical patent/WO2007010057A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/2425Tubular reactors in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/30Purity

Definitions

  • the present invention relates to the method of synthesis of carbon nanotubes and, more specifically to the synthesis of nanotubes of high purity using the thermal method of chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • Carbon nanotubes are cylindrical structures that are formed by hexagons of carbon atoms, which are repeated giving rise to a honeycomb structure.
  • the diameter of these nanotubes can vary between several angstroms to several nanometers. Because they have very special properties, such as: low density, high flexibility, high surface area, high thermal conductivity, high electrical conductivity, high resistance; This type of materials is very attractive for applications such as: composite materials, microelectronic components, fuel cells, radio communications, flat devices, lithium cells, etc.
  • Existing nanotube synthesis techniques include the electric arc method (DS Bethune et al., Nature, 363, 605, 1993; US Pat. No.
  • the nanotubes obtained by the electric arc method and by laser vaporization are not able to control the diameter or length of the carbon nanotubes. They also give rise to low yields and generate a large amount of amorphous coal. Therefore, it is necessary to resort to the use of complicated purification procedures. Another drawback of this type of processes is that they require a manufacturing temperature that exceeds 1000 0 C. On the other hand, it is widely recognized that gas phase deposition methods allow the production of nanotubes at lower temperatures and with high performance .
  • the thermal method of chemical vapor deposition uses a metallic catalyst supported on a porous material, inert to the temperatures used, such as: silica, magnesium oxide, alumina or zeolite.
  • the most frequently used metals are: Fe, Co or Ni; although nanotubes have also been synthesized with Cu, Mo, Mn, Zn or Pt.
  • the use of supported catalysts has the disadvantage of having to remove the support by means of purification processes.
  • filling the pores of the substrate with the metal catalyst is complicated and time consuming.
  • the plasma CVD method has the disadvantage that carbon nanotubes can be damaged as a result of the impacts produced by the plasma.
  • the gas phase synthesis method, as well as the CVD method results in the formation of nanotubes at lower temperatures and with high performance, also presenting the additional advantage of not requiring purification processes to eliminate the catalyst substrate.
  • the objective of the present invention is to design a system for manufacturing high purity nanotubes by gas phase synthesis in a single step.
  • Another objective of the present invention is the use of a multitubular reactor that maximizes the deposition surface and, therefore, the production of carbon nanotubes.
  • the system consists of a reaction tube, introduced in a horizontal oven, which is fed with the mixture of reagents and inert and, which has an outlet of the vaporized gases (Figure 1). Inside the reaction tube is the multitubular reactor composed of a tube of smaller diameter than the reactor, which in turn contains a variable number of hollow tubes (Figure 2).
  • the length of the multitubular reactor is chosen such that it is within the stable working temperature zone of the oven.
  • the synthesis of nanotubes is carried out at atmospheric pressure in the temperature range of 650 0 C to 1000 0 C, introducing a mixture of the carbon source compound, a reducing reagent, the catalyst and the transport gas into the multitubular reactor.
  • the flow of the transport gas varies between 350 and 2000 cm 3 min "1 , and those of the carbon source compound and the reducing compound between 5 and 50 cm 3 min " 1 .
  • Figure 1 shows the total scheme of the system used for the synthesis of nanotubes.
  • the system consists of an oven (1) in which a gas conduit tube (2) is introduced, which has an inlet (3) of reagents and an outlet (4) of products.
  • the multitubular reactor (5) is placed inside the reactor.
  • Figure 2 shows a multitubular reactor detail.
  • a feed mixture that could consist of: 40 Cm 3 HUn "1 of acetylene (carbon source), 0.3 is introduced into the reactor at a temperature that could be 750 0 C Cm 3 HUn "1 of iron pentacarbonyl (precursor), 40 cm 3 min "! Of hydrogen (reducer) and 2000 cm 3 min "! of nitrogen (carrier gas).
  • the nanotubes formed ( Figure 3) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is greater than 2% by weight of pure product, per step of acetylene.
  • a feed mixture that could consist of: 30 cm 3 min "1 of acetylene (carbon source), 0.05 g. Of ferrocene (precursor), 30 cm is introduced into the reactor at a temperature that could be 700 0 C 3 min "1 of hydrogen (reducer) and 1800 cm 3 min " 1 of nitrogen (carrier gas).
  • the nanotubes formed ( Figure 4) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is also greater than 2% by weight of pure product, per step of acetylene.

