KR101870617B1 - 형상화 연마 입자들을 포함하는 연마 물품 - Google Patents

형상화 연마 입자들을 포함하는 연마 물품 Download PDF

Info

Publication number
KR101870617B1
KR101870617B1 KR1020167019812A KR20167019812A KR101870617B1 KR 101870617 B1 KR101870617 B1 KR 101870617B1 KR 1020167019812 A KR1020167019812 A KR 1020167019812A KR 20167019812 A KR20167019812 A KR 20167019812A KR 101870617 B1 KR101870617 B1 KR 101870617B1
Authority
KR
South Korea
Prior art keywords
less
abrasive particles
item
shaped abrasive
particles
Prior art date
Application number
KR1020167019812A
Other languages
English (en)
Other versions
KR20160101168A (ko
Inventor
수자타 아옌가
Original Assignee
생-고뱅 어브레이시브즈, 인코포레이티드
생-고벵 아브라시프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 생-고뱅 어브레이시브즈, 인코포레이티드, 생-고벵 아브라시프 filed Critical 생-고뱅 어브레이시브즈, 인코포레이티드
Publication of KR20160101168A publication Critical patent/KR20160101168A/ko
Application granted granted Critical
Publication of KR101870617B1 publication Critical patent/KR101870617B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • B24D11/001Manufacture of flexible abrasive materials
    • B24D11/005Making abrasive webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

고정 연마 물품은 연마 입자들의 블렌드를 포함하고 이는 제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자, 제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 포함하고, 연마 입자들의 블렌드는 제1 함량의 제1 유형의 형상화 연마 입자들 및 제2 함량의 제2 유형의 형상화 연마 입자를 포함하고, 제1 함량은 제2 함량과 비교할 때 상이하다.

Description

형상화 연마 입자들을 포함하는 연마 물품{ABRASIVE ARTICLE INCLUDING SHAPED ABRASIVE PARTICLES}
본 발명은 연마물품들, 특히, 형상화 연마 입자들을 포함하는 연마 물품들에 관한 것이다.
연마 입자들 및 연마입자들로 제조되는 연마 물품들은 연삭(grinding), 다듬질(finishing) 및 폴리싱(polishing)을 포함하는 다양한 물질의 제거 작업에 유용하다. 연마재의 유형에 따라 그러한 연마 입자는 상품 제조에서 다양한 재료 및 표면의 성형 또는 연삭에 유용할 수 있다. 삼각형으로 성형된 연마 입자들 및 그러한 물체를 포함하는 연마 물품과 같이, 특정한 기하학적 구조를 가지고 있는 특정한 유형의 연마입자들이 현재까지 제조되었다. 예를 들면, 미국 특허 번호 제5,201,916호, 제5,366,523호 및 제5,984,988호 참조.
소정의 형상을 가지는 연마입자들을 생산하는 데 이용되었던 세 가지 기본 기술은 (1) 용융, (2) 소결, 및 (3) 화학 세라믹이다. 용융 과정에서, 연마입자들은, 표면이 조각될 수 있거나 조각될 수 없는 냉각 롤러, 용융된 재료가 부어지는 주형, 또는 산화알루미늄 용융물에 침지된 히트 싱크 물질에 의해, 성형될 수 있다. 예를들면, 미국 특허 번호 제3,377,660호 참고 (로에서 나오는 용융 연마재를 냉각 회전 주조 실린더로 유동시키고, 신속하게 고체화하여 얇은 반고체 만곡 시트를 형성하고, 가압롤로 반고체 재료를 조밀화한 후, 급속 구동 냉각 컨베이어로 반고체 재료 스트립을 실린더로부터 곡률 반대 방향으로 당겨 균열시키는 단계들을 포함한 공정 개시).
소결 과정에서는, 직경이 10마이크로미터까지인 입자 크기의 내화 분말로부터 연마 입자들이 형성될 수 있다. 윤활제 및 적절한 용매 예를들면 물과 함께, 바인더가 분말에 첨가되어 혼합물을 형성한다. 생성된 혼합물 또는 슬러리를 다양한 길이와 직경의 판상체 또는 로드로 성형될 수 있다. 예를들면, 미국 특허 번호 제3,079,242호 참고 (소결 보크사이트 재료로부터 연마입자들 제조방법을 개시하고, 이는 (1) 재료를 미세 분말화하는 단계 (2) 정압 하에서 압축 성형하여 상기 분말들의 미세입자들을 입자 크기의 응집체로 성형하는 단계 및 (3) 입자 응집체를 융점 이하에서 소결하여 입자들에 제한적인 재결정을 유동하는 단계를 포함하고, 이에 따라 크기를 가지는 연마입자들이 직접 제조).
화학 세라믹 기술은, 선택적으로 다른 금속산화물 전구체 용액과의 혼합물에서 콜로이드 분산액 또는 히드로졸 (간혹 졸(sol)이라 함)을 성분들의 유동성을 보유하는 겔 또는 임의의 기타 물리적 상태로 전환하는 단계, 건조 단계, 및 연소하여 세라믹 물질을 획득하는 단계를 수반한다. 예를들면, 미국 특허 번호 제4,744,802호 및 제4,848,041호 참고.
그러나, 산업계에서는 연마입자들, 및 연마입자들을 이용하는 연마물품들의 성능, 수명 및 효율 개선에 대한 필요성이 여전하다.
고정 연마 물품은 제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자, 제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 함유한 연마 입자들의 블렌드를 포함한다.
고정 연마 물품은 제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자, 제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 함유한 연마 입자들의 블렌드를 포함하고, 고정 연마 물품의 스테인리스강 수명 (stainless steel lifespan)은 적어도 약 11 in3이다.
가공물로부터 재료를 제거하는 방법은 제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자, 제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 함유한 연마 입자들의 블렌드를 포함하는 연마 물품을 이용한다.
첨부되는 도면을 참고함으로써, 본 개시내용은 더 잘 이해될 수 있고, 이의 많은 특징들과 장점들이 당해 분야에서 통상의 지식을 가진 자에게 분명해질 수 있다.
도 1A는 실시태양에 의한 입자 재료 형성 시스템 일부를 도시한 것이다.
도 1B는 실시태양에 의한 입자 재료 형성 도 1A 시스템 일부를 도시한 것이다.
도 2는 실시태양에 의한 입자 재료 형성 시스템 일부를 도시한 것이다.
도 3A는 실시태양에 의한 형상화 연마입자의 사시도이다
도 3B는 도 3A 형상화 연마입자의 단면도이다.
도 4는 실시태양에 의한 형상화 연마입자 측면도 및 플래싱 비율을 도시한 것이다.
도 5는 실시태양에 의한 코팅 연마물품 일부에 대한 단면도이다.
도 6은 실시태양에 의한 코팅 연마물품 일부에 대한 단면도이다.
도 7은 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 8A는 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 8B는 실시태양에 의한 코팅 연마물품 일부에 대한 사시도이다.
도 9는 실시태양에 의한 코팅 연마물품 일부에 대한 사시도이다.
도 10은 실시태양에 의한 코팅 연마물품 일부에 대한 평면도이다.
도 11은 연삭비에너지 (specific grinding energy) 대 본원 실시태양에 상응하는 샘플 및 2종의 종래 샘플들에 대하여 제거된 누적 재료의 도표이다.
도 12는 지지판 (backing)의 형상화 연마입자들 배향을 분석하기 위하여 사용된 실시태양에 의한 코팅 연마재 일부에 대한 사진들이다.
다음은 연마 물품에 관한 것이다. 본원의 방법은 형상화 연마 입자들 형성 및 형상화 연마 입자들을 포함한 연마 물품 이용에 적용된다. 형상화 연마 입자들은 예를들면 코팅 연마재, 결합 연마재, 자유 연마재, 및 이들 조합을 포함한 다양한 분야에서 적용된다. 형상화 연마 입자들에 대한 다양한 기타 용도가 유도될 수 있다.
형상화 연마 입자들
다양한 방법들로 형상화 연마 입자들을 얻는다. 입자들은 상업적 구입처에서 입수되거나 또는 제작될 수 있다. 제한되지 않지만, 스크린-인쇄, 몰딩, 압축, 캐스팅, 절편화, 절단, 다이싱, 펀칭, 건조, 경화, 적층, 코팅, 압출, 롤링, 및 이들의 조합을 포함한 일부 적합한 공정으로 형상화 연마 입자들을 제작할 수 있다.
도 1A는 하나의 비-제한적 실시태양에 의한 형상화 연마입자 형성을 위한 시스템 (150)을 도시한 것이다. 형상화 연마입자들 형성 공정은 먼저 세라믹 재료 및 액체를 포함한 혼합물 (101) 형성 단계로 개시된다. 특히, 혼합물 (101)은 세라믹 분말 재료 및 액체로 형성되는 겔일 수 있고, 겔은 미가공 (green) (즉, 미소결) 상태에서도 실질적으로 주어진 형상을 유지할 수 있는 능력을 가지는 형상-안정 재료로 특정된다. 실시태양에 의하면, 겔은 개별 입자들의 일체적 네트워크로서 세라믹 분말 재료로 형성된다.
혼합물 (101)은 소정 함량의 고체 재료, 액체 재료, 및 첨가제들을 함유하여 본원에 상세하게 설명되는 공정에서 사용하기에 적합한 유변학적 특성들을 가진다. 즉, 소정의 실시예들에서, 혼합물은 소정의 점도, 특히, 본원에 기재된 공정으로 형성될 수 있는 치수적으로 안정한 재료 상 (phase)을 형성하기에 적합한 유변학적 특성들을 가진다. 치수적으로 안정한 재료 상이란 특정 형상을 가지고 형성 이후 적어도 공정 일부에서 이러한 형상이 실질적으로 유지될 수 있는 재료이다. 소정의 예들에서, 형상은 이후 공정에서 유지되어, 형성 공정에서 제공된 초기 형상은 최종-형성 물체 (object)에 존재한다.
혼합물 (101)은 특정 함량의 고체 재료, 예컨대 세라믹 분말 재료를 가지도록 형성된다. 예를들면, 일 실시태양에서, 혼합물 (101)의 고체 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 25 wt%, 예컨대 적어도 약 35 wt%, 또는 적어도 약 38 wt%이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 혼합물 (101)의 고체 함량은 약 75 wt% 이하 예컨대 약 70 wt% 이하, 약 65 wt% 이하, 약 55 wt% 이하, 약 45 wt% 이하, 또는 약 42 wt% 이하이다. 혼합물 (101) 재료 중 고체 함량은 상기 임의의 최소 내지 최대 백분율 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 따르면, 세라믹 분말재료는 산화물, 질화물, 탄화물, 붕화물, 산탄화물, 산질화물, 및 이들의 조합을 포함한다. 특정한 경우, 세라믹 재료는 알루미나를 포함한다. 더욱 상세하게는, 세라믹 재료는 알파 알루미나 전구체인 베마이트 재료를 포함한다. 용어 “베마이트”는 본원에서 전형적으로 Al2O3 H2O 으로 물 함량이 15% 정도인 베마이트 광물 및, 물 함량이 15% 이상, 예컨대 20-38중량%인 유사(pseudo)베마이트 을 포함한 알루미나 수화물을 표기하도록 일반적으로 사용된다. 베마이트 (유사베마이트 포함)는 특정한 및 차별되는 결정 구조 및 따라서 특유한 X-ray 회절 패턴을 가진다는 것을 이해하여야 한다. 따라서 베마이트는 기타 수화 알루미나들 예컨대 베마이트 미립자 소재 제조에 전구체로 통상 사용되는 ATH (삼수산화알루미늄)를 포함한 기타 알루미늄 재료와는 차별된다.
또한, 혼합물 (101)은 특정 함량의 액상 재료를 가진다. 일부 적합한 액체로는 물을 포함한다. 하나의 실시태양에 따르면, 혼합물 (101)은 혼합물 (101) 중 고체 함량보다 낮은 액체 함량을 가지도록 형성된다. 특정 실시예들에서, 혼합물 (101)의 액체 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 25 wt%이다. 다른 실시예들에서, 혼합물 (101)의 액체 함량은 더 크고, 예컨대 적어도 약 35 wt%, 적어도 약 45 wt%, 적어도 약 50 wt%, 또는 적어도 약 58 wt%이다. 또한, 비-제한적인 적어도 하나의 실시태양에서, 혼합물의 액체 함량은 약 75 wt% 이하, 예컨대 약 70 wt% 이하, 약 65 wt% 이하, 약 62 wt% 이하, 또는 약 60 wt% 이하이다. 혼합물 (101) 중 액체 함량은 상기 임의의 최소 비율 및 최대 비율 사이에 있을 수 있다는 것을 이해하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 형성이 용이하도록, 혼합물 (101)은 특정 저장탄성률을 가진다. 예를들면, 혼합물 (101)의 저장탄성률은 적어도 약 1x104 Pa, 예컨대 적어도 약 4x104 Pa, 또는 적어도 약 5x104 Pa이다. 그러나, 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101)의 저장탄성률은 약 1x107 Pa 이하, 예컨대 약 2x107 Pa 이하이다. 혼합물 (101)의 저장탄성률은 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
저장탄성률은 ARES 또는 AR-G2 회전형 레오미터를 이용한 평행판 시스템 및 펠티어 판 (Peltier plate) 온도 조절시스템으로 측정한다. 시험에 있어서, 혼합물 (101)을 서로 대략 8 mm 이격 설정되는 두 판들 사이 간극으로 압출한다. 간극으로 겔을 압출한 후, 혼합물 (101)이 완전히 판들 사이 간극을 채울 때까지 간극을 형성하는 두 판들 사이 간격을 2 mm로 좁힌다. 과잉 혼합물을 닦아낸 후, 간격을 0.1 mm만큼 좁히고 시험을 개시한다. 시험은 변형 범위가 0.01% 내지 100%, 6.28 rad/s (1 Hz)로 설정된 장비로, 25-mm 평행판을 이용하고 10 포인트 감소할 때 기록하는 진동 변형 일소 시험이다. 시험 완료 후 1 시간 내에, 간격을 다시 0.1 mm만큼 좁히고 시험을 반복한다. 시험은 적어도 6 회 반복한다. 제1 시험은 제2 및 제3 시험들과는 다를 수 있다. 각각의 시편에 대한 제2 및 제3 시험들 결과만을 보고하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록, 혼합물 (101)은 특정 점도를 가진다. 예를들면, 혼합물 (101)의 점도는 적어도 약 4x103 Pa s, 적어도 약 5x103 Pa s, 적어도 약 6x103 Pa s, 적어도 약 8x103 Pa s, 적어도 약 10x103 Pa s, 적어도 약 20x103 Pa s, 적어도 약 30x103 Pa s, 적어도 약 40x103 Pa s, 적어도 약 50x103 Pa s, 적어도 약 60x103 Pa s, 또는 적어도 약 65x103 Pa s이다. 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101)의 점도는 약 100x103 Pa s 이하, 예컨대 약 95x103 Pa s 이하, 약 90x103 Pa s 이하, 또는 약 85x103 Pa s 이하이다. 혼합물 (101) 점도는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다. 점도는 상기된 저장탄성률과 동일한 방법으로 측정된다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록, 혼합물 (101)은 상기 액체와는 구별되는 유기 첨가제들을 포함한 특정 함량의 유기재료들을 가지도록 형성된다. 일부 적합한 유기 첨가제들은 안정화제, 바인더, 예컨대 프룩토오스, 수크로오스, 락토오스, 글루코오스, UV 경화성 수지들, 및 기타 등을 포함한다.
특히, 본원 실시태양들은 종래 성형 공정에서 사용되는 슬러리와 차별되는 혼합물 (101)을 사용한다. 예를들면, 혼합물 (101) 내의 유기재료들, 특히, 임의의 상기 유기 첨가제들의 함량은 혼합물 (101) 내의 다른 성분들과 비교할 때 소량이다. 적어도 하나의 실시태양에서, 혼합물 (101)은 혼합물 (101) 총 중량에 대하여 약 30 wt% 이하의 유기재료를 가지도록 형성된다. 다른 실시예들에서, 유기재료 함량은 더 적고, 예컨대 약 15 wt% 이하, 약 10 wt% 이하, 또는 약 5 wt% 이하이다. 또한, 비-제한적인 적어도 하나의 실시태양에서, 혼합물 (101) 내의 유기재료 함량은 혼합물 (101) 총 중량에 대하여 적어도 약 0.01 wt%, 예컨대 약 0.5 wt%이다. 혼합물 (101) 내의 유기재료 함량은 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
또한, 본원 실시태양에 의한 형상화 연마입자들 처리 및 성형이 용이하도록 혼합물 (101)은 상기 액체와는 구분되는 특정 함량의 산 또는 염기를 가지도록 형성된다. 일부 적합한 산 또는 염기는 질산, 황산, 시트르산, 염소산, 타타르산, 인산, 질산암모늄, 및 구연산암모늄을 포함한다. 질산 첨가제를 사용하는 특정 실시태양에 의하면, 혼합물 (101)은 약 5 미만, 더욱 상세하게는, 적어도 약 2 내지 약 4 pH 이하를 가진다.
도 1A의 시스템 (150)은, 다이 (103)를 포함한다. 도시된 바와 같이, 혼합물 (101)은 다이 (103) 일단에 위치한 다이 개구 (105)를 통해 압출되도록 구성되는 다이 (103) 내부에 제공된다. 더욱 도시된 바와 같이, 압출 단계는 힘 (180) (예컨대 압력)을 혼합물 (101)에 인가하여 혼합물 (101)은 다이 개구 (105)를 통해 용이하게 압출된다. 실시태양에서, 일반적으로 시스템 (150)은 스크린 인쇄 공정으로 칭할 수 있다. 인가 구역 (183)에서 압출되는 동안, 스크린 (151)은 벨트 (109) 일부와 직접 접촉된다. 스크린 인쇄 공정은 다이 (103)로부터 다이 개구 (105)를 통하여 방향 (191)으로 혼합물 (101)을 압출하는 단계를 포함한다. 특히, 스크린 인쇄 공정은 혼합물 (101)이 다이 개구 (105)를 통하여 압출될 때 혼합물 (101)이 스크린 (151)에 있는 개구 (152)내로 강제로 밀릴 수 있는 스크린 (151)을 이용한다.
실시태양에 의한, 압출 과정에서 특정 압력이 적용된다. 예를들면, 압력은 적어도 약 10 kPa, 예컨대 적어도 약 500 kPa이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 압출 과정에서 사용되는 압력은 약 4 MPa 이하이다. 혼합물 (101)을 압출하기 위하여 적용되는 압력은 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 특정 실시예들에서, 피스톤 (199)에 의해 전달되는 압력 균일도는 형상화 연마입자들 처리 및 성형을 개선시킬 수 있다. 특히, 혼합물 (101) 및 다이 (103) 폭에 걸쳐 인가되는 압력을 균일하게 제어함으로써 공정 제어를 개선시킬 수 있고 형상화 연마입자들 치수 특성들을 개선시킬 수 있다.
간략히 도 1B를 참조하면, 스크린 (151) 일부가 도시된다. 도시된 바와 같이, 스크린 (151)은 개구 (152), 상세하게는, 스크린 (151)을 통과하여 연장되는 다수의 개구들 (152)을 포함한다. 실시태양에 의하면, 개구들 (152)은 스크린의 길이 (l) 및 폭 (w)에 의한 평면에서 관찰할 때 2차원 형상을 가진다. 2-차원 형상은 다양한 형상, 예를들면, 다각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 다각형들의 조합인 복잡 형상, 및 이들의 조합을 포함하는. 특정 실시예들에서, 개구들 (152)은 2차원 다각형들 예컨대 삼각, 직사각, 사각, 오각, 육각, 칠각, 팔각, 구각, 십각, 및 이들의 조합을 가진다.
더욱 도시된 바와 같이, 스크린 (151)은 서로에 대하여 특정 방식으로 배향되는 개구들 (152)을 가진다. 도시된 바와 같이 및 하나의 실시태양에 의하면, 각각의 개구 (152)는 서로에 대하여 실질적으로 동일한 방향 및 스크린 표면에 대하여 실질적으로 동일한 방향을 가진다. 예를들면, 각각의 개구 (152)는 스크린 (151) 횡축 (158)을 따라 횡방향으로 연장되는 개구들 (152) 제1 줄 (row, 156)에 대하여 제1 평면 (155)을 이루어는 제1 모서리 (154)를 가진다. 제1 평면 (155)은 스크린 (151) 길이방향 축 (157)에 실질적으로 직교하는 방향으로 연장된다. 그러나, 다른 예들에서, 개구들 (152)은 반드시 서로 동일한 방향을 가질 필요는 없다는 것을 이해하여야 한다.
또한, 개구들 (152) 제1 줄 (156)은 병진이동 방향에 대하여 형상화 연마입자들에 대한 특정 처리 및 형성이 가능하도록 배향된다. 예를들면, 제1 줄 (156)의 제1 평면 (155)이 병진이동 방향 (171)에 대하여 각을 이루도록 개구들 (152)은 스크린 (151)에서 배열된다. 도시된 바와 같이, 제1 평면 (155)은 병진이동 방향 (171)에 실질적으로 직교하는 각을 형성한다. 또한, 일 실시태양에서, 제1 줄 (156)의 제1 평면 (155)은 병진이동 방향에 대하여 예를들면, 예각 또는 둔각을 포함하는 다른 각을 형성하도록 개구들 (152)이 스크린 (151)에 배열될 수 있다는 것을 이해할 수 있다. 또한, 개구들 (152)이 줄로 배열될 필요는 없다는 것을 이해하여야 한다. 개구들 (152)은 스크린 (151)에서 여러 특정한 정렬 분포로 예컨대 2차원 패턴 형상으로 배열될 수 있다. 달리, 개구들은 스크린 (151)에 무작위 방식으로 배치될 수 있다.
도 1A로 돌아가, 혼합물 (101)을 다이 개구 (105)에 통과시키고 혼합물 (101) 일부를 스크린 (151) 개구들 (152)에 밀어넣은 후, 하나 이상의 전구체 형상화 연마입자들 (123)은 스크린 (151) 아래에 놓인 벨트 (109)에 인쇄된다. 특정 실시태양에 의하면, 전구체 형상화 연마입자들 (123)은 실질적으로 개구들 (152) 형상이 복제된 형상을 가진다. 특히, 개구들 (152) 내에서 혼합물 (101)의 평균 체류 시간은 약 2 분 이내, 약 1 분 이내, 약 40 초 이내, 또는 약 20 초 이내가 되도록 혼합물 (101)은 스크린을 신속하게 통과할 수 있다. 특정 비-제한적 실시태양들에서, 혼합물 (101)은 스크린 개구들 (152)를 통과하여 인쇄되는 동안 실질적으로 변경되지 않으므로, 본래 혼합물로부터 성분 함량이 변하지 않고, 스크린 (151) 개구들 (152)에서 현저한 건조 현상은 발생되지 않는다.
또한, 시스템 (151)은 인가 구역 (183) 내에서 하부 스테이지 (198)를 포함한다. 형상화 연마입자들이 성형되는 동안, 벨트 (109)는 적합한 성형 기판을 제공하는 하부 스테이지 (198) 상부로 이동된다. 일 실시태양에 의하면, 하부 스테이지 (198)는 본원 실시태양들에 의한 형상화 연마 입자들 형성에 적합한 예를들면 무기재료 예컨대 금속 또는 금속합금을 포함한 특히 단단한 구성을 포함한다. 또한, 하부 스테이지 (198)는 벨트 (109)와 직접 접촉되고 형상화 연마입자들의 치수 특성들에 대한 제어를 개선할 수 있는 특정 기하구조 및/또는 치수 (예를들면, 편평도, 표면거칠기, 기타 등)를 가지는 상면을 가진다.
시스템 (150) 동작 과정에서, 스크린 (151)은 방향 (153)으로 이동되고 벨트 (109)는, 적어도 인가 구역 (183) 내에서 실질적으로 방향 (153)과 유사한 방향 (110)으로 이동되어, 연속적인 인쇄 작업이 가능하다. 이에 따라, 전구체 형상화 연마입자들 (123)은 벨트 (109) 상에 인쇄되고 추가 처리를 수행하기 위하여 벨트 (109)를 따라 이동된다. 이러한 추가 처리로는 예를들면, 형상화, 다른 재료들 (예를들면, 도펀트 재료) 인가, 건조, 및 기타 등을 포함한 본원의 실시태양들에 기재된 공정들을 포함한다.
일부 실시태양들에서, 혼합물 (101)이 다이 개구 (105)를 통해 압출되는 동안 벨트 (109) 및/또는 스크린 (151)은 이동된다. 시스템 (100)에서 도시된 바와 같이, 혼합물 (101)은 방향 (191)으로 압출된다. 벨트 (109) 및/또는 스크린 (151)의 이동 방향 (110)은 혼합물 (101) 압출 방향 (191)과 각을 이룰 수 있다. 시스템 (100)에서 이동 방향 (110) 및 압출 방향 (191) 간의 각은 실질적으로 직교하는 것으로 도시되지만, 다른 각 예를들면, 예각 또는 둔각이 고려될 수 있다.
벨트 (109) 및/또는 스크린 (151)은 공정이 용이하도록 특정 속도로 이동될 수 있다. 예를들면, 벨트 (109) 및/또는 스크린 (151)은 적어도 약 3 cm/s 속도로 이동된다. 다른 실시태양들에서, 벨트 (109) 및/또는 스크린 (151) 이동 속도는 더욱 빠르고, 예컨대 적어도 약 4 cm/s, 적어도 약 6 cm/s, 적어도 약 8 cm/s, 또는 적어도 약 10 cm/s이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 벨트 (109) 및/또는 스크린 (151)은 약 5 m/s 이하, 약 1 m/s 이하, 또는 약 0.5 m/s 이하로 방향 (110)으로 이동된다. 벨트 (109) 및/또는 스크린 (151)의 이동 속도는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있고 서로 실질적으로 동일한 속도로 이동될 수 있다는 것을 이해하여야 한다. 또한 본원의 실시태양들에 의한 소정의 공정에서, 적합한 처리를 위하여 방향 (191)의 혼합물 (101) 압출 속도와 비교하여 벨트 (109) 이동 속도를 조절할 수 있다.
혼합물 (101)이 다이 개구 (105)를 통과하여 압출된 후, 혼합물 (101)은 다이 (103) 표면에 부착된 칼날 (107) 아래에서 벨트 (109)를 따라 이동된다. 칼날 (107)은 다이 (103) 정면에서 영역을 형성하여 스크린 (151) 개구들 (152) 내로의 혼합물 (101) 이동을 용이하게 한다.
본원에 기재된 전구체 형상화 연마입자들 (123) 및 최종-형성되는 형상화 연마입자들의 특정 형상 형성이 가능하도록 소정의 공정 인자들을 제어한다. 제어 가능한 일부 예시적 공정 인자들은 탈락 거리 (197), 혼합물 점도, 혼합물의 저장 탄성률, 하부 스테이지의 기계적 특성들, 하부 스테이지의 기하구조 또는 치수 특성들, 스크린 두께, 스크린 강성률, 혼합물의 고체 함량, 혼합물의 캐리어 함량, 탈락 각도 (release angle), 이동 속도, 온도, 이형제 함량, 혼합물에 대한 인가 압력, 벨트 속도, 및 이들의 조합을 포함한다.
하나의 실시태양에 의하면, 하나의 특정 공정 인자는 충전 위치 및 탈락 위치 간의 탈락 거리 (197) 제어를 포함한다. 특히, 탈락 거리 (197)는 벨트 (109) 병진이동 방향 (110)에서 측정되는 다이 (103) 일단 및 스크린 (151) 및 벨트 (109) 간의 분리 개시 지점 사이의 거리이다. 하나의 실시태양에 의하면, 탈락 거리 (197)를 제어하면 전구체 형상화 연마입자들 (123) 또는 최종-형성 형상화 연마입자들의 적어도 하나의 치수 특성에 영향을 줄 수 있다. 또한, 탈락 거리 (197)를 제어하면 형상화 연마 입자들의 치수 특성들의 조합 예컨대 제한적이지는 않지만 길이, 폭, 내부 높이 (hi), 내부 높이 편차 (Vhi), 높이 차이, 외형 비율 (profile ratio), 플래싱 지수, 디싱 (dishing) 지수, 경사각, 본원 실시태양들의 치수 특정의 임의의 변형, 및 이들의 조합에 영향을 줄 수 있다.
하나의 실시태양에 의하면, 탈락 거리 (197)는 스크린 (151) 길이보다 짧다. 다른 실시예들에서, 탈락 거리 (197)는 스크린 (151) 폭 이내이다. 또한, 하나의 특정 실시태양에서, 탈락 거리 (197)는 스크린 (151) 개구 (152) 최대 치수의 10배 이내이다. 예를들면, 도 1B에 도시된 바와 같이 개구들 (152)은 삼각형이고, 탈락 거리 (197)는 삼각형을 형성하는개구 (152) 일면의 길이 10배 이내이다. 다른 실시예들에서, 탈락 거리 (197)는 더 짧을 수 있고, 예컨대 약 스크린 (151) 개구 (152) 최대 치수의8 배 이하, 예컨대 약 5 배 이하, 약 3 배 이하, 약 2 배 이하, 또는 심지어는 스크린 (151) 개구 (152) 최대 치수보다 짧을 수 있다.
더욱 상세한 실시예들에서, 탈락 거리 (197)는 약 30 mm 이내, 예컨대 약 20 mm 이내, 또는 약 10 mm 이내이다. 적어도 하나의 실시태양에 있어서, 탈락거리는 실질적으로 0, 상세하게는, 사실상 0이다. 따라서, 혼합물 (101)이 인가 구역 (183) 내에서 개구들에 배치되고 스크린 (151) 및 벨트 (109)는 다이 (103) 일단에서 또는 다이 (103) 일단 전에서 서로 분리될 수 있다.
일 특정 형성 방법에 의하면, 탈락 거리 (197)는 사실상 0이고, 개구들 (152)이 혼합물 (101)로 충전되고 벨트 (109) 및 스크린 (151) 사이에서 분리되는 것이 실질적으로 동시적으로 수행된다. 예를들면, 스크린 (151) 및 벨트 (109)가 다이 (103) 일단을 통과하고 인가 구역 (183)을 나가기 전에, 스크린 (151) 및 벨트 (109) 분리가 개시될 수 있다. 더욱 상세한 실시태양들에서, 스크린 (151) 및 벨트 (109) 분리는 개구들 (152)가 혼합물 (101)로 충전된 후 즉시 인가 구역 (183)을 나가기 전 및 스크린 (151)이 다이 아래에 놓여 있는 동안 개시될 수 있다. 또 다른 실시태양에서, 스크린 (151) 및 벨트 (109) 분리는 혼합물 (101)이 스크린 (151) 개구 (152)에 배치되는 동안 개시될 수 있다. 다른 실시태양에서, 스크린 (151) 및 벨트 (109) 분리는 혼합물 (101)이 스크린 (151) 개구들 (152)에 배치되기 전에 개시될 수 있다. 예를들면, 개구들 (152)이 다이 개구 (105) 아래를 통과하기 전에, 벨트 (109) 및 스크린 (151)은 분리되어 혼합물이 개구들 (152)에 충전되는 동안 벨트 (109) 및 스크린 (151) 사이에 간격 존재할 수 있다.
예를들면, 도 2는, 탈락 거리 (197)가 실질적으로 0 이고 벨트 (109) 및 스크린 (151)이 다이 개구 (105) 아래를 통과하기 전에 벨트 (109) 및 스크린 (151)이 분리가 개시되는 인쇄 동작을 보인다. 더욱 상세하게는, 벨트 (109) 및 스크린 (151)이 인가 구역 (183)에 진입하고 다이 (103) 전면 아래를 통과하면서 벨트 (109) 및 스크린 (151) 탈락이 개시된다. 또한 일부 실시태양들에서, 벨트 (109) 및 스크린 (151)이 인가 구역 (183) (다이 (103) 전면으로 정의)에 진입하기 전에 벨트 (109) 및 스크린 (151) 분리가 발생되어, 탈락거리는 음의 값을 가질 수 있다는 것을 이해하여야 한다.
탈락 거리 (197)를 제어함으로써 개선된 치수 특성들 및 개선된 치수 공차들 (예를들면, 낮은 치수 특성 가변성)을 가지는 형상화 연마입자들 형성 제어가 가능하다. 예를들면, 기타 공정 인자들 제어와 조합하여 탈락 거리 (197)를 감소시키면 내부 높이 (hi)가 더 큰 형상화 연마입자들 형성이 개선될 수 있다.
또한, 도 2에 도시된 바와 같이, 벨트 (109) 표면 및 스크린 (151) 하면 (198) 간의 분리 높이 (196)를 제어함으로써 개선된 치수 특성들 및 개선된 치수 공차들 (예를들면, 낮은 치수 특성 가변성)를 가지는 형상화 연마입자들 형성에 대한 제어가 가능하다. 분리 높이 (196)는 스크린 (151) 두께, 벨트 (109) 및 다이 (103) 사이 거리, 및 이들의 조합과 관련된다. 또한, 전구체 형상화 연마입자들 (123)의 하나 이상의 치수 특성들 (예를들면, 내부 높이)은 분리 높이 (196) 및 스크린 (151) 두께를 조절함으로써 제어될 수 있다. 특정 실시예들에서, 스크린 (151)의 평균 두께는 약 700 미크론 이하, 예컨대 약 690 미크론 이하, 약 680 미크론 이하, 약 670 미크론 이하, 약 650 미크론 이하, 또는 약 640 미크론 이하이다. 또한, 스크린 평균 두께는 적어도 약 100 미크론, 예컨대 적어도 약 300 미크론, 또는 적어도 약 400 미크론이다.
일 실시태양에서 공정 제어는 측정, 계산, 조정, 및 이들의 조합을 포함하는 다단계 공정 제어를 포함한다. 이러한 공정은 공정 인자, 치수 특성, 치수 특성들의 조합, 및 이들의 조합에 적용된다. 예를들면, 일 실시태양에서, 하나 이상의 치수 특성들 측정, 하나 이상의 치수 특성들 측정에 기초한 하나 이상의 값들 계산, 및 하나 이상의 계산 값들에 기초한 하나 이상의 공정 인자들 (예를들면, 탈락 거리 (197)) 조정을 포함한다. 공정 제어, 및 특히 임의의 측정, 계산, 및 조정은 형상화 연마입자들 형성 공정 조작 전, 후 또는 동안에 완료될 수 있다. 하나의 특정 실시태양에서, 제어되는 공정은 연속 공정으로, 하나 이상의 치수 특성들이 측정되고 하나 이상의 공정 인자들이 측정된 치수 특성들에 응답하여 변경된다 (즉, 조정된다). 예를들면, 공정 제어는 치수 특성 예컨대 전구체 형상화 연마입자들 (123)의 높이 차이 측정, 전구체 형상화 연마입자들 (123) 높이 차이값 계산, 및 전구체 형상화 연마입자들 (123) 높이 차이값 변경을 위한 탈락 거리 (197) 변형을 포함한다.
다시 도 1을 참조하면, 혼합물 (101)이 스크린 (151) 개구들 (152) 내부로 압출된 후, 벨트 (109) 및 스크린 (151)은 탈락 구역 (185)으로 이동되고, 여기에서 벨트 (109) 및 스크린 (151)는 분리되어 전구체 형상화 연마입자들 (123)을 형성한다. 실시태양에 의하면, 스크린 (151) 및 벨트 (109)는 탈락 구역 (185) 내에서 특정 탈락 각으로 서로 분리된다.
실제로, 도시된 바와 같이, 전구체 형상화 연마입자들 (123)은 다양한 처리 공정들이 수행되는 일련의 구역들을 통과하도록 이동된다. 일부 적합한 예시적 처리 공정들 건조, 가열, 경화, 반응, 조사 (radiating), 혼합, 교반, 진동, 평탄화, 하소, 소결, 세분화, 체질 (sieving), 도핑, 및 이들의 조합을 포함한다. 하나의 실시태양에 의하면, 전구체 형상화 연마입자들 (123)은 선택적인 형상화 구역 (113)을 통과하도록 이동되고, 여기에서 입자들의 적어도 하나의 외면이 본원 실시태양들에 기재된 바와 같이 형상화될 수 있다. 또한, 전구체 형상화 연마입자들 (123)은 선택적인 인가 구역 (131)을 통과하고, 여기에서 도펀트 재료는 본원 실시태양들에 기재된 바와 같이 입자들의 적어도 하나의 외면에 인가된다. 또한, 전구체 형상화 연마입자들 (123)은 벨트 (109)에서 선택적인 성형-후 구역 (125)을 통과하도록 이동되고, 여기에서 예를들면, 건조를 포함한 다양한 공정들이, 본원 실시태양들에 기재된 바와 같이 전구체 형상화 연마입자들 (123)에 수행된다.
인가 구역 (131)은 하나 이상의 전구체 형상화 연마입자들 (123)의 적어도 하나의 외면에 재료를 인가하기 위하여 적용된다. 실시태양에 의하면, 도펀트 재료가 전구체 형상화 연마입자들 (123)에 인가될 수 있다. 상세하게는, 도 1에 도시된 바와 같이, 인가 구역 (131)은 성형-후 구역 (125) 전에 위치된다. 이에 따라, 도펀트 재료 인가 공정은 전구체 형상화 연마입자들 (123)에서 완료될 수 있다. 그러나, 인가 구역 (131)은 시스템 (100)에서 다른 위치에 배치될 수 있다는 것을 이해하여야 한다. 예를들면, 도펀트 재료 인가 공정은 전구체 형상화 연마입자들 (123) 형성 후에, 특히 성형-후 구역 (125) 뒤에서 완료될 수 있다. 본원에서 더욱 상세하게 기술되는 또 다른 실시예들에서, 도펀트 재료 인가 공정은 전구체 형상화 연마입자들 (123) 형성 공정과 동시에 수행될 수 있다.
인가 구역 (131) 내에서, 도펀트 재료는 예를들면, 분무, 침지, 적층, 함침, 전달, 펀칭, 절단, 압축, 파쇄, 및 임의의 이들의 조합을 포함한 다양한 방법들을 이용하여 인가될 수 있다. 특정 실시예들에서, 인가 구역 (131)은 분무 노즐, 또는 분무 노즐들 (132, 133)의 조합을 이용하여 도펀트 재료를 전구체 형상화 연마입자들 (123)에 분무한다.
실시태양에 의하면, 도펀트 재료 인가는 특정 재료, 예컨대 전구체 인가를 포함한다. 소정의 실시예들에서, 전구체는 최종-형성 형상화 연마입자들에 통합되는 도펀트 재료를 포함하는 염 예컨대 금속염일 수 있다. 예를들면, 금속염은 도펀트 재료에 대한 전구체인 원소 또는 화합물을 포함한다. 염 물질은 액체 형태, 예컨대 염 및 액체 캐리어를 포함하는 분산액일 수 있다는 것을 이해하여야 한다. 염은 질소를 포함하고, 상세하게는, 질산염을 포함할 수 있다. 다른 실시태양들에서, 염은 염화물, 황산염, 인산염, 및 이들의 조합일 수 있다. 일 실시태양에서, 염은 금속 질산염을 포함하고, 상세하게는, 실질적으로 금속 질산염으로 이루어진다.
일 실시태양에서, 도펀트 재료는 원소 또는 화합물 예컨대 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 또는 이들의 조합을 포함한다. 하나의 특정 실시태양에서, 도펀트 재료는 원소 또는 화합물을 포함하고 원소는 예컨대 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 니오븀, 하프늄, 지르코늄, 탄탈, 몰리브덴, 바나듐, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합을 포함한다.
특정 실시예들에서, 도펀트 재료 인가 공정은 적어도 하나의 전구체 형상화 연마입자 (123) 외면 상에 도펀트 재료의 선택적 배치를 포함한다. 예를들면, 도펀트 재료 인가 공정은 도펀트 재료를 전구체 형상화 연마입자들 (123)의 상면 또는 하면에 인가하는 단계를 포함한다. 또 다른 실시태양에서, 전구체 형상화 연마입자들 (123)의 하나 이상의 측면에 도펀트 재료가 인가되도록 처리될 수 있다. 전구체 형상화 연마입자들 (123)의 다양한 외면들에 도펀트 재료를 인가하기 위하여 다양한 방법들이 적용될 수 있다는 것을 이해할 수 있다. 예를들면, 분무 공정을 적용하여 도펀트 재료를 전구체 형상화 연마입자들 (123) 상면 또는 측면에 인가한다. 또한, 다른 실시태양에서, 예컨대 침지, 적층, 함침, 또는 이들의 조합과 같은 프로세스를 통하여 도펀트 재료가 전구체 형상화 연마입자들 (123) 하면에 인가된다. 도펀트 재료를 전구체 형상화 연마입자들 (123) 하면으로 전달하기 위하여 벨트 (109) 표면이 도펀트 재료로 처리될 수 있다는 것을 이해할 수 있다.
전구체 형상화 연마입자들 (123) 형성 후, 입자들은 성형-후 구역 (125)을 통과한다. 전구체 형상화 연마입자들 (123) 처리를 포함한 다양한 공정들이 성형-후 구역 (125)에서 수행될 수 있다. 일 실시태양에서, 성형-후 구역 (125)은 가열 공정을 포함할 수 있고, 여기에서 전구체 형상화 연마입자들 (123)이 건조된다. 건조 단계에서 휘발성 물질, 예컨대 물을 포함한 재료의 특정 함량이 제거될 수 있다. 실시태양에 의하면, 건조 공정은 약 300°C 이하, 예컨대 약 280°C 이하, 또는 약 250°C 이하의 건조 온도에서 수행될 수 있다. 또한, 하나의 비-제한적 실시태양에서, 건조 공정은 적어도 약 50°C의 건조 온도에서 수행될 수 있다. 건조 온도는 상기 임의의 최고온도 및 최저온도 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 전구체 형상화 연마입자들 (123)은 특정 속도, 예컨대 적어도 약 0.2 피트/min 및 이하 약 8 피트/min로 성형-후 구역 (125)을 통과하여 이동될 수 있다.
또한, 건조 공정은 특정 주기 동안 수행될 수 있다. 예를들면, 건조 공정은 약 6 시간 이내일 수 있다.
전구체 형상화 연마입자들 (123)이 성형-후 구역 (125)을 통과한 후, 전구체 형상화 연마입자들 (123)은 벨트 (109)에서 제거된다. 추가 공정을 위하여 전구체 형상화 연마입자들 (123)은 통 (127)에 회수된다.
실시태양에 의하면, 형성공정 형상화 연마입자들은 소결 공정을 더욱 포함한다. 본원의 실시태양들의 소정 공정에 의하면, 소결 공정은 벨트 (109)에서 전구체 형상화 연마입자들 (123)을 회수한 후 진행된다. 달리, 소결 공정은 벨트 (109)에 전구체 형상화 연마입자들 (123)이 있는 동안 수행될 수 있다. 전구체 형상화 연마입자들 (123)을 소결함으로써 일반적으로 미처리 상태인 입자들을 치밀화한다. 특정 실시예에서, 소결 공정으로 고온 상의 세라믹 재료를 형성한다. 예를들면, 일 실시태양에서, 전구체 형상화 연마입자들 (123)이 소결되어 고온 상의 알루미나, 예컨대 알파 알루미나가 형성된다. 하나의 실시예에서, 형상화 연마입자는 입자 총 중량에 대하여 적어도 약 90 wt%의 알파 알루미나를 포함한다. 다른 실시예들에서, 알파 알루미나 함량은 더 높고 형상화 연마입자는 실질적으로 알파 알루미나로 이루어진다.
추가로, 최종-형성된 형상화 연마입자들의 몸체는 특정한 2차원 형태를 가질 수 있다. 예를들면, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰할 때 2차원 형상을 가지고, 다각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 다각형들의 조합인 복잡 형상, 또는 이의 조합을 포함한 형상을 가진다. 특정 다각형들은 삼각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 구각, 십각, 임의의 이들의 조합을 포함한다. 다른 실시태양에서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰할 때 2차원 형상을 가지고, 다각형, 타원형, 숫자, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 다각형들의 조합인 복잡 형상, 또는 이의 조합으로 이루어진 군에서 선택되는 형상을 포함한다.
도 3A는 실시태양에 의한 형상화 연마입자 (300)의 사시도를 보인다. 또한, 도 3B는 도 3A 연마입자의 단면도를 도시한 것이다. 형상화 연마입자 (300)의 몸체 (301)는 상부 주면 (303) (즉, 제1 주면) 및 상부 주면 (303)과 반대측의 하부 주면 (304) (즉, 제2 주면)을 포함한다. 상면 (303) 및 하면 (304)은 측면 (305, 306, 307)에 의해 서로 분리된다. 도시된 바와 같이, 형상화 연마입자 (300) 몸체 (301)는 상면 (303)의 평면에서 관찰될 때 대략 삼각형상을 가진다. 특히, 몸체 (301)는 도 3B에 도시된 바와 같이 길이 (Lmiddle)를 가지고, 이는 몸체 (301) 하면 (304)에서 코너 (313)로부터 몸체 (301) 중점 (381)을 통과하여 몸체의 반대 모서리 (314)에 있는 중점까지 연장되는 길이로 측정된다. 달리, 몸체 (301)는 제2 길이 또는 외형 길이 (Lp)로 정의되고, 이는 측면도에서의 몸체 (301) 치수를 측정한 것으로 상면 (303)에서 제1 코너 (313)로부터 인접 코너 (312)까지의 길이이다. 특히, 치수 Lmiddle은 코너에서의 높이 (hc)및 상기 코너 반대측 중점 모서리에서의 높이(hm) 사이의 거리에 해당하는 길이이다.치수 Lp는 입자 (300) 측면을 따라 (예컨대 도 2A 및 2B에 도시된 측면도에서 관찰될 때) h1 및 h2 사이의 거리에 해당되는 외형 길이이다. 본원에서 길이를 언급할 때 Lmiddle 또는 Lp이 언급된다.
몸체 (301)는 몸체 (301)의 최장 치수이고 측면을 따라 연장되는 폭 (w)을 더욱 포함한다. 몸체 (301)는 몸체 (301) 측면에 의해 정의되는 방향으로 길이 및 폭에 수직인 방향으로 연장되는 몸체 (301)의 치수인 높이 (h)를 더욱 포함한다. 특히, 더욱 상세하게 기재되는 바와 같이, 몸체 (301)는 몸체 (301) 위치에 따라 다양한 높이들로 정의된다. 특정 실시예들에서, 폭은 길이와 같거나 넓고, 길이는 높이와 같거나 길고, 폭은 높이와 같거나 넓다.
또한, 치수 특성 (예를들면, h1, h2, hi, w, Lmiddle, Lp, 및 기타 등)을 포함한 본원 실시태양들의 임의의 특징들을 본원에서 언급할 때에는 배치의 단일 형상화 연마 입자 치수, 배치의 형상화 연마 입자들에 대한 적합한 샘플 분석으로 얻어지는 중앙값, 또는 평균값을 언급하는 것이다. 명시적으로 언급되지 않는 한, 본원에서 치수 특성은 적합한 개수의 배치 입자들의 샘플 크기에서 유도되는 통계적으로 유의한 값에 기초한 중앙값을 언급한다. 특히, 소정의 본원 실시태양들에서, 샘플 크기는 입자들 배치에서 적어도 10개의 무작위 선택된 배치 입자들을 포함한다. 입자들 배치는 상업적 등급 연마제품 형성에 적합한 형상화 연마입자들, 예컨대 적어도 약 20 lbs. 입자들을 포함한다. 입자들 배치는, 반드시는 아니지만, 단일 공정 운전에서 회수되는 입자들의 그룹이다.
실시태양에 의하면, 형상화 연마입자 몸체 (301)는 코너 (313)에 의해 형성되는 몸체 제1 영역에서의 제1 코너 높이 (hc)를 가진다. 특히, 코너 (313)는 몸체 (301)에서 최고점일 수 있다. 그러나, 코너 (313) 높이는 반드시 몸체 (301) 최고점일 필요는 없다. 코너 (313)는 상면 (303) 및 두 측면들 (305, 307)의 연결에 의해 형성되는 몸체 (301)의 지점 또는 영역으로 정의된다. 몸체 (301)는 서로 이격된 다른 코너들, 예를들면, 코너 (311) 및 코너 (312)를 더욱 포함할 수 있다. 더욱 도시된 바와 같이, 몸체 (301)는 코너들 (311, 1612, 1613)에 의해 서로 분리되는 모서리들 (314, 315, 316)을 포함한다. 모서리 (314)는 상면 (303)과 측면 (306) 교차에 의해 형성된다. 모서리 (315)는 코너들 (311, 313) 사이에서 상면 (303) 및 측면 (305) 교차에 의해 형성된다. 모서리 (316)는 코너들 (312, 313) 사이에서 상면 (303) 및 측면 (307) 교차에 의해 형성된다.
도시된 바와 같이, 몸체 (301)는 코너 (313)의 제1 말단에 대향하는 모서리 (314) 중점에서의 영역으로 정의되는 몸체 (301)의 제2 말단에서 제2 중점 높이 (hm)를 포함한다. 축 (350)은 몸체 (301)의 두 말단들 사이에 연장된다. 도 3B는 몸체 (301) 중점 (381)을 거쳐 코너 (313) 및 모서리 (314) 중점 사이에서 길이 (Lmiddle)를 따라 연장되는 축 (350)에서 취한 몸체 (301) 단면도이다.
실시태양에 의하면, 예를들면, 도 3A 및 3B의 입자를 포함한 본원 실시태양들의 형상화 연마입자들은 hc 및 hm 간의 차를 나타내는 평균 높이 차이를 가진다. 본원에 있어서, 평균 높이 차이는 포괄적으로 hc-hm로서 나타내지만, 차이의 절대값으로 나타낼 수 있다. 따라서 모서리 (314) 중점에서의 몸체 (301) 높이가 코너 (313)에서의 높이보다 클 때 평균 높이 차이는 hm-hc로서 계산될 수 있다는 것을 이해할 수 있다. 상세하게는, 평균 높이 차이는 적합한 샘플 크기인 다수의 형상화 연마입자들에 기초하여 계산된다. 입자들의 높이들 hc 및 hm은 STIL (Sciences et Techniques Industrielles de la Lumiere - France) Micro Measure 3D 표면 조면계 (백광 (LED) 색수차 기술)을 이용하여 측정할 수 있고 평균 높이 차이는 샘플의 hc 및 hm 평균값들로부터 계산된다.
도 3B에 도시된 바와 같이, 하나의 특정 실시태양에서, 형상화 연마입자 (300)의 몸체 (301)는 몸체 (301)다른 지점들에서의 평균 높이 차이를 가진다. 몸체 (301)는 제1 코너 높이 (hc) 및 제2 중점 높이 (hm) 사이의 [hc-hm]의 절대값인 평균 높이 차이를 가지고 적어도 약 20 미크론이다. 평균 높이 차이는 모서리 중점에서 몸체 (301) 높이가 대향 코너에서의 높이보다 클 때 hm-hc로 계산된다는 것을 알 수 있다. 다른 실시예들에서, 평균 높이 차이 [hc-hm]는, 적어도 약 25 미크론, 적어도 약 30 미크론, 적어도 약 36 미크론, 적어도 약 40 미크론, 적어도 약 60 미크론, 예컨대 적어도 약 65 미크론, 적어도 약 70 미크론, 적어도 약 75 미크론, 적어도 약 80 미크론, 적어도 약 90 미크론, 또는 적어도 약 100 미크론이다. 하나의 비-제한적 실시태양에서, 평균 높이 차이는 약 300 미크론 이하, 예컨대 약 250 미크론 이하, 약 220 미크론 이하, 또는 약 180 미크론 이하이다. 평균 높이 차이는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 평균 높이 차이는 hc의 평균값에 기초할 수 있다는 것을 이해하여야 한다. 예를들면, 코너들에서의 몸체 (301) 평균 높이 (Ahc)는 모든 코너들에서 몸체 (301) 높이를 측정하고 값들을 평균화하여 계산될 수 있고, 하나의 코너에서의 (hc) 단일 높이 값과는 차별된다. 따라서, 평균 높이 차이는 식 [Ahc-hi]의 절대값으로 주어진다. 또한, 평균 높이 차이는 배치의 형상화 연마입자들로부터의 적합한 샘플 크기에서 계산되는 중앙 내부 높이 (Mhi) 및 샘플 크기에서 모든 입자들에 대한 코너들에서의 평균 높이를 적용하여 계산될 수 있다. 따라서, 평균 높이 차이는 식 [Ahc-Mhi]의 절대값으로 주어진다.
특정 실시예들에서, 몸체 (301)는 폭: 길이로 표현되는 비율인1차 종횡비를 가지고, 적어도 1:1을 가진다. 다른 실시예들에서, 몸체 (301)는 1차 종횡비 (w:l)가 적어도 약 1.5:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 또는 적어도 약 5:1이 되도록 형성된다. 또한, 다른 실시예들에서, 연마입자 (300)는 몸체 (301)의 1차 종횡비가 약 10:1 이하, 예컨대 9:1 이하, 약 8:1 이하, 또는 약 5:1 이하가 되도록 형성된다. 몸체 (301)의 1차 종횡비는 상기 임의의 비율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 본원에서 높이를 언급할 때에는 연마입자 (300)에서 측정 가능한 최고 높이를 언급하는 것이다. 이하 연마입자 (300)는 연마입자 (300) 몸체 (301) 내에서 상이한 위치에서 상이한 높이들을 가진다는 것이 기술될 것이다.
1차 종횡비 외에도, 연마입자 (300)는 몸체 (301)가 길이: 높이의 비율로 정의되는2차 종횡비를 가지도록 형성되고, 상기 높이는 중앙 내부 높이 (Mhi)이다. 소정의 실시예들에서, 2차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 또는 적어도 약 5:1일 수 있다. 또한, 다른 실시예들에서, 연마 입자 (300)는 몸체 (301)의 2차 종횡비가 약 1:3 이하, 예컨대 1:2 이하, 또는 약 1:1 이하가 되도록 형성될 수 있다. 몸체 (301)의 2차 종횡비는 상기 임의의 비율 내의 범위, 예컨대 약 5:1 내지 약 1:1일 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 의하면, 연마입자 (300)는 몸체 (301)가 폭: 높이의 비율로 정의되는3차 종횡비를 가지도록 형성도고, 상기 높이는 중앙 내부 높이 (Mhi)이다. 몸체 (101)의3차 종횡비는 적어도 약 1:1, 예컨대 적어도 약 2:1, 적어도 약 4:1, 적어도 약 5:1, 또는 적어도 약 6:1이다. 또한, 다른 실시예들에서, 연마 입자 (300)는 몸체 (301)의 3차 종횡비가 약 3:1 이하, 예컨대 2:1 이하, 또는 약 1:1 이하가 되도록 형성될 수 있다. 몸체 (301)의 3차 종횡비는 상기 임의의 비율 내의 범위, 예컨대 약 6:1 내지 약 1:1 일 수 있다는 것을 이해하여야 한다.
하나의 실시태양에 의하면, 형상화 연마입자 (300)의 몸체 (301)는 개선된 성능이 가능한 특정 치수들을 가진다. 예를들면, 하나의 실시예에서, 몸체 (301)는 몸체 (301)의 임의의 코너 및 대항 중점 모서리 사이를 따라 측정되는 몸체 (301)의 최저 높이인 내부 높이 (hi)를 가진다. 몸체 (301)가 대략 삼각형의 2차원 형상인 특정한 경우, 내부 높이 (hi)는 각각 3개의 코너들 및 대향 중점 모서리들 사이에서 측정되는 몸체 (301)의 최저 높이 (즉, 저면 (304) 및 상면 (303) 사이 측정치)이다. 형상화 연마입자 (300) 몸체 (301)의 내부 높이 (hi)는 도 3B에 도시된다. 하나의 실시태양에 따르면, 내부 높이 (hi)는 폭 (w)의 적어도 약 20%이다. 높이 (hi)는 형상화 연마입자 (300)를 절단 또는 장착 및 연마 및 몸체 (301) 내부 최저 높이 (hi)를 결정하기에 충분한 방식으로 관찰하여 (예를들면, 광학현미경 또는 SEM) 측정한다. 하나의 특정 실시태양에서, 높이 (hi)는 몸체 (301)폭의 적어도 약 22%, 예컨대 적어도 약 25%, 적어도 약 30%, 또는 적어도 약 33%이다. 비-제한적인 하나의 실시태양에서, 몸체 (301) 높이 (hi)는 몸체 (301) 폭의 약 80% 이하, 예컨대 약 76% 이하, 약 73% 이하, 약 70% 이하, 약 68% 이하, 약 56% 이하, 약 48% 이하, 또는 약 40% 이하이다. 몸체 (301) 높이 (hi)는 임의의 상기 최소율 및 최대율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
중앙 내부 높이 (Mhi)가 제어된 형상화 연마입자들 배치가 조립되어, 성능을 향상시킬 수 있다. 상세하게는, 배치의 중앙 내부 높이 (hi)는 상기된 바와 같이 동일한 방식의 형상화 연마배치 입자들의 중앙 폭과 관련된다. 특히, 중앙 내부 높이 (Mhi)는 형상화 연마배치 입자들 중앙 폭의 적어도 약 20%, 예컨대 적어도 약 22%, 적어도 약 25%, 적어도 약 30%, 또는 적어도 약 33% 이다. 비-제한적인 하나의 실시태양에서, 몸체 (301)의 중앙 내부 높이 (Mhi)는 중앙 폭의 약 80% 이하, 예컨대 약 76% 이하, 약 73% 이하, 약 70% 이하, 약 68% 이하, 약 56% 이하, 약 48% 이하, 또는 약 40% 이하이다. 몸체 (301)의 중앙 내부 높이 (Mhi)는 임의의 상기 최소율 및 최대율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 형상화 연마입자들의 배치는 적합한 샘플 크기로부터의 치수 특정 표준 편차로 측정되는 바와 같이 개선된 치수 균일성을 보인다. 하나의 실시태양에 의하면, 형상화 연마입자들의 내부 높이 편차 (Vhi)는, 배치 입자들의 적합한 샘플 크기에 대한 내부 높이 (hi) 표준편차로서 계산될 수 있다. 하나의 실시태양에 의하면, 내부 높이 편차는 약 60 미크론 이하, 예컨대 약 58 미크론 이하, 약 56 미크론 이하, 또는 약 54 미크론 이하이다. 하나의 비-제한적 실시태양에서, 내부 높이 편차 (Vhi)는 적어도 약 2 미크론이다. 몸체의 내부 높이 편차는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 있어서, 형상화 연마입자 (300) 몸체 (301)의 내부 높이 (hi)는 적어도 약 400 미크론이다. 상세하게는, 높이는 적어도 약 450 미크론, 예컨대 적어도 약 475 미크론, 또는 적어도 약 500 미크론이다. 또 다른 하나의 비-제한적 실시태양에서, 몸체 (301) 높이는 약 3 mm 이하, 예컨대 약 2 mm 이하, 약 1.5 mm 이하, 약 1 mm 이하, 약 800 미크론 이하이다. 몸체 (301) 높이는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 배치의 형상화 연마입자들에 대한 중앙 내부 높이 (Mhi)를 나타낸다는 것을 이해할 수 있다.