Abstract

The invention relates to a novel multi-tube system for the gas-phase synthesis of carbon nanotubes. The purpose of the invention is to design a production-maximising system for the production of high-purity nanotubes, involving one-step gas-phase synthesis. The invention comprises a reaction system which is introduced into a horizontal oven which is supplied with the mixture of reactives and inerts and which is equipped with an outlet for vaporised gases. The reaction system is equipped internally with the multitube reactor comprising a tube which has a smaller diameter than that of the reactor and which, in turn, contains a variable number of hollow tubes. The length of the multitube reactor is selected such that it is within the stable operating temperature area of the oven.

Description

TÍTULOTITLE
NUEVO SISTEMA MULTITUBULAR PARA LA SÍNTESIS DE NANOTUBOS DE CARBONO EN FASE GASNEW MULTITUBULAR SYSTEM FOR THE SYNTHESIS OF CARBON NANOTUBES IN THE GAS PHASE
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La presente invención se refiere al método de síntesis de nanotubos de carbono y, más concretamente a la síntesis de nanotubos de alta pureza usando el método térmico de deposición química en fase vapor (CVD).The present invention relates to the method of synthesis of carbon nanotubes and, more specifically to the synthesis of nanotubes of high purity using the thermal method of chemical vapor deposition (CVD).
ESTADO DE LA TÉCNICASTATE OF THE TECHNIQUE
Los nanotubos de carbón son estructuras cilindricas que están formadas por hexágonos de átomos de carbono, los cuales se repiten dando lugar a una estructura de panal de abeja. El diámetro de estos nanotubos puede variar entre varios angstroms a varios nanometros. Debido a que tienen unas propiedades muy especiales, como: una baja densidad, una alta flexibilidad, alta área superficial, alta conductividad térmica, alta conductividad eléctrica, alta resistencia; este tipo de materiales resulta muy atractivo para aplicaciones como: materiales compuestos, componentes microelectrónicos, pilas de combustible, comunicaciones de radio, dispositivos planos, células de litio, etc. Las técnicas de síntesis de nanotubos existentes incluyen el método del arco eléctrico (D. S. Bethune y col., Nature, 363, 605, 1993; U. S. Pat. N° 5,424,054), la vaporización con láser (R. E. Smally y col., Science, 273, 483, 1996), la síntesis en fase gas (R. Andrews y col., Chem. Phys. Lett, 303, 468, 1999), el método térmico de deposición química en fase vapor (CVD) (W. Z. Li y col., Science, 274, 1701, 1995; C. E. Zinder y col., W. O. Pat. N° 089/07163), el método de CVD de plasma (Z. F. Ren y col., Science, 282, 1105, 1998; O. Smiljanic y col., WO Pat N° 03095362, 2003).Carbon nanotubes are cylindrical structures that are formed by hexagons of carbon atoms, which are repeated giving rise to a honeycomb structure. The diameter of these nanotubes can vary between several angstroms to several nanometers. Because they have very special properties, such as: low density, high flexibility, high surface area, high thermal conductivity, high electrical conductivity, high resistance; This type of materials is very attractive for applications such as: composite materials, microelectronic components, fuel cells, radio communications, flat devices, lithium cells, etc. Existing nanotube synthesis techniques include the electric arc method (DS Bethune et al., Nature, 363, 605, 1993; US Pat. No. 5,424,054), laser vaporization (RE Smally et al., Science, 273 , 483, 1996), gas phase synthesis (R. Andrews et al., Chem. Phys. Lett, 303, 468, 1999), the thermal method of chemical vapor deposition (CVD) (WZ Li et al. , Science, 274, 1701, 1995; CE Zinder et al., WO Pat. No. 089/07163), the method of plasma CVD (ZF Ren et al., Science, 282, 1105, 1998; O. Smiljanic and col., WO Pat No. 03095362, 2003).
Los nanotubos obtenidos por el método del arco eléctrico y mediante vaporización con láser no son capaces de controlar el diámetro o la longitud de los nanotubos de carbón. Además dan lugar a bajos rendimientos y generan una gran cantidad de carbón amorfo. Por tanto, es necesario recurrir a la utilización de complicados procedimientos de purificación. Otro inconveniente de este tipo de procesos es que requieren una temperatura de fabricación que excede los 10000C. Por otra parte, está ampliamente reconocido que los métodos de deposición en fase gas posibilitan la producción de nanotubos a temperaturas más reducidas y con un alto rendimiento. El método térmico de deposición química en fase vapor usa un catalizador metálico soportado sobre un material poroso, inerte a las temperaturas utilizadas, como: sílice, óxido de magnesio, alúmina o zeolita. Los metales utilizados con mayor frecuencia son: Fe, Co ó Ni; aunque también se han sintetizado nanotubos con Cu, Mo, Mn, Zn ó Pt. Sin embargo, la utilización de catalizadores soportados presenta el inconveniente de tener que eliminar el soporte mediante procesos de purificación. Además el llenado de los poros del sustrato con el catalizador metálico es complicado y requiere tiempo. El método de CVD de plasma tiene la desventaja de que los nanotubos de carbón pueden resultar dañados como consecuencia de los impactos producidos por el plasma. En cambio, el método de síntesis en fase gas al igual que el método CVD, da lugar a la formación de nanotubos a temperaturas más reducidas y con un alto rendimiento, presentando además, la ventaja adicional de no requerir de procesos de purificación para eliminar el sustrato del catalizador.The nanotubes obtained by the electric arc method and by laser vaporization are not able to control the diameter or length of the carbon nanotubes. They also give rise to low yields and generate a large amount of amorphous coal. Therefore, it is necessary to resort to the use of complicated purification procedures. Another drawback of this type of processes is that they require a manufacturing temperature that exceeds 1000 0 C. On the other hand, it is widely recognized that gas phase deposition methods allow the production of nanotubes at lower temperatures and with high performance . The thermal method of chemical vapor deposition uses a metallic catalyst supported on a porous material, inert to the temperatures used, such as: silica, magnesium oxide, alumina or zeolite. The most frequently used metals are: Fe, Co or Ni; although nanotubes have also been synthesized with Cu, Mo, Mn, Zn or Pt. However, the use of supported catalysts has the disadvantage of having to remove the support by means of purification processes. In addition, filling the pores of the substrate with the metal catalyst is complicated and time consuming. The plasma CVD method has the disadvantage that carbon nanotubes can be damaged as a result of the impacts produced by the plasma. On the other hand, the gas phase synthesis method, as well as the CVD method, results in the formation of nanotubes at lower temperatures and with high performance, also presenting the additional advantage of not requiring purification processes to eliminate the catalyst substrate.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