소정의 본원 실시태양들에 있어서, 형상화 연마입자 (300) 몸체 (301)는 예를들면, 폭>길이, 길이>높이, 및 폭>높이를 포함한 특정 치수들을 가진다. 상세하게는, 형상화 연마입자 (300) 몸체 (301)의 폭 (w)은 적어도 약 600 미크론, 예컨대 적어도 약 700 미크론, 적어도 약 800 미크론, 또는 적어도 약 900 미크론이다. 하나의 비-제한적 실시예에서, 몸체 (301)의 폭은 약 4 mm 이하, 예컨대 약 3 mm 이하, 약 2.5 mm 이하, 또는 약 2 mm 이하이다. 몸체 (301)의 폭은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 배치의 형상화 연마입자들에 대한 중앙 폭 (Mw)을 나타낸다는 것을 이해할 수 있다.
형상화 연마입자 (300) 몸체 (301)는 특정 치수들를 가지고, 예를들면, 길이 (L middle 또는 Lp)는 적어도 약 0.4 mm, 예컨대 적어도 약 0.6 mm, 적어도 약 0.8 mm, 또는 적어도 약 0.9 mm이다. 또한, 적어도 하나의 비-제한적 실시태양에 있어서, 몸체 (301)의 길이는 약 4 mm 이하, 예컨대 약 3 mm 이하, 약 2.5 mm 이하, 또는 약 2 mm 이하이다. 몸체 (301) 길이는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 범위 값들은 중앙 길이 (Ml), 상세하게는, 배치의 형상화 연마입자들에 대한 중앙 중간 길이 (MLmiddle) 또는 중앙 외형 길이 (MLp) 를 나타낸다는 것을 이해하여야 한다.
형상화 연마입자 (300)의 몸체 (301)는 특정 디싱값을 가지고, 디싱값 (d)은 최소 치수의 내부 몸체 높이 (hi)에 대한 코너들에서 몸체 (301) 평균 높이 (Ahc)의 비율로 정의된다. 코너들에서 몸체 (301) 평균 높이 (Ahc)는 모든 코너들에서 몸체 (301) 높이를 측정하고 값들을 평균하여 계산될 수 있고, 하나의 코너에서의 단일 높이 값 (hc)과는 차별된다. 코너들에서 또는 내부에서 몸체 (301) 평균 높이는 STIL (Sciences et Techniques Industrielles de la Lumiere - France) Micro Measure 3D 표면 조면계 (백광 (LED) 색수차 기술)을 이용하여 측정할 수 있다. 달리, 디싱은 배치 입자들의 적합한 샘플로부터 계산되는 코너에서의 입자들 중앙 높이 (Mhc) 에 기초할 수 있다. 유사하게, 내부 높이 (hi)는 배치의 형상화 연마입자들에 대한 적합한 샘플에서 유도되는 중앙 내부 높이 (Mhi)일 수 있다. 하나의 실시태양에 의하면, 디싱값 (d)은 약 2 이하, 예컨대 약 1.9 이하, 약 1.8 이하, 약 1.7 이하, 약 1.6 이하, 약 1.5 이하, 또는 약 1.2 이하일 수 있다. 또한, 적어도 하나의 비-제한적 실시태양에서, 디싱값 (d)은 적어도 약 0.9, 예컨대 적어도 약 1.0이다. 디싱 비율은 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 디싱값들은 형상화 연마입자들 배치에 대한 중앙 디싱 (Md)을 나타낼 수 있는 것을 이해할 수 있다.
본원 실시태양들의 형상화 연마입자들, 예를들면, 도 3A의 입자의 몸체 (301)는 바닥 면적 (Ab)을 형성하는 하면 (304)을 가진다. 특정 실시예들에서 하면 (304)은 몸체 (301)의 최대 표면이다. 하부 주면 (304)은 상부 주면 (303) 표면적과 다른 바닥 면적 (Ab)을 형성하는 표면적을 가진다. 하나의 특정 실시태양에서, 하부 주면 (304)은 상부 주면 (303) 표면적과 다른 바닥 면적 (Ab)을 형성하는 표면적을 가진다. 다른 실시태양에서, 하부 주면 (304)은 상부 주면 (303) 표면적보다 작은 바닥 면적 (Ab)을 형성하는 표면적을 가진다.
또한, 몸체 (301)는 바닥 면적 (Ab)에 수직한 평면 면적을 형성하고 입자 (300) 중점 (381)을 통과하여 연장되는 단면 중점 면적 (Am)을 가진다. 소정의 실시예들에서, 몸체 (301)의 중점 면적에 대한 바닥 면적의 면적비 (Ab/Am)는 약 6 이하이다. 더욱 상세한 실시예들에서, 면적비는 약 5.5 이하, 예컨대 약 5 이하, 약 4.5 이하, 약 4 이하, 약 3.5 이하, 또는 약 3 이하이다. 또한, 하나의 비-제한적 실시태양에서, 면적비는 적어도 약 1.1, 예컨대 적어도 약 1.3, 또는 적어도 약 1.8이다. 면적비는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 면적비는 형상화 연마입자들의 배치에 대한 중앙 면적비를 나타낼 수 있다는 것을 이해할 수 있다.
또한 본원 실시태양들의 형상화 연마입자들, 예를들면, 도 3B의 입자는 약 0.3 이하의 정규화 (normalized) 높이 차이를 가진다. 정규화 높이 차이는 식 [(hc-hm)/(hi)]의 절대값으로 정의된다. 다른 실시태양들에서, 정규화 높이 차이는 약 0.26 이하, 예컨대 약 0.22 이하, 또는 약 0.19 이하이다. 또, 하나의 특정 실시태양에서, 정규화 높이 차이는 적어도 약 0.04, 예컨대 적어도 약 0.05, 또는 적어도 약 0.06이다. 정규화 높이 차이는 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 정규화 높이 값들은 형상화 연마입자들 배치에 대한 중앙 정규화 높이를 나타낼 수 있다는 것을 이해하여야 한다.
또 다른 실시예에서, 몸체 (301)는 적어도 약 0.04인 외형 비율을 가지고, 상기 외형 비율은 형상화 연마입자 (300) 길이(Lmiddle)에 대한 평균 높이 차이 [hc-hm]의 비율인, [(hc-hm)/(Lmiddle)]의 절대값으로 정의된다. 몸체 (301) 길이 (Lmiddle)는 도 3B에 도시된 바와 같이 몸체 (301)을 횡단하는 거리이다. 또한, 길이는 본원에서 정의되는 바와 같이 형상화 연마입자들의 배치로부터의 적합한 입자들 샘플로부터 계산되는 평균 또는 중앙 길이이다. 특정 실시태양에 의하면, 외형 비율은 적어도 약 0.05, 적어도 약 0.06, 적어도 약 0.07, 적어도 약 0.08, 또는 적어도 약 0.09이다. 또한, 하나의 비-제한적 실시태양에서, 외형 비율은 약 0.3 이하, 예컨대 약 0.2 이하, 약 0.18 이하, 약 0.16 이하, 또는 약 0.14 이하이다. 외형 비율은 상기 임의의 최소값 내지 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 외형 비율은 형상화 연마입자들 배치에 대한 중앙 외형 비율을 나타내는 것으로 이해될 수 있다.
또 다른 실시태양에 의하면, 몸체 (301)는 특정 경사각을 가지고, 이는 몸체 (301) 하면 (304) 및 측면 (305, 306, 307) 간의 각으로 정의된다. 예를들면, 경사각은 약 1° 내지 약 80°이다. 본원의 다른 입자들에 있어서, 경사각은 약 5° 내지 55°, 예컨대 약 10° 내지 약 50°, 약 15° 내지 50°, 또는 약 20° 내지 50°이다. 이러한 경사각을 가지는 연마입자를 형성하면 연마입자 (300)의 연마 성능을 개선시킬 수 있다. 특히, 경사각은 상기 임의의 두 경사각들 사이의 범위에 있을 수 있다.
또 다른 실시태양에 의하면, 예를들면 도 3A 및 3B의 입자들을 포함한 본원의 형상화 연마입자들은 몸체 (301) 상면 (303)에 타원 영역 (317)을 가진다. 타원 영역 (317)은 트렌치 영역 (318)으로 형성되고 이는 상면 (303) 주위로 연장되고 타원 영역 (317)을 정의한다. 타원 영역 (317)은 중점 (381)을 포괄한다. 또한, 상면 (303)에 형성되는 타원 영역 (317)은 성형 공정의 산물이라고 판단되고, 본원에 개시된 방법들에 따라 형상화 연마입자들을 형성하는 과정에서 혼합물 (101)에 부여되는 응력 결과로 형성될 수 있다.
형상화 연마입자 (300)는 몸체 (301)가 결정 재료, 더욱 상세하게는, 다결정 재료를 가지도록 형성된다. 특히, 다결정 재료는 연마입자들을 포함한다. 일 실시태양에서, 몸체 (301)는 예를들면, 바인더를 포함한 유기재료가 실질적으로 부재이다. 상세하게는, 몸체 (301)는 실질적으로 다결정 재료로 이루어진다.
일 양태에서, 형상화 연마입자 (300) 몸체 (301)는 다수의 연마입자들, 그릿, 및/또는 결정들이 서로 결합되어 연마입자 (300)의 몸체 (301)를 형성하는 응집체일 수 있다. 적합한 연마입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 산붕화물, 다이아몬드, 및 이들의 조합을 포함한다. 특정한 경우, 연마입자들은 산화물 또는 복합체, 예컨대 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합을 포함한다. 하나의 특정 실시예에서, 연마입자 (300)는 몸체 (301)를 형성하는 연마입자들이 알루미나를 포함하도록, 더욱 상세하게는, 실질적으로 알루미나로 이루어지도록 형성된다. 또한, 특정 실시예들에서, 형상화 연마입자 (300)는 시드화 (seeded) 졸-겔일 수 있다.
몸체 (301)에 함유되는 연마입자들 (즉, 미세결정들)의 평균 결정 크기는 일반적으로 약 100 미크론 이하이다. 다른 실시태양들에서, 평균 결정 크기는 더 작고, 예컨대 약 80 미크론 이하, 약 50 미크론 이하, 약 30 미크론 이하, 약 20 미크론 이하, 약 10 미크론 이하, 또는 약 1 미크론 이하이다. 또한, 몸체 (301)에 함유되는 연마입자들의 평균 결정 크기는 적어도 약 0.01 미크론, 예컨대 적어도 약 0.05 미크론, 예컨대 적어도 약 0.08 미크론, 적어도 약 0.1 미크론, 또는 적어도 약 0.5 미크론이다. 연마입자들의 평균 결정 크기는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
소정의 실시태양들에 의하면, 연마입자 (300)는 적어도 2종의 상이한 유형의 입자들이 몸체 (301)에 포함되는 복합 물품 (composite article)이다. 상이한 유형의 입자들은 서로 상이한 조성을 가지는 입자들이라는 것을 이해하여야 한다. 예를들면, 몸체 (301)는 적어도 2종의 상이한 유형의 입자들을 포함하도록 형성되고, 2종의 상이한 유형의 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 산붕화물, 다이아몬드, 및 이들의 조합일 수 있다.
실시태양에 의하면, 몸체 (301)의 측정 가능한 최대 치수로 측정할 때 연마입자 (300)의 평균 입자크기는, 적어도 약 100 미크론이다. 실제로, 연마입자 (300)의 평균 입자크기는 적어도 약 150 미크론, 예컨대 적어도 약 200 미크론, 적어도 약 300 미크론, 적어도 약 400 미크론, 적어도 약 500 미크론, 적어도 약 600 미크론, 적어도 약 700 미크론, 적어도 약 800 미크론, 또는 적어도 약 900 미크론이다. 또한, 연마입자 (300)의 평균 입자크기는 약 5 mm 이하, 예컨대 약 3 mm 이하, 약 2 mm 이하, 또는 약 1.5 mm 이하이다. 연마입자 (300)의 평균 입자크기는 상기 임의의 최소값 및 최대값 사이의 범위일 수 있다는 것을 이해하여야 한다.
본원 실시태양들의 형상화 연마입자들은 개선된 성능을 제공할 수 있는 플래싱 비율을 가진다. 특히, 플래싱은, 예컨대 도 4에 도시된 바와 같이 일 측면에서 관찰될 때 상자들 (402, 403) 내에서 몸체 (301) 측면으로 연장되는 입자 면적을 정의한다. 플래싱은 몸체 (301) 상면 (303) 및 하면 (304)에 근접한 경사 영역들로 나타낼 수 있다. 플래싱은 측면 최내부 지점 (예를들면, 421) 및 몸체 (301) 측면의 최외부 지점(예를들면, 422) 사이에 연장되는 상자에 포함되는 측면을 따르는 몸체 (301) 면적 비율로 측정된다. 하나의 특정 실시예에서, 몸체 (301)는 상자들 (402, 403, 404)에 포함되는 몸체 (301) 총 면적에 대한 상자들 (402, 403)에 포함되는 몸체 (301) 면적 비율인 특정 플래싱 값을 가진다. 하나의 실시태양에 의하면, 몸체 (301)의 플래싱 비율 (f)은 적어도 약 1%이다. 또 다른 실시태양에서, 플래싱 비율은 더 크고, 예컨대 적어도 약 2%, 예컨대 적어도 약 3%, 적어도 약 4%, 적어도 약 5%, 적어도 약 8%, 적어도 약 10%, 적어도 약 12%, 적어도 약 15%, 적어도 약 18%, 또는 적어도 약 20%이다. 또한, 비-제한적 실시태양에서, 몸체 (301)의 플래싱 비율은 제어될 수 있고 약 45% 이하, 예컨대 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 18% 이하, 약 15% 이하, 약 12% 이하, 약 10% 이하, 약 8% 이하, 약 6% 이하, 또는 약 4% 이하일 수 있다. 몸체 (301)의 플래싱 비율은 상기 임의의 최소 비율 및 최대 비율 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 플래싱 비율은 형상화 연마입자들의 배치에 대한 평균 플래싱 백분율 또는 중앙 플래싱 백분율일 수 있다는 것을 이해하여야 한다.
예컨대 도 4에 도시된 바와 같이 플래싱 비율은 형상화 연마입자 (300)를 측면으로 세우고 측면에서 몸체 (301)를 관찰하여 흑백 영상을 생성하여 측정될 수 있다. 이에 적합한 프로그램은 ImageJ 소프트웨어를 포함한다. 플래싱 비율은 중앙 (404) 및 상자들 내에서의 면적을 포함하여 측면에서 관찰될 때의 몸체 (301) 총 면적 (총 음영 면적)에 대한 상자들 (402, 403) 내의 몸체 (301) 면적을 결정함으로써 계산할 수 있다. 이러한 절차는 적합한 입자들 샘플에 대하여 수행되어 평균, 중앙값, 및/또는 및 표준편차 값들을 생성할 수 있다.
본원 실시태양들에 의한 형상화 연마입자들의 배치는 적합한 샘플 크기로부터 치수 특성 표준편차로 측정되는 개선된 치수 균일성을 보인다. 하나의 실시태양에 의하면, 형상화 연마입자들은 배치 입자들의 적합한 샘플 크기에 대하여 플래싱 백분율 (f) 표준편차로서 계산되는 플래싱 편차 (Vf)를 가진다. 하나의 실시태양에 의하면, 플래싱 편차는 약 5.5% 이하, 예컨대 약 5.3% 이하, 약 5% 이하, 또는 약 4.8% 이하, 약 4.6% 이하, 또는 약 4.4% 이하이다. 하나의 비-제한적 실시태양에서, 플래싱 편차 (Vf)는 적어도 약 0.1%이다. 플래싱 편차는 상기 임의의 최소 내지 최대 백분율 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
본원 실시태양들의 형상화 연마입자들은 적어도 4000의 높이 (hi) 및 플래싱 승수값 (hiF)을 가지고, 상기 hiF = (hi)(f)에서, “hi”는 상기된 몸체 (301)의 최소 내부 높이이고 “f”는 플래싱 비율이다. 하나의 특정 실시예에서, 몸체 (301)의 높이 및 플래싱 승수값 (hiF)은 더 크고, 예컨대 적어도 약 4500 미크론%, 적어도 약 5000 미크론%, 적어도 약 6000 미크론%, 적어도 약 7000 미크론%, 또는 적어도 약 8000 미크론%이다. 또한, 하나의 비-제한적 실시태양에서, 높이 및 플래싱 승수값은 약 45000 미크론% 이하, 예컨대 약 30000 미크론% 이하, 약 25000 미크론% 이하, 약 20000 미크론% 이하, 또는 약 18000 미크론% 이하이다. 몸체 (301)의 높이 및 플래싱 승수값은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다. 또한, 상기 승수값은 형상화 연마입자들 배치에 대한 중앙 승수값 (MhiF)을 나타낸다는 것을 이해할 수 있다.
고정 연마 물품
형상화 연마 입자 성형 또는 입수 후, 입자들을 다른 재료에 결합시켜 고정 연마 물품을 형성한다. 일부 적합한 예시적 고정 연마 물품은 형상화 연마 입자들이 3차원 결합재 기질에 포함되는 결합 연마 물품, 및 형상화 연마 입자들이 지지판 상에 적층되는 단일-층에 분산되고 및 하나 이상의 접착층으로 지지판에 결합되는 코팅 연마 물품을 포함한다. 입자들은 지지판과 조합되어 코팅 연마 물품을 형성한다.
도 5는 실시태양에 의한 코팅 연마 물품 단면도이다. 특히, 코팅 연마물품 (500)은 기판 (501) (즉, 지지판) 및 기판 (501) 표면 상부에 도포되는 적어도 하나의 접착층을 포함한다. 접착층은 메이크 코트 (503) 및/또는 사이즈 코트 (504)를 포함한다. 코팅 연마재 (500)는 본원 실시태양들의 형상화 연마입자들 (505)을 포함한 연마 입자 소재 (510), 및 반드시 형상화 연마입자들이 아닌 무작위 형상의 부형 연마입자들 형태인 제2 유형의 연마 입자 소재 (507)를 포함한다. 메이크 코트 (503)는 기판 (501) 표면 상부에 도포되고 형상화 연마입자들 (505) 및 제2 유형의 연마 입자 소재 (507)의 적어도 일부를 둘러싼다. 사이즈 코트 (504)는 형상화 연마입자들 (505) 및 제2 유형의 연마 입자 소재 (507) 및 메이크 코트 (503) 상부에서 이들과 결합된다.
하나의 실시태양에 의하면, 기판 (501)은 유기 재료, 무기 재료, 및 이들의 조합을 포함한다. 소정의 실시예들에서, 기판 (501)은 직물 소재를 포함한다. 그러나, 기판 (501)은 부직물 소재로 제작될 수 있다. 특히 적합한 기판 재료는 고분자, 및 특히, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드 예컨대 DuPont의 KAPTON, 페이퍼를 포함하는 유기 재료를 포함한다. 일부 적합한 무기 재료는 금속, 금속 합금, 특히, 구리박, 알루미늄, 스틸, 및 이들의 조합을 포함한다.
프론트필 (frontfill), 프리-사이즈 코트, 메이크 코트, 사이즈 코트, 및/또는 슈퍼사이즈 코트와 같은 연마물품의 임의의 다양한 층들을 형성하기 위하여 고분자 조성물들이 사용될 수 있다. 프론트필 형성에 있어서, 고분자 조성물은 일반적으로 고분자 수지, 섬유화 파이버 (바람직하게는 펄프 형태), 충전재, 및 기타 선택적인 첨가제들을 포함한다. 일부 프론트필 실시태양들에 있어서 적합한 조성물은 재료들 예컨대 페놀수지, 규회석 충전재, 소포제, 계면활성제, 섬유화 파이버, 및 나머지는 물을 포함한다. 적합한 고분자 수지는 페놀수지, 요소/포름알데히드 수지, 페놀/라텍스 수지, 및 이러한 수지의 조합을 포함한 열 경화성 수지에서 선택되는 경화성 수지를 포함한다. 기타 적합한 고분자 수지 재료는 또한 광 경화성 수지, 예컨대 전자빔, UV 선, 또는 가시광선을 이용하여 경화 가능한 수지, 예컨대 에폭시 수지, 아크릴레이트 에폭시 수지의 아크릴레이트 올리고머, 폴리에스테르 수지, 아크릴레이트 우레탄 및 폴리에스테르 아크릴레이트 및 모노 아크릴레이트, 다중아크릴레이트 단량체들을 포함한 아크릴레이트 단량체를 포함한다. 또한 조성물은 침식성을 개선시켜 적층된 연마 물품의 자체-첨예 특성을 개선시킬 수 있는 비반응성 열가소성수지 바인더를 포함한다. 이러한 열가소성 수지의 예시로는 폴리프로필렌 글리콜, 폴리에틸렌 글리콜, 및 폴리옥시프로필렌-폴리옥시에텐 블록 공중합체, 기타 등을 포함한다. 기판 (501)에서 프론트필을 적용하면 표면 균일성이 개선되어, 메이크 코트 (503) 도포에 적합하고 형상화 연마입자들 (505)의 적용 및 소정 방향으로의 배향이 개선된다.
메이크 코트 (503)는 단일 공정으로 기판 (501) 표면에 도포되지만, 또는 달리, 연마 입자 소재 (510)와 메이크 코트 (503) 재료가 혼합되어 혼합물로서 기판 (501) 표면에 적용될 수 있다. 메이크 코트 (503)의 적합한 재료는 유기 재료, 특히 고분자 재료, 예를들면, 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이의 혼합물을 포함한다. 일 실시태양에서, 메이크 코트 (503)는 폴리에스테르 수지를 포함한다. Te 코팅된 기판은 이후 가열되어 수지 및 연마입자 소재를 기판에 경화시킨다. 일반적으로, 이러한 경화 공정에서 코팅 기판 (501)은 약 100 ºC 내지 약 250 ºC 미만으로 가열된다.
연마 입자 소재 (510)는 본원 실시태양들에 의한 형상화 연마입자들을 포함한다. 특정 실시예들에서, 연마 입자 소재 (510)는 상이한 유형의 형상화 연마입자들을 포함한다. 상이한 유형의 형상화 연마입자들은 본원 실시태양들에서 기재된 바와 같이 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 서로 다르다. 도시된 바와 같이, 코팅 연마재 (500)는 대체로 삼각형의 2차원 형상을 가지는 형상화 연마입자 (505)를 포함한다.
기타 유형의 연마입자들 (507)은 형상화 연마입자들 (505)과는 다른 부형 입자들일 수 있다. 예를들면, 부형 입자들은 형상화 연마입자들 (505)과 조성, 2차원 형상, 3차원 형상, 크기, 및 이들의 조합에 있어서 차별된다. 예를들면, 연마입자들 (507)은 무작위 형상을 가지는 종래, 파쇄 연마 그릿일 수 있다. 연마입자들 (507)은 형상화 연마입자들 (505) 중앙 입자 크기보다 작은 중앙 입자 크기를 가질 수 있다.
연마 입자 소재 (510)로 메이크 코트 (503)를 충분히 형성한 후, 사이즈 코트 (504)가 연마 입자 소재 (510) 위에 형성되어 결합된다. 사이즈 코트 (504)는 유기 재료를 포함하고, 실질적으로 고분자 재료로 제조되고, 특히, 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이의 혼합물을 이용한다.
하나의 실시태양에 의하면, 본원의 형상화 연마 입자들 (505)은 서로 및 기판 (501)에 대하여 예정된 배향으로 배향된다. 완전히 이해되지는 않지만, 치수 특징부들 중 하나 또는 조합으로 형상화 연마 입자들 (505)의 배향을 개선시킬 수 있다고 판단된다. 하나의 실시태양에 의하면, 예컨대 도 5에 도시된 바와 같이 형상화 연마 입자들 (505)은 기판 (501)에 대하여 평탄 배향으로 배향된다. 평탄 배향에서, 형상화 연마 입자들의 하면 (304)은 기판 (501) (즉, 지지판) 표면에 최근접하고 형상화 연마 입자들 (505)의 상면 (303)은 기판 (501)에서 멀어지고 가공물과 초기 체결되도록 구성된다.
또 다른 실시태양에 의하면, 도 6에 도시된 바와 같이 형상화 연마입자들 (505)은 기판 (501)에 소정의 측 방향으로 배치된다. 특정 실시예들에서, 연마물품 (505)의 형상화 연마입자들 (505) 총 함량 중 대부분의 형상화 연마입자들 (505)은 소정의 측 방향을 가진다. 측 방향에서, 형상화 연마입자들 (505)의 하면 (304)은 기판 (501) 표면에서 이격되고 이에 대하여 유각을 이룬다. 특정 실시예들에서, 하면 (304)은 기판 (501) 표면에 대하여 둔각 (B)을 형성한다. 또한, 상면 (303)은 기판 (501) 표면에서 이격되고 이에 대하여 유각을 이루고, 특정 실시예들에서, 대체로 예각 (A)을 이룰 수 있다. 측 방향에서, 측면 (305, 306, 307)은 기판 (501) 표면에 최근접하고, 상세하게는, 기판 (501) 표면과 직접 접촉될 수 있다.
소정의 본원의 다른 연마물품들에 있어서, 연마물품 (500)의 적어도 약 55%의 다수의 형상화 연마입자들 (505)은 소정의 측 방향을 가진다. 또한, 상기 백분율은 더 클 수 있고, 예컨대 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 77%, 적어도 약 80%, 적어도 약 81%, 또는 적어도 약 82%일 수 있다. 하나의 비-제한적 실시태양에서, 연마물품 (500)은 본원의 형상화 연마입자들 (505)로 형성될 수 있고, 형상화 연마입자들 총량의 약 99% 이하가 소정의 측 방향을 가질 수 있다.
소정 방향에 있는 입자들 백분율을 결정하기 위하여, 하기 표 1의 조건으로 동작하는CT 스캔 기기를 이용하여 연마물품 (500)에 대한2D 미소초점 x-ray 영상을 얻는다. X-ray 2D 영상을 RB214에서 품질 보장 (Quality Assurance) 소프트웨어로 실행하였다. 시료 장착 고정구는 4” x 4” 윈도우의 플라스틱 프레임 및 프레임에 고정시키기 위한 2개의 나사가 있는 상부가 반-평탄화되는 Ø0.5” 고체 금속성 로드를 이용한다. 영상화 전에, 나사 머리가 X-선 입사 방향과 대향되는 지점에서 프레임 일측에 시료를 고정시켰다. 이어 120kV/80μA에서 영상화하기 위한 4” x 4” 윈도우 면적 내에서5 영역들을 선택하였다. X-ray 오프-셋 (off-set)/게인 교정 및 15 배율로 각각의 2D 투사 영상을 기록하였다.
전압 (kV) 전류 (μA) 배율 영상 당 시계
(mm x mm)
노출시간
120 80 15X 16.2 x 13.0 500ms/2.0 fps
이어 영상들을 보내 ImageJ 프로그램으로 분석하고, 다른 방향들은 하기 표 2에 따라 값들이 지정되었다. 도 13은 지지판에 있는 형상화 연마입자들 방향 분석에 사용된 실시태양에 의한 코팅 연마재 일부의 영상들이다.
셀 마커 타입 설명
1 영상 주위에 있는 입자들, 부분 노출 - 상향
2 영상 주위에 있는 입자, 부분 노출 - 하향
3 영상 중의 입자들, 완전 노출 - 직립
4 영상 중의 입자들, 완전 노출 - 하향
5 영상 중의 입자들, 완전 노출 - 경사 (직립 및 하향의 중간)
이어 하기 표 3에서 제공되는 3가지 계산식이 수행된다. 계산이 수행된 후 평방 센티미터 당 특정 배향 (예를들면 측 방향) 입자의 백분율이 유도된다.
5) 인자 프로토콜*
% 상향 입자들 ((0.5×1)+3+5)/(1+2+3+4+5))
cm2 당 입자들 총 # (1+2+3+4+5)
cm2 당 상향 입자들 # (% 상향 입자들 × cm2 당 입자들 총 #
* - 이들은 모두 영상 각자의 면적에 대하여 정규화된다.
+ - 영상에서 완전하게 존재하지 않으므로 환산계수 0.5가 적용되었다.
또한, 형상화 연마입자들로 제조되는 연마물품들은 다양한 함량의 형상화 연마입자들을 이용할 수 있다. 예를들면, 연마물품들은 개방-코트 구성 또는 밀폐-코트 구성으로 단일층의 형상화 연마입자들을 포함하는 코팅 연마물품들일 수 있다. 예를들면, 다수의 형상화 연마입자들은 약 70 입자들/cm2 이하의 형상화 연마입자 코팅 밀도를 가지는 개방 코트 연마 제품을 형성할 수 있다. 다른 실시예들에서, 연마물품 평방 센티미터 당 형상화 연마입자의 개방-코트 밀도는 약 65 입자들/cm2 이하, 예컨대 약 60 입자들/cm2 이하, 약 55 입자들/cm2 이하, 또는 약 50 입자들/cm2 이하일 수 있다. 또한, 하나의 비-제한적 실시태양에서, 본원 형상화 연마입자를 적용한 개방 코트 코팅 연마재의 밀도는 적어도 약 5 입자들/cm2, 또는 적어도 약 10 입자들/cm2이다. 코팅 연마물품의 개방 코트 밀도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
대안의 실시태양에서, 다수의 형상화 연마 입자들은 형상화 연마 입자들의 코팅 밀도가 적어도 약 75 입자들/cm2, 예컨대 적어도 약 80 입자들/cm2, 적어도 약 85 입자들/cm2, 적어도 약 90 입자들/cm2, 적어도 약 100 입자들/cm2인 밀폐-코트 연마 제품을 형성한다. 또한, 하나의 비-제한적 실시태양에서, 본원의 형상화 연마 입자를 이용한 코팅 연마재의 밀폐-코트 밀도는 약 500 입자들/cm2 이하이다. 코팅 연마 물품의 밀폐-코트 밀도는 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
소정의 실시예들에서, 연마물품은 물품의 외부 연마 표면을 덮고 있는 연마입자의 피복율이 약 50% 이하인 개방 코트 밀도를 가질 수 있다. 다른 실시태양들에서, 연마 표면 총면적에 대한 연마입자들의 피복율은 약 40% 이하, 약 30% 이하, 약 25% 이하, 또는 약 20% 이하이다. 또한, 하나의 비-제한적 실시태양에서, 연마 표면 총면적에 대한 연마입자들의 피복율은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 또는 적어도 약 40%이다. 연마 표면의 총면적에 대한 형상화 연마입자들의 피복율은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있다는 것을 이해하여야 한다.
일부 연마물품들은 지지판 또는 기판 (501) 길이 (예를들면, 림)에 대하여 특정 함량의 연마입자들을 가진다. 예를들면, 일 실시태양에서, 연마물품은 적어도 약 20 lbs/림, 예컨대 적어도 약 25 lbs/ 림, 또는 적어도 약 30 lbs/림인형상화 연마입자들의 정규화 중량을 적용한다. 또한, 하나의 비-제한적 실시태양에서, 연마물품들의 형상화 연마입자들 정규화 중량은 약 60 lbs/림 이하, 예컨대 약 50 lbs/림 이하, 또는 약 45 lbs/림 이하이다. 본원 실시태양들의 연마물품들은 상기 임의의 최소값 및 최대값 사이의 범위에 있을 수 있는 형상화 연마입자들의 정규화 중량을 적용할 수 있다는 것을 이해하여야 한다.
본원에 기재되는 연마물품의 다수 형상화 연마입자들은 연마입자들 배치의 제1 부분을 형성하고, 본원 실시태양들에 기재되는 형상들은 적어도 형상화 연마입자들 배치의 제1 부분에 존재하는 형상들을 대표할 수 있다. 또한, 실시태양에 의하면, 상기된 하나 이상의 공정 인자들을 제어하여 본원 실시태양들의 형상화 연마입자들에서 하나 이상의 형상들의 지배성 (prevalence)을 제어할 수 있다. 배치의 임의 형상화 연마입자에 대하여 하나 이상의 형상들을 제공하면 연마물품에서 입자들의 전개 (deployment)에 대한 대안 또는 개선이 가능하고 연마물품의 성능 또는 용도를 더욱 개선시킬 수 있다. 배치는 또한 연마입자들의 제2 부분을 포함할 수 있다. 연마입자들의 제2 부분은 부형 (diluent) 입자들을 포함한다.
본원 실시태양들의 일 양태에 의하면, 고정 연마 물품은 연마 입자들의 블렌드를 포함한다. 연마 입자들의 블렌드는 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함한다. 특정 예시들에서, 제1 유형의 형상화 연마 입자는 제1 높이 (h1)로 형성된다. 제1 높이를 언급하는 것은 예를들면, 제한되지 않지만, 제1 유형의 형상화 연마 입자의 중앙 내부 높이 (Mhi)를 포함하는 본원 실시태양들에서 식별되는 임의의 높이 치수를 포함하는 것이라는 것을 이해하여야 한다. 또한, 제2 유형의 형상화 연마 입자는 제2 높이 (h2)로 형성된다. 제2 높이를 언급하는 것은 예를들면, 제한되지 않지만, 제2 유형의 형상화 연마 입자의 중앙 내부 높이 (Mhi)를 포함하는 본원 실시태양들에서 식별되는 임의의 높이 치수를 포함하는 것이라는 것을 이해하여야 한다.
일 실시태양에 따르면, 제2 유형의 형상화 연마 입자의 제2 높이 (h2)는 제1 높이 (h1)보다 낮다. 더욱 상세하게는, 소정의 예시들에서, 연마 입자들의 블렌드는 블렌드의 제2 유형의 형상화 연마 입자 제2 높이 (h2)를 블렌드의 제1 유형의 형상화 연마 입자 제1 높이 (h1)로 나눈 높이비 (h2/h1)를 가진다. 소정의 블렌드 높이비는 연마 물품 성능을 개선시킬 수 있다. 적어도 하나의 실시태양에 있어서, 높이비 (h2/h1)는 약 0.98 이하이다. 다른 예시들에서, 높이비 (h2/h1)는 약 0.95 이하, 예컨대 약 0.93 이하, 약 0.90 이하, 약 0.88 이하, 약 0.85 이하, 또는 약 0.83 이하일 수 있다. 또한, 또 다른 비-제한적 실시태양에서, 높이비 (h2/h1)는 적어도 약 0.05, 예컨대 적어도 약 0.08, 적어도 약 0.1, 적어도 약 0.12, 적어도 약 0.15, 적어도 약 0.18, 적어도 약 0.2, 적어도 약 0.22, 적어도 약 0.25, 적어도 약 0.28, 적어도 약 0.3, 적어도 약 0.32, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 또는 적어도 약 0.65일 수 있다. 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함하는 블렌드의 높이비 (h2/h1)는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
소정의 예시들에서, 연마 입자들의 블렌드는 제1 높이 및 제2 높이 간의 특정 높이 차이 (h1-h2)를 형성하고 이는 고정 연마 물품 성능을 개선시킬 수 있다. 표기된 바와 같이, 높이 차이는 제1 높이 (h1)에서 제한 제2 높이 (h2) 간의 차이 수치를 나타낸다. 예를들면, 블렌드의 높이 차이 (h1-h2)는 적어도 약 1 미크론이다. 또 다른 실시태양에 따르면, 높이 차이 (h1-h2)는 적어도 약 5 미크론이다. 다른 예시들에서, 높이 차이는 더욱 크고, 예컨대 적어도 약 10 미크론, 적어도 약 15 미크론, 적어도 약 20 미크론, 적어도 약 25 미크론, 적어도 약 30 미크론, 적어도 약 35 미크론, 적어도 약 40 미크론, 적어도 약 50 미크론, 적어도 약 60 미크론, 적어도 약 70 미크론, 또는 적어도 약 80 미크론이다. 또한, 하나의 비-제한적 실시태양에서, 높이 차이 (h1-h2)는 약 2 mm 이하, 예컨대 약 1 mm 이하, 약 800 미크론 이하, 또는 약 500 미크론 이하일 수 있다. 높이 차이 (h1-h2)는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
본원에 기재된 바와 같이, 본원 실시태양들의 형상화 연마 입자들은 길이, 폭, 및 높이로 형성되는 몸체를 가진다. 실시태양에 의하면, 제1 유형의 형상화 연마 입자는 제1 길이를 가지고, 제2 유형의 형상화 연마 입자는 제2 길이를 가진다. 또한, 연마 입자들의 블렌드는 블렌드의 제2 유형의 형상화 연마 입자 제2 길이 (l2)를 블렌드의 제1 유형의 형상화 연마 입자 제1 길이 (l1)로 나눈 길이비 (l2/l1)를 가진다. 소정의 블렌드 길이비는 연마 물품 성능을 개선시킨다. 따라서, 소정의 예시들에서, 제1 유형의 형상화 연마 입자는 제2 유형의 형상화 연마 입자의 제2 길이와는 다른 제1 길이를 가질 수 있다. 그러나, 제1 유형의 형상화 연마 입자 제1 길이는 제2 유형의 형상화 연마 입자 제2 길이와 실질적으로 동일할 수 있다는 것을 이해하여야 한다.
적어도 하나의 실시태양에서, 길이비 (l2/l1)는 적어도 약 0.05, 예컨대 적어도 약 0.08, 적어도 약 0.1, 적어도 약 0.12, 적어도 약 0.15, 적어도 약 0.18, 적어도 약 0.2, 적어도 약 0.22, 적어도 약 0.25, 적어도 약 0.28, 적어도 약 0.3, 적어도 약 0.32, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.9, 또는 적어도 약 0.95이다. 또한, 하나의 비-제한적 실시태양에서, 길이비 (l2/l1)는 약 10 이하, 예컨대, 약 8 이하, 약 6 이하, 약 5 이하, 약 4 이하, 약 3 이하, 약 2 이하, 약 1.8 이하, 약 1.5 이하, 또는 약 1.2 이하이다. 길이비 (l2/l1)는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
추가로, 연마 입자들의 블렌드는 특정 길이 차이 (l1-l2)를 형성하고, 이는 블렌드의 제2 유형의 형상화 연마 입자 제2 길이에 대한 블렌드의 제1 유형의 형상화 연마 입자 제1 길이의 차이이고, 연마 물품 성능을 개선시킬 수 있다. 예를들면, 일 실시태양에서, 길이 차이 (l1-l2)는 약 2 mm 이하, 예컨대 약 1 mm 이하, 약 800 미크론 이하, 약 500 미크론 이하, 약 300 미크론 이하, 약 100 미크론 이하, 또는 약 50 미크론 이하일 수 있다. 또한, 하나의 비-제한적 실시태양에서, 길이 차이 (l1-l2)는 적어도 약 1 미크론, 예컨대 적어도 약 5 미크론, 또는 적어도 약 10 미크론일 수 있다. 길이 차이 (l1-l2)는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
본원에 기재된 바와 같이, 제1 유형의 형상화 연마 입자는 제1 폭 (w1)을 형성하는 몸체를 가진다. 또한, 제2 유형의 형상화 연마 입자는 제2 폭 (w2)을 형성하는 몸체를 가진다. 추가로, 연마 입자들의 블렌드는 블렌드의 제2 유형의 형상화 연마 입자 제2 폭 (w2)을 블렌드의 제1 유형의 형상화 연마 입자 제1 폭 (w1)으로 나눈 폭비 (w2/w1)를 가진다. 소정의 블렌드 폭비는 연마 물품 성능을 개선시킨다. 따라서, 소정의 예시들에서, 제1 유형의 형상화 연마 입자는 제2 유형의 형상화 연마 입자의 제2 폭과 다른 제1 폭을 가질 수 있다. 그러나, 제1 유형의 형상화 연마 입자 제1 폭은 제2 유형의 형상화 연마 입자 제2 폭과 실질적으로 동일할 수 있다는 것을 이해하여야 한다.
하나의 특정 실시태양에서, 폭비 (w2/w1)는 적어도 약 0.08, 예컨대 적어도 약 0.1, 적어도 약 0.12, 적어도 약 0.15, 적어도 약 0.18, 적어도 약 0.2, 적어도 약 0.22, 적어도 약 0.25, 적어도 약 0.28, 적어도 약 0.3, 적어도 약 0.32, 적어도 약 0.35, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.9, 또는 적어도 약 0.95이다. 또한, 또 다른 비-제한적 실시태양에서, 폭비 (w2/w1)는 약 10 이하, 예컨대 약 8 이하, 약 6 이하, 약 5 이하, 약 4 이하, 약 3 이하, 약 2 이하, 약 1.8 이하, 약 1.5 이하, 또는 약 1.2 이하일 수 있다. 폭비 (w2/w1)는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
또한, 연마 입자들의 블렌드는 블렌드의 제1 유형의 형상화 연마 입자 폭 및 블렌드의 제2 유형의 형상화 연마 입자 폭 간의 차이를 규정하는 폭 차이 (w1-w2)를 가지고, 이는 연마 물품 성능을 개선시킬 수 있다. 적어도 하나의 실시태양에서, 폭 차이 (w1-w2)는 약 2 mm 이하, 예컨대 약 1 mm 이하, 약 800 미크론 이하, 약 500 미크론 이하, 약 300 미크론 이하, 약 100 미크론 이하, 또는 약 50 미크론 이하이다. 또한, 적어도 하나의 비-제한적 실시태양에서, 폭 차이 (w1-w2)는 적어도 약 1 미크론, 예컨대 적어도 약 5 미크론, 또는 적어도 약 10 미크론이다. 폭 차이는 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 양태에 의하면, 연마 입자들의 블렌드에서 제1 유형의 형상화 연마 입자는 블렌드의 입자들 총 중량과 비교하여 제1 유형의 형상화 연마 입자들의 백분율로 표기될 수 있는 (예를들면, 중량%) 제1 함량 (C1)으로 존재한다. 추가로, 연마 입자들의 블렌드에서 제2 유형의 형상화 연마 입자는 블렌드의 총 중량에 대하여 제2 유형의 형상화 연마 입자들의 백분율로 표기될 수 있는 (예를들면, 중량%) 제2 함량 (C1)으로 존재한다. 적어도 하나의 실시태양에서, 제1 함량은 제2 함량과는 다르다. 더욱 상세하게는, 적어도 하나의 실시태양에서, 제1 함량은 제2 함량보다 적다.
예를들면, 소정의 예시들에서, 블렌드는 제1 함량 (C1)이 블렌드 총 함량의 약 90% 이하가 되도록 형성된다. 또 다른 실시태양에서, 제1 함량은 더욱 낮을 수 있고, 예컨대 약 85% 이하, 약 80% 이하, 약 75% 이하, 약 70% 이하, 약 65% 이하, 약 60% 이하, 약 55% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 15% 이하, 약 10% 이하, 또는 약 5% 이하이다. 또한, 하나의 비-제한적 실시태양에서, 제1 유형의 형상화 연마 입자들의 제1 함량은 블렌드 연마 입자들 총 함량의 적어도 약 1%로 존재할 수 있다. 또 다른 예시들에서, 제1 함량 (C1)은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 적어도 약 40%, 적어도 약 45%, 적어도 약 50%, 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 90%, 또는 적어도 약 95%일 수 있다. 제1 함량 (C1)은 상기 임의의 최소 백분율 및 최대 백분율 사이 범위에 존재할 수 있다는 것을 이해하여야 한다.
연마 입자들의 블렌드는 특정 함량의 제2 유형의 형상화 연마 입자를 포함할 수 있다. 예를들면, 제2 함량 (C2)은 블렌드 총 함량의 약 98% 이하일 수 있다. 다른 실시태양들에서, 제2 함량은 약 95% 이하, 예컨대 약 90% 이하, 약 85% 이하, 약 80% 이하, 약 75% 이하, 약 70% 이하, 약 65% 이하, 약 60% 이하, 약 55% 이하, 약 50% 이하, 약 45% 이하, 약 40% 이하, 약 35% 이하, 약 30% 이하, 약 25% 이하, 약 20% 이하, 약 15% 이하, 약 10% 이하, 또는 약 5% 이하일 수 있다. 또한, 하나의 비-제한적 실시태양에서, 제2 함량 (C2)은 블렌드 총 함량의 적어도 약 1% 함량으로 존재할 수 있다. 예를들면, 제2 함량은 적어도 약 5%, 예컨대 적어도 약 10%, 적어도 약 15%, 적어도 약 20%, 적어도 약 25%, 적어도 약 30%, 적어도 약 35%, 적어도 약 40%, 적어도 약 45%, 적어도 약 50%, 적어도 약 55%, 적어도 약 60%, 적어도 약 65%, 적어도 약 70%, 적어도 약 75%, 적어도 약 80%, 적어도 약 85%, 적어도 약 90%, 또는 적어도 약 95%일 수 있다. 제2 함량 (C2)은 상기 임의의 최소 백분율 및 최대 백분율 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 따르면, 연마 입자들의 블렌드는 제1 함량 (C1) 및 제2 함량 (C2) 간의 비율을 규정하는 블렌드 비율 (C1/C2)을 가질 수 있다. 예를들면, 일 실시태양에서, 블렌드 비율 (C1/C2)은 약 10 이하일 수 있다. 또 다른 실시태양에서, 블렌드 비율 (C1/C2)은 약 8 이하, 예컨대 약 6 이하, 약 5 이하, 약 4 이하, 약 3 이하, 약 2 이하, 약 1.8 이하, 약 1.5 이하, 약 1.2 이하, 약 1 이하, 약 0.9 이하, 약 0.8 이하, 약 0.7 이하, 약 0.6 이하, 약 0.5 이하, 약 0.4 이하, 약 0.3 이하, 또는 약 0.2 이하이다. 또한, 또 다른 비-제한적 실시태양에서, 블렌드 비율 (C1/C2)은 적어도 약 0.1, 예컨대 적어도 약 0.15, 적어도 약 0.2, 적어도 약 0.22, 적어도 약 0.25, 적어도 약 0.28, 적어도 약 0.3, 적어도 약 0.32, 적어도 약 0.3, 적어도 약 0.4, 적어도 약 0.45, 적어도 약 0.5, 적어도 약 0.55, 적어도 약 0.6, 적어도 약 0.65, 적어도 약 0.7, 적어도 약 0.75, 적어도 약 0.8, 적어도 약 0.9, 적어도 약 0.95, 적어도 약 1, 적어도 약 1.5, 적어도 약 2, 적어도 약 3, 적어도 약 4, 또는 적어도 약 5 일 수 있다. 블렌드 비율 (C1/C2)은 상기 임의의 최소값 및 최대값 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
적어도 하나의 실시태양에서, 연마 입자들의 블렌드는 대부분 형상화 연마 입자들을 포함한다. 즉, 블렌드는 주로, 제한되지 않지만, 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함하는 형상화 연마 입자들로 형성된다. 적어도 하나의 특정 실시태양에서, 연마 입자들의 블렌드는 실질적으로 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자로 이루어진다. 그러나, 기타 비-제한적 실시태양들에서, 블렌드는 다른 유형의 연마 입자들을 포함할 수 있다. 예를들면, 블렌드는 종래 연마 입자 또는 형상화 연마 입자를 포함하는 제3 유형의 연마 입자를 포함할 수 있다. 제3 유형의 연마 입자는 종래 분쇄 및 파쇄 기술을 통해 달성될 수 있는 불규칙 형상의 부형 연마 입자를 포함할 수 있다.
적어도 하나의 양태에 있어서, 실시태양에 의한 고정 연마 물품은 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 가지는 연마 입자들의 블렌드를 포함하고, 고정 연마 물품은 적어도 약 11 in3의 스테인리스강 수명을 가진다. 고정 연마 물품의 스테인리스강 수명은 본원에 정의된 표준 스테인리스강 연삭 특성화에 따라 결정된다. 일 실시태양에서, 고정 연마 물품의 스테인리스강 수명은 적어도 약 11.5 in3, 예컨대 적어도 약 12 in3이다. 또한, 또 다른 비-제한적 실시태양에서, 고정 연마 물품의 스테인리스강 수명은 약 25 in3 이하, 예컨대 약 20 in3 이하이다. 실시태양에 의한 고정 연마 물품의 스테인리스강 수명은 상기 임의의 최소값 및 최대값을 포함한 이들 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
또 다른 실시태양에 의하면, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고 다수의 형상화 연마 입자 각각은 지지판에 대하여 조절된 배향으로 배열될 수 있다. 적합한 예시적 조절 배향은 미리 결정된 회전 배향, 미리 결정된 가로 (lateral) 배향, 및 미리 결정된 세로 (longitudinal) 배향 중 적어도 하나를 포함한다. 적어도 하나의 실시태양에서, 조절된 배향을 가지는 다수의 형상화 연마 입자들은 블렌드의 제1 유형의 형상화 연마 입자들의 적어도 일부, 블렌드의 제2 유형의 형상화 연마 입자들의 적어도 일부, 및 이들 조합을 포함할 수 있다. 더욱 상세하게는, 조절된 배향을 가지는 다수의 형상화 연마 입자들은 모든 제1 유형의 형상화 연마 입자들을 포함할 수 있다. 또 다른 실시태양에서, 지지판에 대하여 조절된 배향으로 배열된 다수의 형상화 연마 입자들은 연마 입자들의 블렌드의 모든 제2 유형의 형상화 연마 입자들을 포함할 수 있다.
도 7은 조절된 배향을 가지는 형상화 연마 입자들을 가지는 코팅 연마 물품의 부분 평면도를 도시한 것이다. 도시된 바와 같이, 코팅 연마 물품 (700)은 지지판 (701)을 포함하고, 이는 지지판 (701) 길이를 형성하고 이를 따라 연장되는 세로 축 (780) 및 지지판 (701) 폭을 형성하고 이를 따라 연장되는 가로 축 (781)에 의해 형성된다. 실시태양에 의하면, 형상화 연마 입자 (702)는 지지판 (701) 가로 축 (781)에 대하여 특정 제1 가로 위치 및 지지판 (701) 세로 축 (780)에 대하여 제1 세로 위치에 의해 규정되는 제1의 미리 결정된 위치 (712)에 배치된다. 추가로, 형상화 연마 입자 (703)는 지지판 (701) 가로 축 (781)에 대하여 제2 가로 위치, 및 실질적으로 형상화 연마 입자 (702) 제1 세로 위치와 동일할 수 있는 지지판 (701) 세로 축 (780)애 대하여 제1 세로 위치에 의해 규정되는 제2의 미리 결정된 위치 (713)를 가진다. 특히, 형상화 연마 입자들 (702, 703)은 가로 간격 (721)만큼 서로 이격되고, 이는 지지판 (701) 가로 축 (781)에 평행한 가로 면 (784)을 따라 측정될 때 2개의 인접 형상화 연마 입자들 (702, 703) 사이 최소 거리로 정의된다. 실시태양에 의하면, 가로 간격 (721)은 0보다 커서, 형상화 연마 입자들 (702, 703) 사이 일부 거리가 존재한다. 그러나, 도시되지는 않지만, 가로 간격 (721)은 0일 수 있고, 인접 형상화 연마 입자 일부들의 접촉 및 심지어 중첩이 가능하다는 것을 이해하여야 한다.
더욱 도시된 바와 같이, 코팅 연마 물품 (700)은 제3의 미리 결정된 위치 (714)에 배치되는 형상화 연마 입자 (704)를 포함하고 이는 지지판 (701) 세로 축 (780)에 대하여 제2 세로 위치 및 또한 가로 축 (784)에서 이격되고 지지판 (701) 가로 축 (781)에 평행한 가로 면 (785)에 대하여 제3 가로 위치로 정의된다. 또한, 도시된 바와 같이, 세로 간격 (723)은 형상화 연마 입자들 (702, 704) 사이에 존재할 수 있고, 이는 세로 축 (780)에 평행한 방향으로 측정될 때 2개의 인접 형상화 연마 입자들 (702, 704)사이 최소 거리로 정의될 수 있다. 실시태양에 의하면, 세로 간격 (723)은 0보다 클 수 있다. 또한, 도시되지는 않지만, 세로 간격 (723)은 0일 수 있어, 인접 형상화 연마 입자들은 서로 접촉 및 심지어 중첩된다는 것을 이해하여야 한다.
도 8A는 실시태양에 의한 형상화 연마 입자들을 포함한 연마 물품 일부의 평면도를 도시한 것이다. 도시된 바와 같이, 연마 물품 (800)은 지지판 (801) 폭을 정의하는 가로 축 (781)에 대하여 제1 회전 배향을 가지는 제1 위치에서 지지판 (801)에 적층되는 형상화 연마 입자 (802)를 포함한다. 특히, 형상화 연마 입자 (802)는 가로 축 (781)에 평행한 가로 면 (884) 및 형상화 연마 입자 (802) 치수 사이 제1 회전 각으로 정의되는 미리 결정된 회전 배향을 가진다. 특히, 본원에서 형상화 연마 입자 (802) 치수를 언급할 때 형상화 연마 입자 (802)의 등분 축 (831)에 대한 언급을 포함하고, 이러한 등분 축 (831)은 지지판 (801)에 (직접 또는 간접적으로) 결합된 표면 (예를들면, 측면 또는 에지)를 따라 형상화 연마 입자 (802) 중심 점 (821)을 통과하여 연장된다. 따라서, 측면 배향 위치의 형상화 연마 입자 위치 문맥에서, (예를들면, 도 6 참고), 등분 축 (831)은 중심 점 (821)을 통과하여 지지판 (801) 표면에서 가장 가까운 측면 (833) 폭 (w) 방향으로 연장된다.
소정의 실시태양들에서, 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 등분 축 (831) 및 가로 면 (884) 사이 최소 각을 정의하는 미리 결정된 회전 각 (841)으로 형성되고, 이 둘은 도 8A 평면도에서와 같이 중심 점 (821)을 통과하여 연장된다. 실시태양에 의하면, 미리 결정된 회전 각 (841), 따라서 미리 결정된 회전 배향은, 0º일 수 있다. 다른 실시태양들에서, 미리 결정된 회전 배향을 형성하는 미리 결정된 회전 각은 더욱 클 수 있고, 예컨대 적어도 약 2º, 적어도 약 5º, 적어도 약 10º, 적어도 약 15º, 적어도 약 20º, 적어도 약 25º, 적어도 약 30º, 적어도 약 35º, 적어도 약 40º, 적어도 약 45º, 적어도 약 50º, 적어도 약 55º, 적어도 약 60º, 적어도 약 70º, 적어도 약 80º, 또는 적어도 약 85º이다. 또한, 회전 각 (841)에 의해 형성되는 미리 결정된 회전 배향은 약 90º 이하, 예컨대 약 85º 이하, 약 80º 이하, 약 75º 이하, 약 70º 이하, 약 65º 이하, 약 60º 이하, 예컨대 약 55º 이하, 약 50º 이하, 약 45º 이하, 약 40º 이하, 약 35º 이하, 약 30º 이하, 약 25º 이하, 약 20º 이하, 예컨대 약 15º 이하, 약 10º 이하, 또는 약 5º 이하일 수 있다. 미리 결정된 회전 배향은 임의의 상기 최소 각 및 최대 각 사이 범위에 있을 수 있다는 것을 이해하여야 한다.
도 8B는 실시태양에 의한 형상화 연마 입자 (802)를 포함한 연마 물품 (800) 일부의 사시도이다. 도시된 바와 같이, 연마 물품 (800)은 지지판 (801)에 제1 위치 (812)에서 적층되는 형상화 연마 입자 (802)를 포함하여 형상화 연마 입자 (802)는 지지판 (801) 폭을 정의하는 가로 축 (781)에 대하여 제1 회전 배향을 포함한다. 형상화 연마 입자의 미리 결정된 배향의 소정의 양태는 도시된 바와 같이 x, y, z 3-차원 축을 참조하여 기술될 수 있다. 예를들면, 형상화 연마 입자 (802)의 미리 결정된 세로 배향은 지지판 (801) 세로 축 (780)에 평행하게 연장되는 y-축에 대한 형상화 연마 입자 (802) 위치를 참조하여 기술될 수 있다. 또한, 형상화 연마 입자 (802)의 미리 결정된 가로 배향은 지지판 (801) 가로 축 (781)에 평행하게 연장되는 x-축 상에서 형상화 연마 입자 위치를 참조하여 기술될 수 있다. 추가로, 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 형상화 연마 입자 (802) 측면 (833)의 중심 점 (821)을 통해 연장되는 등분 축 (831)을 참조하여 정의될 수 있다. 특히, 형상화 연마 입자 (802)의 측면 (833)은 직접 또는 간접적으로 지지판 (801)에 결합된다. 특정 실시태양에서, 등분 축 (831)은 임의의 적합한 기준 축, 예를들면, 가로 축 (781)에 평행하게 연장되는 x-축과 각을 형성한다. 형상화 연마 입자 (802)의 미리 결정된 회전 배향은 x-축 및 등분 축 (831) 사이에 형성되는 회전 각으로 기술되고, 회전 각은 도 8B에서 각 (841)로 표시된다. 특히, 연마 물품 지지판 상에 다수의 형상화 연마 입자들의 조절된 배치는, 본원에 기술된 미리 결정된 배향 특징을 조절하고, 고도로 수반된 프로세스이며, 이것은 산업에서 이전에 고려되거나 또는 효율적으로 사용되지 않았다.
도 9는 실시예에 따른 연삭 방향에 대해 미리 결정된 배향 특성들을 가진 성형 연마 입자들을 포함한 연마 물품의 일 부분의 사시도를 포함한다. 일 실시예에서, 연마 물품 (900)은 또 다른 성형 연마 입자(903)에 대해 및/또는 연삭 방향(985)에 대해 미리 결정된 배향을 가진 성형 연마 입자(902)를 포함할 수 있다.
연삭 방향(985)은 재료 제거 동작에서 가공물에 대하여 연마 물품이 이동되는 의도된 방향일 수 있다. 특정한 실시예들에서, 연삭 방향(985)은 지지판(901)의 치수들에 대하여 형성될 수 있다. 예를들면, 일 실시태양에서, 연삭 방향(985)은 지지판의 가로 축(981)에 실질적으로 수직이며 지지판(901)의 세로 축(980)에 대하여 실질적으로 평행할 수 있다. 형상화 연마 입자(902)의 미리 결정된 배향 특성들은 가공물과 형상화 연마 입자(902)의 초기 접촉 표면을 정의할 수 있다. 예를들면, 형상화 연마 입자(902)는 주면들(963, 964) 및 주면들(963, 964) 사이에 각각 연장된 측면(965, 966)을 포함할 수 있다. 형상화 연마 입자(902)의 미리 결정된 배향 특성들은 재료 제거 조작 과정에서 주면 (963)이 형상화 연마 입자 (902)의 다른 표면들에 앞서 가공물과 초기 접촉을 이루도록 입자 (902)를 배치할 수 있다. 이러한 배향은 연삭 방향 (985)에 대하여 주면 배향인 것으로 고려될 수 있다. 더욱 상세하게, 형상화 연마 입자(902)는 연삭 방향 (985)에 대하여 특정 배향을 가진 등분 축 (931)을 가질 수 있다. 예를들면, 도시된 바와 같이, 연삭 방향 (985) 및 등분 축(931)의 벡터는 서로에 실질적으로 수직이다. 지기판에 대한 임의 범위의 미리 결정된 회전 배향들이 형상화 연마 입자에 대해 고려되는 것처럼, 연삭 방향 (985)에 대한 임의 범위의 형상화 연마 입자들의 배향들이 고려되며 이용될 수 있다는 것이 이해될 것이다.
형상화 연마 입자(903)는 형상화 연마 입자(902) 및 연삭 방향(985)과 비교할 때 하나 이상의 상이한 미리 결정된 배향 특성들을 가질 수 있다. 도시된 바와 같이, 형상화 연마 입자 (903)는 주면들 (991, 992)을 포함할 수 있으며, 각각은 측면들(971, 972)에 의해 연결될 수 있다. 게다가, 도시된 바와 같이, 형상화 연마 입자(903)는 연삭 방향(985)의 벡터에 대하여 특정한 각도를 형성하는 등분 축 (973)을 가질 수 있다. 도시된 바와 같이, 형상화 연마 입자(903)의 등분 축 (973)은 등분 축 (973) 및 연삭 방향 (985) 사이에서의 각도가 근본적으로 0이도록 연삭 방향 (985)과 실질적으로 평행 배향을 가질 수 있다. 따라서, 형상화 연마 입자 (903)의 미리 결정된 배향 특성들은 형상화 연마 입자 (903)의 다른 표면들 중 임의의 것에 앞서 가공물과의 측면 (972) 초기 접촉을 가능하게 한다. 형상화 연마 입자 (903)의 이러한 배향은 연삭 방향 (985)에 대해 측면 배향인 것으로 고려될 수 있다.
또한, 하나의 비-제한적 실시태양에서, 연마 물품은 지지판, 연삭 방향 및/또는 서로에 대해 하나 이상의 미리 결정된 분포로 배열될 수 있는 형상화 연마 입자들의 하나 이상의 그룹들을 포함할 수 있다는 것이 이해될 것이다. 본원에 설명된 바와 같이, 예를들면 하나 이상의 형상화 연마 입자들의 그룹들은 연삭 방향에 대해 미리 결정된 배향을 가질 수 있다. 게다가, 본원의 연마 물품들은 형상화 연마 입자들의 하나 이상의 그룹들을 가질 수 있으며, 그룹들 각각은 연삭 방향에 대해 상이한 예정된 배향을 가진다. 연삭 방향에 대해 상이한 미리 결정된 배향들을 가진 형상화 연마 입자들 그룹들을 이용하면 연마 물품의 개선된 성능을 가능하게 할 수 있다.
도 10은 실시태양에 따른 연마 물품 일부의 평면도를 포함한다. 특히, 연마 물품 (1000)은 다수의 형상화 연마 입자들을 포함한 제 1 그룹 (1001)을 포함할 수 있다. 도시된 바와 같이, 형상화 연마 입자들은 미리 결정된 분포를 정의하기 위해 하나의 지지판 (101)에서 서로에 대해 배열될 수 있다. 보다 특히, 미리 결정된 분포는 하향식으로 보여지는 바와 같이 패턴 (1023)의 형태에 있을 수 있으며, 보다 특히 삼각형 형태 2-차원 어레이를 정의한다. 추가로 예시된 바와 같이, 제1 그룹 (1001)은 지지판 (101) 위에 놓인 미리 결정된 마이크로-형태 (1031)를 정의하는 연마 물품 (1000) 상에 배열될 수 있다. 실시태양에 따르면, 마이크로-형태 (1031)는 상부에서 하부로 도시될 때 특정한 2-차원 형태를 가질 수 있다. 몇몇 대표적인 2-차원 형태들은 다각형들, 타원체들, 숫자들, 그리스 알파벳 문자들, 라틴 알파벳 문자들, 러시아 알파벳 문자들, 아랍어 알파벳 문자들, 간지 문자들, 복합 형태들, 불규칙 형태들, 설계들, 그것의 임의의 조합을 포함할 수 있다. 특정한 실시태양들에서, 특정한 마이크로-형태를 가진 그룹의 형성은 연마 물품의 개선된 성능을 가능하게 할 수 있다.
추가로 도시된 바와 같이, 연마 물품 (1000) 은 미리 결정된 분포를 정의하기 위해 지지판 (101)의 표면상에 배열될 수 있는 복수의 형상화 연마 입자들을 포함한 그룹 (1004)을 포함할 수 있다. 특히, 미리 결정된 분포는 패턴, 및 보다 특히, 일반적으로 사각형 패턴 (1024)을 정의하는 복수의 형상화 연마 입자들의 배열을 포함할 수 있다. 도시된 바와 같이, 그룹 (1004)은 연마 물품 (1000)의 표면상에서의 마이크로-형태 (1034)를 정의할 수 있다. 하나의 실시태양에서, 그룹 (1004)의 마이크로-형태 (1034)는 예를들면, 다각형 형태, 및 보다 특히, 연마 물품 (1000)의 표면상에서 하향식으로 보여지는 바와 같이 일반적으로 사각형 (다이아몬드)을 포함하여, 하향식으로 보여지는 바와 같이 2-차원 형태를 가질 수 있다. 도 10의 예시된 실시태양에서, 그룹 (1001)은 실질적으로 그룹 (1004)의 마이크로-형태 (1034)와 동일한 마이크로-형태 (1031)를 가질 수 있다. 그러나, 다른 실시태양들에서, 다양한 상이한 그룹들은 연마 물품의 표면상에서 사용될 수 있으며, 보다 특히 상이한 그룹들의 각각은 서로 상이한 마이크로-형태를 가질 수 있다는 것을 이해하여야 한다.
추가로 도시되는 바와 같이, 연마 물품은 그룹들 (1001-1004) 사이에서 연장된 채널 영역들 (1021, 1022)에 의해 분리될 수 있는 그룹들 (1001, 1002, 1003, 1004)을 포함할 수 있다. 특정 실시태양들에서, 채널 영역들 (1021, 1022)은 실질적으로 형상화 연마 입자들이 없을 수 있다. 게다가, 채널 영역들 (1021, 1022)은 그룹들 (1001-1004) 사이에서 액체를 이동시키며 연마 물품의 스와프 개선 및 연삭 성능을 추가로 개선하도록 구성될 수 있다. 더욱이, 특정한 실시태양에서, 연마 물품 (1000)은 그룹들 (1001-1004) 사이에서 연장된 채널 영역들 (1021, 1022)을 포함할 수 있으며, 채널 영역들 (1021, 1022)은 연마 물품 (1000)의 표면 상에서 패턴화될 수 있다. 특정 예시들에서, 채널 영역들 (1021, 1022)은 연마 물품의 표면을 따라 연장된 특징들의 규칙적 및 반복하는 어레이를 나타낼 수 있다.
본원 실시태양들의 고정 연마 물품은 다양한 재료 제거 조작에 사용될 수 있다. 예를들면, 고정 연마 물품을 가공물에 대하여 상대적으로 이동시킴으로써 본원의 고정 연마 물품은 가공물로부터 재료 제거 방법에 사용된다. 고정 연마재 및 가공물 사이 상대 운동으로 가공물 표면에서 재료가 제거된다. 제한되지 않지만 무기 재료, 유기 재료, 및 이들 조합으로 구성된 가공물을 포함한 다양한 가공물이 본원 실시태양들의 고정 연마 물품을 이용하여 개질된다. 특정 실시태양에서, 가공물은 금속, 예컨대 금속 합금을 포함한다. 하나의 특정 예시에서, 가공물은 실질적으로 금속 또는 금속 합금, 예컨대 스테인리스강으로 이루어진다.
항목 1. 고정 연마 물품으로서,
연마 입자들의 블렌드를 포함하고, 이는:
제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자;
제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 포함하는, 고정 연마 물품.
항목 2. 제1항목에 있어서, 높이비 (h2/h1)는 약 0.98 이하이고, 높이비 (h2/h1)는 약 0.95 이하 또는 약 0.93 이하 또는 약 0.90 이하 또는 약 0.88 이하 또는 약 0.85 이하 또는 약 0.83 이하인, 고정 연마 물품.
항목 3. 제2항목에 있어서, 높이비 (h2/h1)는 적어도 약 0.05 또는 적어도 약 0.08 또는 적어도 약 0.1 또는 적어도 약 0.12 또는 적어도 약 0.15 또는 적어도 약 0.18 또는 적어도 약 0.2 또는 적어도 약 0.22 또는 적어도 약 0.25 또는 적어도 약 0.28 또는 적어도 약 0.3 또는 적어도 약 0.32 또는 적어도 약 0.35 또는 적어도 약 0.4 또는 적어도 약 0.45 또는 적어도 약 0.5 또는 적어도 약 0.55 또는 적어도 약 0.6 또는 적어도 약 0.65인, 고정 연마 물품.
항목 4. 제1항목에 있어서, 높이 차이 (h1-h2)는 적어도 약 1 미크론인, 고정 연마 물품.
항목 5. 제4항목에 있어서, 높이 차이 (h1-h2)는 적어도 약 5 미크론 또는 적어도 약 10 미크론 또는 적어도 약 15 미크론 또는 적어도 약 20 미크론 또는 적어도 약 25 미크론 또는 적어도 약 30 미크론 또는 적어도 약 35 미크론 또는 적어도 약 40 미크론 또는 적어도 약 50 미크론 또는 적어도 약 60 미크론 또는 적어도 약 70 미크론 또는 적어도 약 80 미크론인, 고정 연마 물품.
항목 6. 제4항목에 있어서, 높이 차이 (h1-h2)는 약 2 mm 이하 또는 약 1 mm 이하 또는 약 800 미크론 이하 또는 약 500 미크론 이하인, 고정 연마 물품.
항목 7. 제1항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 길이 (l1)를 가지고, 제2 유형의 형상화 연마 입자는 제2 길이 (l2)를 가지고, 길이비 (l1/l2)는 적어도 약 0.05인, 고정 연마 물품.
항목 8. 제7항목에 있어서, 길이비 (l1/l2)는 적어도 약 0.08 또는 적어도 약 0.1 또는 적어도 약 0.12 또는 적어도 약 0.15 또는 적어도 약 0.18 또는 적어도 약 0.2 또는 적어도 약 0.22 또는 적어도 약 0.25 또는 적어도 약 0.28 또는 적어도 약 0.3 또는 적어도 약 0.32 또는 적어도 약 0.35 또는 적어도 약 0.4 또는 적어도 약 0.45 또는 적어도 약 0.5 또는 적어도 약 0.55 또는 적어도 약 0.6 또는 적어도 약 0.65 또는 적어도 약 0.7 또는 적어도 약 0.75 또는 적어도 약 0.8 또는 적어도 약 0.9 또는 적어도 약 0.95인, 고정 연마 물품.
항목 9. 제7항목에 있어서, 길이비 (l1/l2)는 약 10 이하 또는 약 8 이하 또는 약 6 이하 또는 약 5 이하 또는 약 4 이하 또는 약 3 이하 또는 약 2 이하 또는 약 1.8 이하 또는 약 1.5 이하 또는 약 1.2 이하인, 고정 연마 물품.
항목 10. 제7항목에 있어서, 길이 차이 (L1-l2)는 약 2 mm 이하 또는 약 1 mm 이하 또는 약 800 미크론 이하 또는 약 500 미크론 이하 또는 약 300 미크론 이하 또는 약 100 미크론 이하 또는 약 50 미크론 이하인, 고정 연마 물품.
항목 11. 제10항목에 있어서, 길이 차이 (L1-l2)는 적어도 약 1 미크론 또는 적어도 약 5 미크론 또는 적어도 약 10 미크론인, 고정 연마 물품.
항목 12. 제1항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 폭 (w1)을 가지고, 제2 유형의 형상화 연마 입자는 제2 폭 (w2)을 가지고, 폭비 (w2/w1)는 적어도 약 0.05인, 고정 연마 물품.
항목 13. 제12항목에 있어서, 폭비 (w2/w1)는 적어도 약 0.08 또는 적어도 약 0.1 또는 적어도 약 0.12 또는 적어도 약 0.15 또는 적어도 약 0.18 또는 적어도 약 0.2 또는 적어도 약 0.22 또는 적어도 약 0.25 또는 적어도 약 0.28 또는 적어도 약 0.3 또는 적어도 약 0.32 또는 적어도 약 0.35 또는 적어도 약 0.4 또는 적어도 약 0.45 또는 적어도 약 0.5 또는 적어도 약 0.55 또는 적어도 약 0.6 또는 적어도 약 0.65 또는 적어도 약 0.7 또는 적어도 약 0.75 또는 적어도 약 0.8 또는 적어도 약 0.9 또는 적어도 약 0.95인, 고정 연마 물품.
항목 14. 제12항목에 있어서, 폭비 (w2/w1)는 약 10 이하 또는 약 8 이하 또는 약 6 이하 또는 약 5 이하 또는 약 4 이하 또는 약 3 이하 또는 약 2 이하 또는 약 1.8 이하 또는 약 1.5 이하 또는 약 1.2 이하인, 고정 연마 물품.
항목 15. 제12항목에 있어서, 폭 차이 (w1-w2)는 약 2 mm 이하 또는 약 1 mm 이하 또는 약 800 미크론 이하 또는 약 500 미크론 이하 또는 약 300 미크론 이하 또는 약 100 미크론 이하 또는 약 50 미크론 이하인, 고정 연마 물품.
항목 16. 제15항목에 있어서, 폭 차이 (w1-w2)는 적어도 약 1 미크론 또는 적어도 약 5 미크론 또는 적어도 약 10 미크론인, 고정 연마 물품.
항목 17. 제1항목에 있어서, 제1 함량은 제2 함량보다 낮은, 고정 연마 물품.
항목 18. 제1항목에 있어서, 제1 함량은 블렌드 총 함량의 약 90% 이하 또는 약 85% 이하 또는 약 80% 이하 또는 약 75% 이하 또는 약 70% 이하 또는 약 65% 이하 또는 약 60% 이하 또는 약 55% 이하 또는 약 50% 이하 또는 약 45% 이하 또는 약 40% 이하 또는 약 35% 이하 또는 약 30% 이하 또는 약 25% 이하 또는 약 20% 이하 또는 약 15% 이하 또는 약 10% 이하 또는 약 5% 이하인, 고정 연마 물품.
항목 19. 제1항목에 있어서, 제1 함량은 블렌드 총 함량의 적어도 약 1% 또는 적어도 약 5% 또는 적어도 약 10% 또는 적어도 약 15% 또는 적어도 약 20% 또는 적어도 약 25% 또는 적어도 약 30% 또는 적어도 약 35% 또는 적어도 약 40% 또는 적어도 약 45% 또는 적어도 약 50% 또는 적어도 약 55% 또는 적어도 약 60% 또는 적어도 약 65% 또는 적어도 약 70% 또는 적어도 약 75% 또는 적어도 약 80% 또는 적어도 약 85% 또는 적어도 약 90% 또는 적어도 약 95%인, 고정 연마 물품.
항목 20. 제1항목에 있어서, 제2 함량은 블렌드 총 함량의 약 98% 이하 또는 약 95% 이하 또는 약 90% 이하 또는 약 85% 이하 또는 약 80% 이하 또는 약 75% 이하 또는 약 70% 이하 또는 약 65% 이하 또는 약 60% 이하 또는 약 55% 이하 또는 약 50% 이하 또는 약 45% 이하 또는 약 40% 이하 또는 약 35% 이하 또는 약 30% 이하 또는 약 25% 이하 또는 약 20% 이하 또는 약 15% 이하 또는 약 10% 이하 또는 약 5% 이하인, 고정 연마 물품.
항목 21. 제1항목에 있어서, 제2 함량은 블렌드 총 함량의 적어도 약 1% 또는 적어도 약 5% 또는 적어도 약 10% 또는 적어도 약 15% 또는 적어도 약 20% 또는 적어도 약 25% 또는 적어도 약 30% 또는 적어도 약 35% 또는 적어도 약 40% 또는 적어도 약 45% 또는 적어도 약 50% 또는 적어도 약 55% 또는 적어도 약 60% 또는 적어도 약 65% 또는 적어도 약 70% 또는 적어도 약 75% 또는 적어도 약 80% 또는 적어도 약 85% 또는 적어도 약 90% 또는 적어도 약 95%인, 고정 연마 물품.
항목 22. 제1항목에 있어서, 연마 입자들의 블렌드는 제1 함량 (C1)의 제1 유형의 형상화 연마 입자, 및 제2 함량 (C2)의 제2 유형의 형상화 연마 입자를 포함하고, 블렌드 비율 (C1/C2)은 약 10 이하인, 고정 연마 물품.
항목 23. 제22항목에 있어서, 블렌드 비율 (C1/C2)은 약 8 이하 또는 약 6 이하 또는 약 5 이하 또는 약 4 이하 또는 약 3 이하 또는 약 2 이하 또는 약 1.8 이하 또는 약 1.5 이하 또는 약 1.2 이하 또는 약 1 이하 또는 약 0.9 이하 또는 약 0.8 이하 또는 약 0.7 이하 또는 약 0.6 이하 또는 약 0.5 이하 또는 약 0.4 이하 또는 약 0.3 이하 또는 약 0.2 이하인, 고정 연마 물품.
항목 24. 제22항목에 있어서, 블렌드 비율 (C1/C2)은 적어도 약 0.1 또는 적어도 약 0.15 또는 적어도 약 0.2 또는 적어도 약 0.22 또는 적어도 약 0.25 또는 적어도 약 0.28 또는 적어도 약 0.3 또는 적어도 약 0.32 또는 적어도 약 0.35 또는 적어도 약 0.4 또는 적어도 약 0.45 또는 적어도 약 0.5 또는 적어도 약 0.55 또는 적어도 약 0.6 또는 적어도 약 0.65 또는 적어도 약 0.7 또는 적어도 약 0.75 또는 적어도 약 0.8 또는 적어도 약 0.9 또는 적어도 약 0.95 또는 적어도 약 1 또는 적어도 약 1.5 또는 적어도 약 2 또는 적어도 약 3 또는 적어도 약 4 또는 적어도 약 5인, 고정 연마 물품.
항목 25. 제1항목에 있어서, 연마 입자들의 블렌드는 대부분 형상화 연마 입자들을 포함하는, 고정 연마 물품.
항목 26. 제1항목에 있어서, 연마 입자들의 블렌드는 실질적으로 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자 로 이루어진, 고정 연마 물품.
항목 27. 제1항목에 있어서, 블렌드는 제3 유형의 연마 입자를 더욱 포함하고, 제3 유형의 연마 입자는 형상화 연마 입자를 포함하고, 제3 유형의 연마 입자는 부형의 (diluent type) 연마 입자를 포함하고, 부형의 연마 입자는 불규칙 형상을 포함하는, 고정 연마 물품.
항목 28. 제1항목에 있어서, 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들 조합으로 이루어진 군에서 선택되는, 고정 연마 물품.
항목 29. 제1항목에 있어서, 고정 연마 물품은 기재를 포함하고, 기재는 지지판을 포함하고, 지지판은 직물 소재를 포함하고, 지지판은 부직물 재료를 포함하고, 지지판은 유기 재료를 포함하고, 지지판은 고분자를 포함하고, 지지판은 천, 페이퍼, 필름, 직물, 털소재 직물 (fleeced fabric), 경화 파이버, 직물소재, 부직물 소재, 웨빙 (webbing), 고분자, 수지, 페놀수지, 페놀-라텍스 수지, 에폭시 수지, 폴리에스테르 수지, 요소 포름알데히드 수지, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드, 및 이들의 조합으로 이루어진 군에서 선택되는 재료를 포함하는, 고정 연마 물품.
항목 30. 제29항목에 있어서, 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함하는, 고정 연마 물품.
항목 31. 제29항목에 있어서, 지지판 상부에 놓이는 접착층을 더욱 포함하고, 접착층은 메이크 코트를 포함하고, 메이크 코트는 지지판 상부에 놓이고, 메이크 코트는 지지판 일부에 직접 결합되고, 메이크 코트는 유기재료를 포함하고, 메이크 코트는 고분자 재료를 포함하고, 메이크 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 고정 연마 물품.
항목 32. 제31항목에 있어서, 접착층은 사이즈 코트를 포함하고, 사이즈 코트는 다수의 형상화 연마 입자들 일부 상부에 놓이고, 사이즈 코트는 메이크 코트 상부에 놓이고, 사이즈 코트는 다수의 형상화 연마 입자 일부에 직접 결합되고, 사이즈 코트는 유기 재료를 포함하고, 사이즈 코트는 고분자 재료를 포함하고 , 사이즈 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 고정 연마 물품.
항목 33. 제1항목에 있어서, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 다수의 형상화 연마 입자들의 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 고정 연마 물품.
항목 34. 제33항목에 있어서, 다수의 형상화 연마 입자들은 제1 유형의 형상화 연마 입자들의 적어도 일부를 포함하고, 다수의 형상화 연마 입자들은 모든 제1 유형의 형상화 연마 입자들을 포함하는, 고정 연마 물품.
항목 35. 제33항목에 있어서, 다수의 형상화 연마 입자들은 제2 유형의 형상화 연마 입자들의 적어도 일부를 포함하고, 다수의 형상화 연마 입자들은 모든 제2 유형의 형상화 연마 입자들을 포함하는, 고정 연마 물품.
항목 36. 제33항목에 있어서, 대부분의 제1 유형의 연마 입자들은 지지판과 측면 배향으로 결합되고, 다수의 형상화 연마 입자들 중 적어도 약 55% 또는 적어도 약 60% 또는 적어도 약 65% 또는 적어도 약 70% 또는 적어도 약 75% 또는 적어도 약 77% 또는 적어도 약 80%, 및 이하 약 99% 또는 이하 약 95% 또는 이하 약 90% 또는 이하 약 85%의 형상화 연마 입자들은 지지판과 측면 배향으로 결합하는, 고정 연마 물품.
항목 37. 제33항목에 있어서, 대부분의 제2 유형의 연마 입자들은 지지판과 측면 배향으로 결합되고, 다수의 형상화 연마 입자들 중 적어도 약 55% 또는 적어도 약 60% 또는 적어도 약 65% 또는 적어도 약 70% 또는 적어도 약 75% 또는 적어도 약 77% 또는 적어도 약 80%, 및 약 99% 이하 또는 약 95% 이하 또는 약 90% 이하 또는 약 85% 이하의 형상화 연마 입자들은 지지판과 측면 배향하는, 고정 연마 물품.
항목 38. 제1항목에 있어서, 고정 연마 물품은 지지판 상에 형상화 연마 입자들 블렌드의 개방 코트를 가지는 코팅 연마 물품을 포함하고, 개방 코트의 코팅 밀도는 약 70 입자들/cm2 이하 또는 약 65 입자들/cm2 이하 또는 약 60 입자들/cm2 이하 또는 약 55 입자들/cm2 이하 또는 약 50 입자들/cm2, 적어도 약 5 입자들/cm2 이하 또는 적어도 약 10 입자들/cm2 이하인, 고정 연마 물품.
항목 39. 제1항목에 있어서, 고정 연마 물품은 지지판 상에 형상화 연마 입자들 블렌드의 밀폐 코트를 가지는 코팅 연마 물품을 포함하고, 밀폐 코트의 코팅 밀도는 적어도 약 75 입자들/cm2 또는 적어도 약 80 입자들/cm2 또는 적어도 약 85 입자들/cm2 또는 적어도 약 90 입자들/cm2 또는 적어도 약 100 입자들/cm2인, 고정 연마 물품.
항목 40. 제1항목에 있어서, 제1 유형의 형상화 연마 입자는 길이 (l), 폭 (w), 및 높이 (hi)를 가지는 몸체를 포함하고, 폭>길이, 길이>높이, 및 폭>높이인, 고정 연마 물품.
항목 41. 제40항목에 있어서, 높이 (h)는 폭 (w)의 적어도 약 20% 또는 적어도 약 25% 또는 적어도 약 30% 또는 적어도 약 33%, 및 폭의 약 80% 이하 또는 약 76% 이하 또는 약 73% 이하 또는 약 70% 이하 또는 약 68% 이하 또는 폭의 약 56% 이하 또는 폭의 약 48% 이하 또는 약 40% 폭의 이하인, 고정 연마 물품.
항목 42. 제40항목에 있어서, 높이 (h)는 적어도 약 400 미크론 또는 적어도 약 450 미크론 또는 적어도 약 475 미크론 또는 적어도 약 500 미크론, 및 약 3 mm 이하 또는 약 2 mm 이하 또는 약 1.5 mm 이하 또는 약 1 mm 이하 또는 약 800 미크론 이하인, 고정 연마 물품.
항목 43. 제40항목에 있어서, 폭은 적어도 약 600 미크론 또는 적어도 약 700 미크론 또는 적어도 약 800 미크론 또는 적어도 약 900 미크론, 및 약 4 mm 이하 또는 약 3 mm 이하 또는 약 2.5 mm 이하 또는 약 2 mm 이하인, 고정 연마 물품.
항목 44. 제40항목에 있어서, 몸체의 플래싱 비율은 적어도 약 1%, 예컨대 적어도 약 2% 또는 적어도 약 3% 또는 적어도 약 5% 또는 적어도 약 8% 또는 적어도 약 10% 또는 적어도 약 12% 또는 적어도 약 15% 또는 적어도 약 18% 또는 적어도 약 20%, 및 약 40% 이하 또는 약 35% 이하 또는 약 30% 이하 또는 약 25% 이하 또는 약 20% 이하 또는 약 18% 이하 또는 약 15% 이하 또는 약 12% 이하 또는 약 10% 이하 또는 약 8% 이하 또는 약 6% 이하 또는 약 4% 이하인, 고정 연마 물품.
항목 45. 제40항목에 있어서, 몸체의 디싱 값 (d)은 약 2 이하 또는 약 1.9 이하 또는 약 1.8 이하 또는 약 1.7 이하 또는 약 1.6 이하 또는 약 1.5 이하 또는 약 1.2, 및 적어도 약 0.9 이하 또는 적어도 약 1.0 이하인, 고정 연마 물품.
항목 46. 제40항목에 있어서, 몸체의 폭:길이의 1차 종횡비는 적어도 약 1:1 및 약 10:1 이하인, 고정 연마 물품.
항목 47. 제40항목에 있어서, 몸체의 폭:높이의 비율로 정의되는 2차 종횡비는 약 5:1 내지 약 1:1인, 고정 연마 물품.
항목 48. 제40항목에 있어서, 몸체의 길이:높이의 비율로 정의되는 3차 종횡비는 약 6:1 내지 약 1:1인, 고정 연마 물품.
항목 49. 제40항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 삼각, 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되고, 몸체는 몸체의 길이 및 폭으로 정의되는 평면에서 관찰될 때 타원형, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 복잡 다각형, 불규칙 형상 및 이들의 조합으로 이루어진 군에서 선택되는2차원 형상으로 구성되는, 고정 연마 물품.
항목 50. 제40항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때 2 차원 삼각형으로 구성되는, 고정 연마 물품.
항목 51. 제40항목에 있어서, 몸체에는 실질적으로 바인더가 부재이고, 몸체에는 실질적으로 유기 재료가 부재인, 고정 연마 물품.
항목 52. 제40항목에 있어서, 몸체는 다결정성 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 53. 제40항목에 있어서, 몸체는 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 54. 제40항목에 있어서, 몸체는 시드화 졸 겔로 형성되는, 고정 연마 물품.
항목 55. 제40항목에 있어서, 몸체는 평균 입자 (grain) 크기가 약 1 미크론 이하인 다결정 재료를 포함하는, 고정 연마 물품.
항목 56. 제40항목에 있어서, 몸체는 적어도 약 2 개의 상이한 유형의 연마 입자들을 포함하는 복합재인, 고정 연마 물품.
항목 57. 제40항목에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하는, 고정 연마 물품.
항목 58. 제57항목에 있어서, 첨가제는 도펀트 재료를 포함하고, 도펀트 재료는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하고, 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는, 고정 연마 물품.
항목 59. 제1항목에 있어서, 제1 유형의 형상화 연마 입자는 몸체를 포함하고, 몸체는 제1 주면, 제2 주면, 및 제1 주면 및 제2 주면 사이에 연장되는 적어도 하나 측면을 가지는, 고정 연마 물품.
항목 60. 제59항목에 있어서, 제1 주면은 제2 주면과는 다른 면적을 형성하고, 제1 주면은 제2 주면에 의해 형성된 면적보다 큰 면적을 형성하고, 제1 주면은 제2 주면에 의해 정의되는 면적보다 작은 면적을 형성하는, 고정 연마 물품.
항목 61. 제1항목에 있어서, 제1 유형의 형상화 연마 입자는 2 차원 형상, 평균 입자크기, 입자 색상, 경도, 비산성, 인성, 밀도, 비표면적, 및 이들 조합으로 이루어진 군에서 선택되는 제1 연마 특성을 포함하는, 고정 연마 물품.
항목 62. 제61항목에 있어서, 제2 유형의 형상화 연마 입자는 2 차원 형상, 평균 입자크기, 입자 색상, 경도, 비산성, 인성, 밀도, 비표면적, 및 이들 조합으로 이루어진 군에서 선택되는 제2 연마 특성을 포함하는, 고정 연마 물품.
항목 63. 제62항목에 있어서, 서로 비교할 때 제1 연마 특성 및 제2 연마 특성 중 적어도 하나는 실질적으로 동일하고, 서로 비교할 때 제1 연마 특성 및 제2 연마 특성 중 적어도 두개는 실질적으로 동일한, 고정 연마 물품.
항목 64. 제62항목에 있어서, 서로 비교할 때 적어도 하나의 제1 연마 특성 및 하나의 제2 연마 특성은 상이하고, 서로 비교할 때 적어도 2개의 제1 연마 특성 및 2 제2 연마 특성은 상이한,
항목 65. 제1항목에 있어서, 제2 유형의 형상화 연마 입자는 길이 (l), 폭 (w), 및 높이 (hi)를 가지는 몸체를 포함하고, 폭>길이, 길이>높이, 및 폭>높이인, 고정 연마 물품.
항목 66. 제65항목에 있어서, 높이 (h)는 폭 (w)의 적어도 약 20% 또는 적어도 약 25% 또는 적어도 약 30% 또는 적어도 약 33%, 및 폭의 약 80% 이하 또는 약 76% 이하 또는 약 73% 이하 또는 약 70% 이하 또는 약 68% 이하 또는 폭의 약 56% 이하 또는 폭의 약 48% 이하 또는 약 40% 폭의 이하인, 고정 연마 물품.
항목 67. 제65항목에 있어서, 높이 (h)는 적어도 약 400 미크론 또는 적어도 약 450 미크론 또는 적어도 약 475 미크론 또는 적어도 약 500 미크론, 및 약 3 mm 이하 또는 약 2 mm 이하 또는 약 1.5 mm 이하 또는 약 1 mm 이하 또는 약 800 미크론 이하인, 고정 연마 물품.
항목 68. 제65항목에 있어서, 폭은 적어도 약 600 미크론 또는 적어도 약 700 미크론 또는 적어도 약 800 미크론 또는 적어도 약 900 미크론, 및 약 4 mm 이하 또는 약 3 mm 이하 또는 약 2.5 mm 이하 또는 약 2 mm 이하인, 고정 연마 물품.
항목 69. 제65항목에 있어서, 몸체의 플래싱 비율은 적어도 약 1%, 예컨대 적어도 약 2% 또는 적어도 약 3% 또는 적어도 약 5% 또는 적어도 약 8% 또는 적어도 약 10% 또는 적어도 약 12% 또는 적어도 약 15% 또는 적어도 약 18% 또는 적어도 약 20%, 및 약 40% 이하 또는 약 35% 이하 또는 약 30% 이하 또는 약 25% 이하 또는 약 20% 이하 또는 약 18% 이하 또는 약 15% 이하 또는 약 12% 이하 또는 약 10% 이하 또는 약 8% 이하 또는 약 6% 이하 또는 약 4% 이하인, 고정 연마 물품.
항목 70. 제65항목에 있어서, 몸체의 디싱 값 (d)은 약 2 이하 또는 약 1.9 이하 또는 약 1.8 이하 또는 약 1.7 이하 또는 약 1.6 이하 또는 약 1.5 이하 또는 약 1.2, 및 적어도 약 0.9 이하 또는 적어도 약 1.0 이하인, 고정 연마 물품.
항목 71. 제65항목에 있어서, 몸체의 폭:길이의 1차 종횡비는 적어도 약 1:1 및 약 10:1 이하인, 고정 연마 물품.
항목 72. 제65항목에 있어서, 몸체의 폭:높이의 비율로 정의되는 2차 종횡비는 약 5:1 내지 약 1:1인, 고정 연마 물품.
항목 73. 제65항목에 있어서, 몸체의 길이:높이의 비율로 정의되는 3차 종횡비는 약 6:1 내지 약 1:1인, 고정 연마 물품.
항목 74. 제65항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 삼각, 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되고, 몸체는 몸체의 길이 및 폭으로 정의되는 평면에서 관찰될 때 타원형, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 복잡 다각형, 불규칙 형상 및 이들의 조합으로 이루어진 군에서 선택되는2차원 형상으로 구성되는, 고정 연마 물품.
항목 75. 제65항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때 2 차원 삼각형으로 구성되는, 고정 연마 물품.
항목 76. 제65항목에 있어서, 몸체에는 실질적으로 바인더가 부재이고, 몸체에는 실질적으로 유기 재료가 부재인, 고정 연마 물품.
항목 77. 제65항목에 있어서, 몸체는 다결정성 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 78. 제65항목에 있어서, 몸체는 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 79. 제65항목에 있어서, 몸체는 시드화 졸 겔로 형성되는, 고정 연마 물품.
항목 80. 제65항목에 있어서, 몸체는 평균 입자 (grain) 크기가 약 1 미크론 이하인 다결정 재료를 포함하는, 고정 연마 물품.
항목 81. 제65항목에 있어서, 몸체는 적어도 약 2 개의 상이한 유형의 연마 입자들을 포함하는 복합재인, 고정 연마 물품.
항목 82. 제65항목에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하는,
항목 83. 제82항목에 있어서, 첨가제는 도펀트 재료를 포함하고, 도펀트 재료는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하고, 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는, 고정 연마 물품.
항목 84. 제 1 항목에 있어서, 제2 유형의 형상화 연마 입자는 몸체를 포함하고, 몸체는 제1 주면, 제2 주면, 및 제1 주면 및 제2 주면 사이에 연장되는 적어도 하나 측면을 가지는, 고정 연마 물품.
항목 85. 제84항목에 있어서, 제1 주면은 제2 주면과는 다른 면적을 형성하고, 제1 주면은 제2 주면에 의해 형성된 면적보다 큰 면적을 형성하고, 제1 주면은 제2 주면에 의해 정의되는 면적보다 작은 면적을 형성하는, 고정 연마 물품.
항목 86. 고정 연마 물품으로서,
연마 입자들의 블렌드를 포함하고, 이는:
제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자;
제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 포함하고;
고정 연마 물품의 스테인리스강 수명은 적어도 약 11 in3인, 고정 연마 물품.
항목 87. 제86항목에 있어서, 고정 연마 물품의 스테인리스강 수명은 적어도 약 11.5 in3 또는 적어도 약 12 in3이고, 고정 연마 물품의 스테인리스강 수명은 약 25 in3 이하인, 고정 연마 물품.
항목 88. 제86항목에 있어서, 높이비 (h2/h1)는 약 0.98 이하인, 고정 연마 물품.
항목 89. 제88항목에 있어서, 높이비 (h2/h1)는 적어도 약 0.05인, 고정 연마 물품.
항목 90. 제86항목에 있어서, 높이 차이 (h1-h2)는 적어도 약 1 미크론인, 고정 연마 물품.
항목 91. 제90항목에 있어서, 높이 차이 (h1-h2)는 약 2 mm 이하인, 고정 연마 물품.
항목 92. 제86항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 길이 (l1)를 가지고, 제2 유형의 형상화 연마 입자는 제2 길이 (l2)를 가지고, 길이비 (l1/l2)는 적어도 약 0.05인, 고정 연마 물품.
항목 93. 제92항목에 있어서, 길이 차이 (L1-l2)는 약 2 mm 이하인, 고정 연마 물품.
항목 94. 제86항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 폭 (w1)을 가지고, 제2 유형의 형상화 연마 입자는 제2 폭 (w2)을 가지고, 폭비 (w2/w1)는 적어도 약 0.05인, 고정 연마 물품.
항목 95. 제94항목에 있어서, 폭 차이 (w1-w2)는 약 2 mm 이하인, 고정 연마 물품.
항목 96. 제86항목에 있어서, 제1 함량은 제2 함량보다 낮은, 고정 연마 물품.
항목 97. 제86항목에 있어서, 제1 함량은 블렌드 총 함량의 약 90% 이하인, 고정 연마 물품.
항목 98. 제86항목에 있어서, 제1 함량은 블렌드 총 함량의 적어도 약 1%인, 고정 연마 물품.
항목 99. 제86항목에 있어서, 제2 함량은 블렌드 총 함량의 약 98% 이하인, 고정 연마 물품.
항목 100. 제86항목에 있어서, 제2 함량은 블렌드 총 함량의 적어도 약 1%인, 고정 연마 물품.
항목 101. 제86항목에 있어서, 연마 입자들의 블렌드는 제1 함량 (C1)의 제1 유형의 형상화 연마 입자, 및 제2 함량 (C2)의 제2 유형의 형상화 연마 입자를 포함하고, 블렌드 비율 (C1/C2)은 약 10 이하인, 고정 연마 물품.
항목 102. 제86항목에 있어서, 연마 입자들의 블렌드는 대부분 형상화 연마 입자들을 포함하고, 연마 입자들의 블렌드는 실질적으로 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자로 이루어진, 고정 연마 물품.
항목 103. 제86항목에 있어서, 블렌드는 제3 유형의 연마 입자를 더욱 포함하고, 제3 유형의 연마 입자는 형상화 연마 입자를 포함하고, 제3 유형의 연마 입자는 부형의 (diluent type) 연마 입자를 포함하고, 부형의 연마 입자는 불규칙 형상을 포함하는, 고정 연마 물품.
항목 104. 제86항목에 있어서, 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들 조합으로 이루어진 군에서 선택되는, 고정 연마 물품.
항목 105. 제86항목에 있어서, 고정 연마 물품은 기재를 포함하고, 기재는 지지판을 포함하고, 지지판은 직물 소재를 포함하고, 지지판은 부직물 재료를 포함하고, 지지판은 유기 재료를 포함하고, 지지판은 고분자를 포함하고, 지지판은 천, 페이퍼, 필름, 직물, 털소재 직물 (fleeced fabric), 경화 파이버, 직물소재, 부직물 소재, 웨빙 (webbing), 고분자, 수지, 페놀수지, 페놀-라텍스 수지, 에폭시 수지, 폴리에스테르 수지, 요소 포름알데히드 수지, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드, 및 이들의 조합으로 이루어진 군에서 선택되는 재료를 포함하는, 고정 연마 물품.
항목 106. 제105항목에 있어서, 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함하는, 고정 연마 물품.
항목 107. 제105항목에 있어서, 지지판 상부에 놓이는 접착층을 더욱 포함하고, 접착층은 메이크 코트를 포함하고, 메이크 코트는 지지판 상부에 놓이고, 메이크 코트는 지지판 일부에 직접 결합되고, 메이크 코트는 유기재료를 포함하고, 메이크 코트는 고분자 재료를 포함하고, 메이크 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 고정 연마 물품.
항목 108. 제107항목에 있어서, 접착층은 사이즈 코트를 포함하고, 사이즈 코트는 다수의 형상화 연마 입자들 일부 상부에 놓이고, 사이즈 코트는 메이크 코트 상부에 놓이고, 사이즈 코트는 다수의 형상화 연마 입자 일부에 직접 결합되고, 사이즈 코트는 유기 재료를 포함하고, 사이즈 코트는 고분자 재료를 포함하고 , 사이즈 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 고정 연마 물품.
항목 109. 제86항목에 있어서, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 다수의 형상화 연마 입자들의 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 고정 연마 물품.
항목 110. 제86항목에 있어서, 제1 유형의 형상화 연마 입자는 길이 (l), 폭 (w), 및 높이 (hi)를 가지는 몸체를 포함하고, 폭>길이, 길이>높이, 및 폭>높이인, 고정 연마 물품.
항목 111. 제110항목에 있어서, 높이 (h)는 폭 (w)의 적어도 약 20%, 및 폭의 약 80% 이하인, 고정 연마 물품.
항목 112. 제110항목에 있어서, 몸체의 플래싱 비율은 적어도 약 1%인, 고정 연마 물품.
항목 113. 제110항목에 있어서, 몸체의 디싱 값 (d)은 약 2 이하인, 고정 연마 물품.
항목 114. 제110항목에 있어서, 몸체의 폭:길이의 1차 종횡비는 적어도 약 1:1 및 약 10:1 이하인, 고정 연마 물품.
항목 115. 제110항목에 있어서, 몸체의 폭:높이의 비율로 정의되는 2차 종횡비는 약 5:1 내지 약 1:1인, 고정 연마 물품.
항목 116. 제110항목에 있어서, 몸체의 길이:높이의 비율로 정의되는 3차 종횡비는 약 6:1 내지 약 1:1인, 고정 연마 물품.
항목 117. 제110항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 삼각, 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되고, 몸체는 몸체의 길이 및 폭으로 정의되는 평면에서 관찰될 때 타원형, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 복잡 다각형, 불규칙 형상 및 이들의 조합으로 이루어진 군에서 선택되는2차원 형상으로 구성되는, 고정 연마 물품.
항목 118. 제110항목에 있어서, 몸체에는 실질적으로 바인더가 부재이고, 몸체에는 실질적으로 유기 재료가 부재인, 고정 연마 물품.
항목 119. 제110항목에 있어서, 몸체는 다결정성 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 120. 제110항목에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하는, 고정 연마 물품.
항목 121. 제86항목에 있어서, 제1 유형의 형상화 연마 입자는 2 차원 형상, 평균 입자크기, 입자 색상, 경도, 비산성, 인성, 밀도, 비표면적, 및 이들 조합으로 이루어진 군에서 선택되는 제1 연마 특성을 포함하는, 고정 연마 물품.
항목 122. 제121항목에 있어서, 제2 유형의 형상화 연마 입자는 2 차원 형상, 평균 입자크기, 입자 색상, 경도, 비산성, 인성, 밀도, 비표면적, 및 이들 조합으로 이루어진 군에서 선택되는 제2 연마 특성을 포함하는, 고정 연마 물품.
항목 123. 제122항목에 있어서, 서로 비교할 때 제1 연마 특성 및 제2 연마 특성 중 적어도 하나는 실질적으로 동일하고, 서로 비교할 때 제1 연마 특성 및 제2 연마 특성 중 적어도 두개는 실질적으로 동일한, 고정 연마 물품.
항목 124. 제122항목에 있어서, 서로 비교할 때 적어도 하나의 제1 연마 특성 및 하나의 제2 연마 특성은 상이하고, 서로 비교할 때 적어도 2개의 제1 연마 특성 및 2 제2 연마 특성은 상이한, 고정 연마 물품.
항목 125. 제110항목에 있어서, 제2 유형의 형상화 연마 입자는 길이 (l), 폭 (w), 및 높이 (hi)를 가지는 몸체를 포함하고, 폭>길이, 길이>높이, 및 폭>높이인, 고정 연마 물품.
항목 126. 제125항목에 있어서, 높이 (h)는 폭 (w)의 적어도 약 20%, 및 폭의 약 80% 이하인, 고정 연마 물품.
항목 127. 제125항목에 있어서, 높이 (h)는 적어도 약 400 미크론인, 고정 연마 물품.
항목 128. 제125항목에 있어서, 폭은 적어도 약 600 미크론인, 고정 연마 물품.
항목 129. 제125항목에 있어서, 몸체의 플래싱 비율은 적어도 약 1%인, 고정 연마 물품.
항목 130. 제125항목에 있어서, 몸체의 디싱 값 (d)은 약 2 이하인, 고정 연마 물품.
항목 131. 제125항목에 있어서, 몸체의 폭:길이의 1차 종횡비는 적어도 약 1:1 및 약 10:1 이하인, 고정 연마 물품.
항목 132. 제125항목에 있어서, 몸체의 폭:높이의 비율로 정의되는 2차 종횡비는 약 5:1 내지 약 1:1인, 고정 연마 물품.
항목 133. 제125항목에 있어서, 몸체의 길이:높이의 비율로 정의되는 3차 종횡비는 약 6:1 내지 약 1:1인, 고정 연마 물품.
항목 134. 제125항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 몸체는 삼각, 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되고, 몸체는 몸체의 길이 및 폭으로 정의되는 평면에서 관찰될 때 타원형, 그리스 알파벳 문자, 라틴 알파벳 문자, 러시아 알파벳 문자, 복잡 다각형, 불규칙 형상 및 이들의 조합으로 이루어진 군에서 선택되는2차원 형상으로 구성되는, 고정 연마 물품.
항목 135. 제125항목에 있어서, 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때 2 차원 삼각형으로 구성되는, 고정 연마 물품.
항목 136. 제125항목에 있어서, 몸체에는 실질적으로 바인더가 부재이고, 몸체에는 실질적으로 유기 재료가 부재인, 고정 연마 물품.
항목 137. 제125항목에 있어서, 몸체는 다결정성 재료를 포함하고, 다결정성 재료는 입자들을 포함하고, 입자들은 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되고, 입자들은 알루미늄 산화물, 지르코늄 산화물, 티타늄 산화물, 이트륨 산화물, 크롬 산화물, 스트론튬 산화물, 규소산화물, 및 이들의 조합으로 이루어진 군에서 선택되는 산화물을 포함하고, 입자들은 알루미나를 포함하고, 입자들은 실질적으로 알루미나로 이루어진, 고정 연마 물품.
항목 138. 제125항목에 있어서, 몸체는 적어도 약 2 개의 상이한 유형의 연마 입자들을 포함하는 복합재인, 고정 연마 물품.
항목 139. 제125항목에 있어서, 몸체는 첨가제를 포함하고, 첨가제는 산화물을 포함하고, 첨가제는 금속 원소를 포함하고, 첨가제는 희토류 원소를 포함하는, 고정 연마 물품.
항목 140. 제125항목에 있어서, 첨가제는 도펀트 재료를 포함하고, 도펀트 재료는 알칼리 금속원소, 알칼리 토금속원소, 희토류 원소, 전이금속 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하고, 도펀트 재료는 하프늄, 지르코늄, 니오븀, 탄탈, 몰리브덴, 바나듐, 리튬, 나트륨, 칼륨, 마그네슘, 칼슘, 스트론튬, 바륨, 스칸듐, 이트륨, 란탄, 세슘, 프라세오디뮴, 크롬, 코발트, 철, 게르마늄, 망간, 니켈, 티타늄, 아연, 및 이들의 조합으로 이루어진 군에서 선택되는 원소를 포함하는, 고정 연마 물품.
항목 141. 연마 물품을 이용하여 가공물로부터 재료를 제거하는 방법으로서, 연마 물품은 연마 입자들의 블렌드를 포함하고 이는:
제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자;
제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자를 포함하는, 방법.
항목 142. 제141항목에 있어서, 가공물은 유기 재료, 무기 재료, 및 이들 조합으로 이루어진 군에서 선택되는 재료를 포함하고, 가공물은 금속을 포함하고, 가공물은 금속 합금을 포함하는, 방법.
항목 143. 제141항목에 있어서, 고정 연마 물품의 스테인리스강 수명은 적어도 약 11 in3인, 방법.
항목 144. 제141항목에 있어서, 높이비 (h2/h1)는 약 0.98 이하인, 방법.
항목 145. 제144항목에 있어서, 높이비 (h2/h1)는 적어도 약 0.05인, 방법.
항목 146. 제141항목에 있어서, 높이 차이 (h1-h2)는 적어도 약 1 미크론인, 방법.
항목 147. 제146항목에 있어서, 높이 차이 (h1-h2)는 약 2 mm 이하인, 방법.
항목 148. 제141항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 길이 (l1)를 가지고, 제2 유형의 형상화 연마 입자는 제2 길이 (l2)를 가지고, 길이비 (l1/l2)는 적어도 약 0.05인, 방법.
항목 149. 제148항목에 있어서, 길이 차이 (L1-l2)는 약 2 mm 이하인, 방법.
항목 150. 제141항목에 있어서, 제1 유형의 형상화 연마 입자는 제1 폭 (w1)을 가지고, 제2 유형의 형상화 연마 입자는 제2 폭 (w2)을 가지고, 폭비 (w2/w1)는 적어도 약 0.05인, 방법.
항목 151. 제150항목에 있어서, 폭 차이 (w1-w2)는 약 2 mm 이하인, 방법.
항목 152. 제141항목에 있어서, 연마 입자들의 블렌드는 제1 함량 (C1)의 제1 유형의 형상화 연마 입자, 및 제2 함량 (C2)의 제2 유형의 형상화 연마 입자를 포함하고, 블렌드 비율 (C1/C2)은 약 10 이하인, 방법.
항목 153. 제141항목에 있어서, 연마 입자들의 블렌드는 대부분 형상화 연마 입자들을 포함하고, 연마 입자들의 블렌드는 실질적으로 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자로 이루어진, 방법.
항목 154. 제141항목에 있어서, 블렌드는 제3 유형의 연마 입자를 더욱 포함하고, 제3 유형의 연마 입자는 형상화 연마 입자를 포함하고, 제3 유형의 연마 입자는 부형의 (diluent type) 연마 입자를 포함하고, 부형의 연마 입자는 불규칙 형상을 포함하는, 방법.
항목 155. 제141항목에 있어서, 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들 조합으로 이루어진 군에서 선택되는, 방법.
항목 156. 제141항목에 있어서, 고정 연마 물품은 기재를 포함하고, 기재는 지지판을 포함하고, 지지판은 직물 소재를 포함하고, 지지판은 부직물 재료를 포함하고, 지지판은 유기 재료를 포함하고, 지지판은 고분자를 포함하고, 지지판은 천, 페이퍼, 필름, 직물, 털소재 직물 (fleeced fabric), 경화 파이버, 직물소재, 부직물 소재, 웨빙 (webbing), 고분자, 수지, 페놀수지, 페놀-라텍스 수지, 에폭시 수지, 폴리에스테르 수지, 요소 포름알데히드 수지, 폴리에스테르, 폴리우레탄, 폴리프로필렌, 폴리이미드, 및 이들의 조합으로 이루어진 군에서 선택되는 재료를 포함하는, 방법.
항목 157. 제156항목에 있어서, 지지판은 촉매, 커플링제, 경화제 (curants), 대전방지제, 현탁제, 안티-로딩제, 윤활제, 습윤제, 염료, 충전제, 점도조절제, 분산제, 소포제, 및 분쇄제로 이루어진 군에서 선택되는 첨가제를 포함하는, 방법.
항목 158. 제157항목에 있어서, 지지판 상부에 놓이는 접착층을 더욱 포함하고, 접착층은 메이크 코트를 포함하고, 메이크 코트는 지지판 상부에 놓이고, 메이크 코트는 지지판 일부에 직접 결합되고, 메이크 코트는 유기재료를 포함하고, 메이크 코트는 고분자 재료를 포함하고, 메이크 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 방법.
항목 159. 제158항목에 있어서, 접착층은 사이즈 코트를 포함하고, 사이즈 코트는 다수의 형상화 연마 입자들 일부 상부에 놓이고, 사이즈 코트는 메이크 코트 상부에 놓이고, 사이즈 코트는 다수의 형상화 연마 입자 일부에 직접 결합되고, 사이즈 코트는 유기 재료를 포함하고, 사이즈 코트는 고분자 재료를 포함하고 , 사이즈 코트는 폴리에스테르, 에폭시 수지, 폴리우레탄, 폴리아미드, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리염화비닐, 폴리에틸렌, 폴리실록산, 실리콘, 셀룰로오스 아세테이트, 니트로셀룰로오스, 천연고무, 전분, 쉘락, 및 이들의 조합으로 이루어진 군에서 선택되는 소재를 포함하는, 방법.
항목 160. 제141항목에 있어서, 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 다수의 형상화 연마 입자들의 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 방법.
실시예들
실시예 1
5종의 샘플들을 이용하여 비교 연삭 조작을 수행하였다. 5종의 샘플 각각은 지지판 및 접착층을 포함한 실질적으로 동일한 구조가 적용되지만, 샘플들은 연마 입자들 타입에서 상이하다. 제1 샘플, 샘플 S1은, 본원에 기술된 실시태양들에 의한 형상화 연마 입자들의 블렌드를 포함하는 코팅 연마재를 나타낸다. 샘플 S1은 중앙 내부 높이가 대략 500 미크론을 가지는 다수의 제1 유형의 형상화 연마 입자들을 포함한다. 블렌드는 중앙 내부 높이가 대략 400 미크론을 가지는 다수의 제2 유형의 형상화 연마 입자들을 더욱 포함한다. 블렌드 비율 (C1/C2)은 대략 2.3이다. 블렌드의 형상화 연마 입자들 대략 80%는 지지판 상에 미리 결정된 측면 배향에 위치되고 형상화 연마 입자들의 정규화 중량은 40 lbs./림이다.
제2 샘플, 샘플 S2는, 본원에 기술된 실시태양들에 의한 형상화 연마 입자들의 블렌드를 포함하는 코팅 연마재를 나타낸다. 샘플 S2는 중앙 내부 높이가 대략 500 미크론을 가지는 다수의 제1 유형의 형상화 연마 입자들을 포함한다. 블렌드는 중앙 내부 높이가 대략 400 미크론을 가지는 다수의 제2 유형의 형상화 연마 입자들을 더욱 포함한다. 블렌드 비율 (C1/C2)은 대략 1이다. 블렌드의 형상화 연마 입자들 대략 80%는 지지판 상에 미리 결정된 측면 배향에 위치되고 형상화 연마 입자들의 정규화 중량은 40 lbs./림이다.
제3 샘플, 샘플 S3은, 본원에 기술된 실시태양들에 의한 형상화 연마 입자들의 블렌드를 포함하는 코팅 연마재를 나타낸다. 샘플 S3은 중앙 내부 높이가 대략 500 미크론을 가지는 다수의 제1 유형의 형상화 연마 입자들을 포함한다. 블렌드는 중앙 내부 높이가 대략 400 미크론을 가지는 다수의 제2 유형의 형상화 연마 입자들을 더욱 포함한다. 블렌드 비율 (C1/C2)은 대략 0.43이다. 블렌드의 형상화 연마 입자들 대략 80%는 지지판 상에 미리 결정된 측면 배향에 위치되고 형상화 연마 입자들의 정규화 중량은 40 lbs./림이다.
제4 샘플, 샘플 CS4는 중앙 내부 높이가 대략 400 미크론을 가지는 단일 유형의 형상화 연마 입자를 포함하는 종래 코팅 연마 물품을 나타낸다. 형상화 연마 입자들의 대략 80%는 지지판 상에 미리 결정된 측면 배향에 위치되고 형상화 연마 입자들의 정규화 중량은 40 lbs./림이다.
제5 샘플, 샘플 CS5는 중앙 내부 높이가 대략 500 미크론을 가지는 단일 유형의 형상화 연마 입자를 포함하는 종래 코팅 연마 물품을 나타낸다. 형상화 연마 입자들의 대략 80%는 지지판 상에 미리 결정된 측면 배향에 위치되고 형상화 연마 입자들의 정규화 중량은 40 lbs./림이다.
하기 표 1에 제공되는 조건들에 따라 자동 연삭 시스템에서 샘플들을 시험하였다.
표 1