El objetivo de la presente invención es diseñar un sistema para la fabricación de nanotubos de alta pureza mediante la síntesis en fase gas en un solo paso. Otro objetivo de la presente invención es la utilización de un reactor multitubular que maximice la superficie de deposición y, por tanto la producción de nanotubos de carbono. El sistema consta de un tubo de reacción, introducido en un horno horizontal, que se alimenta con la mezcla de reactivos e inertes y, el cual tiene una salida de los gases vaporizados (Figura 1). Dentro del tubo de reacción se halla el reactor multitubular compuesto por un tubo de diámetro inferior al del reactor, el cual a su vez contiene un número variable de tubos huecos (Figura 2). La longitud del reactor multitubular se escoge de tal forma que esté dentro de la zona estable de temperatura de trabajo del horno.The objective of the present invention is to design a system for manufacturing high purity nanotubes by gas phase synthesis in a single step. Another objective of the present invention is the use of a multitubular reactor that maximizes the deposition surface and, therefore, the production of carbon nanotubes. The system consists of a reaction tube, introduced in a horizontal oven, which is fed with the mixture of reagents and inert and, which has an outlet of the vaporized gases (Figure 1). Inside the reaction tube is the multitubular reactor composed of a tube of smaller diameter than the reactor, which in turn contains a variable number of hollow tubes (Figure 2). The length of the multitubular reactor is chosen such that it is within the stable working temperature zone of the oven.
La síntesis de nanotubos se realiza a presión atmosférica en el rango de temperaturas de 6500C a 10000C, introduciendo una mezcla del compuesto fuente de carbono, un reactivo reductor, el catalizador y el gas de transporte dentro del reactor multitubular. El flujo del gas de transporte varia entre 350 y 2000 cm3 min"1, y los del compuesto fuente de carbono y el compuesto reductor entre 5 y 50 cm3 min"1. DESCRIPCIÓN DE LOS DIBUJOSThe synthesis of nanotubes is carried out at atmospheric pressure in the temperature range of 650 0 C to 1000 0 C, introducing a mixture of the carbon source compound, a reducing reagent, the catalyst and the transport gas into the multitubular reactor. The flow of the transport gas varies between 350 and 2000 cm 3 min "1 , and those of the carbon source compound and the reducing compound between 5 and 50 cm 3 min " 1 . DESCRIPTION OF THE DRAWINGS
La Figura 1 muestra el esquema total del sistema utilizado para la síntesis de nanotubos. El sistema consiste de un horno (1) en el que se introduce un tubo de conducción de gases (2), el cual tiene una entrada (3) de reactivos y una salida (4) de productos. Dentro del reactor se coloca el reactor multitubular (5).Figure 1 shows the total scheme of the system used for the synthesis of nanotubes. The system consists of an oven (1) in which a gas conduit tube (2) is introduced, which has an inlet (3) of reagents and an outlet (4) of products. The multitubular reactor (5) is placed inside the reactor.
La Figura 2 muestra un detalle reactor multitubular.Figure 2 shows a multitubular reactor detail.
MODO DE REALIZACIÓNMODE OF REALIZATION
La presente invención se ilustra adicionalmente mediante el siguiente ejemplo, el cual no pretende ser limitativo de su alcance.The present invention is further illustrated by the following example, which is not intended to limit its scope.
Ejemplo 1Example 1
Para realizar la síntesis de los nanotubos de carbón, se introduce en el reactor, a una temperatura que podría ser 7500C, una mezcla de alimentación que podría consistir en: 40 Cm3 HUn"1 de acetileno (fuente de carbono), 0.3 Cm3 HUn"1 de pentacarbonilo de hierro (precursor), 40 cm3 min "! de hidrógeno (reductor) y 2000 cm3 min "! de nitrógeno (gas portador). Los nanotubos formados (Figura 3) se recogen en el reactor multitubular. La pureza de los nanotubos obtenidos es mayor de un 90%. En estas condiciones, el rendimiento obtenido con el reactor multitubular es superior al 2% en peso de producto puro, por paso de acetileno.To perform the synthesis of the carbon nanotubes, a feed mixture that could consist of: 40 Cm 3 HUn "1 of acetylene (carbon source), 0.3 is introduced into the reactor at a temperature that could be 750 0 C Cm 3 HUn "1 of iron pentacarbonyl (precursor), 40 cm 3 min "! Of hydrogen (reducer) and 2000 cm 3 min "! of nitrogen (carrier gas). The nanotubes formed (Figure 3) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is greater than 2% by weight of pure product, per step of acetylene.
Ejemplo 2Example 2
Se introduce en el reactor, a una temperatura que podría ser 7000C, una mezcla de alimentación que podría consistir en: 30 cm3 min"1 de acetileno (fuente de carbono), 0.05 g. de ferroceno (precursor), 30 cm3 min"1 de hidrógeno (reductor) y 1800 cm3 min"1 de nitrógeno (gas portador). Los nanotubos formados (Figura 4) se recogen en el reactor multitubular. La pureza de los nanotubos obtenidos es mayor de un 90%. En estas condiciones, el rendimiento obtenido con el reactor multitubular es también superior al 2% en peso de producto puro, por paso de acetileno. A feed mixture that could consist of: 30 cm 3 min "1 of acetylene (carbon source), 0.05 g. Of ferrocene (precursor), 30 cm is introduced into the reactor at a temperature that could be 700 0 C 3 min "1 of hydrogen (reducer) and 1800 cm 3 min " 1 of nitrogen (carrier gas). The nanotubes formed (Figure 4) are collected in the multitubular reactor. The purity of the nanotubes obtained is greater than 90%. Under these conditions, the yield obtained with the multitubular reactor is also greater than 2% by weight of pure product, per step of acetylene.