시험 플랫폼: 오쿠마 (Okuma) 스크리닝 시험
시험 조건: 건조 (Dry), 수직 상승 및 하강 (Straight Plunge)
일정 MRR' = 4 inch3/min/ 인치
벨트 속도 = Vs = 7500 sfpm (38 m/s)
가공 재료: 304L ss
경도: 104 HRB
크기: 0.5”x0.5” x 6 인치
접촉 폭 = 0.5” 인치
측정치: 전력, 연마력, MRR' 및 SGE
도 11은 각각의 샘플에 대한 연삭 비에너지 대 제거 재료 누적량의 도표이다. 명백히, 샘플 CS5 수명은 샘플들 S2 및 S3보다 훨씬 짧다. 아주 현저하게, 그리고 예상치 못하게, 샘플들 S2-S3은 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자의 블렌드를 가짐에도 불구하고, 누적 재료 제거 속도는 샘플 CS4 및 CS5 사이에 있을 것이라 예상되지만, 샘플들 S2 및 S3의 수명은 CS4와 균등하고 CS5보다 길었다. 또한, 각각의 샘플 S1-S3의 초기 연삭 비에너지는 제거 재료의 0 내지 5 입방 인치이고 이는 동일한 초기 단계에서 비교 샘플들 CS4 및 CS5보다 낮다. 또한, 역시 예상치 못하게, 샘플 S3은 샘플 CS1 또는 샘플 CS2와 비교할 때 대부분 시험에서 더욱 낮은 연삭 비에너지를 가진다.
본원은 본 분야 기술보다 진보된 것이다. 본원 실시태양들의 코팅 연마 물품은 다른 통상 입수되는 연마 물품과는 다른 특정한 특징부 조합을 포함하며, 제한되지 않지만, 제1 유형의 형상화 연마 입자 및 제2 유형의 형상화 연마 입자를 포함하는 블렌드가 관여되는 것이다. 특히, 제1 유형 및 제2 유형의 형상화 연마 입자들은 특정한 특징부 조합을 가지고, 제한되지 않지만, 서로에 대하여 높이 차이가 있다는 것이다. 또한, 각각의 형상화 연마 입자는 특정한 특징부, 예컨대 종횡비, 조성, 첨가제, 2 차원 형상, 3-차원 형상, 내부 높이, 높이 프로파일 차이, 플래싱 비율, 디싱, 및 기타 등. 또한, 블렌드는 소정의 특징부 예를들면, 제한되지 않지만, 높이비, 높이 차이, 길이비, 길이 차이, 폭비, 폭 차이, 제1 및 제2 유형의 형상화 연마 입자들의 상대 함량, 및 기타 등의 조합을 활용한다. 또한, 완전히 이해되지 않고 특정 이론에 구속되지 않지만, 본원에 기재된 실시태양들의 이들 특징 중 하나 또는 조합은 놀랍고도 예상치 못한 이들 코팅 연마 물품의 성능을 가능하게 한다고 판단된다.
명백하게 기술하기 위하여 개별 실시태양에서 본원에 기재된 소정의 특징부들은 단일 실시태양의 조합으로도 제공된다. 반대로, 간결성을 위하여 단일 실시태양에 기재된 다양한 특징부들은, 개별적 또는 임의의 부조합으로도 제공될 수 있다. 또한, 범위 값들에 대한 언급은 범위에 속하는 각각 및 모든 값들을 포함한다.
장점들, 다른 이점들, 및 문제점들에 대한 해결방안이 특정한 실시태양들과 관련하여 상기되었다. 그러나, 장점들, 이점들, 문제들에 대한 해결방안, 및 임의의 장점, 이점, 또는 해결방안을 발생하게 하거나 더 현저하게 할 수 있는 임의의 특징(들)이 청구항들의 일부 또는 전부의 중요하거나, 요구되거나, 또는 필수적인 특징으로 해석되지 말아야 한다.
명세서 및 본원에 기재된 실시태양의 설명들은 다양한 실시태양들의 구조에 대한 총괄적 이해를 제공할 의도이다. 명세서 및 설명들은 본원에 기재된 구조 또는 방법들을 이용하는 모든 요소들 및 장치 및 시스템의 특징부들에 대한 전적이고 종합적인 설명으로 기능하지 않을 수 있다. 개별 실시태양들은 단일 실시태양의 조합으로도 제공되고, 반대로, 간결성을 위하여 단일 실시태양에 기재된 다양한 특징부들은, 개별적 또는 임의의 부조합으로도 제공될 수 있다. 또한, 범위 값들에 대한 언급은 범위에 속하는 각각 및 모든 값들을 포함한다. 본 명세서를 읽은 후 당업자들에게 많은 기타 실시태양들이 명백할 수 있다. 기타 실시태양들이 적용될 수 있고 본 발명에서 유래될 수 있고, 따라서 구조적 치환, 논리적 치환, 또는 다른 변형은 본 발명의 범위를 일탈하지 않고 가능하다. 따라서, 본 발명은 제한적이 아닌 단지 예시적으로 간주된다.
도면들과 함께 하기 상세한 설명은 본원의 교시의 이해를 위하여 제공된다. 하기 논의는 본 발명의 특정 구현예들 및 실시태양들에 집중될 것이다. 이러한 논의는 본 교시를 설명하기 위한 것이고 본 발명의 범위 또는 적용 가능성을 제한하는 것으로 해석되어서는 아니된다. 그러나, 다른 실시태양들이 본원에 개시된 교시들을 바탕으로 적용될 수 있다.
본원에서 사용되는 용어 "구성한다(comprises)", "구성하는(comprising)", "포함한다(includes)", "포함하는(including)", "가진다(has)", 가지는(having)" 또는 이들의 임의의 다른 변형은 비배타적인 포함을 커버하기 위한 것이다. 예를들면, 특징부들의 목록을 포함하는 방법, 물품, 또는 장치는 반드시 이러한 특징부들에만 한정될 필요는 없으며 명시적으로 열거되지 않거나 이와 같은 방법, 물품, 또는 장치에 고유한 다른 특징부들을 포함할 수 있다. 게다가, 명시적으로 반대로 기술되지 않는다면, "또는"은 포괄적인 의미의 "또는"을 가리키며 배타적인 의미의 "또는"을 가리키지 않는다. 예를들면, 조건 A 또는 B는 다음 중의 어느 하나에 의해 만족된다: A가 참이고 (또는 존재하고) B는 거짓이며 (또는 존재하지 않으며), A가 거짓이고 (또는 존재하지 않고) B는 참이며 (또는 존재하며), A와 B 모두가 참 (또는 존재한다)이다.
또한, "하나의 (a)" 또는 "하나의 (an)"은 여기에서 설명되는 요소들과 구성요소들을 설명하는데 사용된다. 이는 단지 편의성을 위해 그리고 본 발명의 범위의 일반적인 의미를 부여하기 위해 행해진다. 이 설명은 하나 또는 적어도 하나를 포함하는 것으로 읽혀져야 하며, 다르게 의미한다는 것이 명백하지 않다면 단수는 또한 복수를 포함한다. 예를들면, 단일 사항이 본원에 기재되면, 하나 이상의 사항이 단일 사항을 대신하여 적용될 수 있다. 유사하게, 하나 이상의 사항이 본원에서 기재되면, 단일 사항이 하나 이상의 사항을 대신할 수 있는 것이다.
달리 정의되지 않는 한, 본원에서 사용되는 모든 기술적 및 과학적 용어들은 본 발명이 속하는 분야의 통상의 기술자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 재료, 방법 및 실시예들은 예시적인 것일 뿐이고 제한적이지 않다. 본원에 기재되지 않는 한, 특정 재료 및 공정과 관련된 많은 상세 사항들은 통상적이고 참고 서적들 및 구조 분야 및 상응하는 제조 분야의 기타 자료들에서 발견될 수 있다.
개시된 주제는 예시적이고 제한적인 것이 아니며, 첨부된 청구범위는 본 발명의 진정한 범위에 속하는 이러한 모든 변경, 개선 및 기타 실시태양들을 포괄할 의도이다. 따라서, 법이 허용한 최대로, 본 발명의 범위는 청구범위 및 이의 균등론을 광의로 해석하여 판단되어야 하고 상기 상세한 설명에 제한 또는 한정되어서는 아니된다.
특허법에 부합되고 청구범위 및 의미를 해석 또는 한정하는 것이 아니라는 이해로 요약서가 제출된다. 또한, 상기된 상세한 설명에서, 다양한 특징부들이 개시의 간소화를 위하여 단일 실시태양에서 집합적으로 함께 설명된다. 청구되는 실시태양들이 각각의 청구항에서 명시적으로 언급되는 것 이상의 특징부들을 필요로 한다는 의도로 이러한 개시가 해석되어서는 아니된다. 오히려, 하기 청구범위에서 와 같이, 본 발명의 주제는 개시된 임의의 실시태양의 모든 특징부들보다 적은 것에 관한 것이다. 따라서, 하기 청구범위는 상세한 설명에 통합되고, 각각의 청구항은 그 자체로 청구되는 주제를 별개로 정의하는 것이다.

Claims (27)

  1. 고정 연마 물품으로서,
    연마 입자들의 블렌드를 포함하고, 이는:
    제1 높이 (h1)를 가지는 제1 유형의 형상화 연마 입자의 제1 함량 (C1);
    상기 제1 높이보다 낮은 제2 높이 (h2)를 가지는 제2 유형의 형상화 연마 입자의 제2 함량 (C2); 및
    0.2 이상이고 0.98 이하인 높이비 (h2/h1)를 가지고,
    상기 제1 함량은 상기 블렌드의 총 함량의 1% 이상이고 70% 이하이며,
    상기 제2 함량은 상기 블렌드의 총 함량의 1% 이상이고 98% 이하인, 고정 연마 물품.
  2. 제1항에 있어서, 높이비 (h2/h1)는 0.5 이상이고 0.9 이하인, 고정 연마 물품.
  3. 제1항에 있어서, 높이 차이 (h1-h2)는 1 미크론 이상이고 2 mm 이하인, 고정 연마 물품.
  4. 제1항에 있어서, 상기 제1 유형의 형상화 연마 입자는 제1 길이 (l1)를 가지고, 상기 제2 유형의 형상화 연마 입자는 제2 길이 (l2)를 가지고, 길이비 (l1/l2)는 0.05 이상이고 10 이하인, 고정 연마 물품.
  5. 제1항에 있어서, 상기 제1 함량은 상기 제2 함량보다 낮은, 고정 연마 물품.
  6. 제1항에 있어서, 상기 제1 함량은 상기 블렌드 총 함량의 25% 이상이고 35% 이하이며, 상기 제2 함량은 블렌드 총 함량의 50% 이상이고 75% 이하인, 고정 연마 물품.
  7. 제1항에 있어서, 블렌드 비율 (C1/C2)은 10 이하인, 고정 연마 물품.
  8. 제7항에 있어서, 상기 블렌드 비율 (C1/C2)은 0.1 이상인, 고정 연마 물품.
  9. 제1항에 있어서, 상기 블렌드는 형상화 연마 입자를 포함하는 제3 유형의 연마 입자를 더욱 포함하는, 고정 연마 물품.
  10. 제1항에 있어서, 상기 고정 연마 물품은 결합 연마 물품, 코팅 연마 물품, 및 이들 조합으로 이루어진 군에서 선택되는, 고정 연마 물품.
  11. 제1항에 있어서, 상기 연마 입자들의 블렌드는 다수의 형상화 연마 입자들을 포함하고, 상기 다수의 형상화 연마 입자들 중 각각의 형상화 연마 입자는 지지판에 대하여 조절된 배향으로 배열되고, 상기 조절된 배향은 미리 결정된 회전 배향, 미리 결정된 가로 배향, 및 미리 결정된 세로 배향 중 적어도 하나를 포함하는, 고정 연마 물품.
  12. 제11항에 있어서, 상기 제1 유형의 연마 입자들의 적어도 55%는 상기 지지판과 측면 배향으로 결합되고 제2 유형의 연마 입자들의 적어도 55%는 상기 지지판과 측면 배향으로 결합되는, 고정 연마 물품.
  13. 제1항에 있어서, 상기 제1 유형의 형상화 연마 입자는 길이 (l), 폭 (w), 및 높이 (hi)를 가지는 몸체를 포함하고, 폭>길이, 길이>높이, 및 폭>높이이고, 상기 몸체는 길이 및 폭으로 정의되는 평면에서 관찰될 때2차원 다각형들로 구성되고, 상기 몸체는 삼각, 사각, 직사각, 사다리꼴, 오각, 육각, 칠각, 팔각, 및 이들의 조합으로 이루어진 군에서 선택되는 형상으로 구성되는, 고정 연마 물품.
  14. 제13항에 있어서, 상기 몸체는 질화물, 산화물, 탄화물, 붕화물, 산질화물, 다이아몬드 및 이들의 조합으로 이루어진 재료 군에서 선택되는 다결정성 재료를 포함하는, 고정 연마 물품.
  15. 제7항에 있어서, 높이 차이 (h1-h2)는 1 미크론 이상이고 500 미크론 이하이며, 상기 블렌드 비율 (C1/C2)은 0.3 이상이고 0.7 이하인, 고정 연마 물품.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
KR1020167019812A 2013-12-31 2014-12-22 형상화 연마 입자들을 포함하는 연마 물품 KR101870617B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361922206P 2013-12-31 2013-12-31
US61/922,206 2013-12-31
PCT/US2014/071870 WO2015102992A1 (en) 2013-12-31 2014-12-22 Abrasive article including shaped abrasive particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020187017203A Division KR102081045B1 (ko) 2013-12-31 2014-12-22 형상화 연마 입자들을 포함하는 연마 물품

Publications (2)

Publication Number Publication Date
KR20160101168A KR20160101168A (ko) 2016-08-24
KR101870617B1 true KR101870617B1 (ko) 2018-06-26

Family

ID=53480743

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020187017203A KR102081045B1 (ko) 2013-12-31 2014-12-22 형상화 연마 입자들을 포함하는 연마 물품
KR1020167019812A KR101870617B1 (ko) 2013-12-31 2014-12-22 형상화 연마 입자들을 포함하는 연마 물품

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020187017203A KR102081045B1 (ko) 2013-12-31 2014-12-22 형상화 연마 입자들을 포함하는 연마 물품

Country Status (9)

Country Link
US (3) US9566689B2 (ko)
EP (1) EP3089851B1 (ko)
JP (1) JP6290428B2 (ko)
KR (2) KR102081045B1 (ko)
CN (1) CN106029301B (ko)
BR (1) BR112016015029B1 (ko)
CA (1) CA2934938C (ko)
MX (2) MX2016008494A (ko)
WO (1) WO2015102992A1 (ko)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
JP5802336B2 (ja) 2011-09-26 2015-10-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨粒子材料を含む研磨製品、研磨粒子材料を使用する研磨布紙および形成方法
KR102074138B1 (ko) 2011-12-30 2020-02-07 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 형상화 연마입자 및 이의 형성방법
WO2013102170A1 (en) 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
KR101667943B1 (ko) 2012-01-10 2016-10-20 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 복잡한 형상들을 가지는 연마 입자들 및 이의 성형 방법들
BR112014029317B1 (pt) 2012-05-23 2022-05-31 Saint-Gobain Ceramics & Plastics, Inc Partículas abrasivas moldadas e métodos de formação das mesmas
BR112014032152B1 (pt) 2012-06-29 2022-09-20 Saint-Gobain Ceramics & Plastics, Inc Partículas abrasivas tendo formatos particulares e artigos abrasivos
JP5982580B2 (ja) 2012-10-15 2016-08-31 サンーゴバン アブレイシブズ,インコーポレイティド 特定の形状を有する研磨粒子およびこのような粒子の形成方法
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
EP4364891A3 (en) 2013-03-29 2024-07-31 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
EP3052270A4 (en) 2013-09-30 2017-05-03 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
KR102081045B1 (ko) 2013-12-31 2020-02-26 생-고뱅 어브레이시브즈, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
CN111331524B (zh) 2014-04-14 2022-04-29 圣戈本陶瓷及塑料股份有限公司 包括成形磨粒的研磨制品
JP6484647B2 (ja) 2014-04-14 2019-03-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を含む研磨物品
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
BR112017020767B1 (pt) * 2015-03-30 2021-11-16 3M Innovative Properties Company Método para fabricação de um artigo abrasivo revestido
US10196551B2 (en) * 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
WO2016201104A1 (en) 2015-06-11 2016-12-15 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
CN107896491B (zh) 2015-06-25 2020-12-29 3M创新有限公司 制造金属粘结磨料制品的方法和金属粘结磨料制品
US10449659B2 (en) * 2015-07-29 2019-10-22 Saint-Gobain Abrasives, Inc. Abrasive article having a core including a composite material
SI3455321T1 (sl) 2016-05-10 2022-10-28 Saint-Gobain Ceramics & Plastics, Inc. Metode oblikovanja abrazivnih delcev
KR102313436B1 (ko) 2016-05-10 2021-10-19 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 연마 입자들 및 그 형성 방법
WO2018064642A1 (en) 2016-09-29 2018-04-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
CN110087832B (zh) * 2016-12-22 2022-02-11 3M创新有限公司 磨料制品及其制备方法
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
EP3642293A4 (en) 2017-06-21 2021-03-17 Saint-Gobain Ceramics&Plastics, Inc. PARTICULATE MATERIALS AND METHOD FOR MANUFACTURING THEREOF
CA3087057C (en) * 2017-12-27 2023-03-21 Saint-Gobain Abrasives, Inc. Coated abrasives having aggregates
KR20220116556A (ko) 2019-12-27 2022-08-23 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. 연마 물품 및 이의 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180930A (ja) * 1999-12-28 2001-07-03 Ykk Corp 薄片状ベーマイト粒子及びその製造方法
US20110143641A1 (en) * 2009-12-11 2011-06-16 Saint-Gobain Abrasives, Inc. Abrasive article for use with a grinding wheel
US20120167481A1 (en) * 2010-12-31 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
JP2013521144A (ja) * 2010-03-03 2013-06-10 スリーエム イノベイティブ プロパティズ カンパニー 結合した研磨ホイール
WO2013102177A1 (en) * 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same