Claims

REIVINDICACIONES
1. Reactor multitubular para la síntesis de nanotubos de carbón caracterizado porque está formado por un tubo de diámetro exterior ligeramente inferior al del horno que lo contiene, y de una longitud tal que se ajuste a la zona de temperatura estable de trabajo. El tubo a su vez, contiene el mayor número de tubos huecos posibles para maximizar la superficie de deposición de los nanotubos. La longitud de los tubos es igual a la del reactor.1. Multitubular reactor for the synthesis of carbon nanotubes characterized in that it is formed by a tube with an outer diameter slightly smaller than the furnace that contains it, and of a length such that it adjusts to the stable working temperature zone. The tube, in turn, contains as many hollow tubes as possible to maximize the deposition surface of the nanotubes. The length of the tubes is equal to that of the reactor.
2. Control del diámetro de los nanotubos de carbono mediante el uso de diferentes precursores catalíticos en la síntesis. En todos los casos el reactor donde quedan depositados los nanotubos de carbono es el reactor multitubular, según la reivindicación 1, con el fin de conseguir el máximo rendimiento por peso. 2. Control of the diameter of carbon nanotubes by using different catalytic precursors in the synthesis. In all cases the reactor where the carbon nanotubes are deposited is the multitubular reactor, according to claim 1, in order to achieve maximum weight yield.
PCT/ES2005/070103 2005-07-15 2005-07-15 Novel multitube system for the gas-phase synthesis of carbon nanotubes WO2007010057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070103 WO2007010057A1 (en) 2005-07-15 2005-07-15 Novel multitube system for the gas-phase synthesis of carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2005/070103 WO2007010057A1 (en) 2005-07-15 2005-07-15 Novel multitube system for the gas-phase synthesis of carbon nanotubes

Publications (1)

Publication Number Publication Date
WO2007010057A1 true WO2007010057A1 (en) 2007-01-25

Family

ID=37668454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070103 WO2007010057A1 (en) 2005-07-15 2005-07-15 Novel multitube system for the gas-phase synthesis of carbon nanotubes

Country Status (1)

Country Link
WO (1) WO2007010057A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044278A1 (en) * 1996-05-22 1997-11-27 Yeda Research And Development Co. Ltd. Bulk synthesis of inorganic fullerene-like structures of metal chalcogenides
WO2000026138A1 (en) * 1998-11-03 2000-05-11 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
US20020102203A1 (en) * 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
WO2004035881A2 (en) * 2002-10-18 2004-04-29 Jeong-Ku Heo Single-walled carbon nanotube synthesis method and apparatus
US20050142059A1 (en) * 2003-03-05 2005-06-30 Kim Hee Y. Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997044278A1 (en) * 1996-05-22 1997-11-27 Yeda Research And Development Co. Ltd. Bulk synthesis of inorganic fullerene-like structures of metal chalcogenides
WO2000026138A1 (en) * 1998-11-03 2000-05-11 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
US20040223901A1 (en) * 1998-11-03 2004-11-11 William Marsh Rice University Single-wall carbon nanotubes from high pressure CO
US20020102203A1 (en) * 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
WO2004035881A2 (en) * 2002-10-18 2004-04-29 Jeong-Ku Heo Single-walled carbon nanotube synthesis method and apparatus
US20050142059A1 (en) * 2003-03-05 2005-06-30 Kim Hee Y. Method for continuous preparation of nanometer-sized hydrous zirconia sol using microwave

Similar Documents

Publication Publication Date Title
KR101460373B1 (en) Method for the production of carbon nanotubes in a fluidized bed
Kim et al. Large-scale production of single-walled carbon nanotubes by induction thermal plasma
JP6389824B2 (en) Reactor and method for producing solid carbon material
ES2351845T3 (en) CARBON NANOTUBES FUNCTIONED WITH FULLERENS.
US7504570B2 (en) Method of manufacturing carbon nanotubes
JP6328611B2 (en) Method and structure for reducing carbon oxides with non-ferrous catalysts
Louis et al. High yield synthesis of multi-walled carbon nanotubes by catalytic decomposition of ethane over iron supported on alumina catalyst
Allaedini et al. Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology
US20050118090A1 (en) Plasma synthesis of hollow nanostructures
JP2009528238A (en) Formation of carbon nanotubes
KR102388564B1 (en) Carbon nanotube synthesis in a fluidized bed reactor
JP2004292231A (en) Production process of nanocarbon material
Lu et al. Catalytic growth of carbon nanotubes through CHNO explosive detonation
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
WO2013109310A1 (en) System and method for producing hydrogen and a carbon nanoproduct
CN106794991A (en) The purification process of CNT
RU2338686C1 (en) Method of obtaining carbon nanotubes
Shukrullah et al. Synthesis of MWCNT Forests with Alumina-Supported Fe 2 O 3 Catalyst by Using a Floating Catalyst Chemical Vapor Deposition Technique
JP2007261895A (en) Method and apparatus for manufacturing carbon nanotube
WO2007010057A1 (en) Novel multitube system for the gas-phase synthesis of carbon nanotubes
WO2022047600A1 (en) Method for preparing multi-walled carbon nanotubes
Abdulkareem et al. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method
JP5036564B2 (en) Method for producing platelet-type slit vapor-grown carbon fiber
WO2018123796A1 (en) Method for producing single-walled carbon nanotube-containing composition
WO2023190783A1 (en) Production method for carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05774365

Country of ref document: EP

Kind code of ref document: A1