Family Cites Families (767)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA743715A (en) 1966-10-04 The Carborundum Company Manufacture of sintered abrasive grain of geometrical shape and controlled grit size
US3123948A (en) 1964-03-10 Reinforced
US345604A (en) 1886-07-13 Process of making porous alum
US1910444A (en) 1931-02-13 1933-05-23 Carborundum Co Process of making abrasive materials
US2248064A (en) 1933-06-01 1941-07-08 Minnesota Mining & Mfg Coating, particularly for manufacture of abrasives
US2049874A (en) 1933-08-21 1936-08-04 Miami Abrasive Products Inc Slotted abrasive wheel
US2036903A (en) 1934-03-05 1936-04-07 Norton Co Cutting-off abrasive wheel
US2148400A (en) 1938-01-13 1939-02-21 Norton Co Grinding wheel
US2248990A (en) 1938-08-17 1941-07-15 Heany John Allen Process of making porous abrasive bodies
US2290877A (en) 1938-09-24 1942-07-28 Heany Ind Ceramic Corp Porous abrading material and process of making the same
US2318360A (en) 1941-05-05 1943-05-04 Carborundum Co Abrasive
US2376343A (en) 1942-07-28 1945-05-22 Minnesota Mining & Mfg Manufacture of abrasives
US2563650A (en) 1949-04-26 1951-08-07 Porocel Corp Method of hardening bauxite with colloidal silica
US2880080A (en) 1955-11-07 1959-03-31 Minnesota Mining & Mfg Reinforced abrasive articles and intermediate products
US3067551A (en) 1958-09-22 1962-12-11 Bethlehem Steel Corp Grinding method
US3041156A (en) 1959-07-22 1962-06-26 Norton Co Phenolic resin bonded grinding wheels
US3079243A (en) 1959-10-19 1963-02-26 Norton Co Abrasive grain
US3079242A (en) 1959-12-31 1963-02-26 Nat Tank Co Flame arrestor
US3377660A (en) 1961-04-20 1968-04-16 Norton Co Apparatus for making crystal abrasive
GB986847A (en) 1962-02-07 1965-03-24 Charles Beck Rosenberg Brunswi Improvements in or relating to abrasives
US3141271A (en) 1962-10-12 1964-07-21 Herbert C Fischer Grinding wheels with reinforcing elements
US3276852A (en) 1962-11-20 1966-10-04 Jerome H Lemelson Filament-reinforced composite abrasive articles
US3379543A (en) 1964-03-27 1968-04-23 Corning Glass Works Composition and method for making ceramic articles
US3481723A (en) 1965-03-02 1969-12-02 Itt Abrasive grinding wheel
US3477180A (en) 1965-06-14 1969-11-11 Norton Co Reinforced grinding wheels and reinforcement network therefor
US3454385A (en) 1965-08-04 1969-07-08 Norton Co Sintered alpha-alumina and zirconia abrasive product and process
US3387957A (en) 1966-04-04 1968-06-11 Carborundum Co Microcrystalline sintered bauxite abrasive grain
US3536005A (en) 1967-10-12 1970-10-27 American Screen Process Equip Vacuum screen printing method
US3480395A (en) 1967-12-05 1969-11-25 Carborundum Co Method of preparing extruded grains of silicon carbide
US3491492A (en) 1968-01-15 1970-01-27 Us Industries Inc Method of making alumina abrasive grains
US3615308A (en) 1968-02-09 1971-10-26 Norton Co Crystalline abrasive alumina
US3590799A (en) 1968-09-03 1971-07-06 Gerszon Gluchowicz Method of dressing the grinding wheel in a grinding machine
US3495359A (en) 1968-10-10 1970-02-17 Norton Co Core drill
US3619151A (en) 1968-10-16 1971-11-09 Landis Tool Co Phosphate bonded grinding wheel
US3608134A (en) 1969-02-10 1971-09-28 Norton Co Molding apparatus for orienting elongated particles
US3637360A (en) 1969-08-26 1972-01-25 Us Industries Inc Process for making cubical sintered aluminous abrasive grains
US3608050A (en) 1969-09-12 1971-09-21 Union Carbide Corp Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
US3874856A (en) 1970-02-09 1975-04-01 Ducommun Inc Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it
US3670467A (en) 1970-04-27 1972-06-20 Robert H Walker Method and apparatus for manufacturing tumbling media
US3672934A (en) 1970-05-01 1972-06-27 Du Pont Method of improving line resolution in screen printing
US3808747A (en) 1970-06-08 1974-05-07 Wheelabrator Corp Mechanical finishing and media therefor
US3909991A (en) 1970-09-22 1975-10-07 Norton Co Process for making sintered abrasive grains
US3986885A (en) 1971-07-06 1976-10-19 Battelle Development Corporation Flexural strength in fiber-containing concrete
US3819785A (en) 1972-02-02 1974-06-25 Western Electric Co Fine-grain alumina bodies
US3859407A (en) 1972-05-15 1975-01-07 Corning Glass Works Method of manufacturing particles of uniform size and shape
US4261706A (en) 1972-05-15 1981-04-14 Corning Glass Works Method of manufacturing connected particles of uniform size and shape with a backing
IN142626B (ko) 1973-08-10 1977-08-06 De Beers Ind Diamond
US4055451A (en) 1973-08-31 1977-10-25 Alan Gray Cockbain Composite materials
US3950148A (en) 1973-10-09 1976-04-13 Heijiro Fukuda Laminated three-layer resinoid wheels having core layer of reinforcing material and method for producing same
US4004934A (en) 1973-10-24 1977-01-25 General Electric Company Sintered dense silicon carbide
US3940276A (en) 1973-11-01 1976-02-24 Corning Glass Works Spinel and aluminum-base metal cermet
US3960577A (en) 1974-01-08 1976-06-01 General Electric Company Dense polycrystalline silicon carbide
ZA741477B (en) 1974-03-07 1975-10-29 Edenvale Eng Works Abrasive tools
JPS5236637B2 (ko) 1974-03-18 1977-09-17
US4045919A (en) 1974-05-10 1977-09-06 Seiko Seiki Kabushiki Kaisha High speed grinding spindle
US3991527A (en) 1975-07-10 1976-11-16 Bates Abrasive Products, Inc. Coated abrasive disc
US4028453A (en) 1975-10-20 1977-06-07 Lava Crucible Refractories Company Process for making refractory shapes
US4073096A (en) 1975-12-01 1978-02-14 U.S. Industries, Inc. Process for the manufacture of abrasive material
US4194887A (en) 1975-12-01 1980-03-25 U.S. Industries, Inc. Fused alumina-zirconia abrasive material formed by an immersion process
US4092573A (en) 1975-12-22 1978-05-30 Texas Instruments Incorporated Motor starting and protecting apparatus
US4037367A (en) 1975-12-22 1977-07-26 Kruse James A Grinding tool
US4131916A (en) 1975-12-31 1978-12-26 Logetronics, Inc. Pneumatically actuated image scanning reader/writer
DE2725704A1 (de) 1976-06-11 1977-12-22 Swarovski Tyrolit Schleif Herstellung von korundhaeltigen schleifkoernern, beispielsweise aus zirkonkorund
JPS5364890A (en) 1976-11-19 1978-06-09 Toshiba Corp Method of producing silicon nitride grinding wheel
US4114322A (en) 1977-08-02 1978-09-19 Harold Jack Greenspan Abrasive member
US4711750A (en) 1977-12-19 1987-12-08 Norton Company Abrasive casting process
JPS5524813A (en) 1978-08-03 1980-02-22 Showa Denko Kk Alumina grinding grain
JPS6016388B2 (ja) 1978-11-04 1985-04-25 日本特殊陶業株式会社 高靭性セラミック工具の製法
US4314827A (en) 1979-06-29 1982-02-09 Minnesota Mining And Manufacturing Company Non-fused aluminum oxide-based abrasive mineral
DE2935914A1 (de) 1979-09-06 1981-04-02 Kali-Chemie Ag, 3000 Hannover Verfahren zur herstellung von kugelfoermigen formkoerpern auf basis al(pfeil abwaerts)2(pfeil abwaerts)o(pfeil abwaerts)3(pfeil abwaerts) und/oder sio(pfeil abwaerts)2(pfeil abwaerts)
US4286905A (en) 1980-04-30 1981-09-01 Ford Motor Company Method of machining steel, malleable or nodular cast iron
JPS622946Y2 (ko) 1980-11-13 1987-01-23
US4541842A (en) 1980-12-29 1985-09-17 Norton Company Glass bonded abrasive agglomerates
JPS57121469A (en) 1981-01-13 1982-07-28 Matsushita Electric Ind Co Ltd Manufacture of electrodeposition grinder
US4393021A (en) 1981-06-09 1983-07-12 Vereinigte Schmirgel Und Maschinen-Fabriken Ag Method for the manufacture of granular grit for use as abrasives
JPS5871938U (ja) 1981-11-10 1983-05-16 セイコーエプソン株式会社 電子時計のスイツチ構造
EP0078896A2 (en) 1981-11-10 1983-05-18 Norton Company Abrasive bodies such as grinding wheels
US4728043A (en) 1982-02-25 1988-03-01 Norton Company Mechanical sorting system for crude silicon carbide
JPS58223564A (ja) 1982-05-10 1983-12-26 Toshiba Corp 砥石およびその製造法
US4516560A (en) * 1982-07-29 1985-05-14 Federal-Mogul Corporation Abrasive cutting wheel and method of cutting abradable material
US4548617A (en) 1982-08-20 1985-10-22 Tokyo Shibaura Denki Kabushiki Kaisha Abrasive and method for manufacturing the same
JPS5890466A (ja) 1982-11-04 1983-05-30 Toshiba Corp 研削砥石
US4469758A (en) 1983-04-04 1984-09-04 Norton Co. Magnetic recording materials
JPS606356U (ja) 1983-06-24 1985-01-17 神田通信工業株式会社 携帯通信装置
US4505720A (en) 1983-06-29 1985-03-19 Minnesota Mining And Manufacturing Company Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith
US4452911A (en) 1983-08-10 1984-06-05 Hri, Inc. Frangible catalyst pretreatment method for use in hydrocarbon hydrodemetallization process
US4457767A (en) 1983-09-29 1984-07-03 Norton Company Alumina-zirconia abrasive
US5383945A (en) 1984-01-19 1995-01-24 Norton Company Abrasive material and method
US5395407B1 (en) 1984-01-19 1997-08-26 Norton Co Abrasive material and method
NZ210805A (en) 1984-01-19 1988-04-29 Norton Co Aluminous abrasive grits or shaped bodies
US4623364A (en) 1984-03-23 1986-11-18 Norton Company Abrasive material and method for preparing the same
US5227104A (en) 1984-06-14 1993-07-13 Norton Company High solids content gels and a process for producing them
US4570048A (en) 1984-06-29 1986-02-11 Plasma Materials, Inc. Plasma jet torch having gas vortex in its nozzle for arc constriction
US4963012A (en) 1984-07-20 1990-10-16 The United States Of America As Represented By The United States Department Of Energy Passivation coating for flexible substrate mirrors
US4961757A (en) 1985-03-14 1990-10-09 Advanced Composite Materials Corporation Reinforced ceramic cutting tools
CA1254238A (en) 1985-04-30 1989-05-16 Alvin P. Gerk Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products
US4659341A (en) 1985-05-23 1987-04-21 Gte Products Corporation Silicon nitride abrasive frit
US4678560A (en) 1985-08-15 1987-07-07 Norton Company Screening device and process
US4657754A (en) 1985-11-21 1987-04-14 Norton Company Aluminum oxide powders and process
US4770671A (en) 1985-12-30 1988-09-13 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith
AT389882B (de) 1986-06-03 1990-02-12 Treibacher Chemische Werke Ag Verfahren zur herstellung eines mikrokristallinen schleifmaterials
DE3705540A1 (de) 1986-06-13 1987-12-17 Ruetgerswerke Ag Hochtemperaturbestaendige formstoffe
JPH0753604B2 (ja) 1986-09-03 1995-06-07 株式会社豊田中央研究所 炭化ケイ素質複合セラミツクス
US5053367A (en) 1986-09-16 1991-10-01 Lanxide Technology Company, Lp Composite ceramic structures
EP0282587B1 (en) 1986-09-24 1991-11-21 Foseco International Limited Abrasive media
US5180630A (en) 1986-10-14 1993-01-19 American Cyanamid Company Fibrillated fibers and articles made therefrom
US5024795A (en) 1986-12-22 1991-06-18 Lanxide Technology Company, Lp Method of making shaped ceramic composites
US4829027A (en) 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
US4876226A (en) 1987-01-12 1989-10-24 Fuentes Ricardo I Silicon carbide sintering
GB8701553D0 (en) 1987-01-24 1987-02-25 Interface Developments Ltd Abrasive article
US4799939A (en) 1987-02-26 1989-01-24 Minnesota Mining And Manufacturing Company Erodable agglomerates and abrasive products containing the same
US5244849A (en) 1987-05-06 1993-09-14 Coors Porcelain Company Method for producing transparent polycrystalline body with high ultraviolet transmittance
US4960441A (en) 1987-05-11 1990-10-02 Norton Company Sintered alumina-zirconia ceramic bodies
AU604899B2 (en) 1987-05-27 1991-01-03 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US4881951A (en) 1987-05-27 1989-11-21 Minnesota Mining And Manufacturing Co. Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith
US5312789A (en) 1987-05-27 1994-05-17 Minnesota Mining And Manufacturing Company Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith
US5185299A (en) 1987-06-05 1993-02-09 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4954462A (en) 1987-06-05 1990-09-04 Minnesota Mining And Manufacturing Company Microcrystalline alumina-based ceramic articles
US4858527A (en) 1987-07-22 1989-08-22 Masanao Ozeki Screen printer with screen length and snap-off angle control
US4797139A (en) 1987-08-11 1989-01-10 Norton Company Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom
US5376598A (en) 1987-10-08 1994-12-27 The Boeing Company Fiber reinforced ceramic matrix laminate
US4848041A (en) 1987-11-23 1989-07-18 Minnesota Mining And Manufacturing Company Abrasive grains in the shape of platelets
US5146247A (en) 1987-12-26 1992-09-08 Canon Kabushiki Kaisha Information retrieval apparatus
US4797269A (en) 1988-02-08 1989-01-10 Norton Company Production of beta alumina by seeding and beta alumina produced thereby
US4930266A (en) 1988-02-26 1990-06-05 Minnesota Mining And Manufacturing Company Abrasive sheeting having individually positioned abrasive granules
US4917852A (en) 1988-04-29 1990-04-17 Norton Company Method and apparatus for rapid solidification
US5076991A (en) 1988-04-29 1991-12-31 Norton Company Method and apparatus for rapid solidification
US4942011A (en) 1988-05-03 1990-07-17 E. I. Du Pont De Nemours And Company Process for preparing silicon carbide fibers
EP0347162A3 (en) 1988-06-14 1990-09-12 Tektronix, Inc. Apparatus and methods for controlling data flow processes by generated instruction sequences
CH675250A5 (ko) 1988-06-17 1990-09-14 Lonza Ag
JP2601333B2 (ja) 1988-10-05 1997-04-16 三井金属鉱業株式会社 複合砥石およびその製造方法
US5011508A (en) 1988-10-14 1991-04-30 Minnesota Mining And Manufacturing Company Shelling-resistant abrasive grain, a method of making the same, and abrasive products
US5053369A (en) 1988-11-02 1991-10-01 Treibacher Chemische Werke Aktiengesellschaft Sintered microcrystalline ceramic material
US4964883A (en) 1988-12-12 1990-10-23 Minnesota Mining And Manufacturing Company Ceramic alumina abrasive grains seeded with iron oxide
US5098740A (en) 1989-12-13 1992-03-24 Norton Company Uniformly-coated ceramic particles
US4925457B1 (en) 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
US5190568B1 (en) 1989-01-30 1996-03-12 Ultimate Abrasive Syst Inc Abrasive tool with contoured surface
US5108963A (en) 1989-02-01 1992-04-28 Industrial Technology Research Institute Silicon carbide whisker reinforced alumina ceramic composites
US5032304A (en) 1989-02-02 1991-07-16 Sumitomo Special Metal Co. Ltd. Method of manufacturing transparent high density ceramic material
WO1990009969A1 (en) 1989-02-22 1990-09-07 Kabushiki Kaisha Kobe Seiko Sho Alumina ceramic, production thereof, and throwaway tip made therefrom
US5224970A (en) 1989-03-01 1993-07-06 Sumitomo Chemical Co., Ltd. Abrasive material
YU32490A (en) 1989-03-13 1991-10-31 Lonza Ag Hydrophobic layered grinding particles
JPH0320317A (ja) 1989-03-14 1991-01-29 Mitsui Toatsu Chem Inc 狭い粒度分布を持ったアミノ系樹脂微粒子の製造方法
US5094986A (en) 1989-04-11 1992-03-10 Hercules Incorporated Wear resistant ceramic with a high alpha-content silicon nitride phase
US5103598A (en) 1989-04-28 1992-04-14 Norton Company Coated abrasive material containing abrasive filaments
US5009676A (en) 1989-04-28 1991-04-23 Norton Company Sintered sol gel alumina abrasive filaments
US5244477A (en) 1989-04-28 1993-09-14 Norton Company Sintered sol gel alumina abrasive filaments
US4970057A (en) 1989-04-28 1990-11-13 Norton Company Silicon nitride vacuum furnace process
US5035723A (en) 1989-04-28 1991-07-30 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5014468A (en) 1989-05-05 1991-05-14 Norton Company Patterned coated abrasive for fine surface finishing
JPH078474B2 (ja) 1989-08-22 1995-02-01 瑞穂研磨砥石株式会社 高速研削用超硬砥粒砥石
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US4997461A (en) 1989-09-11 1991-03-05 Norton Company Nitrified bonded sol gel sintered aluminous abrasive bodies
DK0432907T3 (da) 1989-11-22 1995-07-10 Johnson Matthey Plc Forbedrede pastasammensætninger
JPH03194269A (ja) 1989-12-20 1991-08-23 Seiko Electronic Components Ltd 全金属ダイヤフラムバルブ
US5049136A (en) 1990-01-10 1991-09-17 Johnson Gerald W Hypodermic needle with protective sheath
US5081082A (en) 1990-01-17 1992-01-14 Korean Institute Of Machinery And Metals Production of alumina ceramics reinforced with β'"-alumina
US5049166A (en) 1990-02-27 1991-09-17 Washington Mills Ceramics Corporation Light weight abrasive tumbling media and method of making same
CA2036247A1 (en) 1990-03-29 1991-09-30 Jeffrey L. Berger Nonwoven surface finishing articles reinforced with a polymer backing layer and method of making same
JP2779252B2 (ja) 1990-04-04 1998-07-23 株式会社ノリタケカンパニーリミテド 窒化けい素質焼結研摩材及びその製法
US5129919A (en) 1990-05-02 1992-07-14 Norton Company Bonded abrasive products containing sintered sol gel alumina abrasive filaments
US5085671A (en) 1990-05-02 1992-02-04 Minnesota Mining And Manufacturing Company Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same
US5035724A (en) 1990-05-09 1991-07-30 Norton Company Sol-gel alumina shaped bodies
DE69125487T2 (de) 1990-05-25 1997-10-09 The Australian National University, Acton, Australian Capital Territory Schleifkörperpressling aus kubischem bornitrid und verfahren zu seiner herstellung
US7022179B1 (en) 1990-06-19 2006-04-04 Dry Carolyn M Self-repairing, reinforced matrix materials
JP3094300B2 (ja) 1990-06-29 2000-10-03 株式会社日立製作所 熱転写記録装置
US5219806A (en) 1990-07-16 1993-06-15 Minnesota Mining And Manufacturing Company Alpha phase seeding of transition alumina using chromium oxide-based nucleating agents
US5139978A (en) 1990-07-16 1992-08-18 Minnesota Mining And Manufacturing Company Impregnation method for transformation of transition alumina to a alpha alumina
US5078753A (en) 1990-10-09 1992-01-07 Minnesota Mining And Manufacturing Company Coated abrasive containing erodable agglomerates
CA2043261A1 (en) 1990-10-09 1992-04-10 Muni S. Ramakrishnan Dry grinding wheel
ES2120412T3 (es) 1990-10-12 1998-11-01 Union Carbide Chem Plastic Catalizadores de oxido de alquileno que tienen actividad y/o estabilidad mejoradas.
US5114438A (en) 1990-10-29 1992-05-19 Ppg Industries, Inc. Abrasive article
US5132984A (en) 1990-11-01 1992-07-21 Norton Company Segmented electric furnace
US5090968A (en) 1991-01-08 1992-02-25 Norton Company Process for the manufacture of filamentary abrasive particles
WO1992013719A1 (en) 1991-02-04 1992-08-20 Seiko Epson Corporation Ink flow passage of hydrophilic properties
US5152917B1 (en) 1991-02-06 1998-01-13 Minnesota Mining & Mfg Structured abrasive article
US5236472A (en) 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5120327A (en) 1991-03-05 1992-06-09 Diamant-Boart Stratabit (Usa) Inc. Cutting composite formed of cemented carbide substrate and diamond layer
US5131926A (en) 1991-03-15 1992-07-21 Norton Company Vitrified bonded finely milled sol gel aluminous bodies
US5178849A (en) 1991-03-22 1993-01-12 Norton Company Process for manufacturing alpha alumina from dispersible boehmite
US5160509A (en) 1991-05-22 1992-11-03 Norton Company Self-bonded ceramic abrasive wheels
US5221294A (en) 1991-05-22 1993-06-22 Norton Company Process of producing self-bonded ceramic abrasive wheels
US5641469A (en) 1991-05-28 1997-06-24 Norton Company Production of alpha alumina
US5817204A (en) 1991-06-10 1998-10-06 Ultimate Abrasive Systems, L.L.C. Method for making patterned abrasive material
US5273558A (en) 1991-08-30 1993-12-28 Minnesota Mining And Manufacturing Company Abrasive composition and articles incorporating same
US5203886A (en) 1991-08-12 1993-04-20 Norton Company High porosity vitrified bonded grinding wheels
US5316812A (en) 1991-12-20 1994-05-31 Minnesota Mining And Manufacturing Company Coated abrasive backing
RU2116186C1 (ru) 1991-12-20 1998-07-27 Миннесота Майнинг Энд Мэнюфекчуринг Компани Лента с абразивным покрытием
TW226016B (ko) 1991-12-30 1994-07-01 Sterling Winthrop Inc
US5219462A (en) 1992-01-13 1993-06-15 Minnesota Mining And Manufacturing Company Abrasive article having abrasive composite members positioned in recesses
US5437754A (en) 1992-01-13 1995-08-01 Minnesota Mining And Manufacturing Company Abrasive article having precise lateral spacing between abrasive composite members
AU650382B2 (en) 1992-02-05 1994-06-16 Norton Company Nano-sized alpha alumina particles
US6258137B1 (en) 1992-02-05 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. CMP products
US5215552A (en) 1992-02-26 1993-06-01 Norton Company Sol-gel alumina abrasive grain
US5314513A (en) 1992-03-03 1994-05-24 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising a maleimide binder
US5282875A (en) 1992-03-18 1994-02-01 Cincinnati Milacron Inc. High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
KR100277320B1 (ko) 1992-06-03 2001-01-15 가나이 쓰도무 온라인 롤 연삭 장치를 구비한 압연기와 압연 방법 및 회전 숫돌
JPH05338370A (ja) 1992-06-10 1993-12-21 Dainippon Screen Mfg Co Ltd スクリーン印刷用メタルマスク版
JPH06773A (ja) 1992-06-22 1994-01-11 Fuji Photo Film Co Ltd 研磨テープの製造方法
CA2099734A1 (en) 1992-07-01 1994-01-02 Akihiko Takahashi Process for preparing polyhedral alpha-alumina particles
US5304331A (en) 1992-07-23 1994-04-19 Minnesota Mining And Manufacturing Company Method and apparatus for extruding bingham plastic-type materials
US5366523A (en) 1992-07-23 1994-11-22 Minnesota Mining And Manufacturing Company Abrasive article containing shaped abrasive particles
RU95105160A (ru) 1992-07-23 1997-01-10 Миннесота Майнинг энд Мануфакчуринг Компани (US) Способ приготовления абразивной частицы, абразивные изделия и изделия с абразивным покрытием
US5201916A (en) 1992-07-23 1993-04-13 Minnesota Mining And Manufacturing Company Shaped abrasive particles and method of making same
JPH07509508A (ja) 1992-07-23 1995-10-19 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー 成形研磨粒子およびその製造方法
JP3160084B2 (ja) 1992-07-24 2001-04-23 株式会社ムラカミ スクリーン印刷用メタルマスクの製造方法
US5213591A (en) 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
BR9306810A (pt) 1992-07-28 1998-12-08 Minnesota Mining & Mfg Grão abrasivo pluralidade de grãos abrasivos artigo abrasivo e processo de produção de um grão abrasivo e de um artigo abrasivo
US5312791A (en) 1992-08-21 1994-05-17 Saint Gobain/Norton Industrial Ceramics Corp. Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols
BR9307113A (pt) 1992-09-25 1999-03-30 Minnesota Mining & Mfg Grão abrasivo de cerâmica e processo para sua preparação
KR960702420A (ko) 1992-09-25 1996-04-27 워렌 리처드 보비 알루미나 및 지르코니아를 함유하는 연마 입자(abrasive grain containing alumina and zirconia)
DE69231839D1 (de) 1992-10-01 2001-06-28 Taiheiyo Cement Corp Verfahren zur Herstellung von gesinterten Keramiken aus Titandioxid oder Aluminiumoxid.
CA2102656A1 (en) 1992-12-14 1994-06-15 Dwight D. Erickson Abrasive grain comprising calcium oxide and/or strontium oxide
US5690707A (en) 1992-12-23 1997-11-25 Minnesota Mining & Manufacturing Company Abrasive grain comprising manganese oxide
US5435816A (en) 1993-01-14 1995-07-25 Minnesota Mining And Manufacturing Company Method of making an abrasive article
CA2114571A1 (en) 1993-02-04 1994-08-05 Franciscus Van Dijen Silicon carbide sintered abrasive grain and process for producing same
US5277702A (en) 1993-03-08 1994-01-11 St. Gobain/Norton Industrial Ceramics Corp. Plately alumina
CA2115889A1 (en) * 1993-03-18 1994-09-19 David E. Broberg Coated abrasive article having diluent particles and shaped abrasive particles
CH685051A5 (de) 1993-04-15 1995-03-15 Lonza Ag Siliciumnitrid-Sinterschleifkorn und Verfahren zu dessen Herstellung.
US5441549A (en) 1993-04-19 1995-08-15 Minnesota Mining And Manufacturing Company Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder
ES2109709T3 (es) 1993-06-17 1998-01-16 Minnesota Mining & Mfg Articulos abrasivos con diseño y metodos de fabricacion y empleo de los mismos.
US5681612A (en) 1993-06-17 1997-10-28 Minnesota Mining And Manufacturing Company Coated abrasives and methods of preparation
US5549962A (en) 1993-06-30 1996-08-27 Minnesota Mining And Manufacturing Company Precisely shaped particles and method of making the same
WO1995003370A1 (en) 1993-07-22 1995-02-02 Saint-Gobain/Norton Industrial Ceramics Corporation Silicon carbide grain
US5300130A (en) 1993-07-26 1994-04-05 Saint Gobain/Norton Industrial Ceramics Corp. Polishing material
HU215748B (hu) 1993-07-27 1999-02-01 Sumitomo Chemical Co. Alumínium-oxid kompozíció, öntött alumínium-oxid termék, alumínium-oxid kerámia, eljárás a kerámia előállítására és alumínium-oxid részecskék alkalmazása oxidkerámiákhoz
BR9407536A (pt) 1993-09-13 1997-08-26 Minnesota Mining & Mfg Artigo abrasivo processos de fabricação e de refino de peça em trabalho corn o mesmo ferramenta de produção para fabricação do mesmo e processo de produção de matriz mestra para formação da mesma
JP3194269B2 (ja) 1993-09-17 2001-07-30 旭化成株式会社 研磨用モノフィラメント
US5470806A (en) 1993-09-20 1995-11-28 Krstic; Vladimir D. Making of sintered silicon carbide bodies
US5429648A (en) 1993-09-23 1995-07-04 Norton Company Process for inducing porosity in an abrasive article
US5453106A (en) 1993-10-27 1995-09-26 Roberts; Ellis E. Oriented particles in hard surfaces
US5454844A (en) 1993-10-29 1995-10-03 Minnesota Mining And Manufacturing Company Abrasive article, a process of making same, and a method of using same to finish a workpiece surface
DE4339031C1 (de) 1993-11-15 1995-01-12 Treibacher Chemische Werke Ag Verfahren und Vorrichtung zur Herstellung eines Schleifmittels auf Basis Korund
US5372620A (en) 1993-12-13 1994-12-13 Saint Gobain/Norton Industrial Ceramics Corporation Modified sol-gel alumina abrasive filaments
US6136288A (en) 1993-12-16 2000-10-24 Norton Company Firing fines
US5409645A (en) 1993-12-20 1995-04-25 Saint Gobain/Norton Industrial Ceramics Corp. Molding shaped articles
US5376602A (en) 1993-12-23 1994-12-27 The Dow Chemical Company Low temperature, pressureless sintering of silicon nitride
JPH0829975B2 (ja) 1993-12-24 1996-03-27 工業技術院長 アルミナ基セラミックス焼結体
US5489204A (en) 1993-12-28 1996-02-06 Minnesota Mining And Manufacturing Company Apparatus for sintering abrasive grain
EP0739397A1 (en) 1993-12-28 1996-10-30 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
BR9408461A (pt) 1993-12-28 1997-08-05 Minnesota Mining & Mfg Tipo nominal especificado de grão abrasivo e artigo abrasivo
US5443603A (en) 1994-01-11 1995-08-22 Washington Mills Ceramics Corporation Light weight ceramic abrasive media
US5505747A (en) 1994-01-13 1996-04-09 Minnesota Mining And Manufacturing Company Method of making an abrasive article
JP2750499B2 (ja) 1994-01-25 1998-05-13 オークマ株式会社 Nc研削盤における超砥粒砥石のドレッシング確認方法
EP0741632A1 (en) * 1994-01-28 1996-11-13 Minnesota Mining And Manufacturing Company Coated abrasive containing erodible agglomerates
EP0667405B1 (en) 1994-02-14 1998-09-23 Toyota Jidosha Kabushiki Kaisha Method of manufacturing aluminum borate whiskers having a reformed surface based upon gamma alumina
WO1995022438A1 (en) 1994-02-22 1995-08-24 Minnesota Mining And Manufacturing Company Method for making an endless coated abrasive article and the product thereof
JPH07299708A (ja) 1994-04-26 1995-11-14 Sumitomo Electric Ind Ltd 窒化ケイ素系セラミックス部品の製造方法
US5486496A (en) 1994-06-10 1996-01-23 Alumina Ceramics Co. (Aci) Graphite-loaded silicon carbide
US5567251A (en) 1994-08-01 1996-10-22 Amorphous Alloys Corp. Amorphous metal/reinforcement composite material
US5656217A (en) 1994-09-13 1997-08-12 Advanced Composite Materials Corporation Pressureless sintering of whisker reinforced alumina composites
US5759481A (en) 1994-10-18 1998-06-02 Saint-Gobain/Norton Industrial Ceramics Corp. Silicon nitride having a high tensile strength
US6054093A (en) 1994-10-19 2000-04-25 Saint Gobain-Norton Industrial Ceramics Corporation Screen printing shaped articles
US5525100A (en) 1994-11-09 1996-06-11 Norton Company Abrasive products
US5527369A (en) 1994-11-17 1996-06-18 Saint-Gobain/Norton Industrial Ceramics Corp. Modified sol-gel alumina
US5578095A (en) 1994-11-21 1996-11-26 Minnesota Mining And Manufacturing Company Coated abrasive article
KR19980702613A (ko) 1995-03-02 1998-08-05 워렌리차드보비 구조적 연마재를 이용하여 기판을 텍스쳐링하는 방법
JP2671945B2 (ja) 1995-03-03 1997-11-05 科学技術庁無機材質研究所長 超塑性炭化ケイ素焼結体とその製造方法
US5725162A (en) 1995-04-05 1998-03-10 Saint Gobain/Norton Industrial Ceramics Corporation Firing sol-gel alumina particles
US5516347A (en) 1995-04-05 1996-05-14 Saint-Gobain/Norton Industrial Ceramics Corp. Modified alpha alumina particles
US5736619A (en) 1995-04-21 1998-04-07 Ameron International Corporation Phenolic resin compositions with improved impact resistance
US5567214A (en) 1995-05-03 1996-10-22 Saint-Gobain/Norton Industrial Ceramics Corporation Process for production of alumina/zirconia materials
US5582625A (en) 1995-06-01 1996-12-10 Norton Company Curl-resistant coated abrasives
US5571297A (en) 1995-06-06 1996-11-05 Norton Company Dual-cure binder system
EP0830237A1 (en) 1995-06-07 1998-03-25 Norton Company Cutting tool having textured cutting surface
US5645619A (en) 1995-06-20 1997-07-08 Minnesota Mining And Manufacturing Company Method of making alpha alumina-based abrasive grain containing silica and iron oxide
US5611829A (en) 1995-06-20 1997-03-18 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
AU708470B2 (en) 1995-06-20 1999-08-05 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain containing silica and iron oxide
US5593468A (en) 1995-07-26 1997-01-14 Saint-Gobain/Norton Industrial Ceramics Corporation Sol-gel alumina abrasives
US5578096A (en) 1995-08-10 1996-11-26 Minnesota Mining And Manufacturing Company Method for making a spliceless coated abrasive belt and the product thereof
EP0846041B1 (en) 1995-08-11 2003-04-23 Minnesota Mining And Manufacturing Company Method of making a coated abrasive article having multiple abrasive natures
US5576409B1 (en) 1995-08-25 1998-09-22 Ici Plc Internal mold release compositions
US5958794A (en) 1995-09-22 1999-09-28 Minnesota Mining And Manufacturing Company Method of modifying an exposed surface of a semiconductor wafer
US5683844A (en) 1995-09-28 1997-11-04 Xerox Corporation Fibrillated carrier compositions and processes for making and using
US5975987A (en) 1995-10-05 1999-11-02 3M Innovative Properties Company Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article
US5702811A (en) 1995-10-20 1997-12-30 Ho; Kwok-Lun High performance abrasive articles containing abrasive grains and nonabrasive composite grains
CA2189516A1 (en) 1995-11-06 1997-05-07 Timothy Edward Easler Sintering alpha silicon carbide powder with multiple sintering aids
JP2686248B2 (ja) 1995-11-16 1997-12-08 住友電気工業株式会社 Si3N4セラミックスとその製造用Si基組成物及びこれらの製造方法
US5651925A (en) 1995-11-29 1997-07-29 Saint-Gobain/Norton Industrial Ceramics Corporation Process for quenching molten ceramic material
US5578222A (en) 1995-12-20 1996-11-26 Saint-Gobain/Norton Industrial Ceramics Corp. Reclamation of abrasive grain
US5669941A (en) 1996-01-05 1997-09-23 Minnesota Mining And Manufacturing Company Coated abrasive article
US5855997A (en) 1996-02-14 1999-01-05 The Penn State Research Foundation Laminated ceramic cutting tool
US5876793A (en) 1996-02-21 1999-03-02 Ultramet Fine powders and method for manufacturing
JP2957492B2 (ja) 1996-03-26 1999-10-04 合資会社亀井鉄工所 ワーク表面の研削方法
US6083622A (en) 1996-03-27 2000-07-04 Saint-Gobain Industrial Ceramics, Inc. Firing sol-gel alumina particles
US5667542A (en) 1996-05-08 1997-09-16 Minnesota Mining And Manufacturing Company Antiloading components for abrasive articles
US5810587A (en) 1996-05-13 1998-09-22 Danville Engineering Friable abrasive media
US5738697A (en) 1996-07-26 1998-04-14 Norton Company High permeability grinding wheels
US5738696A (en) 1996-07-26 1998-04-14 Norton Company Method for making high permeability grinding wheels
US6080215A (en) 1996-08-12 2000-06-27 3M Innovative Properties Company Abrasive article and method of making such article
US6475253B2 (en) 1996-09-11 2002-11-05 3M Innovative Properties Company Abrasive article and method of making
US6206942B1 (en) 1997-01-09 2001-03-27 Minnesota Mining & Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US5893935A (en) 1997-01-09 1999-04-13 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
AU2336697A (en) 1996-09-18 1998-04-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation, and abrasive articles
US5779743A (en) 1996-09-18 1998-07-14 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
US5776214A (en) 1996-09-18 1998-07-07 Minnesota Mining And Manufacturing Company Method for making abrasive grain and abrasive articles
WO1998014307A1 (fr) 1996-09-30 1998-04-09 Osaka Diamond Industrial Co. Outil superabrasif et son procede de fabrication
JPH10113875A (ja) 1996-10-08 1998-05-06 Noritake Co Ltd 超砥粒研削砥石
US5919549A (en) 1996-11-27 1999-07-06 Minnesota Mining And Manufacturing Company Abrasive articles and method for the manufacture of same
US5902647A (en) 1996-12-03 1999-05-11 General Electric Company Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions
US5863306A (en) 1997-01-07 1999-01-26 Norton Company Production of patterned abrasive surfaces
US7124753B2 (en) 1997-04-04 2006-10-24 Chien-Min Sung Brazed diamond tools and methods for making the same
US6524681B1 (en) 1997-04-08 2003-02-25 3M Innovative Properties Company Patterned surface friction materials, clutch plate members and methods of making and using same
US6537140B1 (en) 1997-05-14 2003-03-25 Saint-Gobain Abrasives Technology Company Patterned abrasive tools
JPH10315142A (ja) 1997-05-19 1998-12-02 Japan Vilene Co Ltd 研磨シート
JPH10330734A (ja) 1997-06-03 1998-12-15 Noritake Co Ltd 炭化珪素複合窒化珪素質研磨材及びその製法
US5885311A (en) 1997-06-05 1999-03-23 Norton Company Abrasive products
US5908477A (en) 1997-06-24 1999-06-01 Minnesota Mining & Manufacturing Company Abrasive articles including an antiloading composition
US6024824A (en) 1997-07-17 2000-02-15 3M Innovative Properties Company Method of making articles in sheet form, particularly abrasive articles
US5876470A (en) 1997-08-01 1999-03-02 Minnesota Mining And Manufacturing Company Abrasive articles comprising a blend of abrasive particles
US5946991A (en) 1997-09-03 1999-09-07 3M Innovative Properties Company Method for knurling a workpiece
US5942015A (en) 1997-09-16 1999-08-24 3M Innovative Properties Company Abrasive slurries and abrasive articles comprising multiple abrasive particle grades
US6027326A (en) 1997-10-28 2000-02-22 Sandia Corporation Freeforming objects with low-binder slurry
US6401795B1 (en) 1997-10-28 2002-06-11 Sandia Corporation Method for freeforming objects with low-binder slurry
US6039775A (en) 1997-11-03 2000-03-21 3M Innovative Properties Company Abrasive article containing a grinding aid and method of making the same
US6696258B1 (en) 1998-01-20 2004-02-24 Drexel University Mesoporous materials and methods of making the same
WO1999038817A1 (en) 1998-01-28 1999-08-05 Minnesota Mining And Manufacturing Company Method for making abrasive grain using impregnation and abrasive articles
US6358133B1 (en) 1998-02-06 2002-03-19 3M Innovative Properties Company Grinding wheel
US5989301A (en) 1998-02-18 1999-11-23 Saint-Gobain Industrial Ceramics, Inc. Optical polishing formulation
US5997597A (en) 1998-02-24 1999-12-07 Norton Company Abrasive tool with knurled surface
US6080216A (en) 1998-04-22 2000-06-27 3M Innovative Properties Company Layered alumina-based abrasive grit, abrasive products, and methods
US6228134B1 (en) 1998-04-22 2001-05-08 3M Innovative Properties Company Extruded alumina-based abrasive grit, abrasive products, and methods
US6019805A (en) 1998-05-01 2000-02-01 Norton Company Abrasive filaments in coated abrasives
US6016660A (en) 1998-05-14 2000-01-25 Saint-Gobain Industrial Ceramics, Inc. Cryo-sedimentation process
US6053956A (en) 1998-05-19 2000-04-25 3M Innovative Properties Company Method for making abrasive grain using impregnation and abrasive articles
US6261682B1 (en) 1998-06-30 2001-07-17 3M Innovative Properties Abrasive articles including an antiloading composition
JP2000091280A (ja) 1998-09-16 2000-03-31 Toshiba Corp 半導体研磨装置及び半導体基板の研磨方法
US6283997B1 (en) 1998-11-13 2001-09-04 The Trustees Of Princeton University Controlled architecture ceramic composites by stereolithography
US6179887B1 (en) 1999-02-17 2001-01-30 3M Innovative Properties Company Method for making an abrasive article and abrasive articles thereof
JP2000336344A (ja) 1999-03-23 2000-12-05 Seimi Chem Co Ltd 研磨剤
US6331343B1 (en) 1999-05-07 2001-12-18 3M Innovative Properties Company Films having a fibrillated surface and method of making
DE19925588A1 (de) 1999-06-04 2000-12-07 Deutsch Zentr Luft & Raumfahrt Faden zur Verbindung von Fasern eines Faserhalbzeuges sowie Faserhalbzeug, und Verfahren zur Herstellung von Faserverbundwerkstoffen
JP4456691B2 (ja) 1999-06-09 2010-04-28 旭ダイヤモンド工業株式会社 コンディショナの製造方法
US6238450B1 (en) 1999-06-16 2001-05-29 Saint-Gobain Industrial Ceramics, Inc. Ceria powder
US6391812B1 (en) 1999-06-23 2002-05-21 Ngk Insulators, Ltd. Silicon nitride sintered body and method of producing the same
WO2001004226A2 (en) 1999-07-07 2001-01-18 Cabot Microelectronics Corporation Cmp composition containing silane modified abrasive particles
US6319108B1 (en) 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
DE19933194A1 (de) 1999-07-15 2001-01-18 Kempten Elektroschmelz Gmbh Flüssigphasengesinterte SiC-Formkörper mit verbesserter Bruchzähigkeit sowie hohem elektrischen Widerstand und Verfahren zu ihrer Herstellung
TW550141B (en) 1999-07-29 2003-09-01 Saint Gobain Abrasives Inc Depressed center abrasive wheel assembly and abrasive wheel assembly
US6110241A (en) 1999-08-06 2000-08-29 Saint-Gobain Industrial Ceramics, Inc. Abrasive grain with improved projectability
FR2797638B1 (fr) 1999-08-20 2001-09-21 Pem Abrasifs Refractaires Grains abrasifs pour meules, a capacite d'ancrage amelioree
US6258141B1 (en) 1999-08-20 2001-07-10 Saint-Gobain Industrial Ceramics, Inc. Sol-gel alumina abrasive grain
US6277161B1 (en) 1999-09-28 2001-08-21 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
US6287353B1 (en) 1999-09-28 2001-09-11 3M Innovative Properties Company Abrasive grain, abrasive articles, and methods of making and using the same
DE19951250A1 (de) 1999-10-25 2001-05-03 Treibacher Schleifmittel Gmbh Schleifkorn mit schleifaktiver Ummantelung
JP3376334B2 (ja) 1999-11-19 2003-02-10 株式会社 ヤマシタワークス 研磨材および研磨材を用いた研磨方法
JP2001162541A (ja) 1999-12-13 2001-06-19 Noritake Co Ltd プランジ研削用回転砥石
US6096107A (en) 2000-01-03 2000-08-01 Norton Company Superabrasive products
US6596041B2 (en) 2000-02-02 2003-07-22 3M Innovative Properties Company Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same
JP4536943B2 (ja) 2000-03-22 2010-09-01 日本碍子株式会社 粉体成形体の製造方法
DE10019184A1 (de) 2000-04-17 2001-10-25 Treibacher Schleifmittel Gmbh Formkörper
US6413286B1 (en) 2000-05-03 2002-07-02 Saint-Gobain Abrasives Technology Company Production tool process
US6702650B2 (en) 2000-05-09 2004-03-09 3M Innovative Properties Company Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use
US6468451B1 (en) 2000-06-23 2002-10-22 3M Innovative Properties Company Method of making a fibrillated article
JP3563017B2 (ja) 2000-07-19 2004-09-08 ロデール・ニッタ株式会社 研磨組成物、研磨組成物の製造方法及びポリシング方法
US6583080B1 (en) 2000-07-19 2003-06-24 3M Innovative Properties Company Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials
US6776699B2 (en) 2000-08-14 2004-08-17 3M Innovative Properties Company Abrasive pad for CMP
US6579819B2 (en) 2000-08-29 2003-06-17 National Institute For Research In Inorganic Materials Silicon nitride sintered products and processes for their production
EP1335827B1 (en) 2000-09-29 2018-03-07 Trexel, Inc. Fiber-filler molded articles
DE60125808T2 (de) 2000-10-06 2007-10-11 3M Innovative Properties Co., St. Paul Keramische aggregatteilchen
ATE382671T1 (de) 2000-10-16 2008-01-15 3M Innovative Properties Co Verfahren zur herstellung von agglomeratteilchen
US6652361B1 (en) 2000-10-26 2003-11-25 Ronald Gash Abrasives distribution method
EP1201741A1 (en) 2000-10-31 2002-05-02 The Procter & Gamble Company Detergent compositions
US20020090901A1 (en) 2000-11-03 2002-07-11 3M Innovative Properties Company Flexible abrasive product and method of making and using the same
EP1370365A2 (en) 2000-11-10 2003-12-17 Therics, Inc. A wetting-resistant nozzle for dispensing small volumes of liquid and a method for manufacturing a wetting-resistant nozzle
US6645624B2 (en) 2000-11-10 2003-11-11 3M Innovative Properties Company Composite abrasive particles and method of manufacture
US7632434B2 (en) 2000-11-17 2009-12-15 Wayne O. Duescher Abrasive agglomerate coated raised island articles
US8062098B2 (en) 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
US8545583B2 (en) 2000-11-17 2013-10-01 Wayne O. Duescher Method of forming a flexible abrasive sheet article
US8256091B2 (en) 2000-11-17 2012-09-04 Duescher Wayne O Equal sized spherical beads
JP2002210659A (ja) 2000-12-22 2002-07-30 Chugoku Sarin Kigyo Kofun Yugenkoshi グリッド状ダイヤモンド配列の化学的機械的平坦化技術パッド仕上げ用具
US7112621B2 (en) 2001-01-30 2006-09-26 The Proctor & Gamble Company Coating compositions for modifying surfaces
US6669745B2 (en) 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
US6605128B2 (en) 2001-03-20 2003-08-12 3M Innovative Properties Company Abrasive article having projections attached to a major surface thereof
US20030022961A1 (en) 2001-03-23 2003-01-30 Satoshi Kusaka Friction material and method of mix-fibrillating fibers
US6863596B2 (en) 2001-05-25 2005-03-08 3M Innovative Properties Company Abrasive article
US20020174935A1 (en) 2001-05-25 2002-11-28 Motorola, Inc. Methods for manufacturing patterned ceramic green-sheets and multilayered ceramic packages
GB2375725A (en) 2001-05-26 2002-11-27 Siemens Ag Blasting metallic surfaces
US6451076B1 (en) 2001-06-21 2002-09-17 Saint-Gobain Abrasives Technology Company Engineered abrasives
US6599177B2 (en) 2001-06-25 2003-07-29 Saint-Gobain Abrasives Technology Company Coated abrasives with indicia
US20030022783A1 (en) 2001-07-30 2003-01-30 Dichiara Robert A. Oxide based ceramic matrix composites
CN100522856C (zh) 2001-08-02 2009-08-05 3M创新有限公司 Al2O3-稀土元素氧化物-ZrO2/HfO2材料以及其制造方法
RU2004101636A (ru) 2001-08-02 2005-06-10 3М Инновейтив Пропертиз Компани (US) Материалы на основе оксида алюминия, оксида иттрия, оксида циркония/оксида гафния и способы их изготовления и использования
CN1649802B (zh) 2001-08-02 2012-02-01 3M创新有限公司 陶瓷材料、磨粒、磨具及制造和使用方法
US20040244675A1 (en) 2001-08-09 2004-12-09 Mikio Kishimoto Non-magnetic particles having a plate shape and method for production thereof, abrasive material, polishing article and abrasive fluid comprising such particles
JP2003049158A (ja) 2001-08-09 2003-02-21 Hitachi Maxell Ltd 研磨粒子および研磨体
US6762140B2 (en) 2001-08-20 2004-07-13 Saint-Gobain Ceramics & Plastics, Inc. Silicon carbide ceramic composition and method of making
NL1018906C2 (nl) 2001-09-07 2003-03-11 Jense Systemen B V Laser scanner.
US6593699B2 (en) 2001-11-07 2003-07-15 Axcelis Technologies, Inc. Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient
WO2003043954A1 (en) 2001-11-19 2003-05-30 Stanton Advanced Ceramics Llc Thermal shock resistant ceramic composites
US6685755B2 (en) 2001-11-21 2004-02-03 Saint-Gobain Abrasives Technology Company Porous abrasive tool and method for making the same
US6706319B2 (en) 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
US6878456B2 (en) 2001-12-28 2005-04-12 3M Innovative Properties Co. Polycrystalline translucent alumina-based ceramic material, uses, and methods
US6949128B2 (en) 2001-12-28 2005-09-27 3M Innovative Properties Company Method of making an abrasive product
US6750173B2 (en) 2002-04-08 2004-06-15 Scientific Design Company, Inc. Ethylene oxide catalyst
US6949267B2 (en) 2002-04-08 2005-09-27 Engelhard Corporation Combinatorial synthesis
US6833186B2 (en) 2002-04-10 2004-12-21 Ppg Industries Ohio, Inc. Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same
US6811471B2 (en) 2002-06-05 2004-11-02 Arizona Board Of Regents Abrasive particles to clean semiconductor wafers during chemical mechanical planarization
US6811579B1 (en) 2002-06-14 2004-11-02 Diamond Innovations, Inc. Abrasive tools with precisely controlled abrasive array and method of fabrication
US6833014B2 (en) 2002-07-26 2004-12-21 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7044989B2 (en) 2002-07-26 2006-05-16 3M Innovative Properties Company Abrasive product, method of making and using the same, and apparatus for making the same
US7297170B2 (en) 2002-07-26 2007-11-20 3M Innovative Properties Company Method of using abrasive product
US8056370B2 (en) 2002-08-02 2011-11-15 3M Innovative Properties Company Method of making amorphous and ceramics via melt spinning
US20040115477A1 (en) 2002-12-12 2004-06-17 Bruce Nesbitt Coating reinforcing underlayment and method of manufacturing same
FR2848889B1 (fr) 2002-12-23 2005-10-21 Pem Abrasifs Refractaires Grains abrasifs a base d'oxynitrure d'aluminium et de zirconium
JP2004209624A (ja) 2003-01-07 2004-07-29 Akimichi Koide 砥粒含有繊維の製造並びに製造方法
US6821196B2 (en) 2003-01-21 2004-11-23 L.R. Oliver & Co., Inc. Pyramidal molded tooth structure
US7811496B2 (en) 2003-02-05 2010-10-12 3M Innovative Properties Company Methods of making ceramic particles
US20040148868A1 (en) 2003-02-05 2004-08-05 3M Innovative Properties Company Methods of making ceramics
WO2005021147A2 (en) 2003-02-06 2005-03-10 William Marsh Rice University High strength polycrystalline ceramic spheres
US7070908B2 (en) 2003-04-14 2006-07-04 Agilent Technologies, Inc. Feature formation in thick-film inks
US6802878B1 (en) 2003-04-17 2004-10-12 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
US20040220627A1 (en) 2003-04-30 2004-11-04 Crespi Ann M. Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture
JP2005026593A (ja) 2003-05-08 2005-01-27 Ngk Insulators Ltd セラミック製品、耐蝕性部材およびセラミック製品の製造方法
FR2857660B1 (fr) 2003-07-18 2006-03-03 Snecma Propulsion Solide Structure composite thermostructurale a gradient de composition et son procede de fabrication
US6843815B1 (en) 2003-09-04 2005-01-18 3M Innovative Properties Company Coated abrasive articles and method of abrading
US7141522B2 (en) 2003-09-18 2006-11-28 3M Innovative Properties Company Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same
US7300479B2 (en) 2003-09-23 2007-11-27 3M Innovative Properties Company Compositions for abrasive articles
US20050064805A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Structured abrasive article
US20050060941A1 (en) 2003-09-23 2005-03-24 3M Innovative Properties Company Abrasive article and methods of making the same
US7267700B2 (en) 2003-09-23 2007-09-11 3M Innovative Properties Company Structured abrasive with parabolic sides
US7312274B2 (en) 2003-11-24 2007-12-25 General Electric Company Composition and method for use with ceramic matrix composite T-sections
JP4186810B2 (ja) 2003-12-08 2008-11-26 トヨタ自動車株式会社 燃料電池の製造方法および燃料電池
US20050132655A1 (en) 2003-12-18 2005-06-23 3M Innovative Properties Company Method of making abrasive particles
MXPA06007156A (es) 2003-12-23 2007-02-16 Diamond Innovations Inc Muela rectificadora para aplicacion de rectificacion de rodillos y metodo de rectificacion de rodillos de la misma.
EP1713946A1 (en) 2004-02-13 2006-10-25 NV Bekaert SA Steel wire with metal layer and roughnesses
US6888360B1 (en) 2004-02-20 2005-05-03 Research In Motion Limited Surface mount technology evaluation board having varied board pad characteristics
JP4311247B2 (ja) 2004-03-19 2009-08-12 日立電線株式会社 研磨用砥粒、研磨剤、研磨液の製造方法
US7674706B2 (en) 2004-04-13 2010-03-09 Fei Company System for modifying small structures using localized charge transfer mechanism to remove or deposit material
US7393371B2 (en) 2004-04-13 2008-07-01 3M Innovative Properties Company Nonwoven abrasive articles and methods
US7297402B2 (en) 2004-04-15 2007-11-20 Shell Oil Company Shaped particle having an asymmetrical cross sectional geometry
ATE375846T1 (de) 2004-05-03 2007-11-15 3M Innovative Properties Co Stützschuh für die mikrobearbeitung und verfahren
US20050255801A1 (en) 2004-05-17 2005-11-17 Pollasky Anthony D Abrasive material and method of forming same
US7581906B2 (en) 2004-05-19 2009-09-01 Tdy Industries, Inc. Al2O3 ceramic tools with diffusion bonding enhanced layer
US20050266221A1 (en) 2004-05-28 2005-12-01 Panolam Industries International, Inc. Fiber-reinforced decorative laminate
US7794557B2 (en) 2004-06-15 2010-09-14 Inframat Corporation Tape casting method and tape cast materials
US7560062B2 (en) 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
WO2006021038A1 (en) 2004-08-24 2006-03-02 Albright & Wilson (Australia) Limited Ceramic and metallic components and methods for their production from flexible gelled materials
GB2417921A (en) 2004-09-10 2006-03-15 Dytech Corp Ltd A method of fabricating a catalyst carrier
JP4471816B2 (ja) 2004-11-09 2010-06-02 株式会社ノリタケスーパーアブレーシブ ワイヤソーの製造方法
JP4901184B2 (ja) 2004-11-11 2012-03-21 株式会社不二製作所 研磨材及び該研磨材の製造方法,並びに前記研磨材を用いたブラスト加工方法
KR100611794B1 (ko) * 2004-12-08 2006-08-11 이화다이아몬드공업 주식회사 절삭공구 및 그 제조방법
US7666475B2 (en) 2004-12-14 2010-02-23 Siemens Energy, Inc. Method for forming interphase layers in ceramic matrix composites
US7169029B2 (en) 2004-12-16 2007-01-30 3M Innovative Properties Company Resilient structured sanding article
JP2006192540A (ja) 2005-01-14 2006-07-27 Tmp Co Ltd 液晶カラーフィルター用研磨フィルム
DE602006008195D1 (de) 2005-02-07 2009-09-17 Procter & Gamble Scheuertuch zur Behandlung einer Fläche
US7875091B2 (en) 2005-02-22 2011-01-25 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7867302B2 (en) 2005-02-22 2011-01-11 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
US7524345B2 (en) 2005-02-22 2009-04-28 Saint-Gobain Abrasives, Inc. Rapid tooling system and methods for manufacturing abrasive articles
JPWO2006115106A1 (ja) 2005-04-24 2008-12-18 株式会社プロデュース スクリーン印刷装置
JP4917278B2 (ja) 2005-06-17 2012-04-18 信越半導体株式会社 スクリーン印刷版およびスクリーン印刷装置
US7906057B2 (en) 2005-07-14 2011-03-15 3M Innovative Properties Company Nanostructured article and method of making the same
DE102005033392B4 (de) 2005-07-16 2008-08-14 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Nanokristalline Sinterkörper auf Basis von Alpha-Aluminiumoxyd, Verfahren zu Herstellung sowie ihre Verwendung
US20070020457A1 (en) 2005-07-21 2007-01-25 3M Innovative Properties Company Composite particle comprising an abrasive grit
US7556558B2 (en) 2005-09-27 2009-07-07 3M Innovative Properties Company Shape controlled abrasive article and method
US7722691B2 (en) 2005-09-30 2010-05-25 Saint-Gobain Abrasives, Inc. Abrasive tools having a permeable structure
US7491251B2 (en) 2005-10-05 2009-02-17 3M Innovative Properties Company Method of making a structured abrasive article
WO2007070881A2 (en) 2005-12-15 2007-06-21 Laser Abrasive Technologies, Llc Method and apparatus for treatment of solid material including hard tissue
JP2010522776A (ja) 2006-03-29 2010-07-08 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド 多結晶質研磨材料成形体
DE102006015014B4 (de) 2006-03-31 2008-07-24 Uibel, Krishna, Dipl.-Ing. Verfahren zur Herstellung dreidimensionaler keramischer Formkörper
US7410413B2 (en) 2006-04-27 2008-08-12 3M Innovative Properties Company Structured abrasive article and method of making and using the same
US7670679B2 (en) 2006-05-30 2010-03-02 General Electric Company Core-shell ceramic particulate and method of making
US7373887B2 (en) 2006-07-01 2008-05-20 Jason Stewart Jackson Expanding projectile
JP5374810B2 (ja) 2006-07-18 2013-12-25 株式会社リコー スクリーン印刷版
US20080236635A1 (en) 2006-07-31 2008-10-02 Maximilian Rosenzweig Steam mop
US20080271384A1 (en) * 2006-09-22 2008-11-06 Saint-Gobain Ceramics & Plastics, Inc. Conditioning tools and techniques for chemical mechanical planarization
US20100056816A1 (en) 2006-11-01 2010-03-04 Wallin Sten A Shaped porous bodies of alpha-alumina and methods for the preparation thereof
JP2008132560A (ja) 2006-11-28 2008-06-12 Allied Material Corp 単結晶超砥粒および単結晶超砥粒を用いた超砥粒工具
ES2635721T3 (es) 2006-11-30 2017-10-04 Longyear Tm, Inc. Herramientas de corte impregnadas de diamante que contienen fibras
US8083820B2 (en) 2006-12-22 2011-12-27 3M Innovative Properties Company Structured fixed abrasive articles including surface treated nano-ceria filler, and method for making and using the same
WO2008089177A2 (en) 2007-01-15 2008-07-24 Saint-Gobain Ceramics & Plastics, Inc. Ceramic particulate material and processes for forming same
PL2125984T3 (pl) 2007-01-23 2012-09-28 Saint Gobain Abrasives Inc Powlekane produkty ścierne zawierające agregaty
US20080179783A1 (en) 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same
JP2008194761A (ja) 2007-02-08 2008-08-28 Roki Techno Co Ltd 研磨シート及びその製造方法
ES2350653T3 (es) 2007-02-28 2011-01-25 Corning Incorporated Método para fabricar dispositivos microfluídicos.
US7628829B2 (en) 2007-03-20 2009-12-08 3M Innovative Properties Company Abrasive article and method of making and using the same
US20080233850A1 (en) 2007-03-20 2008-09-25 3M Innovative Properties Company Abrasive article and method of making and using the same
DE102007026978A1 (de) 2007-06-06 2008-12-11 Thieme Gmbh & Co. Kg Verfahren und Vorrichtung zum Bedrucken von Solarzellen mittels Siebdruck
US20090017736A1 (en) 2007-07-10 2009-01-15 Saint-Gobain Abrasives, Inc. Single-use edging wheel for finishing glass
US8038750B2 (en) 2007-07-13 2011-10-18 3M Innovative Properties Company Structured abrasive with overlayer, and method of making and using the same
WO2009013713A2 (en) 2007-07-23 2009-01-29 Element Six (Production) (Pty) Ltd Abrasive compact
JP5291307B2 (ja) 2007-08-03 2013-09-18 株式会社不二製作所 スクリーン印刷用メタルマスクの製造方法
CN101376234B (zh) 2007-08-28 2013-05-29 侯家祥 一种研磨工具磨料颗粒有序排列的方法
US8258251B2 (en) 2007-11-30 2012-09-04 The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Highly porous ceramic oxide aerogels having improved flexibility
US8080073B2 (en) 2007-12-20 2011-12-20 3M Innovative Properties Company Abrasive article having a plurality of precisely-shaped abrasive composites
US8123828B2 (en) 2007-12-27 2012-02-28 3M Innovative Properties Company Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles
JP5414694B2 (ja) 2007-12-27 2014-02-12 スリーエム イノベイティブ プロパティズ カンパニー 成形され断裂された研磨粒子及びこの研磨粒子を使用する研磨物品、並びにそれらの作製方法
CN101978258A (zh) 2008-01-18 2011-02-16 生命扫描苏格兰有限公司 制造具有预定校准特性的测试条组的方法和***
US7959695B2 (en) 2008-03-21 2011-06-14 Saint-Gobain Ceramics & Plastics, Inc. Fixed abrasive articles utilizing coated abrasive particles
JP5527937B2 (ja) 2008-03-26 2014-06-25 京セラ株式会社 窒化珪素質焼結体
US8021449B2 (en) 2008-04-18 2011-09-20 Saint-Gobain Abrasives, Inc. Hydrophilic and hydrophobic silane surface modification of abrasive grains
EP2293872A1 (en) 2008-04-30 2011-03-16 Dow Technology Investments LLC Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same
US8481438B2 (en) 2008-06-13 2013-07-09 Washington Mills Management, Inc. Very low packing density ceramic abrasive grits and methods of producing and using the same
KR20110033920A (ko) 2008-06-20 2011-04-01 쓰리엠 이노베이티브 프로퍼티즈 컴파니 중합체 주형 및 그로부터 제조된 용품
JP2010012530A (ja) 2008-07-01 2010-01-21 Showa Denko Kk 研磨テープ、研磨テープの製造方法およびバーニッシュ加工方法
WO2010002832A2 (en) 2008-07-02 2010-01-07 Saint-Gobain Abrasives, Inc. Abrasive slicing tool for electronics industry
JP5351967B2 (ja) 2008-08-28 2013-11-27 スリーエム イノベイティブ プロパティズ カンパニー 構造化研磨物品、その製造方法、及びウエハの平坦化における使用
TWI589689B (zh) 2008-09-16 2017-07-01 戴蒙創新公司 具有獨特特徵的研磨劑顆粒
US8927101B2 (en) 2008-09-16 2015-01-06 Diamond Innovations, Inc Abrasive particles having a unique morphology
EP2174717B1 (en) 2008-10-09 2020-04-29 Imertech Sas Grinding method
US8142891B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Dish-shaped abrasive particles with a recessed surface
US10137556B2 (en) 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
US8142532B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with an opening
CA3081239C (en) 2008-12-17 2022-09-20 3M Innovative Properties Company Shaped abrasive particles with grooves
US8142531B2 (en) 2008-12-17 2012-03-27 3M Innovative Properties Company Shaped abrasive particles with a sloping sidewall
ES2682295T3 (es) 2008-12-30 2018-09-19 Saint-Gobain Abrasives, Inc. Herramientas abrasivas aglomeradas reforzadas
EP2374589B1 (en) 2009-01-06 2014-02-12 NGK Insulators, Ltd. Moulding die and method for producing a moulding using said moulding die
PL2406038T3 (pl) 2009-03-11 2022-05-02 Saint-Gobain Abrasives, Inc. Wyroby ścierne zawierające ziarno stopionego tlenku cyrkonu o polepszonym kształcie
SE532851C2 (sv) 2009-06-22 2010-04-20 Gsab Glasmaesteribranschens Se Anordning vid en i en bärprofil fixerbar gångjärnsprofil
US8628597B2 (en) 2009-06-25 2014-01-14 3M Innovative Properties Company Method of sorting abrasive particles, abrasive particle distributions, and abrasive articles including the same
EP2365949A2 (en) 2009-07-07 2011-09-21 Morgan Advanced Materials And Technology Inc. Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article
US20110081848A1 (en) 2009-10-05 2011-04-07 Chia-Pei Chen Grinding tool and method of manufacturing the grinding tool
JP5551568B2 (ja) 2009-11-12 2014-07-16 日東電工株式会社 樹脂封止用粘着テープ及びこれを用いた樹脂封止型半導体装置の製造方法
CA2775619A1 (en) 2009-11-23 2011-05-26 Applied Nanostructured Solutions, Llc Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof
EP2507016B1 (en) 2009-12-02 2020-09-23 3M Innovative Properties Company Method of making a coated abrasive article having shaped abrasive particles and resulting product
CN102666017B (zh) 2009-12-02 2015-12-16 3M创新有限公司 双锥形成形磨粒
IN2012DN05178A (ko) 2009-12-17 2015-10-23 Scient Design Co
US8480772B2 (en) 2009-12-22 2013-07-09 3M Innovative Properties Company Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles
ES2444618T3 (es) 2009-12-22 2014-02-26 The Procter & Gamble Company Composición limpiadora y/o de lavado líquida
EA201290595A1 (ru) 2009-12-31 2012-12-28 Оксан Материалз, Инк. Керамические частицы с регулируемыми порами и/или расположением и/или размером микросфер и способ их изготовления
CN101944853B (zh) 2010-03-19 2013-06-19 郁百超 绿色功率变换器
CN102232949A (zh) 2010-04-27 2011-11-09 孙远 提高药物溶出度的组合物及其制备方法
EP2563549B1 (en) 2010-04-27 2022-07-13 3M Innovative Properties Company Ceramic shaped abrasive particles, methods of making the same, and abrasive articles containing the same
US8551577B2 (en) 2010-05-25 2013-10-08 3M Innovative Properties Company Layered particle electrostatic deposition process for making a coated abrasive article
FI20105606A (fi) 2010-05-28 2010-11-25 Kwh Mirka Ab Oy Hiomatuote ja menetelmä tällaisen valmistamiseksi
ES2661972T3 (es) 2010-07-02 2018-04-04 3M Innovative Properties Company Artículos abrasivos recubiertos
WO2012018903A2 (en) 2010-08-04 2012-02-09 3M Innovative Properties Company Intersecting plate shaped abrasive particles
KR20120129963A (ko) 2010-08-06 2012-11-28 생-고벵 아브라시프 작업편 내의 복잡한 형상을 마무리 가공하기 위한 연삭 공구 및 방법
TWI613285B (zh) 2010-09-03 2018-02-01 聖高拜磨料有限公司 粘結的磨料物品及形成方法
US8445422B2 (en) 2010-09-21 2013-05-21 The Procter & Gamble Company Liquid cleaning composition
WO2012091778A2 (en) 2010-10-01 2012-07-05 Intelligent Material Solutions, Inc. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly
DE102010047690A1 (de) 2010-10-06 2012-04-12 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen von Zirkonia-verstärkten Alumina-Schleifkörnern und hierdurch hergestellte Schleifkörner
CN104726063B (zh) 2010-11-01 2018-01-12 3M创新有限公司 成形陶瓷磨粒和成形陶瓷前体粒子
BR112013009469B1 (pt) 2010-11-01 2020-08-25 3M Innovative Properties Company partículas abrasivas com formato e método de produção
WO2012092605A2 (en) 2010-12-30 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Method of forming a shaped abrasive particle
CN102601747B (zh) 2011-01-20 2015-12-09 中芯国际集成电路制造(上海)有限公司 一种研磨垫及其制备方法、使用方法
US9776302B2 (en) * 2011-02-16 2017-10-03 3M Innovative Properties Company Coated abrasive article having rotationally aligned formed ceramic abrasive particles and method of making
US8771801B2 (en) 2011-02-16 2014-07-08 3M Innovative Properties Company Electrostatic abrasive particle coating apparatus and method
WO2012141905A2 (en) 2011-04-14 2012-10-18 3M Innovative Properties Company Nonwoven abrasive article containing elastomer bound agglomerates of shaped abrasive grain
EP2529694B1 (de) 2011-05-31 2017-11-15 Ivoclar Vivadent AG Verfahren zur generativen Herstellung von Keramikformkörpern durch 3D-Inkjet-Drucken
SG10201607394VA (en) 2011-06-06 2016-10-28 Dow Technology Investments Llc Methods for producing epoxidation catalysts and epoxidation methods utilizing them
US8852643B2 (en) 2011-06-20 2014-10-07 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2537917A1 (en) 2011-06-20 2012-12-26 The Procter & Gamble Company Liquid detergent composition with abrasive particles
CA2839953C (en) 2011-06-20 2017-02-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2721136A1 (en) 2011-06-20 2014-04-23 The Procter and Gamble Company Liquid cleaning and/or cleansing composition
US20120321567A1 (en) 2011-06-20 2012-12-20 Denis Alfred Gonzales Liquid cleaning and/or cleansing composition
WO2013003830A2 (en) 2011-06-30 2013-01-03 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particles of silicon nitride
CN103764349B (zh) 2011-06-30 2017-06-09 圣戈本陶瓷及塑料股份有限公司 液相烧结碳化硅研磨颗粒
BR112014000690B1 (pt) 2011-07-12 2020-12-08 3M Innovative Properties Company método para produção de partículas precursoras de cerâmica conformadas, método para produção de partículas abrasivas conformadas de cerâmica, composição de sol-gel, partículas precursoras de cerâmica conformadas e partículas abrasivas conformadas de cerâmica
US9038055B2 (en) 2011-08-05 2015-05-19 Microsoft Technology Licensing, Llc Using virtual machines to manage software builds
US8921687B1 (en) 2011-08-19 2014-12-30 Magnolia Solar, Inc. High efficiency quantum well waveguide solar cells and methods for constructing the same
RU2600464C2 (ru) 2011-09-07 2016-10-20 3М Инновейтив Пропертиз Компани Склеенное абразивное изделие
MX350058B (es) 2011-09-07 2017-08-25 3M Innovative Properties Co Método de abrasión de una pieza de trabajo.
EP2567784B1 (en) 2011-09-08 2019-07-31 3M Innovative Properties Co. Bonded abrasive article
WO2013040423A2 (en) 2011-09-16 2013-03-21 Saint-Gobain Abrasives, Inc. Abrasive article and method of forming
EP2573157A1 (en) 2011-09-20 2013-03-27 The Procter and Gamble Company Liquid detergent composition with abrasive particles
EP2573156A1 (en) 2011-09-20 2013-03-27 The Procter & Gamble Company Liquid cleaning composition
JP5802336B2 (ja) 2011-09-26 2015-10-28 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 研磨粒子材料を含む研磨製品、研磨粒子材料を使用する研磨布紙および形成方法
MX349839B (es) 2011-11-09 2017-08-16 3M Innovative Properties Co Rueda de material abrasivo compuesto.
RU2605721C2 (ru) 2011-12-29 2016-12-27 3М Инновейтив Пропертиз Компани Абразивное изделие с покрытием и способ его изготовления
WO2013102170A1 (en) 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
WO2013102176A1 (en) 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Forming shaped abrasive particles
CH708721B1 (de) 2011-12-31 2015-04-30 Saint Gobain Abrasives Inc Schleifvorrichtung.
WO2013106602A1 (en) 2012-01-10 2013-07-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
KR101667943B1 (ko) 2012-01-10 2016-10-20 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 복잡한 형상들을 가지는 연마 입자들 및 이의 성형 방법들
EP2631286A1 (en) 2012-02-23 2013-08-28 The Procter & Gamble Company Liquid cleaning composition
CN104144797B (zh) 2012-02-29 2016-06-22 株式会社普利司通 轮胎
WO2013149209A1 (en) 2012-03-30 2013-10-03 Saint-Gobain Abrasives, Inc. Abrasive products having fibrillated fibers
CA2869434C (en) 2012-04-04 2021-01-12 3M Innovative Properties Company Abrasive particles, method of making abrasive particles, and abrasive articles
US9079154B2 (en) 2012-05-04 2015-07-14 Basf Se Catalyst for the epoxidation of alkenes
BR112014029317B1 (pt) 2012-05-23 2022-05-31 Saint-Gobain Ceramics & Plastics, Inc Partículas abrasivas moldadas e métodos de formação das mesmas
GB201210230D0 (en) 2012-06-11 2012-07-25 Element Six Ltd Method for making tool elements and tools comprising same
US20130337725A1 (en) 2012-06-13 2013-12-19 3M Innovative Property Company Abrasive particles, abrasive articles, and methods of making and using the same
BR112014032152B1 (pt) 2012-06-29 2022-09-20 Saint-Gobain Ceramics & Plastics, Inc Partículas abrasivas tendo formatos particulares e artigos abrasivos
CN104428105A (zh) 2012-07-06 2015-03-18 3M创新有限公司 带涂层磨料制品
EP2692821A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper und Aufsatzkörper
CN115625629A (zh) 2012-08-02 2023-01-20 3M创新有限公司 具有精确成形特征部的研磨元件、用其制成的研磨制品及其制造方法
US9956664B2 (en) 2012-08-02 2018-05-01 3M Innovative Properties Company Abrasive element precursor with precisely shaped features and methods of making thereof
EP2692817A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit unter einem Winkel angeordneten Platten
CN104520401A (zh) 2012-08-02 2015-04-15 罗伯特·博世有限公司 具有最多三个面和一个角的磨粒
EP2692813A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Erhebungen verschiedener Höhen
EP2692819A1 (de) 2012-08-02 2014-02-05 Robert Bosch GmbH Schleifkorn mit Basisfläche und Erhebungen
EP2692816A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit einander durchdringenden flächigen Körpern
EP2692814A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn, enthaltend eine erste Fläche ohne Ecke und zweite Fläche mit Ecke
EP2692820A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Basiskörper, Erhebung und Öffnung
CN107234550A (zh) 2012-08-02 2017-10-10 罗伯特·博世有限公司 包含不具有角的第一面以及具有角的第二面的磨粒
EP2692815A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit konkavem Abschnitt
EP2692818A1 (de) 2012-08-02 2014-02-05 Robert Bosch Gmbh Schleifkorn mit Hauptoberflächen und Nebenoberflächen
KR102089383B1 (ko) 2012-08-02 2020-03-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 정밀하게 형상화된 특징부를 갖는 연마 물품 및 그의 제조 방법
GB201218125D0 (en) 2012-10-10 2012-11-21 Imerys Minerals Ltd Method for grinding a particulate inorganic material
DE102012023688A1 (de) 2012-10-14 2014-04-17 Dronco Ag Geometrisch bestimmtes Schleifkorn, Verfahren zur Herstellung derartiger Schleifkörner und deren Verwendung in einer Schleifscheibe oder in einem Schleifmittel auf Unterlage
ES2577147T3 (es) 2012-10-15 2016-07-13 The Procter & Gamble Company Composición detergente líquida con partículas abrasivas
JP5982580B2 (ja) 2012-10-15 2016-08-31 サンーゴバン アブレイシブズ,インコーポレイティド 特定の形状を有する研磨粒子およびこのような粒子の形成方法
JP6550335B2 (ja) 2012-10-31 2019-07-24 スリーエム イノベイティブ プロパティズ カンパニー 成形研磨材粒子、その製造方法、及びそれを含む研磨材物品
US9074119B2 (en) 2012-12-31 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
CN105899331A (zh) 2012-12-31 2016-08-24 圣戈本陶瓷及塑料股份有限公司 研磨喷砂介质及其形成和使用方法
DE102013202204A1 (de) 2013-02-11 2014-08-14 Robert Bosch Gmbh Schleifelement
WO2014124554A1 (en) 2013-02-13 2014-08-21 Shengguo Wang Abrasive grain with controlled aspect ratio
CN105008093B (zh) 2013-03-04 2019-04-12 3M创新有限公司 包含形成的磨料颗粒的非织造磨料制品
KR20200022534A (ko) 2013-03-12 2020-03-03 쓰리엠 이노베이티브 프로퍼티즈 컴파니 접합된 연마 용품
EP4364891A3 (en) 2013-03-29 2024-07-31 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
CN105102158B (zh) 2013-04-05 2018-03-23 3M创新有限公司 烧结磨料颗粒、其制备方法以及包含烧结磨料颗粒的磨料制品
CN205497246U (zh) 2013-04-24 2016-08-24 3M创新有限公司 涂覆磨料带
US20140352721A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
EP2808379A1 (en) 2013-05-29 2014-12-03 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
US20140352722A1 (en) 2013-05-29 2014-12-04 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
DE102013210158A1 (de) 2013-05-31 2014-12-18 Robert Bosch Gmbh Rollenförmige Drahtbürste
DE102013210716A1 (de) 2013-06-10 2014-12-11 Robert Bosch Gmbh Verfahren zum Herstellen von Schleifmittelkörpern für ein Schleifwerkzeug
CN105324211B (zh) 2013-06-24 2018-10-16 3M创新有限公司 磨料颗粒、制备磨料颗粒的方法以及磨料制品
US20140378036A1 (en) 2013-06-25 2014-12-25 Saint-Gobain Abrasives, Inc. Abrasive article and method of making same
DE102013212528A1 (de) 2013-06-27 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Stahlformkörpers
DE102013212661A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
TWI527887B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
WO2014206967A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifmittel
DE102013212690A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkorn
DE102013212687A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212598A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Haltevorrichtung für ein Schleifmittel
TWI527886B (zh) 2013-06-28 2016-04-01 聖高拜陶器塑膠公司 包含成形研磨粒子之研磨物品
DE102013212700A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung einer Schleifeinheit
DE102013212644A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
DE102013212653A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212622A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zu einer Aufbringung von Schleifelementen auf zumindest einen Grundkörper
DE102013212677A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifkorns
DE102013212654A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifelement
DE102013212639A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifwerkzeug
DE102014210836A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifeinheit
DE102013212680A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifkörpertransportvorrichtung
DE102013212666A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Verfahren zur Herstellung eines Schleifmittels
DE102013212634A1 (de) 2013-06-28 2014-12-31 Robert Bosch Gmbh Schleifmittel
TW201502263A (zh) 2013-06-28 2015-01-16 Saint Gobain Ceramics 包含成形研磨粒子之研磨物品
EP2821472B1 (en) 2013-07-02 2018-08-29 The Procter and Gamble Company Liquid cleaning and/or cleansing composition
EP2821469B1 (en) 2013-07-02 2018-03-14 The Procter & Gamble Company Liquid cleaning and/or cleansing composition
US9878954B2 (en) 2013-09-13 2018-01-30 3M Innovative Properties Company Vacuum glazing pillars for insulated glass units
EP3052270A4 (en) 2013-09-30 2017-05-03 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US20160214232A1 (en) 2013-10-04 2016-07-28 3M Innovative Properties Company Bonded abrasive articles and methods
EP3069353B1 (en) 2013-11-15 2019-10-30 3M Innovative Properties Company An electrically conductive article containing shaped particles and methods of making same
JP6561058B2 (ja) 2013-12-09 2019-08-14 スリーエム イノベイティブ プロパティズ カンパニー 集塊性研磨粒子、その粒子を含む研磨物品、及びその製造方法
AT515229B1 (de) 2013-12-18 2016-08-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
AT515258B1 (de) 2013-12-18 2016-09-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifkörpern
AT515223B1 (de) 2013-12-18 2016-06-15 Tyrolit - Schleifmittelwerke Swarovski K G Verfahren zur Herstellung von Schleifmittel
PL3083870T3 (pl) 2013-12-19 2018-02-28 Klingspor Ag Sposób wytwarzania wielowarstwowych cząstek ściernych
CN105992805B (zh) 2013-12-19 2018-02-16 金世博股份公司 磨粒及具有高研磨性能的磨料
EP3086903B1 (en) 2013-12-23 2019-09-11 3M Innovative Properties Company A coated abrasive article maker apparatus
JP6545173B2 (ja) 2013-12-23 2019-07-17 スリーエム イノベイティブ プロパティズ カンパニー コーティングされた研磨物品を製造する方法
WO2015100018A1 (en) 2013-12-23 2015-07-02 3M Innovative Properties Company Abrasive particle positioning systems and production tools therefor
KR102081045B1 (ko) 2013-12-31 2020-02-26 생-고뱅 어브레이시브즈, 인코포레이티드 형상화 연마 입자들을 포함하는 연마 물품
WO2015112379A1 (en) 2014-01-22 2015-07-30 United Technologies Corporation Apparatuses, systems and methods for aligned abrasive grains
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
WO2015130487A1 (en) 2014-02-27 2015-09-03 3M Innovative Properties Company Abrasive particles, abrasive articles, and methods of making and using the same
JP6452295B2 (ja) 2014-03-19 2019-01-16 スリーエム イノベイティブ プロパティズ カンパニー 研磨パッド及びガラス基板の研磨方法
DE202014101739U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Schleifkorn mit Knoten und Fortsätzen
DE202014101741U1 (de) 2014-04-11 2014-05-09 Robert Bosch Gmbh Teilweise beschichtetes Schleifkorn
JP6484647B2 (ja) 2014-04-14 2019-03-13 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド 成形研磨粒子を含む研磨物品
CN111331524B (zh) 2014-04-14 2022-04-29 圣戈本陶瓷及塑料股份有限公司 包括成形磨粒的研磨制品
WO2015160857A1 (en) 2014-04-14 2015-10-22 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2015158009A1 (en) 2014-04-19 2015-10-22 Shengguo Wang Alumina zirconia abrasive grain especially designed for light duty grinding applications
JP6640110B2 (ja) 2014-04-21 2020-02-05 スリーエム イノベイティブ プロパティズ カンパニー 研磨粒子、及びこれを含む研磨物品
US20170043450A1 (en) 2014-05-01 2017-02-16 3M Innovative Properties Company Flexible abrasive article and method of using the same
CN106458760A (zh) 2014-05-02 2017-02-22 王胜国 陶瓷刚玉干燥、制粒和成型的生产工艺
MX2016015119A (es) 2014-05-20 2017-02-22 3M Innovative Properties Co Material abrasivo con diferentes conjuntos de pluralidad de elementos abrasivos.
EP3148936A4 (en) 2014-05-25 2018-01-24 Shengguo Wang Method and apparatus for producing alumina monohydrate and sol gel abrasive grain
US9902045B2 (en) 2014-05-30 2018-02-27 Saint-Gobain Abrasives, Inc. Method of using an abrasive article including shaped abrasive particles
PL3046983T3 (pl) 2014-06-18 2020-08-10 Klingspor Ag Wielowarstwowa cząstka ścierna
US10493596B2 (en) 2014-08-21 2019-12-03 3M Innovative Properties Company Coated abrasive article with multiplexed structures of abrasive particles and method of making
KR102442945B1 (ko) 2014-09-15 2022-09-14 쓰리엠 이노베이티브 프로퍼티즈 컴파니 연마 용품을 제조하는 방법 및 그것에 의해 준비 가능한 접합식 연마 휠
EP3209461A4 (en) 2014-10-21 2018-08-22 3M Innovative Properties Company Abrasive preforms, method of making an abrasive article, and bonded abrasive article
EP3227054A4 (en) 2014-12-04 2018-08-08 3M Innovative Properties Company Abrasive belt with angled shaped abrasive particles
US20160177152A1 (en) 2014-12-23 2016-06-23 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US9707529B2 (en) 2014-12-23 2017-07-18 Saint-Gobain Ceramics & Plastics, Inc. Composite shaped abrasive particles and method of forming same
CN107530864B (zh) 2014-12-23 2020-06-05 圣戈本陶瓷及塑料股份有限公司 成形研磨颗粒及其形成方法
US9676981B2 (en) 2014-12-24 2017-06-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle fractions and method of forming same
BR112017020767B1 (pt) 2015-03-30 2021-11-16 3M Innovative Properties Company Método para fabricação de um artigo abrasivo revestido
US10196551B2 (en) 2015-03-31 2019-02-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (zh) 2015-03-31 2018-09-01 聖高拜磨料有限公司 固定磨料物品及其形成方法
BR112017022200A2 (pt) 2015-04-14 2018-07-03 3M Innovative Properties Co artigo abrasivo não tecido e método para fabricação do mesmo
TWI603813B (zh) 2015-04-20 2017-11-01 中國砂輪企業股份有限公司 研磨工具及其製造方法
TWI609742B (zh) 2015-04-20 2018-01-01 中國砂輪企業股份有限公司 研磨工具
TWI621590B (zh) 2015-05-21 2018-04-21 聖高拜陶器塑膠公司 研磨顆粒及形成研磨顆粒之方法
US10245703B2 (en) 2015-06-02 2019-04-02 3M Innovative Properties Company Latterally-stretched netting bearing abrasive particles, and method for making
WO2016196795A1 (en) 2015-06-02 2016-12-08 3M Innovative Properties Company Method of transferring particles to a substrate
DE102015108812A1 (de) 2015-06-03 2016-12-08 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Plättchenförmige, zufällig geformte, gesinterte Schleifpartikel sowie ein Verfahren zu ihrer Herstellung
WO2016201104A1 (en) 2015-06-11 2016-12-15 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
EP3310531A4 (en) 2015-06-19 2019-02-20 3M Innovative Properties Company ABRASIVE ARTICLE COMPRISING ABRASIVE PARTICLES HAVING A ROTATIONAL ROTATIONAL DIRECTION WITHIN A BEACH
US10773361B2 (en) 2015-06-19 2020-09-15 3M Innovative Properties Company Systems and methods for making abrasive articles
JP7458693B2 (ja) 2015-06-25 2024-04-01 スリーエム イノベイティブ プロパティズ カンパニー ガラス質ボンド研磨物品及びその製造方法
CN107912026B (zh) 2015-07-08 2020-10-02 3M创新有限公司 用于制造磨料制品的***和方法
US10773360B2 (en) 2015-07-08 2020-09-15 3M Innovative Properties Company Systems and methods for making abrasive articles
EP3359588B1 (en) 2015-10-07 2022-07-20 3M Innovative Properties Company Bonded abrasive articles having surface-modified abrasive particles with epoxy-functional silane coupling agents
US9849563B2 (en) 2015-11-05 2017-12-26 3M Innovative Properties Company Abrasive article and method of making the same
WO2017083249A1 (en) 2015-11-13 2017-05-18 3M Innovative Properties Company Method of shape sorting crushed abrasive particles
KR102567777B1 (ko) 2015-11-13 2023-08-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 접합된 연마 용품 및 이를 제조하는 방법
WO2017127392A1 (en) 2016-01-21 2017-07-27 3M Innovative Properties Company Methods of making metal bond and vitreous bond abrasive articles, and abrasive article precursors
EP3423235B1 (en) 2016-03-03 2022-08-24 3M Innovative Properties Company Depressed center grinding wheel
EP3238879A1 (en) 2016-04-25 2017-11-01 3M Innovative Properties Company Resin bonded cut-off tool
SI3455321T1 (sl) 2016-05-10 2022-10-28 Saint-Gobain Ceramics & Plastics, Inc. Metode oblikovanja abrazivnih delcev
DE102016113125A1 (de) 2016-07-15 2018-01-18 Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag Verfahren zum Herstellen eines Schleifkorns und Schleifkorn
US20190233693A1 (en) 2016-08-01 2019-08-01 3M Innovative Properties Company Shaped abrasive particles with sharp tips
EP3516006A4 (en) 2016-09-21 2020-03-18 3M Innovative Properties Company ABRASIVE PARTICLE HAVING IMPROVED RETENTION CHARACTERISTICS
EP3515662B1 (en) 2016-09-26 2024-01-10 3M Innovative Properties Company Nonwoven abrasive articles having electrostatically-oriented abrasive particles and methods of making same
US11446787B2 (en) 2016-09-27 2022-09-20 3M Innovative Properties Company Open coat abrasive article and method of abrading
WO2018064642A1 (en) 2016-09-29 2018-04-05 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11090780B2 (en) 2016-09-30 2021-08-17 3M Innovative Properties Company Multipurpose tooling for shaped particles
US11097398B2 (en) 2016-09-30 2021-08-24 3M Innovative Properties Company Abrasive article and method of making the same
KR20190055224A (ko) 2016-09-30 2019-05-22 쓰리엠 이노베이티브 프로퍼티즈 캄파니 연마 물품 제조 시스템
US20190262973A1 (en) 2016-10-25 2019-08-29 3M Innovative Properties Company Bonded abrasive wheel and method of making the same
EP3533075A4 (en) 2016-10-25 2020-07-01 3M Innovative Properties Company METHOD FOR MANUFACTURING MAGNETIZABLE ABRASIVE PARTICLES
US11072732B2 (en) 2016-10-25 2021-07-27 3M Innovative Properties Company Magnetizable abrasive particles and abrasive articles including them
US11253972B2 (en) 2016-10-25 2022-02-22 3M Innovative Properties Company Structured abrasive articles and methods of making the same
CN109862999B (zh) 2016-10-25 2022-05-10 3M创新有限公司 粘结砂轮及其制备方法
EP3532246B1 (en) 2016-10-25 2022-11-30 3M Innovative Properties Company Shaped vitrified abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods
EP3532560A4 (en) 2016-10-25 2020-04-01 3M Innovative Properties Company FUNCTIONAL GRINDING ARTICLES, GRINDING ARTICLES AND METHOD FOR THE PRODUCTION THEREOF
EP3559142A4 (en) 2016-10-25 2020-12-09 3M Innovative Properties Company AGGLOMERATED MAGNETISABLE ABRASIVE PARTICLES, ABRASIVE ARTICLES AND THEIR MANUFACTURING PROCESSES
JP7030803B2 (ja) 2016-10-25 2022-03-07 スリーエム イノベイティブ プロパティズ カンパニー 配向した研磨粒子を含む結合研磨物品及びその製造方法
JP7008474B2 (ja) 2016-11-30 2022-01-25 東京エレクトロン株式会社 プラズマエッチング方法
AT519483B1 (de) 2016-12-20 2018-12-15 Tyrolit Schleifmittelwerke Swarovski Kg Verfahren zur herstellung von schleifmittelteilchen
CN110312594B (zh) 2016-12-21 2021-09-21 3M创新有限公司 用于制备磨料制品的***和方法
JP2020514082A (ja) 2016-12-22 2020-05-21 スリーエム イノベイティブ プロパティズ カンパニー 複数の色を有する樹脂結合研磨物品
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
DE102017204605A1 (de) 2017-03-20 2018-09-20 Robert Bosch Gmbh Verfahren zu einem elektrostatischen Streuen eines Schleifkorns
EP3621771A1 (en) 2017-05-12 2020-03-18 3M Innovative Properties Company Tetrahedral abrasive particles in abrasive articles
EP3642293A4 (en) 2017-06-21 2021-03-17 Saint-Gobain Ceramics&Plastics, Inc. PARTICULATE MATERIALS AND METHOD FOR MANUFACTURING THEREOF
DE102017210799A1 (de) 2017-06-27 2018-12-27 Robert Bosch Gmbh Geformtes keramisches Schleifkorn sowie Verfahren zur Herstellung eines geformten keramischen Schleifkorns
WO2019025882A1 (en) 2017-07-31 2019-02-07 3M Innovative Properties Company PLACING ABRASIVE PARTICLES TO OBTAIN SCRATCHES INDEPENDENT FROM ORIENTATION AND MINIMIZING OBSERVABLE MANUFACTURING DEFECTS
CN108737296B (zh) 2017-09-27 2020-12-04 新华三技术有限公司 一种数据传输方法、装置和网络设备
EP3692109A1 (en) 2017-10-02 2020-08-12 3M Innovative Properties Company Elongated abrasive particles, method of making the same, and abrasive articles containing the same
EP3713713A4 (en) 2017-11-21 2021-08-25 3M Innovative Properties Company COATED ABRASIVE DISC AND ITS MANUFACTURING AND USE METHODS
WO2019102329A1 (en) 2017-11-21 2019-05-31 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
US11607775B2 (en) 2017-11-21 2023-03-21 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
WO2019102330A1 (en) 2017-11-21 2019-05-31 3M Innovative Properties Company Coated abrasive disc and methods of making and using the same
WO2019102312A1 (en) 2017-11-27 2019-05-31 3M Innovative Properties Company Abrasive article
USD862538S1 (en) 2017-12-12 2019-10-08 3M Innovative Properties Company Coated abrasive disc
USD849067S1 (en) 2017-12-12 2019-05-21 3M Innovative Properties Company Coated abrasive disc
USD870782S1 (en) 2017-12-12 2019-12-24 3M Innovative Properties Company Coated abrasive disc
USD849066S1 (en) 2017-12-12 2019-05-21 3M Innovative Properties Company Coated abrasive disc
CN112055737B (zh) 2018-03-01 2022-04-12 3M创新有限公司 具有成型磨料颗粒的成型硅质磨料团聚物、磨料制品及相关方法
WO2019197948A1 (en) 2018-04-12 2019-10-17 3M Innovative Properties Company Magnetizable abrasive particle and method of making the same
EP3784436A1 (en) 2018-04-24 2021-03-03 3M Innovative Properties Company Method of making a coated abrasive article
WO2019207416A1 (en) 2018-04-24 2019-10-31 3M Innovative Properties Company Coated abrasive article and method of making the same
WO2019207423A1 (en) 2018-04-24 2019-10-31 3M Innovative Properties Company Abrasive article with shaped abrasive particles with predetermined rake angles
WO2019207415A1 (en) 2018-04-24 2019-10-31 3M Innovative Properties Company Method of making a coated abrasive article
EP3790942A1 (en) 2018-05-10 2021-03-17 3M Innovative Properties Company Abrasive articles including soft shaped abrasive particles
JP2021534006A (ja) 2018-08-13 2021-12-09 スリーエム イノベイティブ プロパティズ カンパニー 構造化研磨物品及びそれを製造する方法
US20210380857A1 (en) 2018-10-11 2021-12-09 3M Innovative Properties Company Supported abrasive particles, abrasive articles, and methods of making the same
US20210379731A1 (en) 2018-10-15 2021-12-09 3M Innovative Properties Company Abrasive articles having improved performance
EP3870396A1 (en) 2018-10-25 2021-09-01 3M Innovative Properties Company Elongate abrasive article with orientationally aligned formed abrasive particles
US20210379732A1 (en) 2018-10-26 2021-12-09 3M Innovative Properties Company Abrasive article including flexible web
US20210388250A1 (en) 2018-11-01 2021-12-16 3M Innovative Properties Company Tetrahedral shaped abrasive particles with predetermined rake angles
CN113227307A (zh) 2018-12-18 2021-08-06 3M创新有限公司 粘结磨料制品前体
WO2020128856A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Elastomer-derived ceramic structures and uses thereof
CN113423537A (zh) 2018-12-18 2021-09-21 3M创新有限公司 磨料制品产生中改善的颗粒接收
WO2020128844A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Macro pattern for abrasive articles
CN113195162A (zh) 2018-12-18 2021-07-30 3M创新有限公司 图案化磨料基底和方法
CN113226643A (zh) 2018-12-18 2021-08-06 3M创新有限公司 具有不同成型磨料颗粒的磨料制品
WO2020128779A2 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Bonded abrasive articles and methods of manufacture
US11911876B2 (en) 2018-12-18 2024-02-27 3M Innovative Properties Company Tooling splice accommodation for abrasive article production
WO2020128717A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Patterned abrasive substrate and method
EP3898085A1 (en) 2018-12-18 2021-10-27 3M Innovative Properties Company Multiple orientation cavities in tooling for abrasives
WO2020128842A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Shaped abrasive particle transfer assembly
US11992918B2 (en) 2018-12-18 2024-05-28 3M Innovative Properties Company Abrasive article maker with differential tooling speed
CN113165145A (zh) 2018-12-18 2021-07-23 3M创新有限公司 精确成型细粒型的磨料导轨磨削工具及其制造方法
WO2020128708A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Coated abrasive articles and methods of making coated abrasive articles
WO2020128783A1 (en) 2018-12-18 2020-06-25 3M Innovative Properties Company Abrasive article with microparticle-coated abrasive grains
CN113226648A (zh) 2018-12-18 2021-08-06 3M创新有限公司 磨料制品产生中改善的颗粒接收
US20220055185A1 (en) 2018-12-18 2022-02-24 3M Innovative Properties Company Coated abrasive article having spacer particles, making method and apparatus therefor
EP3898083A1 (en) 2018-12-18 2021-10-27 3M Innovative Properties Company Method for depositing abrasive particles
CN113226650B (zh) 2018-12-19 2023-11-28 3M创新有限公司 带有锯齿的成形磨料颗粒及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001180930A (ja) * 1999-12-28 2001-07-03 Ykk Corp 薄片状ベーマイト粒子及びその製造方法
US20110143641A1 (en) * 2009-12-11 2011-06-16 Saint-Gobain Abrasives, Inc. Abrasive article for use with a grinding wheel
JP2013521144A (ja) * 2010-03-03 2013-06-10 スリーエム イノベイティブ プロパティズ カンパニー 結合した研磨ホイール
US20120167481A1 (en) * 2010-12-31 2012-07-05 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2013102177A1 (en) * 2011-12-30 2013-07-04 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same

Also Published As

Publication number Publication date
EP3089851A1 (en) 2016-11-09
BR112016015029B1 (pt) 2021-12-14
MX2021003256A (es) 2021-05-12
CA2934938C (en) 2019-04-30
US9566689B2 (en) 2017-02-14
US20210332278A1 (en) 2021-10-28
CN106029301B (zh) 2018-09-18
US11091678B2 (en) 2021-08-17
CN106029301A (zh) 2016-10-12
US20170158930A1 (en) 2017-06-08
KR20180072843A (ko) 2018-06-29
EP3089851B1 (en) 2019-02-06
BR112016015029A2 (pt) 2017-08-08
CA2934938A1 (en) 2015-07-09
EP3089851A4 (en) 2017-10-18
KR20160101168A (ko) 2016-08-24
KR102081045B1 (ko) 2020-02-26
WO2015102992A1 (en) 2015-07-09
JP2017510466A (ja) 2017-04-13
JP6290428B2 (ja) 2018-03-07
MX2016008494A (es) 2016-10-28
US20150183089A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
KR101870617B1 (ko) 형상화 연마 입자들을 포함하는 연마 물품
US20220001512A1 (en) Abrasive particles having particular shapes and methods of forming such particles
KR20160023852A (ko) 형상화 연마 입자들을 포함하는 연마 물품
KR20160023853A (ko) 형상화 연마 입자들을 포함하는 연마 물품
EP2866977B1 (en) Abrasive particles having particular shapes and methods of forming such particles
US9604346B2 (en) Abrasive article including shaped abrasive particles
WO2015184355A1 (en) Method of using an abrasive article including shaped abrasive particles

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant