KR101172670B1 - 차량의 제어 장치 - Google Patents

차량의 제어 장치 Download PDF

Info

Publication number
KR101172670B1
KR101172670B1 KR1020067024238A KR20067024238A KR101172670B1 KR 101172670 B1 KR101172670 B1 KR 101172670B1 KR 1020067024238 A KR1020067024238 A KR 1020067024238A KR 20067024238 A KR20067024238 A KR 20067024238A KR 101172670 B1 KR101172670 B1 KR 101172670B1
Authority
KR
South Korea
Prior art keywords
vehicle
model
amount
vehicle model
reaction force
Prior art date
Application number
KR1020067024238A
Other languages
English (en)
Other versions
KR20070043702A (ko
Inventor
토루 다케나카
Original Assignee
혼다 기켄 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 혼다 기켄 고교 가부시키가이샤 filed Critical 혼다 기켄 고교 가부시키가이샤
Publication of KR20070043702A publication Critical patent/KR20070043702A/ko
Application granted granted Critical
Publication of KR101172670B1 publication Critical patent/KR101172670B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0195Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
    • B62D6/003Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels in order to control vehicle yaw movement, i.e. around a vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0019Control system elements or transfer functions
    • B60W2050/0028Mathematical models, e.g. for simulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Vehicle Body Suspensions (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

차량(1)의 동특성을 나타내는 차량 모델(72) 상에서의 차량의 운동(차량 모델 운동)을 운전자에 의한 스티어링각 등의 운전 조작량에 따라 결정하는 차량 모델 운동 결정 수단(94)과, 차량 모델 운동의 상태량(차량 위치, 자세 등의 모델 상태량)과 실제의 차량(1)의 운동의 상태량과의 편차(상태량 편차)에 따라 피드백 규칙에 의해 실제의 차량(1)의 액추에이터 제어 수단(92)(실차(70)의 액추에이터 장치(3)를 조작하는 수단)과 차량 모델 운동 결정 수단(94)에 대한 제어 입력을 결정하는 상태량 편차 응동 제어 수단(96)을 구비한다. 상태량 편차에 따라 실차의 운동뿐만 아니라 차량 모델 운동도 조작함으로써 가능한 한 실제의 차량의 거동에 적합한 액추에이터의 동작 제어를 행하면서 외란 요인 또는 그 변화에 대한 로버스트성을 높인다.
Figure 112006084596046-pct00021
운전 조작량, 액추에이터 장치, 실 상태량 파악 수단, 차량 모델 운동 결정 수단, 상태량 편차 응동 제어 수단, 차량 모델 조작용 제어, 차량의 제어 장치.

Description

차량의 제어 장치{CONTROL DEVICE FOR VEHICLE}
본 발명은 자동차(엔진 자동차), 하이브리드 차, 전기 자동차, 자동 이륜차등 복수의 차륜을 갖는 차량의 제어 장치에 관한 것이다.
자동차 등의 차량에는 주요 기구로서 차륜에 엔진 등의 추진력 발생원으로부터 구동력을 전달하거나, 또는 제동력을 부여하는 구동ㆍ제동계와, 차량의 조타륜을 조타하기 위한 스티어링계(조타계), 차륜에 차체를 탄력적으로 지지시키는 서스펜션계 등의 시스템이 구비되어 있다. 그리고, 최근 이들 시스템을 운전자에 의한 스티어링 휠(핸들)이나 액셀 페달, 브레이크 페달 등의 조작(인위적 조작)에 따라 수동적으로 동작시킬뿐만 아니라, 다양한 전동식 또는 유압식의 액추에이터를 구비하여, 그 액추에이터의 동작을 차량의 주행 상태나 환경 조건 등에 따라 능동적(적극적)으로 제어하도록 한 것이 알려져 있다(예컨대 "자동차 기술 핸드북 기초 및 이론편(제1 분책)/사단법인 자동차 기술회 발행(1992년 6월 15일 발행)"(이하, 비 특허 문헌 1이라고 함)의 제220 페이지의 6.8.1 참조).
예컨대 스티어링계에 관해서는 상기 비 특허 문헌 1의 제225 페이지의 도 6-99(a)에는 모델 팔로잉 방식이라는 제어 방식이 개시되어 있다. 이 제어 방식에서는 운전자에 의한 스티어링 휠의 조타각이 요(yaw) 각속도와 횡 가속도의 조타 응 답 특성을 미리 설정한 규범 모델에 입력된다. 그리고, 그 규범 모델의 출력에 차량 모델을 추종시키도록 차량 모델의 입력이 결정되고, 그것을 실제의 차량(실제의 스티어링계)에 추가 입력함으로써 실제의 차량의 스티어링계가 조작된다.
그러나, 상기 비 특허 문헌 1에 보이는 바와 같은 기술에서는 다음과 같은 문제가 있었다. 즉, 실제의 차량의 거동은 노면의 마찰 계수의 변화 등 각종 다양한 외란 요인의 영향을 받는다. 한편, 차량의 거동을 표현하는 차량 모델은 모든 외란 요인을 고려하여 구축하기는 사실상 곤란하며, 어떤 표준적인 환경 조건을 상정하여 구축할 수밖에 없다. 또한 각종 다양한 외란 요인을 고려하여 차량 모델을 구축하여도, 그 차량 모델의 거동을 규정하는 각종 파라미터에는 오차(모델화 오차)가 발생한다. 따라서, 비 특허 문헌 1의 제225 페이지의 도 6-99(a)에 보여지는 기술에서는 실제의 차량에 작용하는 각종 다양한 외란 요인 또는 그 변화에 의해 실제의 차량의 거동과 차량 모델의 거동과의 차(벗어남)가 커질 수 있다. 그리고 이러한 경우에는 실제의 차량의 거동에 적합하지 않는 제어 입력(조작량)으로 차량의 액추에이터의 동작이 제어되거나, 액추에이터의 동작이 리미터에 의해 제한되게 되어, 이 액추에이터의 동작을 적합하게 제어하기가 어려워진다.
또한 구동ㆍ제동계, 스티어링계 또는 서스펜션계를 액추에이터를 통하여 능동적으로 제어하는 종래의 것에서는 차량의 상태량(차속, 엔진의 회전 속도 등)이나 차량의 주행 환경(노면의 마찰 계수 등)을 센서를 통하여 검출하거나 옵저버 등에 의해 추정하고, 그들의 검출값 및 추정값으로부터 미리 주행 실험 등을 기초로 설정된 맵 등을 이용하여 액추에이터의 조작량(액추에이터에 대한 제어 입력)을 결 정하는 것이 일반적이다. 그런데, 이러한 기술에서도 차량의 상태량이나 주행 환경의 검출 오차 또는 추정 오차에 의해 실제의 차량의 거동에 적합하지 않는 제어 입력(조작량)으로 차량의 액추에이터의 동작이 제어되거나 액추에이터의 동작이 리미터에 의해 제한되는 경우가 간혹 발생한다. 따라서, 이 액추에이터의 동작을 적합하게 제어하기가 어려워진다.
본 발명은 이러한 배경을 감안하여 이루어진 것으로서, 가능한 한 실제의 차량의 거동에 적합한 액추에이터의 동작 제어를 행하면서 외란 요인 또는 그 변화에 대한 로버스트성을 높일 수 있는 차량의 제어 장치를 제공하는 것을 목적으로 한다.
본 발명의 차량의 제어 장치의 제1 발명은, 이러한 목적을 달성하기 위하여, 복수의 차륜을 갖는 차량의 조종자에 의한 이 차량의 운전 조작 상태를 나타내는 운전 조작량을 출력하는 운전 조작량 출력 수단과, 상기 차량의 소정의 운동을 조작 가능하게 이 차량에 설치된 액추에이터 장치와, 상기 액추에이터 장치의 동작을 제어하는 액추에이터 장치 제어 수단을 구비한 차량의 제어 장치에 있어서, 상기 차량의 실제의 운동에 관한 소정의 상태량인 실 상태량을 검출 또는 추정하는 실 상태량 파악 수단과, 적어도 상기 운전 조작량에 따라 상기 차량의 동특성(動特性)을 표현하는 제1 차량 모델 상에서의 차량의 운동인 차량 모델 운동을 결정하는 차량 모델 운동 결정 수단과, 상기 검출 또는 추정된 실 상태량과 상기 차량 모델 운동에 관한 상기 소정의 상태량인 모델 상태량과의 편차인 제1 상태량 편차에 따라 소정의 피드백 제어 규칙에 의해 실제의 차량의 상기 액추에이터 장치를 조작하기 위한 실차 액추에이터 조작용 제어 입력과 상기 차량 모델 운동을 조작하기 위한 차량 모델 조작용 제어 입력을 결정하는 상태량 편차 응동(應動) 제어 수단을 구비하고, 상기 액추에이터 장치 제어 수단은 적어도 상기 실차 액추에이터 조작용 제어 입력에 따라 상기 액추에이터 장치를 제어하는 수단이고, 상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량과 상기 차량 모델 조작용 제어 입력에 따라 상기 차량 모델 운동을 결정하는 수단인 것을 특징으로 한다.
이러한 제1 발명에 따르면, 상기 제1 상태량 편차에 따라 상기 소정의 피드백 제어 규칙에 의해 상기 실차 액추에이터 조작용 제어 입력과 상기 차량 모델 조작용 제어 입력이 결정된다. 따라서, 이들 제어 입력은 상기 제1 상태량 편차를 0에 근접시키도록 결정된다. 그리고, 상기 액추에이터 장치 제어 수단은 적어도 상기 실차 액추에이터 조작용 제어 입력에 따라 상기 액추에이터 장치를 제어한다. 또한 상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량과 상기 차량 모델 조작용 제어 입력에 따라 상기 차량 모델 운동을 결정한다. 따라서, 제1 발명에 따르면, 실제의 차량(이하, 본 란에서는 실차라고 할 수 있다)의 운동에 관한 실 상태량과 상기 차량 모델 상에서의 차량의 운동(차량 모델 운동)에 관한 상태량이 서로 근접하도록 실차의 운동과 차량 모델 운동이 모두 조작되게 된다. 즉, 차량 모델 운동이 실차의 운동으로부터 동떨어지지 않도록 수정되면서, 실차의 운동이 차량 모델 운동을 추종하도록 실차의 운동이 제어된다.
따라서, 차량 모델 상에서 상정되지 않은 외란 요인이 실제의 차량에 작용하거나 차량 모델의 모델화 오차가 차량 모델 운동의 상태량에 축적되어도 상기 제1 상태량 편차가 과대해지는 것을 방지할 수 있다.
그 결과, 가능한 한 실차의 거동에 적합한 액추에이터 장치의 동작 제어를 행하면서, 외란 요인 또는 그 변화에 대하여 차량의 제어의 로버스트성을 높일 수 있다.
한편 본 명세서에서는 차량의 위치 및 자세와 그들의 시간적 변화를 총칭적으로 차량의 운동이라고 한다. 차량의 위치는 차량이 있는 부위(차체 등)에 고정적으로 설정된 어느 대표점(무게 중심 등)의 공간적인 위치를 의미한다. 차량의 자세는 차량의 어느 부위(차체 등)의 공간적인 방향을 의미하고, 피치 방향의 자세(차폭 방향(좌우 방향)의 축 방향의 경사각), 롤 방향의 자세(차 길이 방향(전후 방향)의 축 방향의 경사각) 및 요 방향의 자세(연직 축 방향의 회전각)로 구성된다. 자세에 관한 경사각 또는 회전각은 총칭적으로 자세각이라고 한다. 그리고, 차량의 운동에 관한 상태량은 차량의 위치 또는 자세, 또는 그 변화 속도 또는 변화 가속도를 의미한다. 그 상태량은 차량의 위치에 관한 상태량 및 자세에 관한 상태량을 모두 포함하거나, 또는 어느 하나의 상태량을 포함한다. 또한 그 상태량은 위치 또는 자세에 관한 공간적인 모든 성분을 포함할 필요는 없으며, 어느 하나의 성분 또는 두 개의 성분이어도 좋다.
이러한 제1 발명에서는 상기 차량 모델 조작용 제어 입력은, 예컨대 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력, 또는 상기 제1 차량 모델 상의 액추에이터 장치의 조작량이다(제2 발명, 제3 발명). 어느 것이든 차량 모델 상의 차량의 운동을 상기 차량 모델 제어용 입력에 의해 조작할 수 있다. 한편, 차량 모델 조작용 제어 입력을 가상적 외력이라 한 경우, 그 가상적 외력은 제1 차량 모델 상의 차량 중 차체(소위, 스프링 윗 부분)에 작용시키는 것이 바람직하다. 또한 이 가상적 외력은 병진력 성분과 모멘트 성분 중 적어도 어느 하나가 포함되어 있으면 좋다. 그리고, 병진력 성분 또는 모멘트 성분은 반드시 3차원 벡터량일 필요는 없으며, 하나 또는 두 개의 축 방향 성분으로만 구성되어 있어도 좋다.
또한 제1 발명에 있어서는, 상기 액추에이터 장치 제어 수단은 적어도 상기 운전 조작량에 따라 상기 액추에이터 장치의 동작을 규정하는 제어 입력의 기본값인 실차용 기본 제어 입력을 결정하는 수단을 구비하고, 상기 실차 액추에이터 조작용 제어 입력은 상기 실차용 기본 제어 입력을 수정하기 위한 수정량이고, 상기 액추에이터 장치 제어 수단은 상기 결정한 실차용 기본 제어 입력을 상기 실차 액추에이터 조작용 제어 입력에 의해 수정하여 이루어지는 제어 입력에 따라 상기 액추에이터 장치를 제어하는 것이 바람직하다(제4 발명).
이에 따르면, 상기 실차용 기본 제어 입력이 상기 액추에이터 장치에 대하여 피드포워드량(피드포워드 제어 입력)으로서 기능하고, 그 피드포워드량을 중심으로 액추에이터 장치의 제어 입력이 상기 수정량으로서의 실차 액추에이터 조작용 제어 입력에 의해 조정된다. 따라서, 액추에이터 장치의 제어의 안정성을 높일 수 있다.
또한 상기 제1 발명에 있어서는, 상기 액추에이터 장치 제어 수단은 적어도 상기 운전 조작량에 따라 상기 차량에 작용시키는 노면 반력(차량이 노면으로부터 받는 반력)의 기본 목표값을 규정하는 노면 반력 기본 목표 파라미터를 결정하는 수단을 구비하고, 상기 실차 액추에이터용 제어 입력은 상기 노면 반력 기본 목표 파라미터를 수정하기 위한 수정 파라미터이고, 상기 액추에이터 장치 제어 수단은 상기 결정한 노면 반력 기본 목표 파라미터를 상기 수정 파라미터에 의해 수정하여 이루어지는 수정 완료 파라미터에 의해 규정되는 노면 반력의 목표값에 따라 상기 액추에이터 장치를 제어하는 것이 바람직하다(제5 발명).
이 제5 발명에 따르면, 상기 노면 반력 기본 목표 파라미터가 상기 액추에이터 장치에 대하여 피드포워드량(피드포워드 제어 입력)으로서 기능하고, 그 피드포워드량에 의해 규정되는 노면 반력의 기본 목표값을 중심으로 액추에이터 장치의 제어 입력(상기 수정 완료 파라미터)에 의해 규정되는 노면 반력의 목표값이 상기 수정 파라미터로서의 실차 액추에이터 조작용 제어 입력에 의해 조정된다. 따라서, 상기 제4 발명과 마찬가지로, 액추에이터 장치의 제어의 안정성을 높일 수 있다. 그리고 이 경우, 액추에이터 장치의 제어 입력은 노면 반력의 목표값을 규정하게 되므로, 상기 제1 상태량 편차를 0에 근접시키면서 실제의 차량에 작용하는 노면 반력을 원하는 노면 반력으로 제어할 수 있다.
한편 이 제5 발명은, 상기 제4 발명의 실차용 기본 제어 입력으로서 상기 노면 반력 기본 목표 파라미터를 이용하고, 상기 제4 발명의 수정량으로서 상기 수정 파라미터를 이용한 것에 해당한다. 또한 제5 발명에서의 노면 반력은 병진력 성분과 모멘트 성분 중 적어도 어느 하나만 포함되어 있으면 좋다. 그리고, 병진력 성분 또는 모멘트 성분은 반드시 3차원 벡터량일 필요는 없으며, 하나 또는 두 개의 축 방향 성분으로만 구성되어 있어도 좋다.
또한 상기 제4 발명에서는, 상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량에 따라 상기 제1 차량 모델 상에서의 액추에이터 장치의 동작을 규정하는 제어 입력의 기본값인 모델용 기본 제어 입력을 결정하는 수단을 구비하고, 상기 차량 모델 조작용 제어 입력은 상기 모델용 기본 제어 입력을 수정하기 위한 수정량이고, 상기 차량 모델 운동 결정 수단은 상기 결정한 모델용 기본 제어 입력을 상기 차량 모델 조작용 제어 입력에 의해 수정하여 이루어지는 조작량에 따라 상기 제1 차량 모델 상의 액추에이터 장치를 동작시킴으로써 상기 차량 모델 운동을 결정하는 수단이고, 상기 모델용 기본 제어 입력이 상기 실차용 기본 제어 입력에 일치하는 것이 바람직하다(제6 발명).
이에 따르면, 실차의 액추에이터 장치와 상기 제1 차량 모델 상의 액추에이터 장치에서 동종의 제어 입력을 사용하게 된다. 그리고, 실차의 액추에이터 장치의 제어 입력의 피드포워드량으로서의 실차용 기본 제어 입력과 제1 차량 모델 상에서의 액추에이터 장치의 제어 입력의 피드포워드량으로서의 모델용 기본 제어 입력을 일치시키므로, 그들 기본 제어 입력을 공통의 수단에 의해 결정할 수 있다. 따라서, 본 발명의 제어 장치의 알고리즘을 간략화할 수 있다. 또한 상기 제1 상태량 편차가 0에 가까울 때에는 실차의 액추에이터 장치와 제1 차량 모델 상의 액추에이터 장치에 거의 같은 제어 입력이 입력되므로, 실차의 운동에 정합한 적절한 차량 모델 운동을 결정할 수 있다.
또한 상기 제5 발명에 있어서는, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력이고, 상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량에 따라 상기 제1 차량 모델 상의 차량에 작용시키는 노면 반력을 규정하는 모델 노면 반력 파라미터를 결정하는 수단과, 적어도 그 결정한 모델 노면 반력 파라미터에 의해 규정되는 노면 반력과 상기 차량 모델 조작용 제어 입력인 상기 가상적 외력을 상기 제1 차량 모델 상의 차량에 작용시킴으로써 상기 제1 차량 모델의 운동을 결정하는 수단으로 구성되고, 상기 모델 노면 반력 파라미터에 의해 규정되는 노면 반력이 상기 노면 반력 기본 목표 파라미터에 의해 규정되는 상기 노면 반력의 기본 목표값에 일치하는 것이 바람직하다(제7 발명).
이 제7 발명에 따르면, 상기 모델 노면 반력 파라미터가 상기 제1 차량 모델에 대한 피드포워드량(피드포워드 제어 입력)으로서 기능한다. 그리고, 이 모델 노면 반력 파라미터에 의해 규정되는 노면 반력을 실제의 차량의 액추에이터 장치에 대한 피드포워드량으로서의 상기 노면 반력 기본 목표 파라미터에 의해 규정되는 노면 반력의 기본 목표값에 일치시키므로, 그들 모델 노면 반력 파라미터와 노면 반력 기본 목표 파라미터를 공통의 수단에 의해 결정할 수 있다. 따라서, 상기 제6 발명과 마찬가지로 본 발명의 제어 장치의 알고리즘을 간략화할 수 있다. 또한 상기 제1 상태량 편차가 0에 가까울 때에는 실차에 작용하는 노면 반력과 제1 차량 모델 상의 차량에 작용하는 노면 반력이 거의 일치하므로, 실차의 운동에 정합한 적절한 차량 모델 운동을 결정할 수 있다. 한편, 제1 차량 모델의 운동을 결정할 때 모델 노면 반력 파라미터에 의해 규정되는 노면 반력과 가상적 외력뿐만아니라, 공기 저항을 제1 차량 모델 상의 차량에 작용시키도록 하여도 좋다.
또한 상기 제5 발명 또는 제7 발명에서는 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 허용 범위를 설정하는 수단을 구비하고, 상기 결정된 노면 반력 기본 목표 파라미터에 의해 규정되는 노면 반력의 기본 목표값을 상기 수정 파라미터에 의해 수정하여 이루어지는 수정 완료 파라미터에 의해 규정되는 노면 반력의 목표값이 상기 허용 범위에 들어간다고 하는 허용 범위 조건을 만족하도록 상기 수정 파라미터로서의 액추에이터 조작용 제어 입력을 결정하는 것이 바람직하다(제8 발명).
이 제8 발명에 따르면, 상기 수정 완료 파라미터에 의해 규정되는 노면 반력의 목표값이 상기 허용 범위에 들어가도록 상기 액추에이터 조작용 제어 입력이 결정된다. 따라서, 실차에 작용하는 노면 반력을 적절한 노면 반력(차량 차륜의 미끄럼 등을 방지할 수 있는 노면 반력)으로 유지하면서 실차의 운동을 적절하게 제어할 수 있다.
한편, 노면 반력의 허용 범위로는 노면과 평행한 방향 또는 수평 방향의 노면 반력의 병진력 성분(즉 마찰력 성분)의 허용 범위나 연직 방향 또는 노면에 수직한 방향의 노면 반력의 병진력 성분의 허용 범위를 들 수 있다. 그 허용 범위는 차량의 각 차륜마다의 허용 범위이어도 좋으나, 그들의 차륜의 노면 반력의 합력의 허용 범위이어도 좋다. 또는, 차량의 차륜을 몇 개의 그룹으로 분류하고, 그 각 그룹마다 노면 반력의 허용 범위를 설정하여도 좋다.
상기 제8 발명에서는 상기 수정 파라미터는 차량의 각 차륜에 작용하는 노면 반력의 수정량을 규정하는 파라미터이고, 상기 노면 반력 기본 목표 파라미터는 상기 각 차륜에 작용하는 노면 반력의 기본 목표값을 규정하는 파라미터이고, 상기 허용 범위는 상기 각 차륜에 작용하는 노면 반력의 허용 범위인 것이 바람직하다(제9 발명).
이에 따르면, 실차의 각 차륜마다 그에 작용하는 노면 반력을 적절한 노면 반력으로 유지할 수 있으므로, 실차의 운동을 보다 적절하게 제어할 수 있다.
그리고 이 제9 발명에서는, 상기 상태량 편차 응동 제어 수단은 상기 제1 상태량 편차를 0에 근접시키기 위하여 차량에 작용시킬 외력인 편차 해소 보상량을 이 제1 상태량 편차에 따라 결정하는 수단을 구비하고, 상기 허용 범위 조건을 만족하면서 상기 수정 파라미터에 의해 규정되는 각 차륜에 작용하는 노면 반력의 수정량의 합력이 상기 편차 해소 보상량에 가까워지도록 상기 수정 파라미터를 결정하는 것이 바람직하다(제10 발명).
이 제10 발명에 따르면, 실차가 노면 반력의 허용 범위 조건을 만족할 수 있는 범위 내에서 가능한 한 상기 제1 상태량 편차를 0에 근접시키도록 실차의 액추에이터 장치에 대한 액추에이터 조작용 제어 입력(상기 수정 파라미터)을 결정할 수 있다. 따라서, 이 운동의 규범이 되는 차량 모델 운동의 상기 제1 상태량 편차에 따른 조작을 가능한 한 적게 할 수 있다. 따라서, 실차가 노면 반력의 허용 범위 조건을 만족할 수 있는 범위 내에서 실차의 운동을 이상적인 운동에 가까운 운동으로 적절하게 제어할 수 있다.
한편, 제10 발명에 있어서 편차 해소 보상량은 병진력 성분과 모멘트 성분 중 적어도 어느 하나가 포함되어 있으면 좋다. 그리고, 병진력 성분 또는 모멘트 성분은 반드시 3차원 벡터량일 필요는 없으며, 하나 또는 두 개의 축 방향 성분으로만 구성되어 있어도 좋다.
이 제10 발명에서는 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력이고, 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력으로서의 상기 가상적 외력을 결정하는 수단을 구비하는 것이 바람직하다(제11 발명).
또는, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 액추에이터 장치의 조작량이고, 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력으로서의 상기 조작량을 결정하는 수단을 구비하는 것이 바람직하다(제12 발명).
이들 제11 발명 또는 제12 발명에 따르면, 상기 노면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력을 결정하므로, 실차의 액추에이터 장치를 제어하는 것만으로는 노면 반력 허용 범위 조건을 만족하면서 상기 제1 상태량 편차를 0에 근접시킬 수 없는 경우에, 차량 모델 운동이 상기 제1 상태량 편차를 0에 근접시키도록 조작되게 된다. 따라서, 실차의 노면 반력이 허용 범위를 벗어날 것 같은 상황이어도 제1 상태량 편차가 과대해지는 것 방지할 수 있고, 나아가서는 실차의 운동의 적절한 제어를 계속할 수 있다.
한편, 상기 제10~제12 발명에서는 상기 편차 해소 보상량 또는 상기 편차 해소 보상량의 소정의 성분이 충분히 0에 가까울 때(0 근방의 소정의 범위 내에 있을 때)에는 상기 액추에이터 조작용 제어 입력을 0으로 하도록 하여도 좋다. 이와 같이 함으로써 실차의 액추에이터 장치가 제1 상태량 편차에 따라 빈번하게 제어되는 것을 방지할 수 있다.
또한 상기 제4 발명(또는 이를 필요 요건으로 하는 발명)에서는, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과 상기 제1 차량 모델의 상태량의 최신값을 기점으로 하여 적어도 상기 장래 운전 조작량에 기초하여 상기 제1 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고, 상기 액추에이터 장치 제어 수단은 상기 제1 차량 모델의 장래 거동에 기초하여 상기 실차용 기본 제어 입력을 결정하는 것이 바람직하다(제13 발명)
이 제13 발명에 따르면, 액추에이터 장치의 새로운 제어 입력을 결정하고자 할 때(현재 시각)에 있어서, 상기 장래 운전 조작량(이는 장래의 운전 조작량의 예측값을 의미한다)이 결정된다. 그리고, 제1 차량 모델의 상태량의 최신값(즉 현재 시각의 최신의 상태량)을 기점으로 하여 적어도 상기 장래 운전 조작량에 기초하여 상기 제1 차량 모델의 장래 거동이 예견된다. 이 경우, 본 발명에서는 제1 차량 모델의 상태량과 실차의 상태량은 서로 근접하도록 제어되므로, 제1 차량 모델의 장래 거동은 실차의 장래 거동을 예측하게 된다. 따라서, 제1 차량 모델의 장래 거동에 기초하여 상기 실차용 기본 제어 입력(실차의 액추에이터 장치의 제어 입력의 피드포워드량)을 결정함으로써 실차의 장래의 거동을 예측하여 이 실차용 기본 제어 입력을 결정할 수 있다. 그 결과, 상기 실차 액추에이터 조작용 제어 입력이 실차의 장래의 거동 변화 등에 따라 순간적으로 과대해지는 사태를 최대한 방지하면서 실차의 운동을 적절하게 제어할 수 있다.
또한 상기 제1 발명(또는 제1~제12 발명)에서는, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과, 상기 제1 차량 모델의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제2 차량 모델의 상태량의 기점으로 함과 동시에, 상기 차량의 실 상태량의 최신값을 상기 차량의 동특성을 표현하는 제3 차량 모델의 상태량의 기점으로 하여 현재 시각부터 상기 소정 시간 후까지의 각 시각에 있어서 적어도 상기 제2 차량 모델의 상태량과 상기 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기초하여 이 제3 차량 모델 상의 액추에이터 장치의 동작을 규정하는 제어 입력인 모델 제어 입력을 결정하면서 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고, 상기 액추에이터 장치 제어 수단은 적어도 상기 제3 차량 모델의 장래 거동에 기초하여 상기 실차 액추에이터 조작용 제어 입력을 결정하는 것이 바람직하다(제14 발명).
이 제14 발명에 따르면, 액추에이터 장치의 새로운 제어 입력을 결정하고자 할 때(현재 시각)에 있어서, 상기 장래 운전 조작량(장래의 운전 조작량의 예측값)이 결정된다. 그리고, 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동이 예견된다. 이 경우, 제2 차량 모델의 장래 거동은 상기 제1 차량 모델의 최신의 상태량을 기점으로 하는 장래 거동이고, 제3 차량 모델의 장래 거동은 실차의 최신의 상태량(최신의 실 상태량)을 기점으로 하는 장래 거동이다. 그리고, 그들 제2 차량 모델 및 제3 차량 모델의 장래 거동은 제3 차량 모델 상의 액추에이터 장치의 모델 제어 입력을 포함하며, 적어도 제2 차량 모델의 상태량과 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기초하여 결정된다. 즉, 장래의 실제의 운전 조작량이 상기 결정한 장래 운전 조작량이라고 가정하고, 제2 차량 모델의 상태량과 제3 차량 모델의 상태량과의 편차(이는 상기 제1 상태량 편차의 장래의 추정값에 해당한다)가 0에 근접하도록 제3 차량 모델 상의 액추에이터 장치의 모델 제어 입력을 포함하여 제2 차량 모델 및 제3 차량 모델의 장래 거동이 결정된다. 따라서, 제2 차량 모델의 장래 거동은 상기 제1 차량 모델의 장래 거동을 예측하게 되고, 제3 차량 모델의 장래 거동은 실차의 장래 거동을 예측하게 된다. 따라서, 이 제3 차량 모델의 장래 거동에 기초하여 상기 실차 액추에이터 조작용 제어 입력을 결정함으로써 실차와 제1 차량 모델의 장래의 거동을 예측하고, 상기 실차 액추에이터 조작 제어 입력을 결정할 수 있다. 그 결과, 상기 실차 액추에이터 조작용 제어 입력이 실차의 장래의 거동 변화 등에 의해 순간적으로 과대해지는 사태를 최대한 방지하면서 실차의 운동을 적절하게 제어할 수 있다.
보충하면, 제14 발명에서는 제2 차량 모델의 장래 거동은 상기 제1 차량 모델의 최신의 상태량을 기점으로 하는 장래 거동이고, 제3 차량 모델의 장래 거동은 실차의 최신의 상태량(최신의 실 상태량)을 기점으로 하는 장래 거동이므로, 그 기점에서의 제2 차량 모델의 상태량과 제3 차량 모델의 상태량과의 편차는 상기 제1 발명에서의 제1 상태량 편차에 해당한다.
또한 상기 제4 발명(또는 이를 필요 요건으로 하는 발명)에서는, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과, 적어도 상기 운전 조작량에 기초하여 상기 제1 차량 모델이 추종할 규범 운동의 상태량을 상기 차량의 동특성을 표현하는 규범 동특성 모델에 의해 축차(逐次)적으로 결정하는 규범 운동 상태량 결정 수단과, 상기 규범 운동의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제2 차량 모델의 상태량의 기점으로 함과 동시에, 상기 제1 차량 모델의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제3 차량 모델의 상태량의 기점으로 하여 현재 시각부터 상기 소정 시간 후까지의 각 시각에 있어서 적어도 상기 제2 차량 모델의 상태량과 상기 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기초하여 상기 제3 차량 모델 상의 액추에이터 장치의 동작을 규정하는 제어 입력인 모델 제어 입력을 결정하면서 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고, 상기 액추에이터 장치 제어 수단은 적어도 상기 제3 차량 모델의 장래 거동에 기초하여 상기 실차용 기본 제어 입력을 결정하는 것이 바람직하다(제15 발명).
이 제15 발명에 따르면, 상기 제1 차량 모델이 추종할 규범 운동의 상태량이 축차적으로 결정된다. 또한 액추에이터 장치의 새로운 제어 입력을 결정하고자 할 때(현재 시각)에 있어서, 상기 장래 운전 조작량(장래의 운전 조작량의 예측값)이 결정된다. 그리고, 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동이 예견된다. 이 경우, 제2 차량 모델의 장래 거동은 상기 규범 운동의 최신의 상태량을 기점으로 하는 장래 거동이고, 제3 차량 모델의 장래 거동은 상기 제1 차량 모델의 최신의 상태량을 기점으로 하는 장래 거동이다. 그리고, 이들 제2 차량 모델 및 제3 차량 모델의 장래 거동은 제3 차량 모델 상의 액추에이터 장치의 모델 제어 입력을 포함하여 적어도 제2 차량 모델의 상태량과 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기초하여 결정된다. 즉, 장래의 실제의 운전 조작량이 상기 결정한 장래 운전 조작량이라고 가정하여 제2 차량 모델의 상태량과 제3 차량 모델의 상태량과의 편차(이는 장래의 규범 운동의 상태량과 장래의 제1 차량 모델의 상태량과의 편차의 추정값에 해당한다)가 0에 근접하도록 제3 차량 모델 상의 액추에이터 장치의 모델 제어 입력을 포함하여 제2 차량 모델 및 제3 차량 모델의 장래 거동이 결정된다. 따라서, 제3 차량 모델의 장래 거동은 장래의 제1 차량 모델의 예측되는 상태량을 장래의 규범 운동의 예측되는 상태량에 근접시키도록 결정된다. 따라서, 이 제3 차량 모델의 장래 거동에 기초하여 상기 실차 액추에이터 조작용 제어 입력을 결정함으로써 제1 차량 모델의 장래 거동을 예측하여 이 제1 차량 모델의 상태량을 규범 운동의 상태량에 근접시키면서(제1 차량 모델의 상태량이 규범 운동의 상태량과 동떨어지지 않도록 하면서) 실차의 상태량을 제1 차량 모델의 상태량에 근접시키도록 실차의 운동을 제어할 수 있다. 그 결과, 상기 실차 액추에이터 조작용 제어 입력이 실차의 장래의 거동 변화 등에 의해 순간적으로 과대해지는 사태를 최대한 방지하면서 실차의 운동을 적절하게 제어할 수 있다.
이러한 제15 발명에서는, 상기 규범 운동 상태량 결정 수단은 적어도 상기 제1 차량 모델의 상태량과 상기 규범 운동의 상태량과의 차와 상기 운전 조작량에 따라 새로운 상기 규범 운동의 상태량을 결정하는 것이 바람직하다(제16 발명). 이에 따르면, 실차의 운동의 영향을 받는 제1 차량 모델의 상태량에 대하여 규범 운동의 상태량이 크게 괴리되어 버리는 것을 방지할 수 있다.
또한 상기 제5 발명(또는 이를 필요 요건으로 하는 발명)에 있어서는, 상기 차량 모델 운동에 대한 규범의 운동인 규범 운동을 적어도 상기 운전 조작량에 따라 결정하는 규범 운동 결정 수단과, 그 결정된 규범 운동에 관한 소정의 제2 상태량과 상기 결정된 제1 차량 모델 운동에 관한 소정의 제2 상태량과의 편차인 제2 상태량 편차를 0에 근접시키기 위하여 차량에 작용시킬 외력인 모델 복원 보상량을 이 제2 상태량 편차에 따라 결정하는 수단을 구비하고, 상기 노면 반력 기본 목표 파라미터를 결정하는 수단은 적어도 상기 모델 복원 보상량에 따라 상기 노면 반력 기본 목표 파라미터를 결정하는 것이 바람직하다(제17 발명).
이 제17 발명에 따르면, 상기 제1 상태량 편차와 상기 제2 상태량 편차를 0에 근접시키도록 실차의 액추에이터 장치에 대한 노면 반력 기본 목표 파라미터를 결정할 수 있다. 따라서, 실차의 운동의 규범이 되는 차량 모델 운동의 상기 제1 상태량 편차에 따른 조작을 적게 하면서 이 차량 모델 운동의 상기 제2 상태량을 규범 운동의 제2 상태량에 근접시킬 수 있다. 따라서, 실차의 운동을 이상적인 운동에 가까운 운동으로 적절하게 제어할 수 있다.
또한 상기 제6 발명(또는 이를 필요 요건으로 하는 발명)에 있어서는, 상기 차량 모델 운동에 대한 규범의 운동인 규범 운동을 적어도 상기 운전 조작량에 따라 결정하는 규범 운동 결정 수단을 구비하고, 상기 모델용 기본 제어 입력을 결정하는 수단은 적어도 그 결정된 규범 운동에 관한 소정의 제2 상태량과 상기 결정된 제1 차량 모델 운동에 관한 소정의 제2 상태량과의 편차인 제2 상태량 편차에 따라 이 차를 0에 근접시키도록 상기 모델용 기본 제어 입력을 결정하는 것이 바람직하다(제18 발명).
이 제18 발명에 따르면, 상기 제1 상태량 편차와 상기 제2 상태량 편차를 0에 근접시키도록 상기 차량 모델 상의 액추에이터 장치에 대한 모델용 기본 제어 입력을 결정할 수 있다. 따라서, 상기 제17 발명과 마찬가지로, 실차의 운동의 규범이 되는 차량 모델 운동의 상기 제1 상태량 편차에 따른 조작을 적게 하면서 이 차량 모델 운동의 상기 제2 상태량을 규범 운동의 제2 상태량에 근접시킬 수 있다. 따라서, 실차의 운동을 이상적인 운동에 가까운 운동으로 적절하게 제어할 수 있다.
한편, 상기 제17 발명 및 제18 발명에서는 상기 제2 상태량은 상기 제1 발명에서의 상태량과 다른 상태량이어도 좋으나, 동일하여도 좋다.
또한 제17 발명 및 제18 발명에서는 상기 제11 발명 또는 제12 발명과 마찬가지로, 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력(상기 가상적 외력 또는 상기 제1 차량 모델 상의 액추에이터 장치의 조작량)을 결정하도록 하면 좋다.
도 1은 본 발명의 실시 형태에 있어서 차량의 개략적인 구성을 나타내는 블럭도.
도 2는 본 발명의 실시 형태에 있어서 차량 모델의 기능적 구성을 나타내는 블럭도.
도 3은 도 2의 차량 모델의 연산 처리를 나타내는 흐름도.
도 4는 제1 실시 형태에 있어서 차량의 제어 장치의 전체의 기능적 구성을 나타내는 블럭도.
도 5는 제1 실시 형태의 변형 태양에 따른 차량의 제어 장치의 전체의 기능적 구성을 나타내는 블럭도.
도 6은 제2 실시 형태에 있어서 차량 모델의 기능적 구성을 나타내는 블럭도.
도 7은 제2 실시 형태 또는 제3~제5 실시 형태에 있어서 2륜 모델(2자유도 모델)을 설명하기 위한 도면.
도 8은 제3 실시 형태에 있어서 차량의 제어 장치의 전체의 기능적 구성을 나타내는 블럭도.
도 9는 제3 실시 형태의 제어 장치에 구비한 시나리오 작성부의 기능적 구성을 나타내는 블럭도.
도 10은 제3 실시 형태에 있어서 시나리오 작성부의 처리를 나타내는 흐름도.
도 11은 도 10의 흐름도의 S212의 서브 루틴 처리를 나타내는 흐름도.
도 12는 제3 실시 형태에 있어서 시나리오 작성부의 처리를 설명하기 위한 그래프.
도 13은 제3 실시 형태에 있어서 시나리오 작성부의 처리를 설명하기 위한 그래프.
도 14는 도 9에 나타낸 시나리오용 추종 제어 규칙의 기능적 구성을 나타내는 블럭도.
도 15는 제4 실시 형태에 있어서 차량의 제어 장치의 전체의 기능적 구성을 나타내는 블럭도.
도 16은 제4 실시 형태의 제어 장치에 구비한 시나리오 작성부의 기능적 구성을 나타내는 블럭도.
도 17은 제4 실시 형태에 있어서 시나리오 작성부의 처리를 나타내는 흐름도.
도 18은 도 17의 흐름도의 S314의 서브 루틴 처리를 나타내는 흐름도.
도 19는 제4 실시 형태에 있어서 시나리오용 추종 제어 규칙의 기능적 구성을 나타내는 블럭도.
도 20은 제4 실시 형태에 있어서 시나리오 작성부의 처리를 설명하기 위한 그래프.
도 21은 제5 실시 형태에 있어서 차량의 제어 장치의 전체의 기능적 구성을 나타내는 블럭도.
도 22는 제5 실시 형태에 있어서 시나리오 작성부의 처리를 나타내는 흐름도.
도 23은 도 22의 흐름도의 S414의 서브 루틴 처리를 나타내는 흐름도.
도 24는 제5 실시 형태에 있어서 시나리오용 추종 제어 규칙의 기능적 구성을 나타내는 블럭도.
본 발명의 차량의 제어 장치의 실시 형태를 이하에 설명한다.
먼저, 본 명세서의 실시 형태에 있어서의 차량의 개요를 설명한다. 본 명세서의 실시 형태에서 예시하는 차량은 4개의 차륜(차량의 전후에 2개씩의 차륜)을 구비하는 자동차이다. 그 자동차의 구조 자체는 공지의 것이어도 좋으므로 본 명세서에서의 상세한 도시 및 설명은 생략하는데, 그 개요는 다음과 같다. 도 1은 그 차량의 개략적인 구성을 나타내는 블럭도이다.
도 1에 도시한 바와 같이, 차량(1)(자동차)은, 공지의 통상의 자동차와 마찬가지로 4개의 차륜(W1, W2, W3, W4) 중 구동륜에 회전 구동력(차량의 추진력이 되는 회전력)을 부여하거나, 또는 각 차륜(W1~W4)에 제동력을 부여하는 구동ㆍ제동 장치(3A)(구동ㆍ제동계)와, 4개의 차륜(W1~W4) 중 조타륜(통상은 전륜(W1, W2))을 조타하는 스티어링 장치(3B)(스티어링계)와, 4개의 차륜(W1~W4)에 차체(1B)를 탄력적으로 지지하는 서스펜션 장치(3C)(서스펜션계)를 구비하고 있다.
이들 장치(3A, 3B, 3C)는 차량(1)의 운동을 조작하는 기능을 갖는다. 예컨대 구동ㆍ제동 장치(3A)는 주로 차량(1)의 진행 방향의 위치, 속도, 가속도를 조작하는 기능을 갖는다. 스티어링 장치(3B)는 주로 차량(1)의 요 방향의 자세를 조작하는 기능을 갖는다. 서스펜션 장치(3C)는 주로 차량(1)의 차체(1B)의 피치 방향 및 롤 방향의 자세 또는 차체(1B)의 노면으로부터의 높이(차륜(W1~W4)에 대한 차체(1B)의 상하 방향의 위치)를 조작하는 기능을 갖는다. 한편 본 명세서에서는 "자세"는 공간적인 방향을 의미한다.
구동ㆍ제동 장치(3A)는 상세한 도시는 생략하지만, 보다 상세하게는 차량(1)의 동력 발생원(차량(1)의 추진력 발생원)으로서의 엔진(내연 기관)과, 이 엔진의 출력(회전 구동력)을 차륜(W1~W4) 중 구동륜에 전달하는 동력 전달계와, 각 차륜(W1~W4)에 제동력을 부여하는 브레이크 장치를 구비하고 있다. 동력 전달계에는 변속 장치, 차동 기어 장치 등이 포함된다. 구동륜은 2개의 전륜(W1, W2), 또는 2개의 후륜(W3, W4), 또는 전륜(W1, W2) 및 후륜(W3, W4) 모두(4개의 차륜(W1~W4)) 중 어느 것이어도 좋다.
한편, 실시 형태에서 설명하는 차량(1)은 동력 발생원으로서 엔진을 구비하는 것인데, 엔진과 전동 모터를 동력 발생원으로서 구비한 차량(소위 패러랠형의 하이브리드 차량)이나 전동 모터를 동력 발생원으로서 구비한 차량(소위 전기 자동차, 또는 시리즈형의 하이브리드 차량)이어도 좋다.
또한 차량(1)(자동차)을 운전자가 조종하기 위하여 조작하는 조작기(5)(인위적 조작기)로서 스티어링 휠(핸들), 액셀 페달, 브레이크 페달, 시프트 레버 등이 차량(1)의 차실 내에 구비되어 있다.
조작기(5) 중 스티어링 휠은 상기 스티어링 장치(3B)의 동작에 관련되어 있다. 이 스티어링 휠을 회전 조작함으로써 이에 따라 스티어링 장치(3B)에 의해 차륜(W1~W4) 중 조타륜(통상은 2개의 전륜(W1, W2))이 조타된다.
조작기(5) 중 액셀 페달, 브레이크 페달 및 시프트 레버는 상기 구동ㆍ제동 장치(3A)의 동작에 관련되는 것이다. 즉, 액셀 페달의 조작량(밟는 양)에 따라 엔진에 구비된 스로틀 밸브의 열림 정도가 변화되고, 엔진의 흡입 공기량 및 연료분사량(나아가서는 엔진의 출력)이 조정된다. 또한 브레이크 페달의 조작량(밟는 양)에 따라 브레이크 장치가 작동하고, 브레이크 페달의 조작량에 따른 제동력이 각 차륜(W1~W4)에 부여된다. 또한 시프트 레버를 조작함으로써 변속 장치의 변속비 등 이 변속 장치의 동작 상태가 변화되고, 엔진에서 구동륜으로 전달되는 토크의 조정 등이 행해진다.
한편, 운전자(차량(1)의 조종자)에 의한 스티어링 휠 등의 각 조작기(5)의 운전 조작 상태는 도시를 생략하는 적당한 센서에 의해 검출된다. 이후, 이 운전 조작 상태의 검출값(센서의 검출 출력)을 운전 조작 입력이라고 한다. 이 운전 조작 입력에는 구체적으로는 스티어링 휠의 회전각인 스티어링 각, 액셀 페달의 조작량인 액셀 페달 조작량, 브레이크 페달의 조작량인 브레이크 페달 조작량, 시프트 레버의 조작 위치인 시프트 레버 위치가 포함된다. 이 운전 조작 입력은 본 발명에서의 운전 조작량에 해당하는 것이며, 이 운전 조작 입력을 출력하는 센서가 본 발명에서의 운전 조작량 출력 수단에 해당한다.
본 명세서의 실시 형태에서는 상기 구동ㆍ제동 장치(3A), 스티어링 장치(3B) 및 서스펜션 장치(3C)는 그 동작(나아가서는 차량(1)의 운동)을 상기 운전 조작 입력 이외의 차량(1)의 상태량(차속, 요 레이트 등)에 따라 능동적으로 제어 가능한 것으로 되어 있다.
즉, 구동ㆍ제동 장치(3A)는 예컨대 차량(1)의 주행 시에 엔진으로부터 각 구동륜에 전달하는 회전 구동력의 배분이나 차량(1)의 감속 시에 각 차륜(W1~W4)에 부여하는 제동력의 배분을 유압 액추에이터, 전동 모터, 전자 제어 밸브 등의 액추에이터를 통하여 원하는 동력 배분으로 제어 가능한 것으로 되어 있다. 이하, 이러한 동력 배분의 제어 기능을 갖는 구동ㆍ제동 장치(3A)를 동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A)라고 한다. 한편, 이 동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A)에는 동력 배분을 제어하기 위한 액추에이터 이외에, 엔진의 스로틀 밸브를 구동하는 액추에이터, 연료 분사 밸브를 구동하는 액추에이터, 변속장치의 변속 구동을 행하는 액추에이터, 브레이크 장치의 액추에이터 등도 포함된다.
또한 스티어링 장치(3B)는 전륜(W1, W2)뿐만 아니라 후륜(W3, W4)의 조타 기구도 구비하고 있으며, 스티어링 휠의 회전 조작에 따라 전륜(W1, W2)을 조타함과 동시에, 필요에 따라 적당히 유압 펌프, 전동 모터, 전자 제어 밸브 등의 액추에이터를 통하여 후륜(W3, W4)의 조타를 행하는 것(소위 4WS)으로 되어 있다. 이 경우, 스티어링 장치(3B)는 전륜(W1, W2)의 조타각도 후륜(W3, W4)과 마찬가지로 전동 모터 등의 액추에이터에 의해 원하는 조타각으로 제어 가능한 것으로 되어 있다.
단, 스티어링 장치(3B)는 전륜(W1, W2)을 스티어링 휠의 회전 조작에 따라 랙 앤드 피니언 등의 조타 기구를 통하여 기계적으로 조타하는 것(전륜 조타용 액추에이터를 구비하지 않는 것), 또는 그 기계적인 조타에 더하여 필요에 따라 전동 모터 등의 액추에이터에 의해 전륜(W1, W2)의 조타를 보조하도록 한 것이어도 좋다. 또는, 스티어링 장치(3B)는 후륜(W3, W4)의 조타 기능을 갖지 않으며, 전륜(W1, W2)의 조타각만을 전동 모터 등의 액추에이터에 의해 원하는 조타각으로 제어 가능한 것이어도 좋다. 이하, 이와 같이 전륜(W1, W2)의 조타각 또는 후륜(W3, W4)의 조타각, 또는 전륜(W1, W2) 및 후륜(W3, W4) 모두의 조타각을 액추에이터에 의해 제어 가능한 스티어링 장치(3B)를 액티브 스티어링 장치(3B)라고 한다.
한편, 전륜(W1, W2) 등의 조타륜을 스티어링 휠의 회전 조작에 따라 기계적으로 조타하는 것에 더하여, 보조적으로 액추에이터에 의해 조타륜을 조타하도록 한 액티브 스티어링 장치로는, 스티어링 휠의 회전 조작에 의해 기계적으로 결정되는 조타륜의 조타각과 액추에이터의 동작에 의한 조타각(조타각의 보정량)의 합성 각도가 조타륜의 조타각이 된다. 또한 조타륜의 조타를 액추에이터의 구동력으로만 행하도록 한 액티브 스티어링 장치에서는, 적어도 스티어링 각의 검출값에 따라 조타륜의 조타각의 목표값이 결정되고, 조타륜의 실제의 조타각이 그 목표값이 되도록 액추에이터가 제어된다.
또한 서스펜션 장치(3C)는, 예컨대 차체(1B)와 차륜(W1~W4) 사이에 개재하는 댐퍼의 감쇄력이나 경도 등을 전자 제어 밸브나 전동 모터 등의 액추에이터를 통하여 가변적으로 제어 가능하게 되어 있다. 또는, 서스펜션 장치(3C)는 유압 실 린더 또는 공압 실린더에 의해 서스펜션(서스펜션 장치(3C)의 스프링 등의 기구 부분)의 스트로크(차체(1B)와 각 차륜(W1~W4) 사이의 상하 방향의 변위량), 또는 차체(1B)와 차륜(W1~W4) 사이에서 발생하는 서스펜션의 상하 방향의 신축력을 직접 제어 가능하게(소위 전자 제어 서스펜션) 되어 있다. 이하, 이들 제어 기능을 갖는 서스펜션 장치(3C)를 액티브 서스펜션 장치(3C)라고 한다. 이 액티브 서스펜션 장치(3C)에서는 댐퍼의 감쇄력 등을 액추에이터를 통하여 제어함으로써 각 차륜(W1~W4)과 차체(1B) 사이의 작용력이 조작되고, 그에 따라 각 차륜(W1~W4)의 접지 하중(각 차륜(W1~W4)에 작용하는 노면 반력 중 병진력의 연직 성분 또는 노면에 수직한 성분)이 조작된다. 또는, 서스펜션의 스트로크(나아가서는 차륜(W1~W4)에 대한 차체(1B)의 상하 방향의 위치)가 액추에이터를 통하여 조작된다.
이후, 이들 동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B) 및 액티브 서스펜션 장치(3C)를 그 동작을 적당한 액추에이터를 통하여 능동적으로 제어할 수 있는 것이라는 의미에서 간혹 총칭적으로 액추에이터 장치(3)라고 한다. 본 명세서의 실시 형태에 있어서의 차량(1)에서는 액추에이터 장치(3)로서 상기 동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B) 및 액티브 서스펜션 장치(3C)가 구비되어 있다.
한편, 이들 액추에이터 장치(3) 모두를 구비할 필요는 없으며, 이들 액추에이터 장치(3) 중 어느 하나 또는 두 개만 구비하고 있어도 좋다. 또한 이들 이외의 액추에이터 장치가 구비되어 있어도 좋다. 액추에이터 장치(3)는 그 동작을 운전 조작 입력 또는 차량(1)의 상태량(차속, 요 레이트 등) 등에 따라 능동적으로 제어 가능하며, 그 제어에 의해 차량(1)이 어떤 운동을 능동적으로 조작 가능한 것이면 좋다.
또한 차량(1)에는 상기 각 액추에이터 장치(3)에 구비하는 액추에이터의 조작량(액추에이터에 대한 제어 입력. 이하, 액추에이터 조작량이라고 함)을 상기 운전 조작 입력 등에 따라 결정하고, 그 액추에이터 조작량에 의해 각 액추에이터 장치(3)의 동작을 제어하는 제어 장치(10)가 구비되어 있다. 이 제어 장치(10)는 마이크로 컴퓨터 등을 포함하는 전자 회로 유닛으로 구성되고, 그 연산 처리 기능에 의해 본 발명에서의 각 수단을 실현하고 있다. 한편, 제어 장치(10)에는 조작기(5)의 센서로부터 상기 운전 조작 입력이 입력되는 것 이외에, 도시하지 않은 다양한 센서로부터 차량(1)의 차속, 요 레이트 등의 차량(1)의 상태량의 검출값이 입력된다.
이상이 본 명세서의 실시 형태에 있어서의 차량(1)(자동차)의 개요이다. 이상에서 설명한 차량(1)의 개요를 전제로 하여, 실시 형태에 있어서의 차량(1)의 제어 장치(10)를 이하에 상세하게 설명한다. 차량(1)의 구성은 후술하는 제2 실시 형태를 제외한 어느 실시 형태에서도 동일하다.
[제1 실시 형태]
먼저, 본 발명의 제1 실시 형태에 있어서의 제어 장치(10)의 연산 처리(제어 처리)에서 사용하는 차량 모델을 도 2 및 도 3을 참조하여 설명한다. 도 2는 본 실시 형태의 차량 모델(72)의 기능적 구성을 나타내는 블럭도, 도 3은 상기 차량 모델(72)의 처리를 나타내는 흐름도이다.
한편 이후의 설명에 있어서, 차륜(W1~W4)의 각각에 대응하는 변수에 이 차륜(W1~W4)과 동일한 번 수의 첨자(i(i=1, 2, 3, 4))를 붙인다. 차륜(W1~W4)은 각각 상기 도 1에 도시한 바와 같이 차량(1)의 좌측 전단측의 차륜, 우측 전단측의 차륜, 좌측 후단측의 차륜, 우측 후단측의 차륜이다. 또한 이후의 설명에서는 각 차륜(Wi)이 그 외주부(노면과 직접 접촉하여 마찰력을 받는 부분)에 구비하는 타이어를 차륜과 동일시하여 차륜(Wi)을 간혹 타이어(Wi)라고 칭하기로 한다. 또한 차체(1B)의 전후 방향 또는 진행 방향을 X축, 연직 방향을 Z축, X축 및 Z축과 직교하는 축을 Y축이라 하고, 벡터량의 각 좌표축 성분에는 각각 첨자(x, y, z)를 붙인다. 또한 본 실시 형태에서는 차량 모델(72)의 연산 처리를 포함시켜 제어 장치(10)의 연산 처리(제어 처리)는 소정의 연산 처리 주기(제어 주기)로 축차적으로 실행된다. 그리고, 본 명세서의 실시 형태의 설명에서는 제어 장치(10)의 각 연산 처리 주기로 새로 산출되는 변수의 값에 "금회"를 붙이고, 그 하나 이전의(전회의) 연산 처리 주기로 산출한 변수의 값에 "전회"를 붙인다.
도 2를 참조하면, 차량 모델(72)은 상기 액추에이터 장치(3)(동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B) 및 액티브 서스펜션(3C))을 포함시킨 차량(1)의 동특성을 표현하는 모델이다. 보다 구체적으로는, 이 차량 모델(72)은 차륜(W1~W4)의 미끄러짐과 이 차륜(W1~W4)에 작용하는 노면 반력의 관계를 나타내는 타이어 마찰 모델(50)과, 차량(1)의 운동과 차륜(W1~W4)의 미끄러짐의 관계를 나타내는 운동학 모델과, 차량(1)의 운동과 노면 반력(보다 일반적으로는 차량(1)에 작용하는 외력(노면 반력을 포함함)) 과의 관계를 나타내 는 동력학 모델과, 상기 각 액추에이터 장치(3)의 동특성(운전 조작 입력이나 액추에이터 조작량, 또는 외력에 대한 각 액추에이터 장치(3)의 동작 특성)을 나타내는 모델을 포함하는 모델이다.
보다 구체적으로는, 차량 모델(72)은 타이어 마찰 모델(50), 구동ㆍ제동계 모델(52), 서스펜션 동특성 모델(54), 차체 운동 모델(56), 타이어 회전 운동 모델(58), 조타계 모델(60), 횡 미끄럼각 산출부(62), 슬립비 산출부(64) 및 타이어 진행 속도 벡터 산출부(66)를 구비하고 있다. 차체 운동 모델(56)은 상기 동력학 모델과 상기 운동학 모델로 이루어진다.
타이어 마찰 모델(50)은 차량 모델(72) 상에서의 각 타이어(Wi(i=1, 2, 3, 4))와 노면 사이의 상대 운동에 따라 각 타이어(Wi)에 발생하는(노면으로부터 각 타이어(Wi)에 작용하는) 구동ㆍ제동력(Fmdl_x_i)과 횡력(Fmdl_y_i)과 셀프 얼라인먼트 토크(Mmdl_z_i)를 산출하여 출력하는 것이다. 이들 Fmdl_x_i, Fmdl_y_i 및 Mmdl_z_i는 예컨대 상기 비 특허 문헌 1에 기재되어 있는 바와 같이 공지의 연산 처리에 의해 산출된다.
구체적으로는, 각 타이어(Wi)의 구동ㆍ제동력(Fmdl_x_i)은 예컨대 상기 비 특허 문헌 1의 제183 페이지의 식 (26), (27)에 보여지는 바와 같이, 각 타이어(Wi)의 슬립비(Smdl_i)에 따라 다음 식 01, 02에 의해 결정된다. 한편, 식 01, 02는 어느 타이어(W1~W4)에 대해서도 동일한 형태의 식이므로, 첨자(i(i=1, 2, 3, 4))는 생략하였다.
Figure 112006084596046-pct00001
Figure 112006084596046-pct00002
이들 식 01, 02에 있어서, Kx는 드라이빙 스티프니스(타이어의 구동 시) 또는 브레이킹 스티프니스(타이어의 제동 시)라 일컬어지는 비례 상수, L은 각 타이어의 접지 길이, μs는 최대 마찰 계수, μd는 미끄럼 마찰 계수, Lh는 각 타이어의 미끄럼 시작의 접지 길이, ε은 마찰 계수가 μs에서 μd로 변화될 때의 이 마찰 계수의 변화 정도를 나타내는 값, exp()는 자연 대수의 밑(e)의 지수 함수, Fmdl_z는 각 타이어의 접지 하중(연직 방향의 노면 반력), Smdl은 각 타이어의 슬립비이다. Smdl은 후술하는 슬립비 산출부(64)에서 구해지며, 접지 하중(Fmdl_z)은 후술하는 서스펜션 동특성 모델(54)에서 구해진다. μs, μd는 후술하는 μ 추정부(80)에서 구해지는 추정 노면 마찰 계수(μestm)(타이어와 접하는 노면의 마찰 계수의 추정값) 등을 기초로 결정된다. Kx, L, Lh, ε은 예컨대 미리 정한 소정 값으로 설정된다. 또는, ε 등도 마찰 계수와 마찬가지로 공지의 방법에 의해 추정하여도 좋다. 한편, 상기 비 특허 문헌 1의 제183 페이지의 도 6-17에 보이는 바와 같이, 각 타이어 슬립비(Smdl)와 접지 하중(Fmdl_z)의 관계를 미리 맵이나 데이터 테이블로 설정해 두고, 그것을 이용하여 Fmdl_z를 결정하도록 하여도 좋다.
각 타이어(Wi)의 셀프 얼라이닝 토크(Mmdl_z_i)는 예컨대 상기 비 특허 문헌 1의 제180 페이지의 식 (4), (5)에 보여지는 바와 같이, 각 타이어(Wi)의 횡 미끄럼각(슬립각)(αmdl_i)에 따라 다음 식 03, 04에 의해 결정된다. 한편, 식 03, 04는 어느 타이어(W1~W4)에 대해서도 동일한 형태의 식이므로 첨자(i(i=1, 2, 3, 4))는 생략하였다.
Figure 112006084596046-pct00003
Figure 112006084596046-pct00004
한편, 식 03에서는 Mmdl_z를 (L?μ?Fmdl_z)에 의해 제산한 것이 M_z*로서 정의되어 있다.
이들 식 03, 04에 있어서, Ky는 코너링 스티프니스라 일컬어지는 비례 상수, L은 각 타이어의 접지 길이, μ는 마찰 계수이다. 각 타이어의 횡 미끄럼각(αmdl)은 후술하는 횡 미끄럼각 산출부(62)에서 구해지며, 각 타이어의 접지 하중(Fmdl_z)은 후술하는 서스펜션 동특성 모델(54)에서 구해진다. 또한 μ는 후술 하는 μ 추정부(80)에서 구해지는 추정 노면 마찰 계수(μestm)를 기초로 결정된다. Ky, L은 예컨대 미리 정한 소정값으로 설정되거나, 또는 공지의 방법에 의해 추정된다.
한편, 상기 비 특허 문헌 1의 제180 페이지의 도 6-10에 보이는 바와 같이, φ와 M_z*의 관계를 미리 맵이나 데이터 테이블로 설정해 두고, 그것을 이용하여 Mmdl_z_i를 결정하도록 하여도 좋다.
각 타이어(Wi)의 횡력(Fmdl_y_i)은 상기 비 특허 문헌 1의 제180 페이지의 식 (3)에 보여지는 바와 같이, 횡 미끄럼각(αmdl_i)에 따라 다음 식 05에 의해 결정된다. 한편, 식 05는 어느 타이어(W1~W4)에 대해서도 동일한 형태의 식이므로 첨자(i(i=1, 2, 3, 4))는 생략하였다.
Figure 112006084596046-pct00005
한편, 식 05에서는 Fmdl_y를 (μ?Fmdl_z)에 의해 제산한 것이 F_z*로서 정의되어 있다.
이 식 05의 φ는 상기 식 04에 의해 횡 미끄럼각(αmdl)에 따라 정의되는 값이다. 각 타이어의 횡 미끄럼각(αmdl)은 후술하는 횡 미끄럼각 산출부(62)에서 구해지며, 각 타이어의 접지 하중(Fmdl_z)은 후술하는 서스펜션 동특성 모델(54)에서 구해진다. 또한 μ는 후술하는 μ 추정부(80)에서 구해지는 추정 노면 마찰 계 수(μestm)를 기초로 결정된다.
한편, 상기 비 특허 문헌 1의 제180 페이지의 도 6-10에 보이는 바와 같이, φ와 F_y*의 관계를 미리 맵이나 데이터 테이블로 설정해 두고, 그것을 이용하여 Fmdl_y_i를 결정하도록 하여도 좋다. 또한 각 타이어(Wi)의 횡력(Fmdl_y_i)은 슬립비(Smdl_i)에 따라 보정하도록 하여도 좋다. 즉, 상기 비 특허 문헌 1의 제184 페이지의 도 6-20에 보이는 바와 같은 횡력과 슬립비의 관계를 미리 맵이나 데이터 테이블로 설정해 두고, 그것을 이용하여 식 05에 의해 결정한 횡력(Fmdl_y_i)을 보정하도록 하여도 좋다. 또는, 횡 미끄럼각(αmdl_i)과 슬립비(Smdl_i)로부터 맵을 이용하여 횡력(Fmdl_y_i)을 직접 결정하도록 하여도 좋다. 나아가서는, 타이어의 이너셔(관성 모멘트)를 무시할 수 있는 경우에는 상기 비 특허 문헌 1의 제184 페이지의 도 6-21에 보이는 관계를 이용하여, 슬립비(Smdl_i)에 따라 횡력(Fmdl_y_i)을 보정하는 대신, 각 타이어(Wi)에 작용하는 구동ㆍ제동력(Fmdl_x_i)에 따라 횡력(Fmdl_y_i)을 보정하도록 하여도 좋다.
또한 서스펜션의 지오메트리에 관한 컴플라이언스 특성을 등가적으로 타이어 마찰 모델에 포함시켜도 좋다.
이상과 같이 구동ㆍ제동력(Fmdl_x_i)과 횡력(Fmdl_y_i)과 셀프 얼라이닝 토크(Mmdl_z_i)를 산출하기 위하여, 도 2의 차량 모델(72)에서는 타이어 마찰 모델(50)에 각 타이어(Wi)의 슬립비(Smdl_i), 횡 미끄럼각(αmdl_i), 접지 하중(Fmdl_z_i) 및 추정 노면 마찰 계수(μestm)가 입력된다. 그리고, 이 타이어 마 찰 모델(50)은 이들 입력으로부터 상기 식 (01)~(05)에 기초하여 Fmdl_x_i, Fmdl_y_i 및 Mmdl_z_i를 결정하여 출력한다.
보충하면, 상기 식 01, 식 02로 구해지는 구동ㆍ제동력(Fmdl_x_i)은 보다 정확하게는, 차륜(Wi)의 중심면(차륜(Wi)의 회전축과 직교하는 면)과 노면 사이의 교선 방향의 힘으로서, 식 05를 기초로 구해지는 횡력(Fmdl_y_i)은 차륜(Wi)의 회전축을 포함하여 노면에 수직한 면과 노면 사이의 교선 방향의 힘이다. 따라서, 그들 교선 방향이 X축(차체(1B)의 전후 방향), Y축(차체(1B)의 차폭 방향)의 방향에 일치하지 않은 경우(차량의 선회 시 등)에는 상기 횡 미끄럼각(αmdl_i) 등을 기초로 좌표 변환을 행함으로써 Fmdl_x_i와 Fmdl_y_i가 구해진다. 한편, 상기 교선 방향이 X축, Y축과 일치하지 않은 경우에는, X축 방향의 힘(Fmdl_x_i)은 코너링 드래그, Y축 방향의 힘(Fmdl_y_i)은 코너링 포스라 불린다.
구동ㆍ제동계 모델(52)은 상기한 바와 같이 엔진, 동력 전달계 및 브레이크 장치로 구성되는 구동ㆍ제동 장치(3A)의 동특성을 나타내는 모델로서, 적어도 구동ㆍ제동 장치(3A)에 구비하는 액추에이터의 조작량인 구동ㆍ제동계 액추에이터 조작량(엔진의 연료 분사 밸브의 구동, 변속 장치의 변속 동작을 행하는 액추에이터의 조작량 등)을 기초로 각 타이어(Wi)에 부여하는 구동ㆍ제동 토크(Tqmdl_i)를 산출하는 것이다. 구동ㆍ제동계 액추에이터 조작량은 후술하는 액추에이터 구동 제어 장치 모델(76)로부터 입력된다(이후, 이 구동ㆍ제동계 액추에이터 조작량을 구동ㆍ제동계 모델 액추에이터 조작량이라고 할 수 있다). 이 경우, 구동ㆍ제동 장치(3A)가 각 타이어(Wi)에 부여하는 구동ㆍ제동 토크(Tqmdl_i)(상세하게는 구동 토 크와 제동 토크의 세트)는 각 타이어(Wi)의 회전 속도(ωwmdl_i)에 따라 변화되므로, 타이어(Wi)의 회전 속도(ωwmdl_i)도 구동ㆍ제동계 모델(52)에 입력된다. 또한 본 실시 형태에 있어서는, 액추에이터 구동 제어 장치 모델(76)로의 입력으로서 구동ㆍ제동 토크의 배분 커맨드, 또는 각 타이어(Wi)에 작용하는 구동ㆍ제동력(Fmdl_x_i)의 목표값이 포함되고, 그 배분 커맨드 또는 목표값을 따르도록 각 타이어(Wi)에 부여하는 구동ㆍ제동 토크(Tqmdl_i)가 산출된다.
서스펜션 동특성 모델(54)은 본 실시 형태에서의 서스펜션 장치인 액티브 서스펜션 장치(3C)의 동특성을 나타내는 모델이다. 이 서스펜션 동특성 모델(54)에는 구체적인 것을 후술하는 차체 운동 모델(56)로부터 차량 모델(72) 상에서의 차체 운동의 상태량(차체(1B)의 자세각?각속도, 차체(1B)의 위치?속도)이 입력됨과 동시에, 후술하는 액추에이터 구동 제어 장치 모델로부터 액티브 서스펜션 장치(3C)에 구비하는 액추에이터의 조작량인 서스펜션 액추에이터 조작량(이후, 서스펜션계 모델 액추에이터 조작량이라고 할 수 있음)이 입력된다. 한편, 서스펜션 동특성 모델(54)에 입력되는 차체 운동의 상태량은 본 실시 형태에서는 제어 장치(10)의 전회 상태량(차체 운동의 상태량의 전회값)이다.
그리고, 서스펜션 동특성 모델(54)은 입력된 서스펜션 액추에이터 조작량과 차체 운동의 상태량(전회값)과 상정 또는 추정되는 노면 형상(여기서는 설명을 이해하기 쉽게 하기 위하여 평탄하다고 한다)을 기초로 각 타이어(Wi)에 작용하는 접지 하중(Fmdl_z_i)을 산출한다.
한편, 서스펜션 장치(3C)가 능동적인 액추에이터를 구비하지 않는 수동적인 서스펜션 장치인 경우에는, 서스펜션 동특성 모델(54)은 서스펜션 장치(3C)나 각 타이어(Wi)의 스프링ㆍ매스ㆍ댐퍼 특성을 나타내는 것이어도 좋다. 이 경우에는, 서스펜션 동특성 모델(54)은 차체 운동의 전회 상태량(차체(1B)의 자세각?각속도, 차체(1B)의 위치?속도)과 상정되는 노면 형상을 기초로 각 타이어(Wi)에 작용하는 접지 하중(Fmdl_z_i)을 산출하면 된다.
차체 운동 모델(56)은 차량(1)에 작용하는 힘과 차체(1B)의 운동의 관계를 나타내는 동력학 모델을 포함한다. 이 차체 운동 모델(56)은 상기한 바와 같이 타이어 마찰 모델(50) 및 서스펜션 동특성 모델(54)에 의해 구해진 각 타이어(Wi)의 노면 반력(횡력(Fmdl_y_i), 구동ㆍ제동력(Fmdl_x_i), 접지 하중(Fmdl_z_i), 셀프 얼라이닝 토크(Mmdl_z_i) 등)과 가상 외력(Fvirt, Mvirt)이 입력된다. 가상 외력(Fvirt, Mvirt)은 후술하는 분배기(88)로부터 입력된다. 그리고, 차체 운동 모델(56)은 이들 입력과 차체 운동의 전회 상태량(차체(1B)의 자세각?각속도, 차체(1B)의 위치?속도)을 기초로 차체 운동의 금회 상태량(상태량의 금회값)을 산출한다.
이 차체 운동 모델(56)은, 구체적으로는, 예컨대 상기 비 특허 문헌 1의 제211 페이지의 식 (122)~(127)의 우변에 가상 외력을 추가한 식으로 기술된다. 즉, 차체(1B)의 병진 운동(X, Y, Z축의 각 좌표축 방향의 병진 운동)에 관한 동력학은 다음 식 10a~10c로 기술되며, 차체(1B)의 회전 운동(롤 방향(X축 방향), 피치 방향(Y축 방향), 요 방향(Z축 방향)의 회전 운동)에 관한 동력학은 다음 식 11a~11c로 기술된다. 한편, 여기서는 차량(1)에 작용하는 공기력의 영향은 무시한 다. 단, 이 공기력의 영향을 고려하여도 좋다.
Figure 112006084596046-pct00006
Figure 112006084596046-pct00007
여기서, 이들 식의 변수의 의미는 비 특허 문헌 1의 제210 페이지의 표 6-7에서 정의되어 있는 바와 같다. 즉, u, v, w는 각각 차량(1)의 스프링 윗 부분(차 체(1B))의 전후, 좌우, 상하 방향(X축, Y축, Z축 방향)의 속도 성분, p, q, r은 각각 스프링 윗 부분(차체(1B))의 롤 방향(X축 방향), 피치 방향(Y축 방향), 요 방향(Z축 방향)의 각속도, Ix, Iy는 각각 스프링 윗 부분(차체(1B))의 X축, Y축 방향의 관성 모멘트, Iz는 차량(1)의 Z축 방향의 관성 모멘트, Ixz는 스프링 윗 부분(차체(1B))의 X축 및 Z축에 관한 관성 상승 모멘트, hf, hr은 각각 차량(1)의 앞축, 뒷축의 롤 센터 높이, hs는 스프링 윗 부분(차체(1B))의 무게 중심에서 롤 축에 내린 수선의 길이(롤 암), hRC는 스프링 윗 부분(차체(1B))의 무게 중심 위치에서의 롤 축의 높이, Lf, Lr은 각각 앞축, 뒷축과 스프링 윗 부분(차체(1B))의 무게 중심 사이의 거리, bf, br은 각각 전륜 트레드, 후륜 트레드, m, ms는 각각 차량(1)의 질량, 스프링 윗 부분(차체(1B))의 질량, g는 중력 가속도, ax, ay는 각각 차량(1)의 전후 방향(X축 방향), 좌우 방향(Y축 방향)의 가속도이다.
한편, Fvirt는 가상 외력의 병진력 성분(벡터)이고, Fvirt_x, Fvirt_y, Fvirt_z는 그 병진력 성분의 각 좌표축 성분이다. 또한 Mvirt는 가상 외력의 모멘트 성분(벡터)이고, Mvirt_x, Mvirt_y, Mvirt_z는 그 모멘트 성분의 각 좌표축 성분이다.
차체 운동 모델(56)의 구체적인 연산 순서에서는, 상기 식 10a~10c 및 11a~11c의 모델식에 의해 차체(1B)의 X, Y, Z축 방향의 속도(식 10a~10c에 있어서 u, v, w)와 차체(1B)의 롤 방향, 피치 방향, 요 방향의 각속도(식 11a~11c에 있어서 p, q, r)가 구해진다. 이어서, 그 구한 차체(1B)의 속도, 각속도를 각각 적분 함으로써 차체(1B)의 위치와 자세각(롤 방향, 피치 방향, 요 방향의 각도)이 구해진다. 이후, 이와 같이 하여 차체 운동 모델(56)에 의해 구해지는 차체(1B)의 운동(차체(1B)의 위치, 속도(병진 속도), 자세각, 자세각의 각속도)을 모델 차체 운동이라고 할 수 있다.
한편, 상기한 차체 운동 모델(56)의 식에서는 타이어(Wi)의 상하 변위는 일정(또는 노면으로부터의 높이 일정)하다고 가정되는데, 일정하지 않아도 좋다.
또한 이상의 모델에 있어서는 각 타이어(Wi)에 작용하는 수평축 방향의 모멘트(Mmdl_x_i, Mmdl_y_i)는 무시하였으나, 이들을 고려하여도 좋다. 또한 롤 센터를 이용하지 않는 표현으로 모델을 기술하여도 좋다.
상기 타이어 회전 운동 모델(58)은 각 타이어(Wi)의 구동ㆍ제동력(Fmdl_x_i)과 각 타이어(Wi)의 구동ㆍ제동 토크(Tqmdl_i)를 입력으로 하여 각 타이어(Wi)의 회전 속도(ωwmdl_i)를 출력하는 모델이다. Fmdl_x_i, Tqmdl_i는 각각 상기 타이어 마찰 모델(50), 구동ㆍ제동계 모델(52)로부터 입력된다.
구체적으로는, 타이어 회전 운동 모델(58)에서는 먼저 각 타이어(Wi)의 구동ㆍ제동력(Fmdl_x_i)에 타이어(Wi)의 유효 반경(rw)을 곱한 값을 각 타이어(Wi)의 구동ㆍ제동 토크(Tqmdl_i)에서 뺌으로써 각 타이어(Wi)의 회전 가속 토크가 구해진다. 그리고, 이 회전 가속 토크를 각 타이어(Wi)의 회전 이너셔(관성 모멘트)(Iw)로 나눈 값을 적분함으로써 각 타이어(Wi)의 회전 속도(ωwmdl_i)가 구해진다.
한편, 제어 주기(연산 처리 주기)가 Δt인 이산계에 있어서는 적분에 의해 타이어(Wi)의 회전 속도(ωwmdl_i)를 구하기 위해서는 각 타이어(Wi)의 회전 가속 토크를 타이어(Wi)의 회전 이너셔(Iw)로 제산한다. 그리고, 그 제산 결과의 값에 Δt를 곱한 값을 타이어(Wi)의 회전 속도의 전회값에 더함으로써 타이어(Wi)의 회전 속도(ωwmdl_i)의 금회값(금회의 제어 주기에서의 값)을 구하면 좋다.
조타계 모델(60)은 본 실시 형태의 스티어링 장치(액티브 스티어링 장치)(3B)의 동작을 나타내는 모델로서, 각 타이어(Wi)의 조타각(δmdl_i)을 산출한다. 이 조타계 모델(60)에는 상기 운전 조작 입력의 요소인 스티어링각(θs) 등이 입력된다. 더욱 상세하게는, 조타계 모델(60)에는 스티어링각(θs)에 더하여 상기 액티브 스티어링 장치(3B)가 구비하는 액추에이터의 조작량인 스티어링 액추에이터 조작량(δa_i)(이후, 조타계 모델 액추에이터 조작량이라고 할 수 있다)이 후술하는 액추에이터 구동 제어 장치 모델(76)로부터 입력된다. 스티어링 액추에이터 조작량(δa_i)은 스티어링 장치(3B)의 액추에이터에 의한 각 차륜(Wi)의 조타각을 규정하는 조작량, 또는 스티어링 휠의 조작에 따른 기구적인 조타각의 수정량을 규정하는 조작량이다. 그리고, 조타계 모델(60)은 이들 입력을 기초로 각 타이어(Wi)의 조타각(δmdl_i)을 산출한다. 예컨대 스티어링 장치(3B)가 스티어링 휠의 회전 조작에 따른 기구적인 전륜(W1, W2)의 조타를 액추에이터에 의해 보조하고, 또한 후륜(W3, W4)의 조타를 액추에이터의 구동력에 의해 행하는 것인 경우에는, 스티어링각(θs)으로부터 전륜(W1, W2)의 조타계의 기구적인 특성에 따라 정해지는 전륜(W1, W2)의 조타각을 구하고, 이 조타각을 전륜(W1, W2)용 스티어링 액추에이터 조작량(δa_1,δa_2)에 따라 보정함으로써 전륜(W1, W2)의 조타각(δmdl_1,δmdl_2)을 산출하면 된다. 또한 후륜(W3, W4)의 조타각(δmdl_3,δmdl_4)은 후 륜(W3, W4)용 스티어링 액추에이터 조작량(δa_3,δa_4)으로부터 결정하면 좋다. 이 경우, 스티어링 장치(3B)의 액추에이터로부터 조타륜으로의 전달 지연 등의 특성을 고려하여 조타각(δmdl_i)을 결정하도록 하여도 좋다.
한편, 액티브 스티어링 장치(3B)가 후륜(W3, W4)을 조타하지 않는 것인 경우에는, 후륜(W3, W4)의 조타각은 스티어링각(θs)에 관계 없이 항상 0(차체(1B)의 전후 방향에 대한 각도가 0)이 된다. 또한 스티어링 장치(3B)가 능동적인 액추에이터를 구비하지 않는 경우에는, 조타계 모델(60)은 스티어링 장치(3B)의 기구적인 특성(스티어링각(θs)과 조타륜(전륜W1, W2)의 조타각의 관계를 나타내는 특성)을 기초로 스티어링각(θs)으로부터 각 타이어(각 전륜(W1, W2))의 조타각(δmdl_i)을 산출하도록 하면 좋다. 또한 스티어링 장치(3B)가 각 조타륜의 조타를 액추에이터의 구동력으로만 행하는 것인 경우에는, 조타계 모델(60)에 스티어링 액추에이터 조작량(δa_i)만을 입력하고, 그 입력으로부터 조타각(δmdl_i)을 산출하도록 하여도 좋다. 더욱이, 서스펜션의 스트로크 변화나 하중 변화에 의한 지오메트리 변화를 고려하여 조타각(δmdl_i)을 산출하도록 하여도 좋다.
상기 타이어 진행 속도 벡터 산출부(66)는 상기 차체 운동 모델(56)로부터 입력되는 모델 차체 운동의 상태량을 기초로 키네마틱스 연산에 의해 각 타이어(Wi)의 진행 속도 벡터(각 타이어(Wi)의 진행에 적합한 속도)(Vmdl_i)를 산출하는 것이다.
상기 슬립비 산출부(64)는 각 타이어(Wi)의 슬립비(Smdl_i)를 산출하는 것이다. 이 슬립비 산출부(64)에는 각 타이어(Wi)의 진행 속도 벡터(Vmdl_i)와 각 타 이어(Wi)의 조타각(δmdl_i)과 각 타이어(Wi)의 회전 속도(ωwmdl_i)가 입력된다. 진행 속도 벡터(Vmdl_i), 조타각(δmdl_i), 회전 속도(ωwmdl_i)는 각각 상기 타이어 진행 속도 벡터 산출부(66), 상기 조타계 모델(60), 상기 타이어 회전 운동 모델(58)로부터 입력된다. 그리고, 슬립비 산출부(64)는 이들 입력을 기초로, 예컨대 상기 비 특허 문헌 1의 제182 페이지의 식 (17) 및 (18)에 따라 각 타이어(Wi)의 슬립비(Smdl_i)를 산출한다. 구체적으로는, 각 타이어(Wi)의 슬립비(Smdl_i)는 그 타이어(Wi)의 구동 시에는 다음 식 12a에 의해 산출되고, 이 타이어(Wi)의 제동 시에는 다음 식 12b에 의해 산출된다. 단, 이들 식 12a, 12b에 있어서 V는 차체(1B)의 방향(X축 방향)을 기준으로 한 진행 속도 벡터(Vmdl_i) 중 타이어(Wi)의 중심면과 노면 사이의 교선 방향의 성분이다. 이 성분은 Vmdl_i와 조타각(δmdl_i)으로부터 구해진다. 또한 식 12a, 12b에 있어서, rw는 각 타이어(Wi)의 유효 반경이다. 한편, 식 12a, 12b는 어느 타이어(W1~W4)에 대해서도 동일한 형태의 식이므로 첨자(i(i=1, 2, 3, 4))는 생략하였다.
Figure 112006084596046-pct00008
상기 횡 미끄럼각 산출부(62)는 각 타이어(Wi)의 횡 미끄럼각(αmdl_i)을 산출하는 것이다. 이 횡 미끄럼각 산출부(62)에는 각 타이어(Wi)의 진행 속도 벡 터(Vmdl_i)와 각 타이어(Wi)의 조타각(δmdl_i)이 입력된다. 진행 속도 벡터(Vmdl_i)와 조타각(δmdl_i)은 각각 상기 타이어 진행 속도 벡터 산출부(66), 상기 조타계 모델(60)로부터 입력된다. 그리고, 횡 미끄럼각 산출부(62)는 이들 입력을 기초로, 예컨대 상기 비 특허 문헌 1의 제181 페이지의 도 6-13에 보이는 바와 같이, 각 타이어(Wi)의 조타각(X축 방향에 대한 각도)과 각 타이어(Wi)의 진행 속도 벡터(Vmdl_i)의 방위각(X축 방향에 대한 각도)과의 차를 횡 미끄럼각(αmdl_i)으로서 구한다.
이상 설명한 차량 모델의 연산 처리를 도 3의 흐름도를 참조하여 이하에 설명한다. 이 연산 처리는 소정의 연산 처리 주기(제어 주기)로 실행되는 처리이다. 한편, 이후의 설명에서 "전회"는 전회의 연산 처리 주기를 의미하고, "금회"는 현재의 연산 처리 주기를 의미한다.
먼저 S110에 있어서, 구동ㆍ제동계 모델 액추에이터 조작량에 따라 구동ㆍ제동계 모델(52)에 의해 전술한 바와 같이 각 타이어의 구동ㆍ제동 토크(Tqmdl_i)를 산출한다.
이어서 S112로 진행하여, 각 타이어의 구동ㆍ제동 토크(Tqmdl_i)와 각 타이어의 전회 구동ㆍ제동력(Fmdl_x_i)으로부터 타이어 회전 운동 모델(58)에 의해 전술한 바와 같이 각 타이어의 회전 속도(ωwmdl_i)를 산출한다.
이어서 S114로 진행하여, 스티어링각(θs)과 조타계 모델 액추에이터 조작량(δa_i)에 따라 조타계 모델(60)에 의해 전술한 바와 같이 각 타이어의 조타각(δmdl_i)을 구한다.
이어서 S116으로 진행하여, 서스펜션계 모델 액추에이터 조작량과 모델 차체 운동의 전회 상태량(차체의 자세각?각속도, 차체 위치?속도)과 상정되는 노면 형상(여기서는, 설명을 이해하기 쉽게 하기 위하여 평탄하다고 한다)을 기초로, 서스펜션 동특성 모델(54)에 의해 전술한 바와 같이 각 타이어(Wi)에 작용하는 접지 하중(Fmdl_z_i)을 산출한다.
이어서 S118로 진행하여, 모델 차체 운동의 전회 상태량(차체의 속도와 자세각?각속도)을 기초로, 타이어 진행 속도 벡터 산출부(66)에 의해 전술한 바와 같이 각 타이어(Wi)의 진행 속도 벡터(Vmdl_i)(진행 방향과 속도)를 산출한다.
이어서 S120으로 진행하여, 슬립비 산출부(64)에 있어서 각 타이어(Wi)의 조타각(δmdl_i)과 각 타이어(Wi)의 회전 속도(ωwmdl_i)와 각 타이어(Wi)의 진행 속도 벡터(Vmdl_i)로부터 전술한 바와 같이 각 타이어(Wi)의 슬립비(Smdl_i)를 산출한다.
이어서 S122로 진행하여, 횡 미끄럼각 산출부(62)에 있어서 각 타이어(Wi)의 조타각(δmdl_i)과 각 타이어(Wi)의 진행 속도 벡터(Vmdl_i)로부터 횡 미끄럼각(αmdl_i)을 구한다.
이어서 S124로 진행하여, 각 타이어(Wi)의 횡 미끄럼각(αmdl_i)과 슬립비(Smdl_i)와 접지 하중(Fmdl_z_i)을 기초로, 타이어 마찰 모델(50)에 의해 각 타이어(Wi)의 구동ㆍ제동력(Fmdl_x_i)과 횡력(Fmdl_y_i)과 셀프 얼라이닝 토크(Mmdl_z_i)를 결정한다.
마지막으로 S126으로 진행하여, 전술한 바와 같이 구한 노면 반력(횡 력(Fmdl_y_i), 구동ㆍ제동력(Fmdl_x_i), 접지 하중(Fmdl_z_i), 셀프 얼라이닝 토크(Mmdl_z_i) 등)을 전술한 차체 운동 모델(56)에 입력하고, 이들 입력과 모델 차체 운동의 전회 상태량(차체(1B)의 자세각?각속도, 차체(1B)의 위치?속도)을 기초로 모델 차체 운동의 금회 상태량을 산출한다.
이상과 같이 차량 모델(72)의 연산 처리가 행해진다. 한편, 차량 모델(72)의 연산의 순서는 적당히 변경하여도 좋다. 또한 차량 모델(72)의 연산에 이용하는 식의 근사나 변형을 행하여도 좋다.
이상 설명한 차량 모델(72) 및 그 연산 처리는 후술하는 제2 실시 형태를 제외한 각 실시 형태에 있어서 공통이다. 보충하면, 이상 설명한 차량 모델(72)은 본 발명의 제1 차량 모델에 해당하는 것이며, 이 차량 모델(72)에 의해 상기한 바와 같이 구해지는 모델 차체 운동이 본 발명의 차량 모델 운동에 해당한다.
보충하면, 차량 모델(72)은 광의의 의미에서의 동력학 모델이라고 할 수 있다. 이에 대하여 전술한 차량(1)의 운동과 노면 반력(보다 일반적으로는 차량(1)에 작용하는 외력(노면 반력을 포함함))의 관계를 나타내는 동력학 모델은 협의의 의미에서의 동력학 모델이라고 할 수 있다.
다음, 제1 실시 형태에 있어서의 제어 장치(10)의 제어 처리를 도 4를 참조하여 설명한다. 도 4는 제1 실시 형태의 차량(1)의 제어 장치(10)의 제어 처리 기능을 나타내는 블럭도이다. 도 3에서 실차(70)를 제외한 부분(보다 정확하게는, 실차(70)와 후술하는 센서ㆍ옵저버(82)에 포함되는 센서를 제외한 부분)이 제어 장치(10)의 제어 처리 기능이다. 그 제어 처리 기능은 제어 장치(10)에 실장된 프로 그램 등에 의해 실현된다. 실차(70)는 실제의 차량을 의미하며, 상기한 액추에이터 장치(3)(동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B), 액티브 서스펜션 장치(3C))를 구비하고 있다.
본 실시 형태의 차량(1)의 제어 장치(10)는 그 제어 처리 기능으로서 상기한 차량 모델(72) 이외에, 피드포워드 조작량 결정부(74), 액추에이터 구동 제어 장치 모델(76), 액추에이터 구동 제어 장치(78), μ 추정부(80), 센서ㆍ옵저버(82), 편차 산출부(84), 편차 해소 제어 규칙(86), 분배기(88), 감각 피드백 알림부(90)를 구비하고 있다.
피드포워드 조작량 결정부(74)와 액추에이터 구동 제어 장치(78)는 본 발명의 액추에이터 장치 제어 수단(92)을 구성하는 것이다. 또한 피드포워드 조작량 결정부(74), 액추에이터 구동 제어 장치 모델(76) 및 차량 모델(72)은 본 발명의 차량 모델 운동 결정 수단(94)을 구성하는 것이다. 또한 편차 해소 제어 규칙(86) 및 분배기(88)는 본 발명의 상태량 편차 응동 제어 수단(96)을 구성하는 것이다. 또한 센서ㆍ옵저버(82)는 본 발명의 실 상태량 파악 수단을 구성하는 것이다.
이하, 본 실시 형태의 제어 장치(10)의 제어 처리를 설명한다. 그 제어 처리는 상기한 바와 같이 소정의 연산 처리 주기(제어 주기)로 축차적으로 실행된다.
먼저, 스티어링각, 액셀 조작량, 브레이크 조작량 및 시프트 레버 위치를 포함하는 운전 조작 입력과, 차속 또는 엔진의 회전 속도 등의 차량의 상태량과 추정 노면 마찰 계수(μestm)가 피드포워드 조작량 결정부(74)에 입력된다. 그리고, 그들 입력에 따라 피드포워드 조작량 결정부(74)에 의해 피드포워드 조작량이 결정된 다. 피드포워드 조작량 결정부(74)에 입력되는 차량의 상태량은 후술하는 센서ㆍ옵저버(82)에 의해 검출 또는 추정된 상태량(실차(70)의 상태량)과 차량 모델(72)에서 구해지는 상태량(차량 모델(72) 상에서의 차량(1)의 상태량) 중 적어도 어느 하나를 포함한다. 본 실시 형태에서는 후술하는 바와 같이, 실차(70)의 상태량과 차량 모델(72) 상에서의 차량(1)의 상태량은 서로 근접하도록 제어되므로, 어느 상태량을 피드포워드 조작량 결정부(74)에 입력하도록 하여도 좋다. 또한 추정 노면 마찰 계수(μestm)는 후술하는 μ 추정부(80)에서 구해진 것이다. 한편, 본 실시 형태에서는 피드포워드 조작량 결정부(74)가 피드포워드 조작량을 결정하기 위하여 이용하는 차량(1)의 상태량, 추정 노면 마찰 계수(μestm)는 전회값(전회의 연산 처리 주기로 구한 값)이다.
피드포워드 조작량 결정부(74)에서 결정하는 피드포워드 조작량은 구체적인 설명을 후술하는 액추에이터 구동 제어 장치(78)와 액추에이터 구동 제어 장치 모델(76)에 입력하는 조작량이다. 이 피드포워드 조작량은, 예컨대 동력 배분 기능 있는 구동ㆍ제동 장치(3A)에 대한 각 차륜(Wi)의 동력 배분의 피드포워드량(구동ㆍ제동 토크의 기본 요구값)으로서의 피드포워드 차륜 토크(Tqff_i)와, 액티브 스티어링 장치(3B)에 대한 각 조타륜(Wi)의 조타각의 피드포워드량(조타각의 기본 요구값)으로서의 피드포워드 조타각(δff_i)과, 액티브 서스펜션 장치(3C)에 대한 각 차륜(Wi)의 접지 하중의 피드포워드량(접지 하중의 기본 요구값)으로서의 피드포워드 접지 하중(Fff_z_i)과 액티브 서스펜션 장치(3C)에 대한 서스펜션 스트로크의 피드포워드량(서스펜션 스트로크의 기본 요구값)으로서의 피드포워드 서스펜션 스 트로크로 구성된다. 피드포워드 접지 하중(Fff_z_i)에는 피드백에 의한 보상분(후술하는 노면 반력 보상량(Fcmpn_i))은 포함되지 않는다. 한편, 피드포워드 차륜 토크(Tqff_i) 대신 각 차륜(Wi)의 구동ㆍ제동력의 기본 요구값을 구동ㆍ제동 장치(3A)에 대한 피드포워드량으로 하여도 좋다. 또는, 각 차륜(Wi)의 구동륜의 구동력의 기본 요구값과 브레이크 압의 기본 요구값 세트를 구동ㆍ제동 장치(3A)에 대한 피드포워드량으로 하여도 좋다.
이들 피드포워드 조작량은 운전 조작 입력에 대한 차량(1)의 운동의 응답 특성을 개선하는 것과, 실차(70)에 발생시키는 노면 반력(Fx, Fy, Fz)이 허용 범위를 일탈하지 않을 것을 요건으로 하여 그 요건을 만족하도록 결정된다.
차량(1)의 운동의 응답 특성 개선에 관해서는, 보다 구체적으로는 스티어링각과 차속에 따라 선회 시의 외륜의 토크를 내륜의 토크보다 약간 크게 배분한다. 또한 액셀 조작량에 대한 구동륜의 구동 토크의 응답을 높이도록 비례 동작에 미분동작을 부가하여도 좋다. 즉, 액셀 조작량과 그 시간적 변화율(미분값)에 따라 구동륜의 구동 토크를 결정하도록 하여도 좋다.
구체적인 연산 처리로는, 운전 조작 입력과 차량(1)의 상태량과 노면 마찰 계수의 세트와, 이에 대한 상기 요건을 만족하는 피드포워드 조작량(피드포워드 차륜 토크(Tqff_i), 피드포워드 조타각(δff_i), 피드포워드 접지 하중(Fff_z_i), 피드포워드 서스펜션 스트로크)의 관계를 주행 실험에 의해 미리 구하여, 이를 맵화하여 제어 장치(10)에 기억시켜 둔다. 그리고, 피드포워드 조작량 결정부(74)는 이 맵에 기초하여 입력된 운전 조작 입력과 차량(1)의 상태량과 추정 노면 마찰 계 수(μestm)로부터 피드포워드 조작량을 결정하도록 하면 좋다.
또는, 다음과 같이 하여 피드포워드 조작량을 결정하도록 하여도 좋다. 예컨대, 상기 비 특허 문헌 1의 제225 페이지의 도 6-99(a)에 일점 쇄선으로 나타낸 제어계 부분과 동일한 제어계에 의해 피드포워드 조작량을 결정한다. 즉, 먼저 운전 조작 입력을 규범 모델(운전자가 원하는 차량 응답 특성을 나타내는 모델)에 입력하여, 차량 모델(상기 차량 모델(72)과 동일한 차량 모델)이 추종해야 할 목표 운동의 상태량(요 방향의 각속도, 롤 방향의 자세각, 롤 방향의 각속도 등)을 결정한다. 이어서, 목표 운동의 상태량과 차량 모델의 상태량과의 차에 따라 차량(1)이 목표 운동을 추종하도록 차량 모델에의 입력을 결정하고, 이 결정한 입력을 피드포워드 조작량으로 한다. 한편 이 경우, 피드포워드 조작량을 결정할 때 차량(1)의 실제의 상태량을 직접 피드백하고 있지는 않으므로(바꾸어 말하면, 차량(1)의 실제의 상태량과 그 목표값과의 차를 기초로 조작량을 결정하고 있지 않으므로), 그 조작량을 피드포워드 조작량이라고 부른다.
한편, 본 실시 형태에 있어서는 액추에이터 구동 제어 장치(78)에 입력하는 피드포워드 조작량과 액추에이터 구동 제어 장치 모델(76)에 입력하는 피드포워드 조작량을 공통의 피드포워드 조작량 결정부(74)에 의해 결정하였으나, 피드포워드 조작량 결정부(74)을 액추에이터 구동 제어 장치용 피드포워드 조작량 결정부와 액추에이터 구동 제어 장치 모델용 피드포워드 조작량 결정부로 나누어도 좋다. 단 이 경우, 액추에이터 구동 제어 장치용 피드포워드 조작량 결정부와 액추에이터 구동 제어 장치 모델용 피드포워드 조작량 결정부에서 동일한 피드포워드 조작량을 결정하게 되므로, 연산량을 줄이기 위해서는 본 실시 형태와 같이 피드포워드 조작량 결정부를 공통화하는 것이 바람직하다.
또한 상기 피드포워드 조작량(피드포워드 차륜 토크(Tqff_i), 피드포워드 조타각(δff_i), 피드포워드 접지 하중(Fff_z_i), 피드포워드 서스펜션 스트로크) 대신, 이것과 등가인 액추에이터 장치의 각 액추에이터의 조작량(목표값)을 피드포워드 조작량으로서 결정하도록 하여도 좋다. 예컨대 구동ㆍ제동 장치(3A)에 의해 각 차륜(Wi)에 부여되는 차륜 토크를 피드포워드 차륜 토크(Tqff_i)에 일치시키기 위하여 요구되는 상기 구동ㆍ제동 장치(3A)의 각 액추에이터의 조작량을 구하고, 그 구한 액추에이터 조작량을 구동ㆍ제동 장치(3A)에 대한 피드포워드 조작량으로서 결정하도록 하여도 좋다. 이 경우, 피드포워드 조작량 결정부(74)를 생략하고, 액추에이터 구동 제어 장치(78) 또는 액추에이터 구동 제어 장치 모델(76)의 내부 처리로 피드포워드 조작량을 결정하도록 하여도 좋다.
이어서, 상기한 바와 같이 구해진 피드포워드 조작량은 액추에이터 구동 제어 장치 모델(76)에 입력된다. 액추에이터 구동 제어 장치 모델(76)은 차량(1)의 실제의 액추에이터 장치(3)의 액추에이터의 조작량을 출력하는(실제의 액추에이터 장치(3)를 제어하는) 액추에이터 구동 제어 장치(78)(이하, 실 액추에이터 구동 제어 장치(78)라고 할 수 있음)의 연산 처리 기능 및 특성(실 액추에이터 구동 제어 장치(78)의 입력과 출력의 관계)을 모델화한 것이다. 이 액추에이터 구동 제어 장치 모델(76)은 차량 모델(72) 상의 액추에이터 장치(상기 구동ㆍ제동계 모델(52), 서스펜션 동특성 모델(54) 및 조타계 모델(60))에 대한 조작량인 모델 액추에이터 조작량(도 1에 나타낸 구동ㆍ제동계 액추에이터 조작량, 서스펜션 액추에이터 조작량 및 스티어링 액추에이터 조작량(δa_i)을 입력된 피드포워드 조작량을 기초로 결정하고, 그 결정한 모델 액추에이터 조작량을 차량 모델(72) 상의 각 액추에이터 장치(3)로 출력한다. 한편, 실제로 액추에이터 구동 제어 장치(78)에는 후술하는 노면 반력 보상량(Fcmpn_i)이 추가로 입력되는데, 액추에이터 구동 제어 장치 모델(76)에는 노면 반력 보상량(Fcmpn_i)은 입력되지 않는다. 바꾸어 말하면, 본 실시 형태에서의 액추에이터 구동 제어 장치 모델(76)은 노면 반력 보상량(Fcmpn_i)를 일정하게 0으로 하여 모델 액추에이터 조작량을 결정하고, 그 조작량에 의해 차량 모델(72) 상에서의 액추에이터 장치(3)를 제어한다.
액추에이터 구동 제어 장치 모델(76)은, 모델 액추에이터 조작량을 아래와 같이 결정한다. 즉, 액추에이터 구동 제어 장치 모델(76)에 입력된 피드포워드 조작량(피드포워드 차륜 토크(Tqff_i), 피드포워드 조타각(δff_i), 피드포워드 접지 하중(Fff_z_i), 피드포워드 서스펜션 스트로크)를 목표값으로 하여, 이 목표값에 차량 모델(72)의 상태가 일치하도록 모델 액추에이터 조작량을 결정한다. 이 경우, 통상적으로 피드포워드 차륜 토크(Tqff_i)를 목표값으로 하여 구동ㆍ제동계 모델(52)에 대한 모델 액추에이터 조작량을 결정하고, 피드포워드 조타각(δff_i)을 목표값으로 하여 조타계 모델(60)에 대한 모델 액추에이터 조작량을 결정하고, 피드포워드 접지 하중(Fff_z_i)을 목표값으로 하여 서스펜션 동특성 모델(54)에 대한 모델 액추에이터 조작량을 결정하면 좋다. 단, 각각의 액추에이터 장치의 모델(52, 60, 54)의 액추에이터 사이에서 역학적인 간섭이 있는 경우에는, 통합적으 로 각 액추에이터 장치의 모델(52, 60, 54)의 액추에이터의 조작량을 결정하는 것이 바람직하다. 본 실시 형태에서는 각 차륜(Wi)에 작용하는 노면 반력을 허용 범위에 들게 하기 위하여, 각 액추에이터 장치(3)의 동작이 서로 영향을 미치므로, 각 액추에이터의 모델(52, 60, 54)의 액추에이터의 조작량이 액추에이터 구동 제어 장치 모델(76)에서 통합적으로 결정된다.
이어서, 센서ㆍ옵저버(82)에 있어서 실차(70)의 실제의 상태량인 실 상태량이 검출 또는 추정된다. 센서ㆍ옵저버(82)는 실차(70)의 가속도를 검출하는 가속도 센서, 실차(70)의 각속도(요 레이트)를 검출하는 레이트 센서, 실차(70)의 차속(대지 속도)을 검출하는 차속 센서, 서스펜션의 스트로크(상하 방향의 변위량)를 검출하는 서스펜션 스트로크 센서, 차체(1B)의 높이(노면에 대한 상하 방향의 위치)를 검출하는 차 높이 센서, 각 차륜(W1~W4)의 접지 하중(노면 반력) 또는 노면과의 사이의 마찰력을 검출하는 힘 센서, 각 차륜(W1~W4)의 구동 토크를 검출하는 토크 센서, 실차(70)의 주위(전방 등)의 존재물을 검출하는 시각 센서 또는 레이더, 실차(70)의 위치를 검출하는 GPS 또는 관성 항법 장치 등의 다양한 센서를 구비하고 있으며, 이들 센서의 출력에 의해 실차(70)의 실 상태량 및 장해물 등의 실차(70)의 주위 상황을 검출한다.
또한 센서ㆍ옵저버(82)는 센서에 의해 직접 검출할 수 없는 실차(70)의 실 상태량(예컨대 횡 미끄럼각)에 관해서는, 예컨대 상기 운전 조작 입력과 액추에이터 장치(3)의 액추에이터 조작량과 센서의 검출값을 기초로 옵저버에 의해 실차(70)의 실 상태량을 추정한다. 이와 같이 센서에 의해 직접 검출되거나 또는 옵 저버에 의해 추정되는 실차(70)의 실제의 상태량이 실 상태량이다. 본 명세서의 실시 형태에서는 검출 또는 추정하는 실 상태량에는 실차(70)의 차속, 요 레이트(요축 방향의 각속도), 횡 미끄럼각, 위치, 엔진의 회전 속도 등이 포함된다.
이어서, 편차 산출부(84)에 의해 차량(1)의 금회 실 상태량(실 상태량의 금회값)과 차량 모델(72)의 전회 상태량(차량 모델(72) 상에서의 차량(1)의 상태량의 전회값)과의 차인 상태량 편차가 구해진다. 구체적인 상태량 편차로는, 차체(1B)의 롤 방향(X축 방향)의 자세각의 편차인 롤각 편차(θerr_x), 그 롤 방향의 자세각의 각속도의 편차인 롤 각속도 편차(ωerr_x), 차체의 피치 방향(Y축 방향)의 자세각의 편차인 피치각 편차(θerr_y), 그 피치 방향의 각속도의 편차인 피치 각속도 편차(ωerr_y), 차체(1B)의 요 방향(Z축 방향)의 자세각의 편차인 요각 편차(θerr_z), 그 요 방향의 자세각의 각속도(요 레이트)의 편차인 요 각속도 편차(ωerr_z), 차체(1B)의 위치 편차의 XYZ축 성분(Pberr_x, Pberr_y, Pberr_z), 차체(1B)의 병진 속도의 편차의 XYZ축 성분(Vberr_x, Vberr_y, Vberr_z) 등을 들 수 있다. 한편, 이후 스프링 윗 부분(차체(1B))의 롤 방향(X축 방향), 피치 방향(Y축 방향), 요 방향(Z축 방향)의 각속도를 각각 p, q, r로 기술하는 대신, ωx, ωy, ωz와 같이 ω에 회전축을 나타내는 첨자를 붙여 기술한다.
한편, 본 실시 형태에서는 실차(70)의 금회 실 상태량과 차량 모델(72) 상에서의 차량(1)의 전회 상태량과의 차를 가지고 상태량 편차로 하였으나, n회 전(n=1, 2, …)의 연산 처리 주기로 센서ㆍ옵저버(82)에 의해 검출 또는 추정된 실차(70)의 실 상태량과 차량 모델(72) 상에서의 차량(1)의 전회 상태량과의 차를 상 태량 편차로 하여도 좋다. 더욱이, 각 연산 처리 주기에 있어서, 차량 모델(72) 상에서의 차량(1)의 금회 상태량의 산출을 실차(70)의 금회 실 상태량의 검출 또는 추정(센서ㆍ옵저버(82)의 처리)보다 이전에 행하도록 연산 처리 순서를 변경하여 금회 실 상태량과 차량 모델(72) 상에서의 차량(1)의 금회 상태량과의 차 또는 금회 실 상태량과 차량 모델(72) 상에서의 차량(1)의 n회 전 상태량(n회 전의 연산 처리 주기에서의 상태량)과의 차를 구하도록 하여도 좋다. 어느 방법이 최적인지는 제어 시스템의 전달 지연에 의존한다.
이어서, 상기 상태량 편차가 편차 해소 제어 규칙(86)에 입력되고, 거기서 상기 편차를 0으로 수속시키기 위한 편차 해소 보상량(Fstab, Mstab)이 결정된다. 이 편차 해소 보상량(Fstab)은 상기 상태량 편차 중 차량(1)의 위치와 속도(병진 속도) 중 적어도 어느 하나의 편차를 0에 근접시키기 위하여 실차(70)에(보다 구체적으로는, 실차에 있어서 차량(1)의 전체 무게 중심 또는 차체(1B)의 무게 중심에) 작용시킬 외력(벡터)의 요구값의 병진력 성분을 의미한다. 또한 편차 해소 보상량(Mstab)은 상기 상태량 편차 중 자세각과 그 각속도 중 적어도 어느 하나의 편차를 0에 근접시키기 위하여 실차(70)에 작용시킬 외력(벡터)의 요구값의 모멘트 성분을 의미한다.
이들 편차 해소 보상량(Fstab, Mstab)은 구체적으로는, 다음 식 15a~15f에 의해 결정된다. 즉, 상태량 편차로부터 피드백 제어 규칙으로서의 PD 제어 규칙에 의해 결정된다.
Figure 112006084596046-pct00009
단, Kpx, Kvx, Kpy, Kvy, Kpz, Kvz, Kθx, Kωx, Kθy, Kωy, Kθz, Kωz, Kpyz, Kvyz, Kθzy 및 Kωzy는 소정의 게인으로서, 이들 중 적어도 하나는 0이 아닌 값으로 설정되어 있다.
한편, 위치 편차의 Y축 방향 성분(Pberr_y)은 차량 모델(72) 상에서의 차량(1)의 이동 궤적으로부터의 실차(70)의 이동 궤적의 벗어남, 즉 코스 벗어남을 의미한다. 위치 편차의 Y축 방향 성분(Pberr_y)은 차량(1)의 요 각편차(θerr_z)(요 방향의 자세각의 편차)와 차량(1)의 속도(병진 속도)의 곱에 따라 변화된다. 즉, 차량(1)의 요 방향의 자세각의 운동은 위치 편차의 Y축 방향 성분에 영향을 미친다. Kθzy, Kωzy, Kpyz 및 Kvyz는 상기 영향을 고려하여, 제어의 안정성과 응답성을 높이기 위한 게인이다. 특히, Kpyz 및 Kvyz를 0이 아닌 값으로 설정함으로써 차량(1)의 코스 벗어남이 발생하였을 때 조타각을 조작하여 코스 벗어남을 감소시키는 동작이 출현하게 된다.
후술하는 제3 실시 형태 및 그 이후의 실시 형태에 있어서는, 시나리오 작성부에 있어서 차량(1)의 코스 벗어남이 생겼을 때 조타각을 조작하여 코스 벗어남을 감소시키는 동작을 시나리오로서 생성하도록 하여도 좋다. 이 경우에는, Kpyz, Kvyz, Kθzy 및 Kωzy를 0으로 설정하여도 코스 벗어남이 발생하였을 때 조타각을 조작하여 코스 벗어남을 감소시키도록 실차(70)의 액추에이터 장치(3)가 동작한다.
한편, 상기 게인은 일정값이어도 무방하지만, 제어의 안정성과 응답성을 높이기 위하여, 추정 노면 마찰 계수(μestm), 실차(70) 또는 차량 모델(72) 상에서의 차량(1)의 차속, 횡 미끄럼각, 슬립률 등에 따라 가변적으로 설정하는 것이 바람직하다.
이어서, 편차 해소 보상량(Fstab, Mstab)과 차량 모델(72)에서의 각 타이어(Wi)의 노면 반력(구체적인 것은 상기 구동ㆍ제동력(Fmdl_x_i), 횡력(Fmdl_y_i),및 접지 하중(Fmdl_z_i))의 전회값(Fmdl_i_p)과 추정 노면 마찰 계수(μestm)가 분배기(88)에 입력된다. 그리고, 분배기(88)는 이들 입력을 기초로 노면 반력 보상량(Fcmpn_i)과 가상 외력(Fvirt, Mvirt)을 결정한다. 한편, 차량 모델(72)에 입력되는 상기 모델 액추에이터 조작량(전회값)에 의해 규정되는 목표 노면 반력을 Fmdl_i_p 대신 분배기(88)에 입력하도록 하여도 좋다. 예컨대 서스펜션 동특성 모델(54)에 대한 서스펜션 모델 액추에이터 조작량에 포함되는 상기 피드포워드 접지 하중(Fffz_i)의 전회값을 Fmdl_i_p 중 접지 하중(Fmdl_z_i)(전회값) 대신 사용하여도 좋다. 또한 센서ㆍ옵저버(82)에 의해 노면 반력을 검출하도록 한 경우에는 그 검출값을 Fmdl_i_p 대신 분배기(88)에 입력하도록 하여도 좋다.
분배기(88)가 결정하는 노면 반력 보상량(Fcmpn_i)은 상태량 편차를 0에 근접시키기 위하여 실차(70)에서 발생시킬 노면 반력의 수정량(피드포워드 조작량에 대응하는 노면 반력에 대한 수정량)을 의미한다. 또한 상기 가상 외력(Fvirt, Mvirt)은 상태량 편차를 0에 근접시키기 위하여 차량 모델(72) 상에서 차량(1)(보다 구체적으로는 차체(1B)(스프링 윗 부분))에 추가적으로 작용시킬 가상적인 외력을 의미한다. 가상 외력(Fvirt, Mvirt) 중 Fvirt는 병진력 성분을 의미하고, Mvirt는 모멘트 성분을 의미한다.
이들 노면 반력 보상량(Fcmpn_i)과 가상 외력(Fvirt, Mvirt)을 구하는 분배기(88)의 연산 처리를 이하에 상세하게 설명한다.
먼저, 추정 노면 마찰 계수(μestm)와 차량 모델(72) 상에서의 각 타이어(Wi)의 접지 하중(Fmdl_z_i)의 전회값인 전회 차량 모델 각 타이어 접지 하중(Fmdl_z_i_p)에 따라 노면 마찰력(각 타이어(Wi)와 노면 사이의 마찰력)의 허용 범위(소위 마찰원)를 설정한다. 단, 이 허용 범위는 마찰 한계값보다 약간 작게 설정한다. 구체적으로는, 각 타이어(Wi)의 마찰력 벡터의 크기의 상한값(Fhmax)이 설정된다. 이와 같이 설정되는 허용 범위를 이하, 마찰력 허용 범위라고 한다. 이 마찰력 허용 범위는 각 타이어(Wi)에 노면으로부터 작용하는 구동ㆍ제동력과 횡력과의 합력의 크기의 상한값을 규제하는 허용 범위이다. 한편, 마찰력 허용 범위는 타원형으로 설정하여도 좋다.
또한 다른 허용 범위로서, 차륜(Wi)이 들떠서 공전하지 않도록 하기 위하여, 각 타이어(Wi)의 접지 하중의 허용 범위(이하, 접지 하중 허용 범위라고 함)가 설 정된다. 구체적으로는, 각 타이어(Wi)의 접지 하중의 하한값(Fzmin_i)이 설정된다. 이와 같이 설정되는 접지 하중 허용 범위는 각 타이어(Wi)의 접지 하중의 하한값을 규제하는 허용 범위이다. 한편, 접지 하중 허용 범위의 하한값(Fzmin_i)은 각 차륜(Wi)마다 설정하여도 좋으나, 모든 차륜(W1~W4)에 대하여 동일한 값으로 설정하여도 좋다.
이어서, 차량 모델(72) 상에서의 각 타이어(Wi)의 노면 반력의 전회값인 전회 차량 모델 각 타이어 노면 반력(Fmdl_i_p)과 노면 반력 보상량(Fcmpn_i)의 합(벡터의 합)이 상기 마찰력 허용 범위 및 접지 하중 허용 범위를 만족하면서(즉 이하의 부등식 16, 17을 만족하면서), 모든 타이어(W1~W4)의 노면 반력 보상량(Fcmpn_i)이 차량(1)의 전체 무게 중심 또는 차체(1B)의 무게 중심에 작용하는 합력(병진력과 모멘트)이 편차 해소 보상량(Fstab, Mstab)에 일치 또는 최대한 가까워지도록 노면 반력 보상량(Fcmpn_i)을 결정한다.
즉, 식 16 및 식 17의 부등식을 만족하면서, 식 18a, 식 18b 및 식 18c에 의해 정의되는 노면 반력 병진력 성분 보상량 에러의 XYZ축 성분(Ferr_x, Ferr_y, Ferr_z)과 식 19a, 식 19b 및 식 19c에 의해 정의되는 노면 반력 모멘트 성분 보상량 에러의 XYZ축 성분(Merr_x, Merr_y, Merr_z)을 포함하는 식 20으로 정의되는 평가 함수(E)(Ferr_x, Ferr_y, Ferr_z, Merr_x, Merr_y, Merr_z)가 최소가 되도록 노면 반력 보상량(Fcmpn_i)을 결정한다. 일반적으로, 이러한 조건을 만족하는 노면 반력 보상량(Fcmpn_i)은 해석적으로 구할 수 없으므로 탐색 방법에 의해 구해진다.
Figure 112006084596046-pct00010
Figure 112006084596046-pct00011
Figure 112006084596046-pct00012
한편, 식 18a~18c 및 19b에 있어서 Σ는 i(=1, 2, 3, 4)에 대한 총합(모든 차륜(W1~W4)에 대한 총합)을 의미한다. 또한 hf, hr, hRC, Lf, Lr, bf, br은 상기 식 10a~10c, 11a~11c로 나타낸 것과 동일하다.
이어서, 전술한 바와 같이 구한 노면 반력 병진력 성분 보상량 에러(Ferr)(벡터)와 노면 반력 모멘트 성분 보상량 에러(Merr)(벡터)를 가상 외력의 병진력 성분(Fvirt)과 가상 외력의 모멘트 성분(Mvirt)으로 한다. 즉, 다음 식 21, 22에 의해 가상 외력 병진력 성분(Fvirt)과 가상 외력 모멘트 성분(Mvirt)을 결정한다.
Figure 112006084596046-pct00013
이어서, 상기 피드포워드 조작량과 노면 반력 보상량(Fcmpn_i)이 액추에이터 구동 제어 장치(실 액추에이터 구동 제어 장치)(78)에 입력된다. 그리고, 이 실 액추에이터 구동 제어 장치(78)는 피드포워드 조작량에 대응한 노면 반력(피드포워드 조작량에 의해 발생할 것인 노면 반력. 이는 노면 반력의 기본 요구값을 의미한다)에 노면 반력 보상량(Fcmpn_i)을 더한 노면 반력(피드포워드 조작량에 대응한 노면 반력을 노면 반력 보상량(Fcmpn_i)에 의해 수정하여 이루어지는 노면 반력)을 목표값으로 하여, 실제로 발생하는 노면 반력이 상기 목표값에 일치하도록 또는 상기 목표값에 가까워지도록 실차(70)의 각 액추에이터 장치(3)(동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B), 액티브 서스펜션 장치(3C))의 액추에이터에 대한 조작량을 결정하고, 그 조작량에 의해 각 액추에이터 장치(3)를 제어한다.
한편, 액추에이터 구동 제어 장치(78)에 차량 모델(72)의 노면 반력(Fmdl_i)과 노면 반력 보상량(Fcmpn_i)을 입력하여, 차량 모델(72)의 노면 반력(Fmdl_i)과 노면 반력 보상량(Fcmpn_i)의 합의 노면 반력이 실제로 발생하도록 실차(70)의 각 액추에이터 장치(동력 배분 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B), 액티브 서스펜션 장치(3C))를 제어하도록 하여도 좋다.
어떤 경우에도 각 타이어(Wi)의 횡력(Fy_i)이 상기 비 특허 문헌 1의 제184 페이지의 도 6-19와 같이 구동ㆍ제동력(Fx_i)의 영향을 받거나 하는 등 횡력(Fy_i), 구동ㆍ제동력(Fx_i), 접지 하중(Fz_i) 등은 서로 간섭하고, 또한 마찰 계수(노면과 타이어 사이의 마찰 계수)에 의해 간섭의 정도가 바뀌므로, μ 추정부(80)에 의해 추정된 추정 노면 마찰 계수(μestm)에 기초하여 모든 액추에이터 장치(3A, 3B, 3C)의 액추에이터를 통합적으로 제어(조작)하는 것이 바람직하다.
이어서, 상기 운전 조작 입력, 모델 액추에이터 조작량, 가상 외력 병진력 성분(Fvirt), 가상 외력 모멘트 성분(Mvirt) 및 추정 노면 마찰 계수(μestm)가 차량 모델(72)에 입력되고, 전술한 바와 같이 차량 모델(72)의 연산 처리가 실행된다. 이에 따라, 차체 운동 모델(56)의 상태량(모델 차체 운동 상태량)의 금회값인 금회 모델 차체 운동 상태량과 차량 모델(72) 상에서 차량(1)에 작용하는 노면 반력의 금회값인 금회 모델 노면 반력이 결정된다.
이어서, μ 추정부(80)에 의해 차륜(W1~W4)과 노면 사이의 마찰 계수의 추정값인 추정 마찰 계수(μestm)(금회값)가 산출된다. 이 μ 추정부(80)에는, 예컨대 센서ㆍ옵저버(82)에서 검출 또는 추정된 실차(70)의 실 상태량(예컨대 실차(70)의 전후, 좌우 방향의 가속도, 각 차륜(W1~W4)의 회전 속도, 실차(70)의 요 레이트 등)과 상세한 것을 후술하는 액추에이터 구동 제어 장치(78)가 결정한 액추에이터 조작량 중 조타륜(W1~W4)의 조타각(전회값 등의 과거값) 및 구동ㆍ제동력을 규정하는 액추에이터 조작량(전회값 등의 과거값)이 입력되고, 이들 입력으로부터 추정 노면 마찰 계수(μestm)(금회값)가 산출된다. 이 경우, 마찰 계수를 추정하는 방법은 다양한 방법이 공지되어 있으며, 그 공지의 방법에 의해 μestm을 결정하도록 하면 좋다. 예컨대 차체(1B)의 가속도의 피크값을 기초로 마찰 계수를 추정하는 것이 가능하다. 본 실시 형태에서는 이와 같이 결정된 추정 노면 마찰 계수(μestm)의 금회값이 제어 장치(10)의 다음 번 연산 처리 주기에서 사용된다.
한편, 추정 노면 마찰 계수(μestm)는 각 차륜(W1~W4)마다 각각 별도로 구 하는 것이 바람직하지만, 예컨대 모든 차륜(W1~W4)의 세트에 대한 대표적인 추정값, 또는 전륜(W1, W2) 세트와 후륜(W3, W4) 세트의 각각의 세트의 대표적인 추정값, 또는 좌측의 차륜(W1, W3) 세트와 우측의 차륜(W2, W4) 세트의 각각의 세트의 대표적인 추정값이어도 좋다. 또한 추정 노면 마찰 계수(μestm)는 그 값이 빈번하게 변동하는 것을 피하기 위하여, 제어 장치(10)의 연산 처리 주기(제어 주기)보다 긴 일정한 시간 간격으로 갱신하도록 하거나, 또는 각 연산 처리 주기에서의 마찰 계수의 순간적인 추정값으로부터 저역 통과 필터 등의 필터를 통하여 추정 노면 마찰 계수(μestm)를 얻도록 하여도 좋다. 또한 차량 모델(72)에 입력되는 추정 노면 마찰 계수의 변화의 완만함과 분배기(88)에 입력되는 추정 노면 마찰 계수의 변화의 완만함이 달라지도록 설정하여도 좋다.
또한 상기 가상 외력(Fvirt, Mvirt)은 감각 피드백 알림부(90)에 입력된다. 가상 외력(Fvirt, Mvirt)에 의한 차량 모델(72)의 차량(1)의 운동의 수정은 차량(1)의 운전자 자신이 의도한 것은 아니므로, 가상 외력(Fvirt, Mvirt)의 크기가 어느 소정값을 초과한 경우에는 그 취지를 운전자에게 어떤 수단으로 알리는 것이 바람직하다. 감각 피드백 알림부(90)는 그 알림을 행하기 위한 처리를 실행하는 것이다. 예컨대 가상 외력에 따른 피드포워드 조작량의 변경량(가상 외력과 등가의 피드포워드 조작량의 변경량)에 따라 스티어링 장치(3B)의 파워 스티어링의 액추에이터나 구동ㆍ제동 장치(3A)의 브레이크 어시스트용 액추에이터에 부가적인 조작량을 더하여, 가상 외력(Fvirt, Mvirt)에 의한 차량 모델(72)의 차량(1)의 운동의 수정을 운전자에 알린다. 보다 구체적으로는, 예컨대 가상 외력의 모멘트 연직 성분(Mvirt_z)에 비례한 토크를 파워 스티어링에 부가적으로 발생시키면 좋다. 한편, 알림은 청각적 또는 시각적으로 행하도록 하여도 좋다.
이상 설명한 제1 실시 형태에 따르면, 실차(70)와 차량 모델(72) 상의 차량의 상태량 편차가 0에 가까워지고, 또한 노면 반력이 허용 범위에 들어가도록 실차(70)와 차량 모델(72) 상의 차량의 운동이 조작되므로, 상태량 편차가 과대해지지 않는다. 따라서, 실차(70)의 각 액추에이터 장치(3)에 대한 액추에이터 조작량이 리미터에 의해 제한되는 상황이 적어져, 노면의 요철, 마찰 계수의 변화 등의 외란 요인에 의한 실차(70)의 운동에의 영향을 효과적으로 억제하면서 실차(70)의 운동을 적절하게 제어할 수 있다. 또한 차량 모델(72)의 파라미터나 추정 노면 마찰 계수(μestm)의 오차에 대한 차량(1)의 제어의 로버스트성을 높일 수 있다.
한편, 상기 제1 실시 형태에서는 가상 외력을 차량 모델(72)에 입력하도록 하였으나, 도 5에 도시한 바와 같이 분배기(88)에서 상기한 바와 같이 구한 가상 외력을 차량 모델(72) 상에서의 노면 반력을 수정하기 위한 가상 노면 반력 보상량으로 하고, 차량 모델(72) 대신 액추에이터 구동 제어 장치 모델(76)에 입력하도록 하여도 좋다. 이 경우, 액추에이터 구동 제어 장치 모델(76)에서는 상기 실 액추에이터 구동 제어 장치(78)에서 액추에이터 조작량을 결정하는 경우와 마찬가지로 차량 모델(72)에 대한 모델 액추에이터 조작량을 결정하도록 하면 좋다. 한편, 차량 모델(72)에는 실차(70)에 없는 액추에이터와 그 구동 제어 장치를 구비하여도 좋다. 실차(70)에 없는 액추에이터를 차량 모델(72) 상에서 동작시킴으로써 차량 모델(72) 상의 차량(1)에 가상 외력을 부여하는 경우와 동등한 작용을 가져올 수 있다.
보충하면, 이상에서 설명한 제1 실시 형태는 본 발명 중 상기 제1 발명, 제2 발명, 제4 발명~제11 발명의 실시 형태이다. 이 경우, 상기 가상 외력(Fvirt, Mvirt)이 차량 모델 조작용 제어 입력에 해당하고, 노면 반력 보상량(Fcmpn_i)이 실차 액추에이터 조작용 제어 입력에 해당하고, 편차 산출부(84)에서 구해지는 상태량 편차가 제1 상태량 편차에 해당한다. 또한 상기 모델 차체 운동은 모델 차량운동에 해당한다. 또한 피드포워드 조작량 결정부(74)가 출력하는 피드포워드 조작량이 실차용 기본 제어 입력 또는 노면 반력 기본 목표 파라미터에 해당한다. 더욱이, 상기 액추에이터 구동 제어 장치 모델(76)이 출력하는 모델 액추에이터 조작량이 모델용 기본 제어 입력 또는 모델 노면 반력 파라미터에 해당한다. 또한, 가상 외력(Fvirt, Mvirt) 대신 이 가상 외력을 차량 모델(72) 상의 차량(1)에 작용시키는 것과 동등한 효과를 가져오는 차량 모델(72) 상의 액추에이터 장치에 대한 조작량(즉, 상기 모델 액추에이터 조작량의 수정량)을 결정하고, 그것을 차량 모델 조작용 제어 입력으로 하여 차량 모델(72)에 입력하도록 하여도 좋다. 이 경우의 차량 모델 조작용 제어 입력은 상기 가상 외력(Fvirt, Mvirt)을 모델 액추에이터 조작량의 차원의 조작량으로 변환함으로써 결정하면 좋다. 이와 같이 함으로써 상기 제3 발명 또는 제12 발명의 실시 형태를 구축할 수 있게 된다. 한편, 가상 외력(Fvirt, Mvirt) 대신, 이와 등가인 모델 액추에이터 조작량을 직접 결정하도록 하여도 좋다.
[제2 실시 형태]
다음, 본 발명의 차량의 제어 장치 제2 실시 형태를 설명한다. 한편, 제2 실시 형태는 차량(1)의 일부의 구성과 제어 장치(10)의 일부의 제어 처리만이 제1 실시 형태와 다르므로, 제1 실시 형태와 동일 구성 부분 또는 동일 기능 부분에 대해서는 제1 실시 형태와 동일한 참조 부호를 이용하여 상세한 설명을 생략한다.
제2 실시 형태는 제1 실시 형태보다 간이한 차량 모델을 이용하여, 이 차량 모델과 실제의 차량(1)과의 상태량 편차를 0에 근접시키도록 차량(1)의 액추에이터 장치(3) 중 액티브 스티어링 장치(3B)만을 제어하도록 한 것이다.
이 경우, 본 실시 형태에서는 액티브 스티어링 장치(3B)는 전륜(W1, W2)의 조타각만을 전동 모터 등의 액추에이터를 통하여 능동적으로 조작할 수 있게 되어 있다. 따라서, 본 실시 형태에서는 후륜(W3, W4)의 조타는 행해지지 않는 것으로 한다.
한편, 본 실시 형태에서는 구동ㆍ제동 장치(3A)는 제1 실시 형태와 마찬가지로 동력 배분 제어 기능 있는 구동ㆍ제동 장치이어도 좋으나, 동력 배분 제어 기능을 갖지 않는 것이어도 좋다. 나아가서는, 2개의 구동륜(전륜(W1, W2) 또는 후륜(W3, W4))에만 구동력을 부여하는 것(소위 2WD)이어도 좋다. 또한 서스펜션 장치(3C)는 제1 실시 형태와 동일하게 액티브 서스펜션 장치이어도 좋으나, 액추에이터를 갖지 않는 수동적인 서스펜션 장치이어도 좋다. 어느 경우에도, 본 실시 형태에서는 차량 모델과 실제의 차량(1)의 상태량 편차에 따른 액추에이터의 능동적인 조작은 상기한 바와 같이 스티어링 장치(3B)에 대해서만 실행된다. 이후의 설명에서는 본 실시 형태의 이해의 편의 상 구동ㆍ제동 장치(3A)는 동력 배분 제어 기능을 갖지 않는 통상적인 구동ㆍ제동 장치인 것으로 한다. 그리고, 이 구동ㆍ제동 장치(3A)의 동작 제어는 제어 장치(10)와 다른 제어 장치에 의해 운전 조작 입력 중 액셀 조작량, 브레이크 조작량 및 시프트 레버 위치에 따라 공지의 통상의 제어 처리에 의해 실행되는 것으로 한다. 또한 서스펜션 장치(3C)는 액추에이터를 갖지 않는 수동적인 서스펜션 장치인 것으로 한다.
본 실시 형태에 있어서 제어 장치(10)의 제어 처리 기능의 기본적 구성은 상기 도 4에 블럭도로 나타낸 것과 동일하다. 단, 본 실시 형태에서는 차량 모델(72)과 편차 해소 제어 규칙(86) 및 분배기(88)의 처리는 제1 실시 형태와 다르다. 또한 피드포워드 조작량 결정부(74), 액추에이터 구동 제어 장치(78) 및 액추에이터 구동 제어 장치 모델(76)의 처리도 제1 실시 형태와 약간 다르다.
본 실시 형태의 제어 장치(10)의 제어 처리를 설명하기 전에, 본 실시 형태의 차량 모델(72)을 도 6을 참조하여 설명한다. 도 6은 본 실시 형태의 차량 모델(72)의 기능적 구성을 나타내는 블럭도이다. 본 실시 형태에서 차량 모델(72)은 조타계 모델(61)과 2륜 모델(63)을 구비하고 있다. 조타계 모델(61)은 제1 실시 형태와 마찬가지로, 본 실시 형태의 액티브 스티어링 장치(3B)의 동특성을 표현하는 모델이다. 즉, 조타계 모델(61)은 운전 조작 입력 중 스티어링각(θs)과 스티어링 액추에이터 조작량(δa_i)(본 실시 형태에서는δa_1,δa_2)을 입력으로 하여, 이들 입력으로부터 조타륜인 전륜(W1, W2)의 조타각(δmdl_1,δmdl_2)을 결정하여 출력한다. 한편, 전륜(W1, W2)의 조타각(δmdl_1,δmdl_2)은 대략 같으므로 이들 조타각(δmdl_1,δmdl_2) 중 어느 하나 또는 평균값을 조타계 모델(61)로부터 출력 하도록 하여도 좋다.
2륜 모델(63)은, 예컨대 상기 비 특허 문헌 1의 도 6-63 또는 "자동차의 운동과 제어(제2판)"(저자: 아베 마사토, 발행소: 주식회사 산카이도, 2004년 7월 23일 발행)의 도 3.5에 도시한 공지의 2자유도 모델이다. 즉, 이 2륜 모델은 도 7에 도시한 바와 같이, 실제의 차량(1)의 거동을 단일한 전륜(Wf)과 단일한 후륜(Wr)을 갖는 차량(즉 이륜차)의 거동으로 근사 표현하는 모델이다. 한편, 도 7 중의 "규범 코스", "규범 요 레이트"는 후술하는 실시 형태에 관한 것이므로 여기서는 무시하여도 좋다. 이 경우, 본 실시 형태에서는 2륜 모델(63)의 상태량을 실차(70)의 상태량에 근접시키기 위한 가상 외력이 가미되고, 이 2륜 모델(63)의 동력학은 다음 식 50a~50d의 동력학 방정식에 의해 기술된다.
Figure 112006084596046-pct00014
여기서, 식 50a~50d에 있어서 m, I, V, β, ωz, δf는 각각 차량(1)의 질량, 차량(1)의 요 축 방향의 관성 모멘트, 주행 속도(차속. 정확하게는 차량(1)의 무게 중심점의 속도), 차량(1)의 무게 중심점의 횡 미끄럼각(차량(1)의 무게 중심점의 속도 벡터와 X축 방향이 이루는 각도), 차량(1)의 요 레이트(요 축 방향의 자세각의 각속도), 전륜(W1)의 조타각과 전륜(W2)의 조타각의 평균값(도 7의 전륜(Wf)의 조타각)이다. 또한 Lf는 차량(1)의 무게 중심점과 앞 차축 사이의 거리, Lr은 차량(1)의 무게 중심점과 뒷 차축 사이의 거리, Kf는 차량(1)의 전륜(W1, W2)의 1륜 당 코너링 파워(도 7의 전륜(Wf)의 코너링 파워의 절반), Kr은 차량(1)의 후륜(W3, W4)의 1륜 당 코너링 파워(도 7의 후륜(Wr)의 코너링 파워의 절반)이다. 또한 Yf는 전륜(W1, W2)의 1륜 당 코너링 포스, Yr은 후륜(W3, W4)의 1륜 당 코너링 포스이다. 또한 Fvirt, Mvirt는 각각 상기 가상 외력의 병진력 성분, 모멘트 성분이다.
상기 식 50a~50d에 의해 기술되는 2륜 모델(63)에는 상기 조타계 모델(61)로부터 조타각(δmdl_1,δmdl_2)이 입력됨과 동시에, 상기 운전 조작 입력 중 액셀 조작량, 브레이크 조작량, 시프트 레버 위치와, 추정 노면 마찰 계수(μestm)와 가상 외력(Fvirt, Mvirt)과 차속(V)이 입력된다. 이 경우, 추정 노면 마찰 계수(μestm)는 상기 μ 추정부(80)로부터 입력되고, 가상 외력(Fvirt, Mvirt)은 분배기(88)로부터 입력된다. 또한 차속(V)은 센서ㆍ옵저버(82)로부터 입력된다. 그리고, 2륜 모델(63)은 이들 입력을 기초로 횡 미끄럼각(β) 및 요 레이트(ωz)와 각 차륜(Wi)의 구동ㆍ제동력(Fmdl_x_i) 및 횡력(Fmdl_y_i)을 제어 장치(10)의 연산 처 리 주기마다 축차적으로 산출한다.
구체적으로는, 2륜 모델(63)은 입력된 조타각(δmdl_1,δmdl_2) 중 어느 하나 또는 그들의 평균값을 상기 식 50a, 50b에서의 δf로서 결정한다. 한편, 조타계 모델(61)에서 조타각(δmdl_1,δmdl_2) 중 어느 하나 또는 그들의 평균값을 출력하도록 한 경우에는, 그 출력된 조타각을 δf로서 결정하면 좋다. 또한 2륜 모델(63)은 입력된 추정 노면 마찰 계수(μestm)로부터 미리 설정된 데이터 테이블 등에 기초하여 코너링 파워(Kf, Kr)를 결정한다. 그리고, 2륜 모델(63)은 이들 δf 및 Kf, Kr과 입력된 차속(V)과 횡 미끄럼각(β) 및 요 레이트(ωz)의 전회값으로부터, 상기 식 50a, 50b(보다 구체적으로는, 이들을 제어 주기로 이산화한 식)에 의해 횡 미끄럼각(β), 요 레이트(ωz), 횡 미끄럼각(β)의 변화율(미분값)인 dβ/dt 및 요 레이트(ωz)의 변화율(미분값)인 dωz/dt의 금회값을 산출한다.
또한 2륜 모델(63)은 상기한 바와 같이 구한 횡 미끄럼각(β) 및 요 레이트(ωz)의 전회값 및 금회값으로부터 상기 식 50c, 50d의 연립 방정식을 풀어 Yf, Yr을 구한다. 그리고, Yf를 각 전륜(W1, W2)의 횡력(Fmdl_y_1, Fmdl_y_2)으로 하고(Fmdl_y_1=Fmdl_y_2=Yf), Yr을 각 후륜(W3, W4)의 횡력(Fmdl_y_3, Fmdl_y_4)으로 한다(Fmdl_y_3=Fmdl_y_4=Yr).
한편, Yf, Yr은 다음 식 51a, 51b에 의해 구하여도 좋다.
Figure 112006084596046-pct00015
또한 2륜 모델(63)은 입력된 차속(실차(70)의 차속)과 운전 조작 입력 중 액셀 조작량과 브레이크 조작량과 시프트 레버 위치로부터 각 차륜(Wi)의 구동ㆍ제동력(Fmdl_x_i)을 산출한다. 한편 이 경우, Fmdl_x_1=Fmdl_x_2, Fmdl_x_3=Fmdl_x_4이다.
본 실시 형태에서는 이와 같이 2륜 모델(63)에서 산출된 횡 미끄럼각(β) 및 요 레이트(ωz) 중 요 레이트(ωz)가 차량 모델(72) 상에서의 차량(1)의 운동의 상태량으로서 출력된다. 또한 2륜 모델(63)에서 산출된 Fmdl_x_i와 Fmdl_y_i가 차량 모델(72) 상에서의 노면 반력(모델 노면 반력)으로서 출력된다.
다음, 본 실시 형태의 제어 장치(10)의 보다 구체적인 처리를 제1 실시 형태와 다른 처리를 중심으로 설명한다. 먼저, 피드포워드 조작량 결정부(74)는, 입력된 운전 조작 입력과, 추정 노면 마찰 계수(μestm)와, 차량(1)의 상태량으로부터 스티어링 장치(3B)에 대한 피드포워드 조작량을 결정한다. 이 경우, 본 실시 형태에서는 피드포워드 조작량 결정부(74)가 결정하는 피드포워드 조작량은 예컨대 제1 실시 형태에서 설명한 피드포워드 조타각(δff_i)(전륜(W1, W2)의 조타각의 기본 요구값)이다. 이 피드포워드 조타각(δff_i)은 피드포워드 조작량 결정부(74)에 입력된 운전 조작 입력 중 스티어링각(θs)과 차량(1)의 상태량 중 차속으로부터 소정의 연산식 또는 미리 설정된 맵 등을 기초로 결정된다. 예컨대 스티어링각(θs)에 차속에 따라 설정한 소정의 계수를 곱함으로써 피드포워드 조타각(δff_i)을 결정한다. 이 경우의 계수는, 예컨대 차속이 높을수록 작은 값으로 설정하는 것이 바람직하다. 한편, 이 계수는 일정 값이어도 좋다.
이어서, 이와 같이 결정된 피드포워드 조작량(피드포워드 조타각(δff_i))이 액추에이터 구동 제어 장치 모델(76)에 입력된다. 그리고, 액추에이터 구동 제어 장치 모델(76)에서는, 입력된 피드포워드 조타각(δff_i)에 따라 차량 모델(72)(도 6의 차량 모델) 상에서의 액티브 스티어링 장치(3B)(조타계 모델(61))에 대한 액추에이터 조작량으로서의 모델 액추에이터 조작량을 결정하고, 그것을 차량 모델(72)로 출력한다. 이 경우, 피드포워드 조타각(δff_i)을 전륜(W1, W2)의 조타각(조타계 모델(61)의 출력)의 평균값 또는 어느 하나의 목표값으로 하여, 이 목표값의 조타각을 조타계 모델(61)의 출력이 추종하도록 조타계 모델(61)에 대한 모델 액추에이터 조작량(δa_i)이 결정된다.
이어서, 센서ㆍ옵저버(82)에 의한 실차(70)의 상태량(실 상태량)의 검출 또는 추정이 실행된다. 이 처리는 제1 실시 형태와 동일하다.
이어서, 편차 산출부(84)에 의해 실차(70)의 금회 상태량 중 요 레이트와 차량 모델(72)(도 6의 차량 모델)에 의해 전회의 연산 처리 주기로 산출된 요 레이트(ωz)과의 차가 상태량 편차로서 구해진다. 이하, 이 상태량 편차를 요 레이트 편차(ωerr_z)라고 한다.
이어서, 이 요 레이트 편차(ωerr_z)가 편차 해소 제어 규칙(86)에 입력된다. 이 편차 해소 제어 규칙(86)에서는, 요 레이트 편차(ωerr_z)를 0에 근접시키도록 실차(70)에 작용시킬 외력으로서의 편차 해소 보상량(Fsatb, Mstab)이 결정된다. 단, 본 실시 형태에서는 편차 해소 보상량(Fstab, Mstab) 중 병진력 성분인 Fstab는 0라고 한다(Fstab_x=Fstab_y=Fstab_z=0이라고 한다). 또한 편차 해소 보 상량(Fstab, Mstab) 중의 모멘트 성분인 Mstab 중 피치 방향 성분(Mstab_x) 및 요 방향 성분(Mstab_y)도 0이 된다. 따라서, Mstab 중 요 방향 성분(Mstab_z)만이 요 레이트 편차(ωerr_z)에 따라 피드백 규칙에 의해 결정된다. 이 요 방향 성분(Mstab_z)(이하, 편차 해소 보상량 요 성분(Mstab_z)이라고 함)은 본 실시 형태에서는 비례 제어 규칙에 의해 요 레이트 편차(ωerr_z)로부터 결정된다. 즉, 다음 식 51에 의해 Mstab_z가 결정된다.
Figure 112006084596046-pct00016
식 51에 있어서, Kωz는 비례 게인이며, 예컨대 미리 정한 값으로 설정된다. 단, Kωz는 추정 노면 마찰 계수(μestm), 실차(70)의 차속 등에 따라 가변적으로 설정하도록 하여도 좋다. 한편, 편차 해소 보상량 요 성분(Mstab_z)은 ωerr_z로부터 PD 제어 규칙 등의 다른 피드백 규칙에 의해 결정하도록 하여도 좋다.
이어서, 편차 해소 보상량 요 성분(Mstab_z)과 차량 모델(72) 상에서의 각 타이어(Wi)의 노면 반력(구동ㆍ제동력(Fmdl_x_i), 횡력(Fmdl_y_i))의 전회값(Fmdl_i_p)과 추정 노면 마찰 계수(μestm)가 분배기(88)에 입력된다. 그리고, 분배기(88)는 이들 입력을 기초로 노면 반력 보상량(Fcmpn_i)(자세한 내용은 Fcmpn_x_i, Fcmpn_y_i)과 가상 외력(Fvirt, Mvirt)을 결정한다.
본 실시 형태에서는 이러한 노면 반력 보상량(Fcmpn_i) 및 가상 외력(Fvirt, Mvirt)이 다음과 같이 결정된다.
즉, 먼저 상기 식 16의 부등식을 만족하면서, 상기 식 18a, 18b, 19c에 의해 정의되는 노면 반력 보상량 에러(Ferr_x, Ferr_y, Merr_z)를 포함하는 다음 식 20'의 평가 함수(E(Ferr_x, Ferr_y, Merr_z))가 최소가 되도록 노면 반력 보상량(Fcmpn_i)(Fcmpn_x_i, Fcmpn_y_i)이 탐색 방법에 의해 결정된다.
Figure 112006084596046-pct00017
이 경우, 각 타이어(Wi)의 접지 하중을 미리 결정한 소정값으로 하고, 이 소정값과 추정 노면 마찰 계수(μestm)로부터 상기 부등식 16의 Fhmax_i(각 타이어(Wi)의 마찰력의 상한값)가 설정된다. 한편 상기 식 18a, 18b에 있어서 Fstab_x, Fstab_y는 모두 0이다. 또한, 전륜(W1, W2)의 노면 반력 보상량(Fcmpn_1, Fcmpn_2)은 서로 같고, 후륜(W3, W4)의 노면 반력 보상량(Fcmpn_3, Fcmpn_4)은 서로 같다고 한다. 즉, Fcmpn_x_1=Fcmpn_x_2, Fcmpn_y_1=Fcmpn_y_2, Fcmpn_x_3=Fcmpn_x_4, Fcmpn_y_3=Fcmpn_y_4이다. 따라서, 상기 식 19c의 우변의 제3항, 제4항은 항상 0이 되고, 이들 제3항 및 제4항은 식 19c에서 삭제하여도 좋다. 또한 식 20'에 있어서, Kferrx와 Kferry를 0으로 하여도 좋다. 즉, 평가 함수에 있어서, Ferr_x와 Ferr_y를 무시하도록 하여도 좋다.
이어서, 상기 식 21, 식 22에 의해 가상 외력의 병진력 성분(Fvirt)과 모멘트 성분(Mvirt)이 결정된다. 즉, Ferr_x 및 Ferr_y가 가상 외력 병진력 성분(Fvirt)으로 결정되고, Merr_z가 가상 외력 모멘트 성분으로 결정된다. 이 경 우, 본 실시 형태에서는 Ferr_x(=Fvirt의 X축 방향 성분)는 각 차륜(Wi)의 노면 반력 보상량(Fcmpn_i)의 X축 방향 성분(Fcmpn_x_i)의 합력과 같고, Ferr_y(=Fvirt의 Y축 방향 성분)는 각 차륜(Wi)의 노면 반력 보상량(Fcmpn_i)의 Y축 방향 성분(Fcmpn_y_i)의 합력과 같다.
이상이 본 실시 형태의 분배기(88)의 처리이다.
한편, Fcmpn_x_1=Fcmpn_x_2=Fcmpn_x_3=Fcmpn_x_4=0, Fcmpn_y_1=Fcmpn_y_2, Fcmpn_y_3=Fcmpn_y_4=0으로 하고, 식 20'에 있어서 Kferrx와 Kferry를 0으로 하여도 좋다.
이어서, 상기 피드포워드 조작량(피드포워드 조타각(δff_i))과 노면 반력 보상량(Fcmpn_i)(Fcmpn_x_i, Fcmpn_y_i)이 액추에이터 구동 제어 장치(실 액추에이터 구동 제어 장치)(78)에 입력된다. 그리고, 이 실 액추에이터 구동 제어 장치(78)는 피드포워드 조작량과 구동ㆍ제동 장치(3A)의 현재의 제어 상태에 대응하여 각 차륜(Wi)에 발생하는 노면 반력(구체적으로는 노면 반력 중 구동ㆍ제동력 및 횡력)에 노면 반력 보상량(Fcmpn_i)을 더한 노면 반력을 목표값으로 하여, 실제로 발생하는 노면 반력이 상기 목표값에 일치하도록, 또는 상기 목표값에 근접하도록 실차(70)의 액티브 스티어링 장치(3B)의 액추에이터의 조작량을 결정하고, 이 액추에이터 조작량에 의해 액티브 스티어링 장치(3B)를 제어한다. 한편, 이 때 액티브 스티어링 장치(3B)를 제어하는 것에 더하여, 구동ㆍ제동 장치(3A)의 브레이크 장치를 제어하도록 하여도 좋다.
이어서, 상기 운전 조작 입력, 모델 액추에이터 조작량(δa_i), 가상 외 력(Fvirt, Mvirt), 차속(실차(70)의 차속) 및 추정 노면 마찰 계수(μestm)가 차량 모델(72)(도 6의 차량 모델)에 입력된다. 그리고, 이 차량 모델(72)에 의해 상기한 바와 같이 이 차량 모델(72) 상에서의 노면 반력(Fmdl_x_i, Fmdl_y_i)과 횡 미끄럼각(β)과 요 레이트(ωz)의 금회값이 산출된다.
이어서, 상기 제1 실시 형태와 마찬가지로, μ 추정부(80)와 감각 피드백 알림부(90)의 처리가 이루어진다.
본 실시 형태의 제어 장치(10)의 제어 처리에 있어서는 이상 설명한 것 이외의 제어 처리는 상기 제1 실시 형태와 동일하다.
이상이 제2 실시 형태의 제어 장치(10)의 제어 처리의 구체적인 내용이다. 본 실시 형태에 따르면, 상기 제1 실시 형태와 동일한 작용 효과를 가져올 수 있다.
보충하면, 제2 실시 형태는 본 발명 중 상기 제1 발명, 제2 발명, 제4 발명~제11 발명의 실시 형태이다. 이 경우, 제2 실시 형태와 본 발명 사이의 대응 관계는 제1 실시 형태와 본 발명의 대응 관계와 동일하다. 한편, 제2 실시 형태에 있어서도 제1 실시 형태에 관하여 설명한 경우와 마찬가지로, 가상 외력(Fvirt, Mvirt) 대신 이 가상 외력을 차량 모델(72) 상의 차량(1)에 작용시키는 것과 동등한 효과를 가져오는 차량 모델(72) 상의 액추에이터 장치에 대한 조작량(즉, 상기 모델 액추에이터 조작량의 수정량)을 결정하고, 그것을 차량 모델 조작용 제어 입력으로서 차량 모델(72)에 입력하도록 하여도 좋다. 이와 같이 함으로써 제3 발명 또는 제12 발명의 실시 형태를 구축할 수 있다.
[제3 실시 형태]
다음, 본 발명의 제3 실시 형태를 도 8~도 14를 참조하여 설명한다. 도 8은 제3 실시 형태의 차량의 제어 장치의 기능적 구성을 나타내는 블럭도이다. 도 8에 도시한 바와 같이, 제3 실시 형태는 제1 실시 형태의 피드포워드 조작량 결정부(74) 대신 시나리오 작성부(98)를 구비한 것이다. 또한 감각 피드백 알림부(90)에는 분배기(88)의 출력뿐만 아니라, 시나리오 작성부(98)에서 감각 피드백 알림부(90)로 정보가 전달된다. 그 밖의 구성은 제1 실시 형태와 동일하다.
시나리오 작성부(98)의 개요를 설명하면 상기 시나리오 작성부(98)는 제어 장치(10)의 제어 처리 주기마다 현재 시각(금회 시각)까지의 운전 조작 입력(스티어링각, 액셀 조작량, 브레이크 조작량, 시프트 레버 위치 등)의 시계열에 따라 운전자가 원할 것인 현재 시각 이후의 장래의 차량(1)의 운동의 규범 상태량의 시계열을 생성한다. 또한 시나리오 작성부(98)는 차량(1)의 운동이 생성한 규범 상태량의 시계열을 추종하면서, 차량(1)에 작용할 노면 반력이 허용 범위를 초과하지 않도록 현재 시각부터 소정 시간 이후까지의 장래의 차량(1)의 운동의 상태량의 시계열을 작성한다. 이 때, 차량(1)의 운동의 상태량의 시계열과 함께, 현재 시각부터 소정 시간 이후까지의 장래의 액추에이터 구동 제어 장치에의 조작량(제어 입력)의 시계열과 차량(1)의 노면 반력의 시계열이 작성된다. 그리고, 시나리오 작성부(98)는 작성한 액추에이터 구동 제어 장치에의 조작량의 시계열 중 현재 시각에 대응하는 조작량을 실 액추에이터 구동 제어 장치(78)에 대한 피드포워드 조작량의 금회값으로서 출력한다. 한편, 이후 시나리오 작성부(98)에서 작성되는 상태 량 등의 시계열을 간혹 총칭적으로 시나리오 또는 시나리오 시계열이라고 한다.
이 시나리오 작성부(98)에 있어서는, 시나리오용 차량 모델을 이용하여 시나리오가 작성된다. 시나리오용 차량 모델은 임의 시각(ta-Δt)(단, Δt는 연산 처리 주기(제어 주기))에서의 상태량과 시각(ta)의 입력(시나리오용 차량 모델에의 입력)으로부터 시각(ta)의 상태량을 산출하여 출력한다.
이 경우, 시나리오 작성부(98)에 있어서는 현재 시각(제어 장치(10)의 금회 제어 주기의 시각)으로부터 1 제어 주기 전의 시각을 "초기 시각"이라고 하고, 현재 시각에 결정되는 상태량(현재 시각 상태량)을 산출하기 위한 입력을 "현재 시각 입력"이라고 하여 현재 시각에 결정되는 상태량(현재 시각 상태량)을 산출하기 위한 전회 상태량을 초기 상태량으로 정의한다. 그리고, 시나리오 작성용 액추에이터 구동 제어 장치인 시나리오용 액추에이터 구동 제어 장치에 대한 입력(제어 입력)의 시계열 중 초기 시각부터 Δt의 시간 후의 값(즉, 현재 시각에 대응하는 값)을 피드포워드 조작량의 금회값으로서 출력한다.
한편, 시나리오는 제어 주기마다 다시 생성된다. 가상 외력이 0일 때에는 직전에 생성된 시나리오 대로 차량 모델(72)(가상 외력이 입력되는 차량 모델(72))의 상태가 천이되므로, 다시 생성되는 시나리오는 직전에 생성된 시나리오와 동일한 거동이 된다. 가상 외력이 0이 아닐 때에는 시나리오의 초기 상태는 가상 외력을 받은 결과의 차량(1)의 상태에 대응한 것으로 수정된다.
이하에 시나리오 작성부(98)의 구체적인 내용을 도 9~도 14를 참조하여 설명한다. 도 9는 시나리오 작성부(98)의 기능적 구성을 나타내는 블럭도이고, 도 10 및 도 11은 시나리오 작성부(98)의 처리를 나타내는 흐름도이다. 이후의 설명에서는 시나리오 시계열의 피치 시간을 Δt라 하고(본 실시 형태에서는 Δt는 제어 장치(10)의 제어 주기와 동일하다고 한다), 상기 시계열의 각 시각(t)을 k?Δt(k=0, 1, 2,……, kmax)에 의해 나타낸다. 그리고, 시나리오 시계열에 있어서의 시각( k?Δt)에서의 상태량 등의 값을 k번째 값이라고 칭한다. 0번째의 값은 시나리오 시계열의 초기 시각의 값이 rh, 첫 번째의 값은 현재 시각(시나리오 시계열에 있어서의 시각(Δt))의 값이다. 또한 현재 시각부터 소정 시간((kmax-1)?Δt) 후의 시각, 즉 시각(kmax?Δt)을 시각(Te)으로 정의한다.
시나리오 작성부(98)는, 도 9에 도시한 바와 같이 장래 입력 시계열 결정부(100)와 시나리오용 규범 동특성 모델(102)과, 추종 제어 규칙(106)과, 시나리오용 액추에이터 구동 제어 장치 모델(108)과, 시나리오용 차량 모델(110)을 구비한다. 또한 시나리오 작성부(98)는 도시되지 않은 시나리오 평가부와 시나리오 추종 제어 규칙 변경부도 구비한다.
이하, 시나리오 작성부(98)의 각 부의 처리의 설명과 더불어 시나리오 작성부(98)의 처리를 상세하게 설명한다.
도 10의 흐름도를 참조하면, 먼저 S210에 있어서, 현재 시각(금회의 제어 주기의 시각)까지의 운전 조작 입력의 시계열(운전 조작 입력의 금회값과 전회값 등의 과거값)을 기초로 현재 시각부터 소정 시간 후의 시각(Te)까지의 운전 조작 입력인 장래 운전 조작 입력의 시계열(k=1부터 k=㎞ax까지의 시계열)을 결정한다. 이 S210의 처리가 장래 입력 시계열 결정부(100)의 처리이다.
이 장래 운전 조작 입력의 시계열은 구체적으로는 다음과 같이 작성된다. 즉, 운전 조작 입력 중 스티어링각(이하, 장래 스티어링각이라고 할 수 있음)을 예로 들어 설명하면, 현재 시각까지의 스티어링각(θs)의 시계열이 예컨대 도 12의 파선의 그래프로 나타낸 것과 동일하다고 하자. 이 때, 장래 스티어링각(θs)의 시계열(장래의 시각(Te)(현재 시각부터 소정 시간 후의 시각)까지의 시계열)은 도 12의 실선의 그래프로 나타낸 바와 같이 결정된다. 이 경우, 환경(실차(70)의 주행 환경)을 인식할 수 없는 경우에는, 현재 시각부터 약간의 시간이 경과한 시각부터 장래 스티어링각(θs)이 일정해지도록 장래 운전 조작 입력의 스티어링각(θs)의 시계열이 결정된다.
보다 구체적으로는, 장래 스티어링각(θs)의 시계열은 현재 시각의 스티어링각(θs)의 값(금회값)과 이 스티어링각(θs)의 각속도의 값(금회값)으로부터, 예컨대 1차 지연계의 거동을 나타내도록 결정된다. 즉, 현재 시각에서의 스티어링각(θs)의 값을 θs1, 각속도의 값을 dθs1/dt라고 하였을 때, 장래 스티어링각(θs)의 시계열은 θs1을 기점으로 하여, 소정의 시정수(Ts)에서 θs1+Ts?dθs1/dt로 세팅(整定)하는 1차 지연 파형이 되도록 결정된다. 이 경우, 장래 스티어링각의 시계열의 시각(t=Δt)에서의 값(첫 번째의 값)은 현재 시각에서의 스티어링각(θs)의 검출값, 즉 θs의 금회값에 일치시킨다. 한편, 각속도(dθs1/dt)는 스티어링각(θs)의 검출값의 금회값과 전회값과의 차를 제어 처리 주기(Δt)로 제산함으로써 구하여도 좋으나, 노이즈를 제거하기 위하여 스티어링각(θs)의 검출값의 금회값 및 복수의 과거값의 시계열을 기초로 FIR 필터 또는 IIR 필터에 의해 구하도록 하여도 좋다.
장래 운전 조작 입력 중 스티어링각(θs) 이외의 다른 운전 조작 입력(액셀 페달 조작량, 브레이크 페달 조작량)의 시계열도 장래 스티어링각(θs)의 시계열 과 동일하게 결정된다. 한편, 장래 운전 조작 입력 중 시프트 레버 위치의 시계열은, 예컨대 현재 시각에서의 시프트 레버 위치(금회값)로 유지하도록 결정된다.
보충하면, 시각 센서, 레이더, GPS, 관성 항법 장치, 지도 데이터 등에 의해 실차(70)의 주행 환경을 인식할 수 있는 경우에는, 환경 정보에 따라 장래 운전 조작 입력의 시계열을 작성하는 것이 바람직하다. 예컨대 실차(70)가 고속 도로를 주행하고 있는 경우, 운전자가 급격하게 스티어링 휠을 조작하였을 때에는 장해물 등을 회피하기 위하여 차선 변경을 하려 하고 있다고 해석하여, 장래 운전 조작 입력의 시계열을 작성하면 좋다. 장래 운전 조작 입력의 시계열은 기본적으로는 운전자가 의도하는 장래의 실차(70)의 거동에 가까운 차량(1)의 거동이 얻어지는 운전 조작 입력인 것이 바람직하다.
이어서 S212로 진행하여, 시나리오에 있어서의 규범 상태량의 시계열인 시나리오 규범 상태량 시계열과, 시나리오용 액추에이터 구동 제어 장치(108)에의 입력(제어 입력)의 시계열인 시나리오용 액추에이터 구동 제어 장치 입력 시계열과, 시나리오용 차량 모델(110) 상에서의 차량(1)의 운동의 상태량의 시계열인 시나리오 상태량 시계열과, 시나리오용 차량 모델(110) 상에서의 노면 반력의 시계열인 시나리오 노면 반력 시계열을 작성한다. 이 S212의 처리는 시나리오용 규범 동특성 모델(102), 시나리오용 추종 제어 규칙(106), 시나리오용 액추에이터 구동 제어 장치 모델(108) 및 시나리오용 차량 모델(110)에 의해 실행되는 처리이다.
S212의 처리는 도 11의 흐름도로 나타내는 서브 루틴 처리에 의해 실행된다.
먼저, S1002에 있어서, 시나리오용 규범 동특성 모델(102)의 초기 상태량(시각(t=0)에서의 상태량)을 상기 차량 모델(72)의 최신의 상태량(본 실시 형태에서는 전회값)에 일치시킨다. 즉, 시나리오용 규범 동특성 모델(102)의 상태량의 시계열의 0번째의 상태량에 차량 모델(72)의 최신의 상태량이 대입되고, 이 시나리오용 규범 동특성 모델이 초기화된다.
여기서, 본 실시 형태에서는 시나리오용 규범 동특성 모델(102)로서 예컨대 상기 제2 실시 형태에서 설명한 2륜 모델(63)(상기 식 50a, 50b에 기술되는 동특성을 갖는 모델)이 사용된다. 단, 시나리오용 규범 동특성 모델(102)에서는, 식 50a, 50b에 있어서의 Fvirt, Mvirt는 정상적(定常的)으로 0으로 설정된다. 그리고, S1002에서는 이 시나리오용 규범 동특성 모델(102)의 초기 상태량(횡 미끄럼각(β), 요 레이트(ωz), 차량(1)의 중심점의 위치(XY 평면 내의 위치), 차량(1)의 자세각(요 축 방향의 자세각))의 값이 차량 모델(72) 상에서의 최신의 상태량의 값과 동일하게 설정된다. 예컨대 도 13에 도시한 바와 같이, 시나리오용 규범 동특성 모델(102)의 상태량 중 요 레이트(ωz)에 관하여, 초기 시각(전회 제어 주기의 시각)까지의 과거의 시나리오에 있어서의 규범 상태량의 요 레이트(ωz)의 시계열(보다 구체적으로는, 전회 제어 주기까지의 과거의 각 제어 주기에 있어서 시나리오용 규범 동특성 모델(102)에 의해 구해진 각 제어 주기의 시각에서의 요 레이트의 시계열)이 상기 도 13의 실선의 그래프로 나타낸 것이라고 하자. 또한 초기 시 각까지의 차량 모델(72)의 상태량의 요 레이트의 시계열이 상기 도 13의 파선으로 나타낸 그래프라고 하자. 이 때, 금회의 제어 주기로 새로 작성하는 규범 상태량의 요 레이트(ωz)의 시계열 중 초기 시각에서의 값(0번째의 값)은 과거의 시나리오와 관계없이 차량 모델(72)의 상태량의 요 레이트(최신의 상태량의 요 레이트)와 동일한 값으로 설정된다. 시나리오용 규범 동특성 모델(102)의 다른 상태량에 대해서도 동일하다. 따라서, 시나리오용 규범 동특성 모델(102)은 각 제어 주기에 있어서 차량 모델(72)의 최신의 상태량을 기점으로 하여 규범 상태량의 시계열을 작성한다.
보충하면, 도 13은 시간축의 좌단의 시각부터 초기 시각까지 시나리오의 갱신이 이루어지지 않은 경우의 양상이며, 시나리오의 갱신이 제어 주기마다 이루어지는 경우, 초기 시각 이전에 있어서는 과거의 시나리오에 있어서의 규범 상태량의 요 레이트의 시계열이 차량 모델(72)의 상태량의 요 레이트의 시계열에 일치시켜지므로, 현재 시각에서만 일반적으로 두 시계열의 값이 다르다.
한편, 시나리오용 규범 동특성 모델(102)에 있어서의 횡 미끄럼각(β)은 차량(1)의 무게 중심의 횡 미끄럼각이며, 그 초기 상태량은 차량 모델(72)의 상기 모델 차체 운동의 상태량(자세한 내용은 모델 차체 운동의 상태량 중 차체(1B)의 X축 방향의 속도와 Y축 방향의 속도)으로부터 결정된다.
보충하면, 시나리오용 규범 동특성 모델(102)에서는 노면 마찰 계수의 값은 예컨대 미리 정한 소정값(건조 노면의 마찰 계수 등)이 되고, 그 노면 마찰 계수의 값에 따라 상기 식 50a, 50b에서의 코너링 파워(Kf, Kr)의 값이 설정된다. 단, 시 나리오용 규범 동특성 모델(102)에 있어서의 노면 마찰 계수의 값을 반드시 일정하게 할 필요는 없으며, 예컨대 상기 추정 노면 마찰 계수(μestm)에 따라 시나리오용 규범 동특성 모델(102)에 있어서의 노면 마찰 계수를 결정하여도 좋다. 이 경우, 시나리오용 규범 동특성 모델(102)에 있어서의 노면 마찰 계수는 급격한 변화나 빈번한 변화를 발생시키지 않는 것이 바람직하다. 따라서, 예컨대 추정 노면 마찰 계수(μestm)를 저역 통과 필터에 통과시킨 것에 기초하여 시나리오용 규범 동특성 모델(102)에 있어서의 노면 마찰 계수를 결정하여도 좋다.
이어서 S1004로 진행하여, 시나리오용 차량 모델(110)의 초기 상태량(시각(t=0)에서의 상태량)을 차량 모델(72)의 최신의 상태량(본 실시 형태에서는 전회값)에 일치시킨다. 즉, 시나리오용 차량 모델(110)의 상태량의 시계열의 0번째의 상태량에 차량 모델(72)의 최신의 상태량이 대입되고, 상기 시나리오용 차량 모델(110)이 초기화된다.
여기서, 시나리오용 차량 모델(110)은 본 실시 형태에서는 상기 차량 모델(72)과 동일한 구조의 모델이다. 그리고, S1004에서는 시나리오용 차량 모델(110)의 초기 상태량(시나리오용 차량 모델(110) 상에서의 차량(1)의 운동의 상태량(모델 차체 운동의 상태량)과 노면 반력)이 차량 모델(72)의 최신의 상태량과 동일하게 설정된다. 따라서, 시나리오용 차량 모델(110)은 각 제어 주기에 있어서, 차량 모델(72)의 최신의 상태량을 기점으로 하여 시나리오용 차량 모델(110) 상에서의 차량(1)의 운동(모델 차체 운동)의 상태량 및 노면 반력의 시계열을 작성하게 된다.
이어서, S1006으로 진행하여 k에 1을 대입한 후, S1008~S1032의 루프 처리가 실행된다.
S1008에서는 상기 S210에서 구한 장래 운전 조작 입력의 시계열의 k번째의 값(시각(t=k?Δt에서의 값))을 시나리오용 규범 동특성 모델(102)에 입력하여, 이 시나리오용 규범 동특성 모델(102)에 의해 새로운 규범 상태량을 구한다. 이 S1008의 처리가 시나리오용 규범 동특성 모델(102)에 의해 실행되는 처리이다.
여기서, 본 실시 형태에서는 시나리오용 규범 동특성 모델(102)은, 예컨대 상기 도 7에 예시하는 바와 같이, 차량(1)의 요 레이트의 규범값인 규범 요 레이트와 차량(1)의 주행 경로의 규범으로서의 규범 코스를 규범 상태량으로서 구하고, 그것을 출력한다. 규범 코스는 시나리오용 규범 동특성 모델(102) 상에서의 차량(1)의 위치의 시계열에 의해 규정되는 공간적인 경로이다. 이들 규범 상태량은, 예컨대 다음과 같이 구해진다.
즉, 시나리오용 규범 동특성 모델(102)에 입력되는 장래 운전 조작 입력 중 스티어링각(θs)으로부터 이 스티어링각과 차량(1)의 조타륜(전륜(W1, W2))의 조타각 간의 미리 정해진 상관 관계(스티어링각에 대한 조타각의 비율 등)에 기초하여 조타륜(본 실시 형태에서는 전륜(W1, W2))의 조타각(상기 식 50a, 50b의 δf)이 구해진다. 그리고, 이 조타각(δf)과 시각 t=(k-1)?Δt에서의 시나리오용 규범 동특성 모델(102)의 상태량(k-1번째의 상태량)을 기초로 상기 식 50a, 50b(보다 자세한 내용은 이들 식 50a, 50b을 이산계로 표현한 식)에 의해 시각 t=k?Δt에서의 요 레이트(ωz)와 횡 미끄럼각(β)이 구해진다. 그리고, 구해진 요 레이트(ωz)가 새로운 규범 요 레이트로서 얻어진다.
또한 시나리오용 규범 동특성 모델(102)에 있어서, 규범 요 레이트(ωz)는 시각(k-1)?Δt부터 시각 t=k?Δt까지 적분되고, 그 적분값이 시각 (k-1)?Δt에 있어서의 시나리오용 규범 동특성 모델(102)의 상태량 중 차량(1)의 요 축 방향의 자세각에 더해진다. 이에 따라 시각 t=k?Δt에서의 차량(1)의 요 축 방향의 자세각(차량(1)의 방위각)이 구해진다. 그리고, 이 구한 자세각과 상기한 바와 같이 산출한 횡 미끄럼각(β)과, 차속(V)과, 시각(k-1)?Δt에서의 차량(1)의 위치(보다 자세한 내용은 차량(1)의 중심점의 XY 평면 내의 위치)를 기초로 시각 t=k?Δt에서의 차량(1)의 위치(보다 자세한 내용은 차량(1)의 무게 중심점의 XY 평면 내의 위치)가 구해진다. 이 위치의 시계열에 의해 규정되는 경로가 규범 코스로서 얻어진다.
한편, 시각 k?Δt에서의 규범 상태량을 구하기 위하여 필요한 차속(V)으로는, 시나리오용 차량 모델(110) 상의 차량(1)의 운동의 상태량의 시계열(시나리오 상태량 시계열) 중 시각(k-1)?Δt에서의 차속(k-1번째의 차속임)이 이용된다. 이 경우, 시나리오 상태량 시계열에 있어서의 0번째의 차속은 차량 모델(72) 상에서의 차속의 최신값(본 실시 형태에서는 전회값)에 일치한다. 또한 0번째보다 나중의 차속은 시나리오용 규범 동특성 모델(102)에 입력되는 장래 운전 조작 입력 중 액셀 페달 조작량, 브레이크 페달 조작량 및 시프트 레버 위치 등과 상기한 바와 같이 구한 자세각 및 횡 미끄럼각(β) 등으로부터 자세각을 구하는 순서와 동일하게 축차적으로 적분 연산에 의해 결정된다.
이어서, S1010으로 진행하여, S1008에서 구해진 새로운 규범 상태량이 시나리오에 있어서의 규범 상태량의 시계열의 k번째의 값으로서 기억 유지된다.
이어서, S1012~S1024까지의 처리가 상기 시나리오용 추종 제어 규칙(106)에 의해 실행된다. 이 시나리오용 추종 제어 규칙(106)은 시나리오용 차량 모델(110) 상의 차량(1)의 운동의 상태량을 규범 상태량에 근접시키면서 시나리오용 차량 모델(110) 상에서 발생하는 노면 반력이 소요의 허용 범위를 초과하지 않도록 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 조작량(제어 입력)을 결정한다. 이 시나리오용 추종 제어 규칙(106)은 그 기능적 구성을 도시하면, 도 14의 블럭도로 나타내어진다. 이 시나리오용 추종 제어 규칙(106)은, 도시한 바와 같이, 시나리오용 추종 피드포워드 규칙(106a), 감산 처리부(106b), 시나리오용 추종 피드백 규칙(106c), 가산 처리부(106d) 및 시나리오용 노면 반력 리미터(106e)를 구비하고 있다. 또한 필요에 따라 조작량 변환부(106f)도 구비할 수 있다. 단, 본 실시 형태에서는 조작량 변환부(106f)는 생략된다.
이하, 이 도 14와 도 11의 흐름도를 참조하면서, 시나리오용 추종 제어 규칙(106)의 처리를 상세하게 설명한다.
먼저, S1012에 있어서, 장래 운전 조작 입력의 시계열의 k번째의 값을 기초로 시나리오용 추종 피드포워드 규칙(106a)에 의해 차량(1)에 발생시킬 노면 반력의 기본 요구값으로서의 피드포워드 노면 반력을 결정한다. 본 실시 형태에서는 도 14에 도시한 바와 같이, 시나리오용 추종 피드포워드 규칙(106a)에는 장래 운전 조작 입력뿐만 아니라, 시나리오용 차량 모델(110)의 상태량 중 차속(k-1번째의 값)도 입력된다. 그리고, 시나리오용 추종 피드포워드 규칙(106a)으로부터 이들 입력을 기초로 피드포워드 노면 반력을 결정한다.
이 경우, 피드포워드 노면 반력은 예컨대 다음과 같이 결정된다. 즉, 시나리오용 추종 피드포워드 규칙(106a)에 입력된 장래 운전 조작 입력과 차속을 기초로 상기 제1 실시 형태에서 설명한 피드포워드 조작량 결정부(74), 액추에이터 구동 제어 장치 모델(76) 및 차량 모델(72)과 동일한 처리를 실행하고, 각 차륜(Wi)의 노면 반력(Fmdl_i, Mmdl_i)을 구한다. 그리고, 그 구한 노면 반력(Fmdl_i, Mmdl_i)을 피드포워드 노면 반력으로서 결정한다. 한편 이 경우, 노면 마찰 계수의 값으로는 상기 μ 추정부(80)에서 구해진 추정 노면 마찰 계수(μestm)의 전회값이 이용된다.
보충하면, 피드포워드 노면 반력 대신 상기 제1 실시 형태에 있어서의 피드포워드 조작량 결정부(74)와 마찬가지로 피드포워드 조작량을 구하도록 하여도 좋다. 이 경우, 시나리오용 차량 모델(110)의 상태량을 고려하여 피드포워드 조작량을 구하도록 하여도 좋다. 예컨대 피드포워드 조작량 중 피드포워드 조타각(전륜(W1, W2)의 조타각)과 스티어링각의 비를 시나리오용 차량 모델(110)의 상태량 중 차속에 따라 설정하고(차속이 높은 경우에 상기 비의 값을 작게 한다), 그 설정한 비에 기초하여 장래 운전 조작 입력 중 스티어링각으로부터 피드포워드 조타각(전륜(W1, W2)의 조타각)을 구하도록 하여도 좋다.
이어서, S1014로 진행하여, 시나리오 상태량 시계열의 k-1번째의 값과 규범 상태량 시계열의 k번째의 값과의 차에 따라 시나리오용 추종 피드백 규칙(106c)에 의해 모델 복원 요구력을 결정한다. 이 경우, 시나리오 상태량과 규범 상태량과의 차는 도 14의 감산 처리부(106b)에서 산출되고, 그것이 시나리오용 추종 피드백 규칙(106c)에 입력된다. 시나리오용 추종 피드백 규칙(106c)이 결정하는 모델 복원 요구력은 시나리오 상태량 시계열을 시나리오 규범 상태량 시계열에 근접시키기 위하여 차량(1)에 작용시킬 노면 반력이며, 본 실시 형태에서는 상기 피드포워드 노면 반력을 수정하기 위한 수정량으로서의 의미를 갖는다. 이 모델 복원 요구력은 시나리오 상태량(k-1번째의 값)과 시나리오 규범 상태량(k번째의 값)과의 차로부터 예컨대 비례 제어 규칙에 의해 결정된다. 보다 구체적으로는, 시나리오용 차량 모델(110) 상의 차량(1)의 요 레이트(k-1번째의 값)와 규범 요 레이트(k번째의 값)과의 차에 소정의 비례 게인을 곱함으로써 모델 복원 요구력이 결정된다. 한편, 모델 복원 요구력 대신 S1010에서 결정한 피드포워드 노면 반력(또는 피드포워드 조작량)에 대응하는 조타각 및 구동ㆍ제동력의 수정량을 결정하도록 하여도 좋다. 또한 시나리오용 추종 피드백 규칙으로는 PD 제어 규칙 등을 사용하여도 좋다. 또한 요 레이트의 편차뿐만 아니라, 시나리오용 차량 모델(110) 상에서의 차량(1)의 위치의 규범 코스로부터의 벗어남량(차량(1)의 위치와 규범 코스 사이의 거리)에 따라서 모델 복원 요구력을 결정하도록 하여도 좋다.
이어서, S1016으로 진행하여, 상기한 바와 같이 결정한 포드 포워드 노면 반력과 모델 복원 요구력의 합을 가조작량으로서 구한다. 이 처리는 도 14의 가산 처리부(106d)의 처리이다. 가조작량은 본 실시 형태에서는 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 제어 입력(시나리오용 액추에이터 구동 제어 장 치 입력)의 임시값으로서의 의미를 갖는다.
이어서, S1018로 진행하여, 시나리오용 액추에이터 구동 제어 장치 모델(108)에 상기 가조작량을 목표로서 입력한 경우에, 시나리오용 차량 모델(110) 상에서 발생하는 노면 반력을 구한다. 여기서, 시나리오용 액추에이터 구동 제어 장치 모델(108)은 본 실시 형태에서는 노면 반력의 목표값을 입력으로 하여 이 입력되는 목표값의 노면 반력을 차륜(W1~W4)에 발생시키도록 시나리오용 차량 모델(110)에 대한 입력(시나리오 차량 모델(110) 상에서의 각 액추에이터 장치(3)(도 2의 구동ㆍ제동계 모델(52), 서스펜션 동특성 모델(54) 및 조타계 모델(60)에 대한 액추에이터 조작량)을 결정하는 것이다. 그리고, S1018에서는, 시나리오용 액추에이터 구동 제어 장치 모델(108)과 동일한 처리에 의해 상기 가조작량으로부터 시나리오용 차량 모델(110)에 대한 액추에이터 조작량을 결정하고, 이 액추에이터 조작량을 기초로 상기 차량 모델(72)과 동일한 연산 처리를 실행함으로써 시나리오용 차량 모델(110) 상에서 발생하는 노면 반력을 구한다. 이 S1018의 처리와 후술하는 S1020, S1022의 처리가 도 14의 노면 반력 리미터(106e)의 처리이다.
이어서, S1020으로 진행하여, 상기한 바와 같이 구한 노면 반력이 허용 범위를 초과하고 있는지 여부가 판단된다. 이 경우, 노면 반력의 허용 범위는 상기 분배기(88)에 있어서의 허용 범위(상기 마찰력 허용 범위 및 접지 하중 허용 범위)의 설정 순서와 동일한 순서로 설정된다.
그리고, S1020의 판단 결과가 YES일 때에는 S1022로 진행하여, 노면 반력이 허용 범위를 초과하지 않도록(시나리오용 차량 모델(110) 상에서 발생하는 노면 반 력이 S1020의 허용 범위에 들어가도록) 상기 가조작량을 수정한다.
또한 S1020의 판단 결과가 NO일 때, 또는 S1022의 처리 후 S1024로 진행하여, 지금 현재의 가조작량(S1016에서 구한 가조작량, 또는 S1022에서 수정된 가조작량)을 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 조작량(제어 입력)으로서 결정한다.
보충하면, S1016~S1024의 처리는 예컨대 상기 분배기(88)에 있어서 노면 반력 보상량을 결정하는 처리와, 그 후에 노면 반력 보상량을 피드포워드 조작량에 더함으로써 실제로 액추에이터 구동 제어 장치(76)에의 입력(목표값)을 결정하는 처리와 동일한 처리이면 된다. 단, 동일할 필요는 없다.
한편, 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 제어 입력이 노면 반력의 목표값이 아닌 경우(이 제어 입력이 피드포워드 조타각 등인 경우)에는, S1024에서는 노면 반력의 차원의 상기 가조작량(도 14의 노면 반력 리미터(106e)의 출력)을 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 제어 입력으로 변환한 후에, 그 제어 입력을 조작량으로서 결정하면 좋다. 이 경우의 변환 처리를 실행하는 것이 도 14의 조작량 변환부(106f)이다.
이상의 S1012~S1024의 처리가 상기 시나리오용 추종 제어 규칙(106)의 처리이다. 이와 같이 시나리오용 추종 제어 규칙(106)은 시나리오용 차량 모델(110) 상에서의 노면 반력이 소요의 허용 범위를 초과하지 않도록 하면서, 시나리오용 차량 모델(110) 상에서의 차량(1)의 운동의 상태량(본 실시 형태에서는 요 레이트)을 시나리오 규범 상태량(규범 요 레이트)에 근접시키도록 시나리오용 액추에이터 구 동 제어 장치 모델(108)에 대한 제어 입력(조작량)을 결정한다.
이어서, S1026으로 진행하여, 시나리오용 액추에이터 구동 제어 장치 모델(108)에 상기 S1024에서 결정한 조작량을 입력한 경우에 시나리오용 차량 모델(110)에서 발생하는 노면 반력과 시나리오용 차량 모델(110) 상에서의 차량(1)의 운동의 상태량인 시나리오 상태량을 구한다. 이 처리는, 상기 시나리오용 액추에이터 구동 제어 장치 모델(108)과 시나리오용 차량 모델(110)에 의해 실행되는 처리이다. 즉, S1024에서 결정한 조작량을 시나리오용 액추에이터 구동 제어 장치 입력으로서 시나리오용 액추에이터 구동 제어 장치 모델(108)에 입력하고, 이 모델(108)에 의해 시나리오용 차량 모델(110)의 액추에이터 장치(3)에 대한 액추에이터 조작량을 결정한다. 이어서, 이 액추에이터 조작량과 상기 장래 운전 조작 입력의 스티어링각(k번째의 값)을 시나리오용 차량 모델(110)에 입력한다. 그리고, 이 시나리오용 차량 모델(110)에 의해 상기 차량 모델(72)과 동일한 처리에 의해 노면 반력과 시나리오 상태량(도 2의 모델 차체 운동 상태량에 해당하는 상태량)을 산출한다.
이어서, S1028로 진행하여, S1024에서 결정한 조작량과 S1026에서 결정한 시나리오 상태량 및 노면 반력을 각각 시나리오용 액추에이터 구동 제어 장치 입력 시계열의 k번째의 값, 시나리오 상태량 시계열의 k번째의 값, 시나리오 노면 반력 시계열의 k번째의 값으로서 기억 유지한다. 이에 따라 시각 t=k?Δt에 있어서의 시나리오용 액추에이터 구동 제어 장치 입력, 시나리오 상태량 및 시나리오 노면 반력이 결정되게 된다.
이어서, S1030으로 진행하여, k의 값이 ㎞ax가 되었는지 여부가 판단된다. 그리고, 이 판단 결과가 NO일 경우에는 S1032에 있어서 k의 값을 1만큼 증가시킨 후, S1008부터의 처리가 반복된다. 또한 S1030의 판단 결과가 YES일 경우에는, 도 11의 서브 루틴 처리가 종료된다.
이상이 도 10의 S212의 처리의 상세한 내용이다.
도 10의 설명으로 돌아가면, 다음 S214로 진행하여, 시나리오 상태량 시계열에서 규정되는 차량(1)의 주행 경로의 시나리오 규범 상태량 시계열의 규범 코스로부터의 벗어남량인 코스 벗어남이 소정의 허용 범위를 만족하는지(벗어남량이 소정값보다 작은지) 여부가 판단된다. 이 경우, 코스 벗어남은 시나리오 상태량 시계열 중 각 시각에서의 차량(1)의 위치와 규범 코스의 거리로서 구해진다. 이 처리는 시나리오 작성부(98)에 구비된 시나리오 평가부(도시하지 않음)에 있어서 실행된다. 그리고, S214의 판단 결과가 NO일 경우에는, S216으로 진행하여 코스 벗어남이 그에 대한 허용 범위를 만족하도록 시나리오용 액추에이터 구동 제어 장치 입력 시계열과 시나리오 노면 반력 시계열과 시나리오 상태량 시계열을 수정한다. 예컨대 코스 벗어남이 허용 범위를 일탈하는 경우(예컨대 일정 선회에서 코스 아웃할 것 같은 경우)에는, 장래 운전 조작 입력의 시계열 중 브레이크 조작량의 시계열이 0으로 유지되는 경우라도, 시나리오의 전반(前半)에 있어서 각 차륜(Wi)에 음의 구동ㆍ제동력, 즉 제동력을 발생시키고 감속시키고나서 선회시키도록 시나리오용 액추에이터 구동 제어 장치 입력의 시계열을 시나리오용 추종 제어 규칙(106)에 설정한다. 이 처리는 시나리오 작성부(98)에 구비된 시나리오용 추종 제어 규칙 변경부에 있어서 실행된다. 더욱이, 상기한 바와 같이 설정한 시나리오용 액추에이터 구동 제어 장치 입력의 시계열에 따라 시나리오용 액추에이터 구동 제어 장치 모델(108) 및 시나리오용 차량 모델(110)을 통하여 시나리오 노면 반력 시계열 및 시나리오 상태량 시계열을 새로 결정한다. 이에 따라, 시나리오에 있어서의 코스 벗어남을 억제할 수 있다.
한편 S214에 있어서, 시나리오 노면 반력이 소정의 허용 범위를 만족하고 있는지 여부를 판단하도록 하여도 좋다. 이 경우, 시나리오 노면 반력의 허용 범위는 도 18의 S1222의 허용 범위보다 예컨대 좁은 허용 범위로 설정한다.
S216의 처리 후, 또는 S214의 판단 결과가 YES인 경우에는 S218로 진행하여, 시나리오용 액추에이터 구동 제어 장치 모델 입력의 시계열 중 시각(t=Δt)에서의 값, 즉 현재 시각에 대응하는 값을 피드포워드 조작량(도 8에 있어서의 시나리오 작성부의 출력으로서의 피드포워드 조작량)의 금회값으로서 출력한다.
이상이 시나리오 작성부(98)의 상세한 내용이다.
한편, 본 실시 형태에서는 실제의 차량(1)의 액추에이터 구동 제어 장치(78)는 전술한 바와 같이 구한 포드 포워드 조작량과 노면 반력 보상량(Fcmpn_i)이 입력되므로, 그들의 합력(보다 상세하게는, 피드포워드 조작량에 대응하는 포드 포워드 노면 반력과 노면 반력 보상량(Fcmpn_i)의 합력)을 노면 반력의 목표값으로 하여, 실제의 노면 반력이 상기 목표값에 일치하거나 또는 근접하도록 실차(70)의 각 액추에이터 장치(3)(동력 분배 제어 기능 있는 구동ㆍ제동 장치(3A), 액티브 스티어링 장치(3B), 액티브 서스펜션 장치(3C))의 액추에이터의 조작량을 결정한다. 그리고, 그 조작량에 따라 각 액추에이터 장치(3)의 액추에이터를 동작시킨다.
또한 본 실시 형태에 있어서의 감각 피드백 알림부(90)는, 예컨대 가상 외력에 따른 피드포워드 조작량(피드포워드 노면 반력)의 변경량뿐만 아니라, 시나리오 작성부(98)에서의 상기 코스 벗어남 등에 따라 파워 스티어링의 액추에이터나 브레이크 어시스트 장치에 부가적인 조작량을 가함으로써 변경을 운전자에게 알린다.
이상 설명한 것 이외의 제어 장치(10)의 제어 처리는 상기 제1 실시 형태와 동일하다.
이상 설명한 제3 실시 형태에서는 상기 제1 실시 형태와 동일한 작용 효과를 가져오는 것 이외에, 장래의 시나리오를 작성하면서 그 시나리오를 따르도록 피드포워드 조작량이 결정된다. 따라서, 차량(1)의 장래 거동을 예측하면서 노면 반력이 허용 범위에 들어가도록 차량(1)의 운동이 제어되기 때문에, 차량 제어의 로버스트성을 더욱 높일 수 있다. 또한 상기 모델 복원 요구력에 의해 시나리오 상태량 시계열을 시나리오 규범 상태량 시계열을 추종시키도록 시나리오를 결정하므로, 차량 모델(72)의 모델 차체 운동의 상태량이 이상적인 상태량에 가까운 규범 상태량으로부터 멀리 벗어나는 것을 방지할 수 있으므로, 실차(70)의 운동을 이상적인 운동에 근접시킬 수 있다.
보충하면, 제3 실시 형태는 본 발명 중 상기 제1 발명, 제2 발명, 제4 발명~제11 발명, 제13 발명의 실시 형태이다. 이 경우, 시나리오 작성부(98)가 출력하는 피드포워드 조작량이 실차용 기본 제어 입력에 해당한다. 또한 장래 입력 시계열 결정부(100)가 제13 발명에 있어서의 장래 운전 조작량 결정 수단에 해당한 다(장래 운전 조작 입력이 장래 운전 조작량에 해당한다). 또한 시나리오용 규범 동특성 모델(102)이 제17 발명 또는 제18 발명에 있어서의 규범 운동 결정 수단에 해당한다. 또한 상기 모델 복원 요구력이 모델 복원 보상량에 해당하고, 이 모델 복원 요구력을 결정하기 위한 상태량의 차(제3 실시 형태에서는 요 레이트의 차)가 제2 상태량 편차에 해당한다. 한편, 제3 실시 형태에 있어서도 제1 실시 형태에 관하여 설명한 경우와 마찬가지로, 가상 외력(Fvirt, Mvirt) 대신 이 가상 외력을 차량 모델(72) 상의 차량(1)에 작용시키는 것과 동등한 효과를 가져오는 차량 모델(72) 상의 액추에이터 장치에 대한 조작량(즉, 상기 모델 액추에이터 조작량의 수정량)을 결정하고, 그것을 차량 모델 조작용 제어 입력으로서 차량 모델(72)에 입력하도록 하여도 좋다. 이와 같이 함으로써 제3 발명 또는 제12 발명의 실시 형태를 구축할 수 있다.
[제4 실시 형태]
다음, 본 발명의 제4 실시 형태를 도 15~도 20을 참조하여 설명한다. 한편, 본 실시 형태는 상기 제3 실시 형태와 제어 장치(10)의 제어 처리의 일부만이 다른 것이므로, 동일 구성 부분 또는 동일 기능 부분에 대해서는 제3 실시 형태와 동일한 참조 부호를 이용하여 상세한 설명을 생략한다.
도 15는 제4 실시 형태에 있어서의 제어 장치(10)의 기능적 구성을 나타내는 블럭도이다. 도시한 바와 같이, 본 실시 형태에서는 제3 실시 형태에 있어서의 제어 장치(10)의 기능적 구성에 더하여, 운전 조작 입력(본 실시 형태에서는 스티어링각)을 기초로 차량(1)의 운동의 규범 상태량을 제어 주기마다 작성하는 규범 동 특성 모델(120)을 구비하고 있다. 이 규범 동특성 모델(120)은 제3 실시 형태에서 설명한 시나리오용 규범 동특성 모델(102)과 동일한 구조의 모델이다. 그리고, 이 규범 동특성 모델(120)로부터 출력되는 규범 상태량(최신의 규범 상태량)을 시나리오 작성부(98)의 상기 시나리오용 규범 동특성 모델의 초기 상태량으로서 이 시나리오 작성부(98)에 입력하도록 하고 있다.
또한 제4 실시 형태에서는 시나리오 작성부(98)에 있어서, 규범 동특성 모델(120)의 상태량을 차량 모델(72)의 상태량에 근접시키기 위한 제어 입력으로서의 현상 용인 조작량을 결정하고, 이것을 규범 동특성 모델(120)에 입력하도록 하고 있다.
제어 장치(10)의 기능적 구성 중 규범 동특성 모델(120) 및 시나리오 작성부(98) 이외의 각 부의 처리는 제3 실시 형태와 동일하다. 이하에 제4 실시 형태에 있어서의 규범 동특성 모델(120) 및 시나리오 작성부(98)의 처리를 설명한다.
도 16은 제4 실시 형태에 있어서의 시나리오 작성부(98)의 기능적 구성을 나타내는 블럭도이다. 도시한 바와 같이, 시나리오 작성부(98)는 상기 제3 실시 형태와 마찬가지로, 장래 입력 시계열 결정부(100)와 시나리오용 규범 동특성 모델(102)과, 추종 제어 규칙(106)과, 시나리오용 액추에이터 구동 제어 장치 모델(108)과, 시나리오용 차량 모델(110)을 구비한다. 단, 제4 실시 형태에서는 추종 제어 규칙(106)에 있어서, 후술하는 바와 같이 시나리오 내에서의 현상(現狀) 용인 조작량인 시나리오용 현상 용인 조작량이 시나리오의 각 시각에서 생성되고, 그 시나리오용 현상 용인 조작량이 시나리오용 규범 동특성 모델(102)에 입력되도 록 되어 있다.
이하, 본 실시 형태에 있어서의 시나리오 작성부(98) 및 규범 동특성 모델(120)의 처리를 구체적으로 설명한다. 도 17 및 도 18은 본 실시 형태에 있어서의 규범 동특성 모델(120) 및 시나리오 작성부(98)의 처리를 나타내는 흐름도이다.
이하 설명하면, S310에 있어서, 장래 운전 조작 입력의 시계열이 결정된다. 이 처리는 상기 도 10의 S210의 처리와 동일하며, 도 16의 장래 운전 입력 시계열 결정부(100)에 의해 실행된다.
이어서, S312에 있어서, 전회의 제어 주기에서 결정한 현상 용인 조작량과 금회의 운전 조작 입력(스티어링각의 금회값)을 규범 동특성 모델(120)에 입력하고, 새로운 규범 상태량을 결정한다. 이 처리가 규범 동특성 모델(120)에서의 처리이다.
여기서, 본 실시 형태에서는 현상 용인 조작량은, 예컨대 요 축 방향의 모멘트의 차원의 제어 입력이며, 상기 식 50b의 Mvirt로서 규범 동특성 모델(120)에 입력된다. 또한 규범 동특성 모델(120)에 있어서의 상기 식 50a의 Fvirt는 본 실시 형태에서는 일정하게 0으로 설정된다. 한편, 현상 용인 조작량에 횡력 등의 병진력 성분을 포함시켜도 좋다. 그리고, 규범 동특성 모델(120)은 상기 제3 실시 형태에 있어서의 시나리오 규범 동특성 모델(102)과 동일한 순서의 처리에 의해 새로운 규범 상태량으로서 규범 요 레이트와 규범 코스를 결정한다. 단, 이 경우, 횡 미끄럼각(β)과 요 레이트(ωz)를 식 50a, 50b에 기초하여 산출할 때, 식 50b의 Mvirt의 값으로서 규범 동특성 모델(120)에 입력된 현상 용인 조작량이 설정되며, 이 점만이 제3 실시 형태에 있어서의 시나리오 규범 동특성 모델(102)의 처리와 다르다.
이어서, S314에 있어서, 시나리오 작성부(98)에 의해 시나리오 규범 상태량 시계열과 시나리오용 액추에이터 구동 제어 장치 입력 시계열과 시나리오용 현상 용인 조작량 시계열과 시나리오 노면 반력 시계열과 시나리오 상태량 시계열이 결정된다. 이 S314는 상기 도 10의 S212에 대응하는 처리이며, 시나리오 규범 상태량 시계열, 시나리오용 액추에이터 구동 제어 장치 입력 시계열, 시나리오 노면 반력 시계열 및 시나리오 상태량 시계열의 의미는 S212와 동일하다. 또한 시나리오용 현상 용인 조작량의 시계열은 시나리오 상에서 시나리오용 규범 동특성 모델(102)의 상태량을 시나리오용 차량 모델(110)의 상태량에 근접시키기(양자의 상태량이 멀리 떨어지는 것을 방지하기) 위한 제어 입력이며, 상기 규범 동특성 모델(120)에 입력하는 현상 용인 조작량에 해당하는 것이다. 한편, 이 S314 이후의 처리는 시나리오 작성부(98)에서 실행되는 처리이다.
S314의 처리는 도 17의 흐름도에서 도시한 서브 루틴 처리에 의해 실행된다. 한편, 이 도 17의 처리는 상기 도 11의 처리와 일부의 처리만이 다르므로, 도 11의 처리와 다른 처리를 주체로 설명한다.
먼저, S1202에 있어서, 시나리오용 규범 동특성 모델(102)의 초기 상태량(시각(t=0)에서의 상태량)을 상기 규범 동특성 모델(120)의 최신의 상태량에 일치시킨다. 즉, 본 실시 형태에서는 시나리오용 규범 동특성 모델(102)의 상태량의 시계열의 0번째의 값은 규범 동특성 모델(120)의 최신의 상태량에 의해 초기화된다. 규범 동특성 모델(120)의 최신의 상태량은 상기 S312에서 결정된 상태량이며, 규범 동특성 모델(120)의 금회 상태량이다.
보충하면, 상기 제3 실시 형태에 있어서는 시나리오용 규범 동특성 모델(102)의 상태량은 최신의 차량 모델의 상태량에 의해 초기화되어 있었다.
이어서 S1204에 있어서, 상기 도 11의 S1004와 동일한 처리가 실행되어, 시나리오용 차량 모델(110)이 초기화된다.
이어서, S1206으로 진행하여, 전회 제어 주기에 있어서 시나리오 작성부(98)로부터 출력된 현상 용인 조작량(전회 제어 주기에서 결정한 시나리오용 현상 용인 조작량 시계열의 첫 번째의 값)을 금회 제어 주기의 시나리오용 현상 용인 조작량의 0번째의 값으로서 기억 유지한다. 이 처리는 본 실시 형태에 있어서 추가된 처리이다.
이어서, S1208에서 k의 값을 1로 한 후, S1210부터 S1236의 루프 처리가 실행된다.
S1210에서는 장래 운전 조작 입력 시계열의 k번째의 값(t=k?Δt에서의 값)과 시나리오용 현상 용인 조작량 시계열의 k-1번째의 값(t=(k-1)?Δt에서의 값)을 시나리오용 규범 동특성 모델(102)에 입력하여 새로운 규범 상태량을 구한다. 이 처리는, 본 실시 형태에 있어서의 시나리오 규범 동특성 모델(102)에 의해 실행된다. 그 처리는 상기 규범 동특성 모델(120)에 의해 규범 상태량을 구하는 경우와 동일한 순서로 이루어진다. 단, 이 경우에 있어서의 상기 식 50b의 Mvirt로서 시나리오용 현상 용인 조작량 시계열의 k-1번째의 값이 사용된다. S1210의 처리에 의해 규범 요 레이트와 규범 코스가 새로운 규범 상태량으로서 구해진다.
이어서 S1212로 진행하여, S1210에서 구해진 새로운 규범 상태량이 시나리오에 있어서의 규범 상태량의 시계열의 k번째의 값으로서 기억 유지된다. 이 처리는 도 11의 S1010과 동일하다.
이어서, S1214~S1228까지의 처리가 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)에 의해 실행된다. 본 실시 형태에서는 제3 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)과 동일한 처리를 실행하는 것에 더하여, 시나리오의 각 시각에 있어서의 시나리오용 현상 용인 조작량을 결정하는 처리를 실행한다. 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)은 그 기능적 구성을 도시하면, 도 19의 블럭도로 나타내어진다. 이 시나리오용 추종 제어 규칙(106)은 상기 도 14의 기능적 구성에 더하여, 시나리오용 현상 용인 조작량 결정부(106g)가 구비되어 있다.
이하, 도 19와 도 18의 흐름도를 참조하면서, 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)의 처리를 상세하게 설명한다.
먼저, S1214부터 S1226까지 도 11의 S1012~S1024와 동일한 처리가 실행된다. 이들 처리는 상기 제3 실시 형태에서 설명한 바와 같이, 시나리오용 추종 피드포워드 규칙(106a), 감산 처리부(106b), 시나리오용 추종 피드백 규칙(106c), 가산 처리부(106d), 시나리오용 노면 반력 리미터(106e), 조작량 변환부(106f)의 처리이다. 단, 제3 실시 형태와 마찬가지로 본 실시 형태에서는 조작량 변환부(106f)의 처리는 생략된다.
이어서, S1228로 진행하여 시나리오 상태량 시계열의 k-1번째의 값과 규범 상태량 시계열(시나리오용 규범 동특성 모델(102)의 출력의 시계열)의 k번째의 값과의 차(이는 도 19의 감산 처리부(106b)에 의해 구해진다)에 따라 PD 제어 규칙 등의 피드백 규칙에 의해 시나리오용 현상 용인 조작량을 결정한다. 이 처리가 도 19의 시나리오용 현상 용인 조작량 결정부(106g)에 의해 실행되는 처리이다.
S1228의 처리에서는, 예컨대 시나리오 규범 상태량 중 요 레이트와 규범 상태량 중 요 레이트과의 편차로부터 PD 제어 규칙에 의해 요 축 방향의 모멘트량으로서 시나리오용 현상 용인 조작량이 결정된다. 한편, 요 레이트의 편차뿐만 아니라, 시나리오 규범 상태량 중 차량(1)의 위치의 규범 코스로부터의 벗어남량에 따라서 시나리오용 현상 용인 조작량을 결정하도록 하여도 좋다.
이상의 S1214부터 S1228까지의 처리가 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)의 처리이다.
이어서 S1230으로 진행하여, 상기 도 11의 S1026과 동일한 처리가 실행되고, 시나리오용 차량 모델 상에서 발생하는 노면 반력과 시나리오 상태량이 구해진다.
이어서, S1232로 진행하여, S1226에서 결정한 조작량과, S1228에서 결정한 시나리오용 현상 용인 조작량과, S1230에서 결정한 시나리오 상태량 및 노면 반력을 각각 시나리오 액추에이터 구동 제어 장치 입력 시계열의 k번째의 값, 시나리오용 현상 용인 조작량 시계열의 k번째의 값, 시나리오 상태량 시계열의 k번째의 값, 시나리오 노면 반력 시계열의 k번째의 값으로서 기억 유지한다. 이에 따라 시각(t=k?Δt)에 있어서의 시나리오용 액추에이터 구동 제어 장치 입력, 시나리오 현상 용인 조작량, 시나리오 상태량 및 시나리오 노면 반력이 결정되게 된다.
이어서, 도 11의 1030, 1032와 동일한 처리인 S1234, S1236의 처리를 거쳐 k의 값이 kmax에 도달할 때까지 S1210~S1236의 루프 처리가 실행된다.
이상이 도 17의 S314의 처리의 구체적인 내용이다. 한편, 본 실시 형태에서는 시나리오용 규범 동특성 모델(102)의 초기 상태량은 상기한 바와 같이 결정되는 현상 용인 조작량을 입력하는 규범 동특성 모델(120)의 최신의 상태량으로 설정된다. 따라서, 각 제어 주기에 있어서 시나리오용 규범 동특성 모델(102)이 출력하는 규범 상태량(예컨대 규범 요 레이트)의 시계열은 상기 제3 실시 형태의 경우와 달리, 예컨대 도 20의 초기 시각 이후의 실선의 그래프로 나타낸 바와 같이, 초기 시각까지의 과거의 시나리오에 있어서의 요 레이트의 최신값과 초기 시각까지의 차량 모델(72) 상에서의 요 레이트의 최신값 사이의 중간적인 값을 기점으로 하여 작성된다.
도 17의 설명으로 돌아가, 다음 S316, S318의 처리가 실행된다. 이들 처리는 도 10의 S214, S216의 처리와 동일하다.
이어서, S320으로 진행하여 S314에서 결정한 시나리오용 현상 용인 조작량 시계열의 시각(t=Δt)에서의 값을 현상 용인 조작량(상기 규범 동특성 모델(120)에 입력하는 현상 용인 조작량)으로서 출력한다. 보충하면, 이 값은 전술한 바와 같이, 다음 제어 주기에 있어서의 S1210의 처리에 사용된다.
이어서, 도 10의 S218과 동일한 처리가 S322에서 실행되고, 피드포워드 조작량(도 15에 있어서의 시나리오 작성부(98)의 출력으로서의 피드포워드 조작량)의 금회값이 출력된다.
이상에서 설명한 것 이외의 제어 장치(10)의 제어 처리는 상기 제3 실시 형태와 동일하다.
이러한 제4 실시 형태에 따르면, 제3 실시 형태와 동일한 효과를 가져오는 것에 더하여, 상기 현상 용인 조작량에 따라 규범 동특성 모델(120)에 의해 작성하는 규범 상태량을 차량 모델(72)의 상태량에 서서히 근접시킨다. 따라서, 차량 모델(72)의 모델 차체 운동의 상태량을 규범 상태량에 근접시키면서 실차(70)의 운동을 차량 모델(72) 상의 차량(1)의 운동에 추종시킬 수 있다. 그 결과, 실차(70)의 제어의 로버스트성을 훨씬 높이는 것을 비교적 용이하게 할 수 있다.
보충하면, 제4 실시 형태는 본 발명 중 상기 제1 발명, 제2 발명, 제4 발명~제11 발명, 제13 발명, 제15 발명~제18 발명의 실시 형태이다. 이 경우, 시나리오 작성부(98)가 출력하는 피드포워드 조작량이 실차용 기본 제어 입력에 해당한다. 또한 장래 입력 시계열 결정부(100)가 제13 발명에 있어서의 장래 운전 조작량 결정 수단에 해당한다(장래 운전 조작 입력이 장래 운전 조작량에 해당한다). 또한 규범 동특성 모델(120)이 제15 발명 또는 제17 발명에 있어서의 규범 운동 결정 수단에 해당한다. 또한 시나리오용 규범 동특성 모델(102)이 제15 발명에 있어서의 제2 차량 모델에 해당하고, 시나리오용 차량 모델(110)이 제15 발명에 있어서의 제3 차량 모델에 해당한다. 더욱이, 시나리오용 추종 제어 규칙(106), 시나리오용 액추에이터 구동 제어 장치 모델(108) 및 시나리오용 차량 모델(110)이 장래 차량 거동 예견 수단에 해당한다. 그리고, 시나리오용 차량 모델(110)에서 최종적 으로 출력되는 시나리오 노면 반력 시계열 및 시나리오 상태량이 제1 차량 모델(차량 모델(72))의 장래 거동에 해당한다. 한편, 제4 실시 형태에 있어서도, 제1 실시 형태에 관하여 설명한 경우와 마찬가지로, 가상 외력(Fvirt, Mvirt) 대신 이 가상 외력을 차량 모델(72) 상의 차량(1)에 작용시키는 것과 동등한 효과를 가져오는 차량 모델(72) 상의 액추에이터 장치에 대한 조작량(즉, 상기 모델 액추에이터 조작량의 수정량)을 결정하고, 그것을 차량 모델 조작용 제어 입력으로서 차량 모델(72)에 입력하도록 하여도 좋다. 이와 같이 함으로써 제3 발명 또는 제12 발명의 실시 형태를 구축할 수 있다.
[제5 실시 형태]
다음, 본 발명의 제5 실시 형태를 도 21~도 24를 참조하여 설명한다. 한편, 본 실시 형태는 제4 실시 형태의 것과 제어 장치(10)의 일부의 처리만이 다른 것이므로, 제4 실시 형태와 동일 구성 부분 또는 동일 기능 부분에 대해서는 제4 실시 형태와 동일한 참조 부호를 이용하여 상세한 설명을 생략한다.
도 21은 본 실시 형태에 있어서의 제어 장치(10)의 기능적 구성을 나타내는 블럭도이다. 본 실시 형태에서는 제4 실시 형태에서 구비한 액추에이터 구동 제어 장치 모델(76) 및 차량 모델(72)이 생략되어 있다. 또한 편차 산출부(84), 편차 해소 제어 규칙(86) 및 분배기(88)는 그들과 동등한 기능을 갖도록 시나리오 작성부(98) 내에 들어가며, 시나리오 작성부(98)의 외부에서는 생략되어 있다. 그리고, 본 실시 형태에서는 시나리오 작성부(98)로부터 액추에이터 구동 제어 장치(78)로 출력되는 조작량(제어 입력)을 따라 액추에이터 구동 제어 장치(78)가 실 차(70)의 각 액추에이터 장치(3)를 제어하도록 되어 있다.
상기 이외의 제어 장치(10)의 기능적 구성은 도 15에 도시한 것과 동일하다.
시나리오 작성부(98)의 개략의 기능적 구성은 상기 도 16에 도시한 것과 동일하다. 단, 본 실시 형태에서는 시나리오 추종 제어 규칙(106)의 처리는 제4 실시 형태에서 설명한 것과 다르다.
도 22 및 도 23은 본 실시 형태에 있어서의 시나리오 작성부(98) 및 규범 동특성 모델(120)의 처리를 나타내는 흐름도이다. 이하 설명하면, 먼저 S410 및 S412의 처리가 실행된다. 이들 처리는 도 17의 S310, S312의 처리와 동일하다.
이어서, S414로 진행하여, 시나리오 작성부(98)에 의해 시나리오 규범 상태량 시계열과 시나리오용 액추에이터 구동 제어 장치 입력 시계열과 시나리오용 현상 용인 조작량 시계열과 시나리오 노면 반력 시계열과 시나리오 상태량 시계열이 결정된다. 이 S414는 상기 도 17의 S314에 대응하는 처리이다. 이 S414 이후의 처리는 시나리오 작성부(98)에서 실행되는 처리이다.
S414의 처리는 도 23의 흐름도에서 나타낸 서브 루틴 처리에 의해 실행된다. 한편, 이 도 23의 처리는 상기 도 18의 처리와 일부의 처리만이 다르므로, 도 18의 처리와 다른 처리를 주체로 설명한다.
먼저, S1402에 있어서, 도 18의 S1202와 동일한 처리가 실행되고, 시나리오용 규범 동특성 모델이 초기화된다.
이어서, S1404로 진행하여, 시나리오용 차량 모델(110)이 초기화된다. 이 경우, 본 실시 형태에서는 시나리오용 차량 모델(110)의 초기화에 있어서는 시나리 오용 차량 모델(110)의 상태량을 상기 센서ㆍ옵저버(82)에 의해 얻어지는 실차(70)의 실 상태량에 일치시킨다.
이어서, S1406, S1408로 진행하여, 각각 도 18의 S1206, S1208과 동일한 처리가 실행된다.
이어서, S1410~S1436의 루프 처리가 실행된다. 이 루프 처리에서는, 먼저 S1410, S1412에 있어서, 도 18의 S1210, S1212와 동일한 처리(시나리오용 규범 동특성 모델(102)의 처리)가 실행되고, 시각(t=k?Δt)에 있어서의 새로운 규범 상태량이 구해진다.
이어서, S1414부터 S1428까지의 처리가 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)에 의해 실행된다. 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)은 그 기능적 구성을 도시하면, 도 24의 블럭도로 나타내어진다. 상기 시나리오용 추종 제어 규칙(106)은 시나리오용 추종 피드포워드 규칙(106a)과, 감산 처리부(106b)와, 편차 해소 제어 규칙(106h)과, 분배기(106i)와, 가산 처리부(106j)를 구비하고 있다. 이 경우, 시나리오용 추종 피드포워드 규칙(106a) 및 감산 처리부(106b)는 상기 도 19에 도시한 것과 동일한 처리를 행하는 기능부이다. 한편, 편차 해소 제어 규칙(106h), 분배기(106i) 및 가산 처리부(106j)는 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)에 특유한 기능부이다.
이하, 도 24와 도 23의 흐름도를 참조하면서 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)의 처리를 상세하게 설명한다.
먼저, S1414에 있어서, 시나리오용 추종 피드포워드 규칙(106a)의 처리가 실 행되어, 피드포워드 노면 반력이 결정된다. 이 처리는 상기 도 18의 S1214의 처리와 동일하다.
이어서, S1416으로 진행하여, 시나리오 상태량 시계열의 k-1번째의 값과 규범 상태량 시계열(시나리오용 규범 동특성 모델(102)의 출력의 시계열)의 k번째의 값과의 차(이는 감산 처리부(106b)에 의해 구해진다)에 따라 편차 해소 제어 규칙(106h)에 의해 편차 해소 보상량을 결정한다. 이 편차 해소 보상량은 상기 제1~제4 실시 형태에 있어서의 편차 해소 보상량에 해당하는 것이며, 시나리오용 차량 모델(110) 상에서의 차량(1)의 운동의 상태량을 규범 상태량(시나리오용 규범 동특성 모델(102)의 출력)에 근접시키기 위한 제어 입력을 의미한다. 본 실시 형태에서는 예컨대 시나리오용 차량 모델(110) 상에서의 차량(1)의 요 레이트와 규범 상태량 중 요 레이트의 편차로부터, PD 제어 규칙 등의 피드백 규칙에 의해 편차 해소 보상량이 결정된다. 이 경우, 상기 편차 해소 보상량은 예컨대 요 축 방향의 모멘트의 차원의 제어 입력이다.
한편, 요 레이트의 편차뿐만 아니라, 시나리오용 차량 모델(110) 상에서의 차량(1)의 위치의 규범 상태량의 규범 코스로부터의 편차량(코스 벗어남)에 따라서 편차 해소 보상량을 결정하도록 하여도 좋다.
이어서, S1418부터 S1428까지 분배기(106i) 및 가산 처리부(106j)의 처리가 실행된다. 먼저, S1418에 있어서, 분배기(106i)는 피드포워드 노면 반력과 편차 해소 보상량의 합을 가조작량(시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 제어 입력의 임시값)으로 한다. 보다 상세하게는, 편차 해소 보상량을 만족 하도록 액추에이터 조작량에 의해 부가적으로 노면 반력을 발생시킨 경우의 노면 반력을 편차 해소 보상량에 대응하는 노면 반력으로 하고, 이것과 피드포워드 노면 반력의 합을 가조작량으로 한다.
이어서, S1420으로 진행하여, 분배기(106i)는 시나리오용 액추에이터 구동 제어 장치 모델(108)에 가조작량을 목표로서 입력한 경우에 시나리오용 차량 모델(110) 상에서 발생하는 노면 반력을 구한다. 이 처리는 상기 도 18의 S1220과 동일한 순서로 실행된다.
이어서, S1422로 진행하여, S1420에서 구한 노면 반력이 소요의 허용 범위를 초과하였는지 여부가 판단된다. 이 경우, 노면 반력의 허용 범위는 시나리오용 차량 모델(110) 상에서의 시각(t=(k-1)?Δt)에 있어서의 노면 반력(접지 하중)과 μ 추정부(80)로부터 시나리오 작성부(98)로 입력되는 추정 노면 마찰 계수(μestm)(본 실시 형태에서는 전회값)를 기초로 상기 제1 실시 형태에서 설명한 분배기(88)의 처리의 경우와 동일하게 설정된다.
이 때, S1422의 판단 결과가 YES인 경우에는 S1424로 진행하여, 노면 반력이 허용 범위를 초과하지 않도록(시나리오용 차량 모델(110) 상에서 발생하는 노면 반력이 S1420의 허용 범위에 들어가도록) 상기 가조작량을 수정한다.
보다 구체적으로는, 분배기(106i)는 상기 제1 실시 형태에서 설명한 분배기(88)의 처리와 동일한 처리에 의해 노면 반력 보상량(Fcmpn_i, Mcmpn_i)을 결정한다. 그리고, 가산 처리부(106j)에 있어서 이 노면 반력 보상량(Fcmpn_i, Mcmpn_i)을 피드포워드 노면 반력에 더한 것을 상기 가조작량의 수정 후의 조작량 으로서 얻는다. 이 경우, 노면 반력 보상량(Fcmpn_i, Mcmpn_i)은 피드포워드 노면 반력과의 합이 상기 S1420의 허용 범위에 들어가고, 또한 그 합과 가조작량과의 차(=노면 반력 보상량과 상기 S1416에서 결정한 편차 해소 보상량과의 차)가 가능한 한 작아지도록 결정된다.
S1420의 판단 결과가 NO인 경우, 또는 S1422의 처리 후 S1426으로 진행하여, 지금 현재의 가조작량(S1418에서 구한 가조작량, 또는 S1424에서 수정된 가조작량)을 시나리오용 액추에이터 구동 제어 장치 모델(108)에 대한 조작량(제어 입력)으로서 결정한다. 한편, 시나리오용 액추에이터 구동 제어 장치 모델(108)의 실제로 입력할 제어 입력이 노면 반력의 차원의 제어 입력이 아닌 경우에는, S1420에서 결정한 조작량을 변환한다(도 24에서는 조작량 변환부의 도시를 생략하였다).
이어서, S1428로 진행하여 시나리오용 현상 용인 조작량을 S1426에서 결정한 조작량과 상기 가조작량과의 차에 따라 결정한다. 이 처리는 분배기(106i)에 의해 실행된다. 구체적으로는, 조작량과 가조작량과의 차에 소정의 게인(Kmdl)을 곱함으로써 시나리오용 현상 용인 조작량이 결정된다. 한편, 조작량과 가조작량과의 차를 구함에 있어서는, 조작량과 가조작량을 각각이 차량(1)의 전체 무게 중심에 작용하는 힘으로 변환하고나서 차를 구한다.
보충하면, 게인(Kmdl)은 일정값이어도 좋으나, k가 2 이상인 경우에 있어서 게인(Kmdl)을 0으로 하여도 좋다. 한편, 게인(Kmdl)을 k의 값과 관계없이 항상 0으로 한 경우에는, 항상 시나리오용 현상 용인 조작량은 0이 되므로, 상기 규범 동특성 모델(120)과 시나리오용 규범 동특성 모델은 실차(70)의 실 상태량의 영향을 받지 않게 된다.
이상의 S1414부터 S1428의 처리가 본 실시 형태에 있어서의 시나리오용 추종 제어 규칙(106)의 처리이다.
이어서, S1430, S1432에 있어서, 상기 도 18의 S1230, S1232와 동일한 처리가 실행된다. 또한, 도 18의 S1234, S1236과 동일한 처리인 S1434, S1436을 거쳐 k의 값이 kmax에 도달할 때까지 S1410~S1436의 루프 처리가 실행된다.
이상이 도 22의 S414의 처리의 상세한 내용이다.
도 22의 설명으로 돌아가면, 다음 S416, S418, S420의 처리가 실행된다. 이들 처리는 도 17의 S316, S318, S420의 처리와 동일하다.
이어서, S422로 진행하여, 시나리오 작성부(98)는 시나리오용 액추에이터 구동 제어 장치 입력 시계열의 시각(t=Δt)에서의 값(즉 현재 시각에 대응하는 값)이 실제의 액추에이터 구동 제어 장치(78)에 대한 조작량(제어 입력)으로서 출력된다.
이 경우, 본 실시 형태에서는 액추에이터 구동 제어 장치(78)는 이 조작량(S422에서 출력된 조작량)을 따라 실차(70)의 각 액추에이터 장치(3)의 동작을 제어한다.
이상 설명한 것 이외의 제어 장치(10)의 제어 처리는 상기 제4 실시 형태와 동일하다.
이러한 제5 실시 형태에 따르면, 현상 용인 조작량에 의해 규범 동특성 모델(120)로부터 출력되는 규범 상태량이 실차(70)의 운동의 상태량으로부터 멀리 벗어나지 않도록 하면서 실차(70)의 운동의 상태량을 규범 상태량에 추종시키도록 실 차(70)의 운동이 제어된다. 게다가, 차량(1)의 장래 거동을 예측하면서 노면 반력이 허용 범위에 들어가도록 실차(70)의 운동이 제어된다. 따라서, 제3 실시 형태와 마찬가지로, 실차(70)의 운동을 이상적인 운동에 근접시키면서 차량 제어의 로버스트성을 높일 수 있다.
보충하면, 제5 실시 형태는 본 발명 중 제1 발명, 제2 발명, 제4 발명~ 제11 발명, 제13 발명, 제14 발명의 실시 형태이다. 이 경우, 본 실시 형태에서는 규범 동특성 모델(120)이 제1 차량 모델에 해당하고, 시나리오용 규범 동특성 모델(102)이 제2 차량 모델에 해당하고, 시나리오용 차량 모델(110)이 제3 차량 모델에 해당한다. 또한 본 실시 형태에서는 시나리오 작성부(98) 내에 차량 모델 운동 결정 수단, 상태량 편차 응동 제어 수단이 포함된다. 즉, 본 실시 형태에서는 시나리오용 차량 모델의 초기 상태량이 실차(70)의 최신의 상태량에 일치되므로, k=1일 때 S1416에서 구해지는 시나리오 상태량과 규범 상태량과의 차는 제1 상태량 편차에 해당하게 된다. 그리고, 이 차를 기초로 S1418~S1428까지의 처리에서 결정되는 조작량과 현상 용인 조작량이 각각 실차 액추에이터 조작용 제어 입력, 차량 모델 조작용 제어 입력에 해당하게 된다. 또한 시나리오 작성부(98) 내의 시나리오용 추종 제어 규칙(106), 시나리오용 액추에이터 구동 제어 장치 모델(108) 및 시나리오용 차량 모델(110)이 장래 차량 거동 예견 수단에 해당한다. 그리고, 시나리오용 차량 모델(110)에서 최종적으로 출력되는 시나리오 노면 반력 시계열 및 시나리오 상태량이 제3 차량 모델(시나리오용 차량 모델(110))의 장래 거동에 해당한다. 한편, 제5 실시 형태에 있어서는, 시나리오용 액추에이터 제어 장치 모 델(108)에 대한 제어 입력(조작량)을 노면 반력의 차원의 제어 입력으로 하였으나, 시나리오용 차량 모델(110) 상의 액추에이터 장치(3)의 조작량의 차원의 제어 입력을 결정하도록 하여도 좋다.
다음, 이상 설명한 실시 형태에 관한 몇 개의 변형 태양을 설명한다.
상기 제1~제5 실시 형태에서는 가상 외력을 차량 모델(72)의 차량(1)의 차체(1B)(차량(1)의 스프링 윗 부분)에 작용시키는 것을 나타내었으나, 가상 외력을 차량 모델(72) 상의 차륜(W1~W4)에 작용시키도록 하는 것도 가능하다. 단, 이와 같이 하면, 차량 모델(72)에 있어서의 차륜(W1~W4)의 거동이나 노면 반력이 실차(70)의 차륜(W1~W4)의 거동이나 노면 반력으로부터 크게 벗어나게 되므로, 가상 외력은 차량 모델(72) 상의 차체(1B)에 작용시키는 것이 바람직하다. 이는 시나리오용 차량 모델(110)에 대해서도 동일하다.
또한 각 실시 형태에 있어서는, 가상 외력을 차체(1B)에 작용시키는 대신 상기 가상 외력에 해당하는 부가적인 접지 하중을 차량 모델(72) 상의 차륜(W1~W4)에 작용시켜도 좋다. 바꾸어 말하면, 차량 모델(72)의 차체(1B)에 작용시킬 가상 외력에 해당하는 접지 하중을 서스펜션계 모델의 액추에이터를 조작함으로써 발생시켜도 좋다. 이와 같이 함으로써, 실제의 차량(1)이 상정 외의 노면 요철에 의해 상정 외의 노면 반력을 받아 실제의 차량(1)의 자세나 높이가 상정 이외의 거동을 하였을 때, 이 거동을 차량 모델(72)의 차량(1)이 추종하도록 가상 외력이 결정된다. 그리고, 이에 따라 차량 모델(72)에 부가적인 접지 하중을 작용시키면, 차량 모델(72)의 노면 반력(특히 접지 하중)이 실제의 노면 반력에 거의 일치하게 된다. 이는 시나리오 차량 모델(110)에 대해서도 동일하다.
또한 상기 제1~제4 실시 형태에 있어서, 실제의 액추에이터 장치(3)가 노면 반력의 모든 성분을 독립적으로 조작할 수 없는 경우에는, 분배기(88)의 처리에 있어서 그 제약도 조건으로서 추가하고, 노면 반력 보상량(Fcmpn_i)을 결정하도록 하여도 좋다. 예컨대 실제의 차량(1)에 액티브 서스펜션 장치(3C)가 없는 경우에는, 다음 식 28을 분배기(88)의 연산 처리의 조건으로서 추가하면 좋다.
Figure 112006084596046-pct00018
또한 예컨대 스티어링 장치(3B)가 후륜(W3, W4)을 능동적으로 조타하는 것이 아닌 경우에는, 다음 식 29를 분배기(88)의 연산 처리의 조건으로서 추가하면 좋다.
Figure 112006084596046-pct00019
또한 예컨대 구동ㆍ제동 장치(3A)가 2개의 전륜(W1, W2) 사이의 토크 배분을 능동적으로 제어할 수 있는 것이 아닌 경우에는, 다음 식 30을 분배기(88)의 연산 처리의 조건으로서 추가하면 좋다.
Figure 112006084596046-pct00020
이상과 같은 분배기(88)에 관한 변형 태양은 제5 실시 형태에 있어서의 분배기(106i)에 대해서도 동일하다.
상기 각 실시 형태에서는 엔진을 탑재한 자동차를 예로 들어 설명하였으나, 앞에서도 말한 바와 같이, 하이브리드 차, 전기 자동차에도 본 발명을 적용할 수 있음은 물론이다. 나아가서는, 4륜 이외에도 2륜, 3륜 등 복수의 차륜을 갖는 차량에 대해서도 본 발명을 적용할 수 있다.
상기 제1~제4 실시 형태에 있어서의 분배기(88)에서의 노면 반력 보상량 및 가상 외력의 결정 방법(분배의 방법)이나 시나리오 작성부(98)에서의 시나리오의 작성 방법은 스위치 등의 선택 수단의 조작에 따라 선택적으로 변경 가능하게 하거나, 상황에 따라 자동으로 변경하거나, 또는 운전자의 조종 특성을 학습하여, 그에 따라 변경하도록 하여도 좋다. 이는 제5 실시 형태에 있어서의 분배기(106i)에 대해서도 동일하다.
상기 제1~제4 실시 형태의 분배기(88)에서는 편차 해소 보상량의 일부의 성분은 실차(70)(상세하게는 실 액추에이터 구동 제어 장치(78)) 또는 차량 모델(72) 중 어느 한쪽에만 피드백하도록 하여도 좋다. 예컨대, 실차(70)의 서스펜션 장치(3C)가 액티브 서스펜션 장치가 아닌 경우에는, 편차 해소 보상량의 모멘트 성분(Mstab)의 롤 방향의 축(X축) 방향의 성분 모두를 차량 모델(72)에 피드백하면 좋다.
또한 편차 해소 보상량의 소정의 성분이 소정의 범위(불감대) 내에 있는 경우(0에 가까운 경우)에는, 편차 해소 보상량의 상기 소정의 성분을 (-1)배 한 것을 가상 외력의 상기 소정의 성분으로 하고, 편차 해소 보상량의 소정의 성분에 대한 실차(70)의 액추에이터 조작량(실제로 액추에이터 구동 제어 장치(78)의 출력)을 0으로 하여도 좋다. 즉, 편차 해소 보상량의 소정의 성분이 소정의 불감대에 있는 경우에는, 그 소정 성분에 따른 실차(70)의 액추에이터 조작량을 0으로 하여 액추에이터가 빈번하게 동작하는 것을 억제한다. 이에 따라, 불필요한 에너지의 소비를 억제하거나 액추에이터의 수명을 연장시킬 수 있다.
차량 모델(72)로는 상기 각 실시 형태 이외의 모델을 사용하여도 좋다. 예컨대 상기 제1 실시 형태, 제3 실시 형태~제5 실시 형태에 있어서 차체의 경사(롤 방향의 자세각과 피치 방향의 자세각)를 무시하는 경우에는, 차량 모델(72) 대신 상기한 2륜 모델을 사용하여도 좋다. 이 경우, 노면 반력의 허용 범위는 2개의 전륜에 작용하는 노면 반력의 합력에 관한 허용 범위와 2개의 후륜에 작용하는 노면 반력의 합력에 관한 허용 범위를 설정하도록 하면 좋다.
또한 차량 모델(72)로는 어느 소정의 상태(예컨대 현재의 실 상태)로부터의 섭동에 대한 섭동 모델(선형 근사 모델)이어도 좋다.
또한 차량 모델(72)로는 차속에 따른 공기 저항을 발생시키는 모델이어도 좋다.
액추에이터 구동 제어 장치 모델(76) 및 액추에이터 장치(3)의 모델(상기 구동ㆍ제동계 모델 등)에 관하여 그 모델화의 대상인 실제의 액추에이터 구동 제어 장치 및 실제의 액추에이터 장치의 액추에이터는 일반적으로는 응답 지연이나 비선형성을 갖는다. 단, 그들 모델은 목표 입력(목표 노면 반력, 차축 토크 등)에 대하여 이상적인 응답(지연이나 비선형성이 없는 응답)을 나타내는 것으로 하여도 좋다. 이 경우, 목표 입력으로부터 액추에이터의 출력까지의 전달 함수는 1이다. 즉, 이 경우의 모델은 스트레이트 와이어이다.
노면의 상태를 검출 또는 추정하는 것으로는, μ 추정부(80)뿐만 아니라, 노면의 경사를 검출 또는 추정하는 것을 구비하여도 좋다. 그리고, 그 노면의 경사도 고려하여 피드포워드 조작량이나 차량 모델의 운동을 결정하도록 하여도 좋다. 차량(1)의 운동의 제어를 보다 한층 정밀하게 행할 수 있다.
또한 실제의 액추에이터로서 존재하지 않는 가공의 액추에이터 및 그 구동 제어 장치를 차량 모델 및 액추에이터 구동 제어 장치 모델에 포함하도록 하여도 좋다.
각 타이어의 유효 반경, 이너셔 등의 타이어 특성, 차체의 중량 분포(전체 무게 중심 위치, 무게 중심 방향의 이너셔) 등 차량 모델의 운동의 산출에 사용하는 차량 파라미터는 반드시 고정된 소정값으로 설정해 둘 필요는 없으며, 그 파라미터의 값을 차량의 주행 중에 동정하여 수정하도록 하여도 좋다.
상기 제3~제5 실시 형태의 시나리오 작성부(98)의 처리에서는 추정 마찰 계수가 낮은 경우에는 스티어링각에 대한 규범 코스의 곡률의 비율을 작게 하는 것이 바람직하다. 이에 따라, 운전자의 과대한 스티어링 조작에 의한 스핀을 억제할 수 있다.
상기 제3~제5 실시 형태에서는 운전 조작 입력에 기초하여 시나리오를 작 성하도록 하였으나, 이 이외에도 목적지를 네비게이션 시스템에서 설정하고, 이에 따라 시나리오를 작성하도록 하여도 좋다. 이 경우, 네비게이션 시스템은 차량을 운전자가 조종하기 위하여 조작하는 조작기이다. 또한 조작기를 차량으로부터 떨어뜨려 놓고, 무선 통신 시스템을 통하여 차량을 원격 조종하도록 하여도 좋다.
이상과 같이 본 발명은 차량의 요 레이트나 주행 경로 등의 운동의 상태량의 제어를 높은 로버스트성으로 적절하게 제어할 수 있는 것으로서 유용하다.

Claims (18)

  1. 복수의 차륜을 갖는 차량의 조종자에 의한 이 차량의 운전 조작 상태를 나타내는 운전 조작량을 출력하는 운전 조작량 출력 수단과, 상기 차량의 소정의 운동을 조작 가능하게 이 차량에 설치된 액추에이터 장치와, 상기 액추에이터 장치의 동작을 제어하는 액추에이터 장치 제어 수단을 구비한 차량의 제어 장치에 있어서,
    상기 차량의 실제의 운동에 관한 소정의 상태량인 실 상태량을 검출 또는 추정하는 실 상태량 파악 수단과,
    적어도 상기 운전 조작량에 따라 상기 차량의 동특성을 표현하는 제1 차량 모델 상에서의 차량의 운동인 차량 모델 운동을 결정하는 차량 모델 운동 결정 수단과,
    상기 검출 또는 추정된 실 상태량과 상기 차량 모델 운동에 관한 상기 소정의 상태량인 모델 상태량과의 편차인 제1 상태량 편차에 따라, 소정의 피드백 제어 규칙에 의해 실제의 차량의 상기 액추에이터 장치를 조작하기 위한 실차 액추에이터 조작용 제어 입력과 상기 차량 모델 운동을 조작하기 위한 차량 모델 조작용 제어 입력을 결정하는 상태량 편차 응동 제어 수단을 구비하고,
    상기 액추에이터 장치 제어 수단은 적어도 상기 실차 액추에이터 조작용 제어 입력에 따라 상기 액추에이터 장치를 제어하는 수단이고,
    상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량과 상기 차량 모델 조작용 제어 입력에 따라 상기 차량 모델 운동을 결정하는 수단인 것을 특징으 로 하는 차량의 제어 장치.
  2. 제 1 항에 있어서, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력인 것을 특징으로 하는 차량의 제어 장치.
  3. 제 1 항에 있어서, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 액추에이터 장치의 조작량인 것을 특징으로 하는 차량의 제어 장치.
  4. 제 1 항에 있어서, 상기 액추에이터 장치 제어 수단은 적어도 상기 운전 조작량에 따라 상기 액추에이터 장치의 동작을 규정하는 제어 입력의 기본값인 실차용 기본 제어 입력을 결정하는 수단을 구비하고,
    상기 실차 액추에이터 조작용 제어 입력은 상기 실차용 기본 제어 입력을 수정하기 위한 수정량이고,
    상기 액추에이터 장치 제어 수단은, 상기 결정한 실차용 기본 제어 입력을 상기 실차 액추에이터 조작용 제어 입력에 의해 수정하여 정해지는 제어 입력에 따라, 상기 액추에이터 장치를 제어하는 것을 특징으로 하는 차량의 제어 장치.
  5. 제 1 항에 있어서, 상기 액추에이터 장치 제어 수단은 적어도 상기 운전 조작량에 따라 상기 차량에 작용시키는 노면 반력의 기본 목표값을 규정하는 노면 반력 기본 목표 파라미터를 결정하는 수단을 구비하고,
    상기 실차 액추에이터용 제어 입력은 상기 노면 반력 기본 목표 파라미터를 수정하기 위한 수정 파라미터이고,
    상기 액추에이터 장치 제어 수단은 상기 결정한 노면 반력 기본 목표 파라미터를 상기 수정 파라미터에 의해 수정하여 이루어지는 수정 완료 파라미터에 의해 규정되는 노면 반력의 목표값에 따라 상기 액추에이터 장치를 제어하는 것을 특징으로 하는 차량의 제어 장치.
  6. 제 4 항에 있어서, 상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량에 따라 상기 제1 차량 모델 상에서의 액추에이터 장치의 동작을 규정하는 제어 입력의 기본값인 모델용 기본 제어 입력을 결정하는 수단을 구비하고,
    상기 차량 모델 조작용 제어 입력은 상기 모델용 기본 제어 입력을 수정하기 위한 수정량이고,
    상기 차량 모델 운동 결정 수단은 상기 결정한 모델용 기본 제어 입력을 상기 차량 모델 조작용 제어 입력에 의해 수정하여 이루어지는 조작량에 따라 상기 제1 차량 모델 상의 액추에이터 장치를 동작시킴으로써 상기 차량 모델 운동을 결정하는 수단이고,
    상기 모델용 기본 제어 입력이 상기 실차용 기본 제어 입력에 일치하는 것을 특징으로 하는 차량의 제어 장치.
  7. 제 5 항에 있어서, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력이고,
    상기 차량 모델 운동 결정 수단은 적어도 상기 운전 조작량에 따라 상기 제1 차량 모델 상의 차량에 작용시키는 노면 반력을 규정하는 모델 노면 반력 파라미터를 결정하는 수단과, 적어도 그 결정한 모델 노면 반력 파라미터에 의해 규정되는 노면 반력과 상기 차량 모델 조작용 제어 입력인 상기 가상적 외력을 상기 제1 차량 모델 상의 차량에 작용시킴으로써 상기 제1 차량 모델의 운동을 결정하는 수단 으로 구성되고,
    상기 모델 노면 반력 파라미터에 의해 규정되는 노면 반력이 상기 노면 반력 기본 목표 파라미터에 의해 규정되는 상기 노면 반력의 기본 목표값에 일치하는 것을 특징으로 하는 차량의 제어 장치.
  8. 제 5 항에 있어서, 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 허용 범위를 설정하는 수단을 구비하고, 상기 결정된 노면 반력 기본 목표 파라미터에 의해 규정되는 노면 반력의 기본 목표값을 상기 수정 파라미터에 의해 수정하여 이루어지는 수정 완료 파라미터에 의해 규정되는 노면 반력의 목표값이 상기 허용 범위 내에 포함되는 허용 범위 조건을 만족하도록 상기 수정 파라미터로서의 액추에이터 조작용 제어 입력을 결정하는 것을 특징으로 하는 차량의 제어 장치.
  9. 제 8 항에 있어서, 상기 수정 파라미터는 차량의 각 차륜에 작용하는 노면 반력의 수정량을 규정하는 파라미터이고,
    상기 노면 반력 기본 목표 파라미터는 상기 각 차륜에 작용하는 노면 반력의 기본 목표값을 규정하는 파라미터이고,
    상기 허용 범위는 상기 각 차륜에 작용하는 노면 반력의 허용 범위인 것을 특징으로 하는 차량의 제어 장치.
  10. 제 9 항에 있어서, 상기 상태량 편차 응동 제어 수단은 상기 제1 상태량 편차를 0에 근접시키기 위하여 차량에 작용시킬 외력인 편차 해소 보상량을 이 제1 상태량 편차에 따라 결정하는 수단을 구비하고, 상기 허용 범위 조건을 만족하면서 상기 수정 파라미터에 의해 규정되는 각 차륜에 작용하는 노면 반력의 수정량의 합력이 상기 편차 해소 보상량에 가까워지도록 상기 수정 파라미터를 결정하는 것을 특징으로 하는 차량의 제어 장치.
  11. 제 10 항에 있어서, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 차량에 작용시키는 가상적 외력이고, 상기 상태량 편차 응동 제어 수단은 상기 노면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력으로서의 상기 가상적 외력을 결정하는 수단을 구비하는 것을 특징으로 하는 차량의 제어 장치.
  12. 제 10 항에 있어서, 상기 차량 모델 조작용 제어 입력은 상기 제1 차량 모델 상의 액추에이터 장치의 조작량이고, 상기 상태량 편차 응동 제어 수단은 상기 노 면 반력의 수정량의 합력과 상기 편차 해소 보상량과의 차에 따라 상기 차량 모델 조작용 제어 입력으로서의 상기 조작량을 결정하는 수단을 구비하는 것을 특징으로 하는 차량의 제어 장치.
  13. 제 4 항에 있어서, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과, 상기 제1 차량 모델의 상태량의 최신값을 기점으로 하고 적어도 상기 장래 운전 조작량에 기초하여 상기 제1 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고,
    상기 액추에이터 장치 제어 수단은, 상기 제1 차량 모델의 장래 거동에 기초하여 상기 실차용 기본 제어 입력을 결정하는 것을 특징으로 하는 차량의 제어 장치.
  14. 제 1 항에 있어서, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과,
    상기 제1 차량 모델의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제2 차량 모델의 상태량의 기점으로 함과 동시에, 상기 차량의 실 상태량의 최신값을 상기 차량의 동특성을 표현하는 제3 차량 모델의 상태량의 기점으로 하여 현재 시 각부터 상기 소정 시간 후까지의 각 시각에 있어서, 적어도 상기 제2 차량 모델의 상태량과 상기 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기초하여 이 제3 차량 모델 상의 액추에이터 장치의 동작을 규정하는 제어 입력인 모델 제어 입력을 결정하면서, 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고,
    상기 액추에이터 장치 제어 수단은, 적어도 상기 제3 차량 모델의 장래 거동에 기초하여 상기 실차 액추에이터 조작용 제어 입력을 결정하는 것을 특징으로 하는 차량의 제어 장치.
  15. 제 4 항에 있어서, 적어도 현재 시각 이전의 상기 운전 조작량에 기초하여 현재 시각부터 소정 시간 후까지의 기간을 포함하는 소정의 기간만큼의 운전 조작량인 장래 운전 조작량을 결정하는 장래 운전 조작량 결정 수단과,
    적어도 상기 운전 조작량에 기초하여 상기 제1 차량 모델이 추종할 규범 운동의 상태량을 상기 차량의 동특성을 표현하는 규범 동특성 모델에 의해 축차적으로 결정하는 규범 운동 상태량 결정 수단과,
    상기 규범 운동의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제2 차량 모델의 상태량의 기점으로 함과 동시에, 상기 제1 차량 모델의 상태량의 최신값을 상기 차량의 동특성을 표현하는 제3 차량 모델의 상태량의 기점으로 하여 현재 시각부터 상기 소정 시간 후까지의 각 시각에 있어서, 적어도 상기 제2 차량 모델의 상태량과 상기 제3 차량 모델의 상태량과의 편차와 상기 장래 운전 조작량에 기 초하여 상기 제3 차량 모델 상의 액추에이터 장치의 동작을 규정하는 제어 입력인 모델 제어 입력을 결정하면서, 상기 제2 차량 모델 및 제3 차량 모델의 장래 거동을 예견하는 장래 차량 거동 예견 수단을 구비하고,
    상기 액추에이터 장치 제어 수단은 적어도 상기 제3 차량 모델의 장래 거동에 기초하여 상기 실차용 기본 제어 입력을 결정하는 것을 특징으로 하는 차량의 제어 장치.
  16. 제 15 항에 있어서, 상기 규범 운동 상태량 결정 수단은 적어도 상기 제1 차량 모델의 상태량과 상기 규범 운동의 상태량과의 차와 상기 운전 조작량에 따라 새로운 상기 규범 운동의 상태량을 결정하는 것을 특징으로 하는 차량의 제어 장치.
  17. 제 5 항에 있어서, 상기 차량 모델 운동에 대한 규범의 운동인 규범 운동을 적어도 상기 운전 조작량에 따라 결정하는 규범 운동 결정 수단과,
    그 결정된 규범 운동에 관한 소정의 제2 상태량과 상기 결정된 제1 차량 모델 운동에 관한 소정의 제2 상태량과의 편차인 제2 상태량 편차를 0에 근접시키기 위하여 차량에 작용시킬 외력인 모델 복원 보상량을 이 제2 상태량 편차에 따라 결정하는 수단을 구비하고,
    상기 노면 반력 기본 목표 파라미터를 결정하는 수단은 적어도 상기 모델 복원 보상량에 따라 상기 노면 반력 기본 목표 파라미터를 결정하는 것을 특징으로 하는 차량의 제어 장치.
  18. 제 6 항에 있어서, 상기 차량 모델 운동에 대한 규범의 운동인 규범 운동을 적어도 상기 운전 조작량에 따라 결정하는 규범 운동 결정 수단을 구비하고,
    상기 모델용 기본 제어 입력을 결정하는 수단은 적어도 그 결정된 규범 운동에 관한 소정의 제2 상태량과 상기 결정된 제1 차량 모델 운동에 관한 소정의 제2 상태량과의 편차인 제2 상태량 편차에 따라, 이 차를 0에 근접시키도록 상기 모델용 기본 제어 입력을 결정하는 것을 특징으로 하는 차량의 제어 장치.
KR1020067024238A 2004-08-06 2005-08-04 차량의 제어 장치 KR101172670B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004231269 2004-08-06
JPJP-P-2004-00231269 2004-08-06
PCT/JP2005/014297 WO2006013922A1 (ja) 2004-08-06 2005-08-04 車両の制御装置

Publications (2)

Publication Number Publication Date
KR20070043702A KR20070043702A (ko) 2007-04-25
KR101172670B1 true KR101172670B1 (ko) 2012-08-08

Family

ID=35787201

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067024238A KR101172670B1 (ko) 2004-08-06 2005-08-04 차량의 제어 장치

Country Status (10)

Country Link
US (1) US7702442B2 (ko)
EP (1) EP1775188B1 (ko)
JP (1) JP4143104B2 (ko)
KR (1) KR101172670B1 (ko)
CN (1) CN101005981B (ko)
BR (1) BRPI0513156B1 (ko)
CA (1) CA2568220C (ko)
DE (1) DE602005027845D1 (ko)
RU (1) RU2389625C2 (ko)
WO (1) WO2006013922A1 (ko)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10878646B2 (en) 2005-12-08 2020-12-29 Smartdrive Systems, Inc. Vehicle event recorder systems
US20070150138A1 (en) 2005-12-08 2007-06-28 James Plante Memory management in event recording systems
JP4155299B2 (ja) * 2005-12-26 2008-09-24 トヨタ自動車株式会社 車両の減衰力制御装置
CN101341058B (zh) 2005-12-27 2011-07-27 本田技研工业株式会社 车辆控制装置
US7987029B2 (en) 2005-12-27 2011-07-26 Honda Motor Co., Ltd. Vehicle control device
EP1958839B1 (en) * 2005-12-27 2010-03-03 Honda Motor Co., Ltd Vehicle control device
CA2631446C (en) * 2005-12-27 2011-08-09 Honda Motor Co., Ltd. Vehicle control device
KR101008320B1 (ko) * 2005-12-27 2011-01-13 혼다 기켄 고교 가부시키가이샤 차량 제어 장치
KR100907029B1 (ko) 2005-12-27 2009-07-10 혼다 기켄 고교 가부시키가이샤 차량 제어 장치
JP4835189B2 (ja) * 2006-02-16 2011-12-14 日産自動車株式会社 旋回挙動制御装置、自動車、及び旋回挙動制御方法
US8996240B2 (en) 2006-03-16 2015-03-31 Smartdrive Systems, Inc. Vehicle event recorders with integrated web server
US9201842B2 (en) 2006-03-16 2015-12-01 Smartdrive Systems, Inc. Vehicle event recorder systems and networks having integrated cellular wireless communications systems
JP4956035B2 (ja) * 2006-04-04 2012-06-20 本田技研工業株式会社 車両制御装置
US8269617B2 (en) * 2009-01-26 2012-09-18 Drivecam, Inc. Method and system for tuning the effect of vehicle characteristics on risk prediction
US8849501B2 (en) * 2009-01-26 2014-09-30 Lytx, Inc. Driver risk assessment system and method employing selectively automatic event scoring
US8508353B2 (en) * 2009-01-26 2013-08-13 Drivecam, Inc. Driver risk assessment system and method having calibrating automatic event scoring
JP5082295B2 (ja) * 2006-05-19 2012-11-28 株式会社デンソー 地図データ提供装置
JP4179348B2 (ja) * 2006-06-22 2008-11-12 トヨタ自動車株式会社 走行装置
KR100997498B1 (ko) * 2006-06-30 2010-11-30 혼다 기켄 고교 가부시키가이샤 차량의 제어 장치
DE102006037531A1 (de) * 2006-08-10 2008-02-14 Siemens Ag Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
JP4340676B2 (ja) * 2006-10-11 2009-10-07 本田技研工業株式会社 制御装置
JP4209435B2 (ja) * 2006-10-19 2009-01-14 本田技研工業株式会社 制御装置
US8649933B2 (en) 2006-11-07 2014-02-11 Smartdrive Systems Inc. Power management systems for automotive video event recorders
US8989959B2 (en) 2006-11-07 2015-03-24 Smartdrive Systems, Inc. Vehicle operator performance history recording, scoring and reporting systems
US7835836B2 (en) * 2006-11-08 2010-11-16 Gm Global Technology Operations, Inc. Methods, systems, and computer program products for calculating a torque overlay command in a steering control system
US8868288B2 (en) 2006-11-09 2014-10-21 Smartdrive Systems, Inc. Vehicle exception event management systems
US8365037B2 (en) * 2007-01-03 2013-01-29 GM Global Technology Operations LLC Vehicle parameter infrastructure security strategy
DE102008005342B4 (de) * 2007-01-26 2017-02-02 Fuji Jukogyo Kabushiki Kaisha Antriebskraftsteuerungsvorrichtung für ein Fahrzeug
JP4882848B2 (ja) * 2007-04-23 2012-02-22 アイシン精機株式会社 統合車体挙動制御装置
US8239092B2 (en) 2007-05-08 2012-08-07 Smartdrive Systems Inc. Distributed vehicle event recorder systems having a portable memory data transfer system
US8160816B2 (en) * 2007-08-27 2012-04-17 Honda Motor Co., Ltd. Vehicular behavior determination device and vehicular behavior determination method
DE102007061114A1 (de) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Motorrad mit einem Brems- und Lenkassistent
DE102008012915A1 (de) * 2008-03-06 2009-09-10 Valeo Schalter Und Sensoren Gmbh Verfahren zur Erhöhung der Genauigkeit einer Positionsverfolgung von Fahrzeugen in softwarebasierten Steuerungssytemen
CA2710803C (en) * 2008-03-11 2013-07-23 Honda Motor Co., Ltd. Vehicle motion stability control system
DE102008001970A1 (de) * 2008-05-26 2009-12-03 Robert Bosch Gmbh Verfahren zum Stabilisieren von Fahrbewegungen eines einspurigen Kraftfahrzeugs, unter Nutzung des Neigungswinkels und des Schwimmwinkels sowie Vorrichtung dafür
US8234045B2 (en) * 2008-09-24 2012-07-31 Robert Bosch Gmbh Failure mode effects mitigation in drive-by-wire systems
JP5154397B2 (ja) * 2008-12-25 2013-02-27 富士重工業株式会社 車両運動制御装置
AT507383B1 (de) 2009-01-07 2010-12-15 Ernst Dipl Ing Zimmer Motorrad mit hoher fahrersitzposition
US8854199B2 (en) * 2009-01-26 2014-10-07 Lytx, Inc. Driver risk assessment system and method employing automated driver log
US8352120B2 (en) * 2009-02-17 2013-01-08 Lockheed Martin Corporation System and method for stability control using GPS data
US8855885B2 (en) 2009-03-30 2014-10-07 Honda Motor Co., Ltd. Device for estimating state quantity of skid motion of vehicle
JP4873042B2 (ja) * 2009-04-13 2012-02-08 トヨタ自動車株式会社 車両制御装置および車両制御方法
JP5308913B2 (ja) * 2009-05-19 2013-10-09 富士重工業株式会社 車両の駆動力制御装置
IT1394715B1 (it) * 2009-06-09 2012-07-13 Milano Politecnico Sistema e metodo di controllo della trazione in un veicolo a due ruote
EP2448806B1 (en) * 2009-06-29 2015-04-22 Volvo Lastvagnar AB A method and a system for assisting a driver of a vehicle during operation
DE102009032745A1 (de) * 2009-07-11 2011-01-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Anpassung eines Antriebsmoments
US8731777B2 (en) * 2009-08-18 2014-05-20 Crown Equipment Corporation Object tracking and steer maneuvers for materials handling vehicles
JP5571519B2 (ja) * 2010-09-27 2014-08-13 日立オートモティブシステムズ株式会社 車体姿勢制御装置
JP5505319B2 (ja) * 2011-01-18 2014-05-28 株式会社エクォス・リサーチ 車両
DE102011012187A1 (de) * 2011-02-23 2012-08-23 Continental Automotive Gmbh Verfahren zum Konfigurieren einer Steuervorrichtung für ein Kraftfahrzeug, Computerprogramm und Steuervorrichtung
US8606492B1 (en) 2011-08-31 2013-12-10 Drivecam, Inc. Driver log generation
US10118626B2 (en) * 2011-09-12 2018-11-06 Continental Teves Ag & Co. Ohg Fusion of chassis sensor data with vehicle dynamics data
US8744642B2 (en) 2011-09-16 2014-06-03 Lytx, Inc. Driver identification based on face data
US8996234B1 (en) 2011-10-11 2015-03-31 Lytx, Inc. Driver performance determination based on geolocation
US9298575B2 (en) 2011-10-12 2016-03-29 Lytx, Inc. Drive event capturing based on geolocation
DE102011084765A1 (de) * 2011-10-19 2013-04-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs
JP2013112238A (ja) * 2011-11-30 2013-06-10 Equos Research Co Ltd 車両
JP2013112236A (ja) * 2011-11-30 2013-06-10 Equos Research Co Ltd 車両
US8989914B1 (en) 2011-12-19 2015-03-24 Lytx, Inc. Driver identification based on driving maneuver signature
KR101361360B1 (ko) * 2011-12-26 2014-02-11 현대자동차주식회사 측후방 감지센서를 이용한 차간거리 제어 시스템 및 그 제어 방법
EP2799263B1 (en) * 2011-12-28 2018-05-30 Nissan Motor Co., Ltd Vehicle control device
US9240079B2 (en) 2012-04-17 2016-01-19 Lytx, Inc. Triggering a specialized data collection mode
US8676428B2 (en) 2012-04-17 2014-03-18 Lytx, Inc. Server request for downloaded information from a vehicle-based monitor
CN102700373A (zh) * 2012-05-28 2012-10-03 黄革远 主动式独立悬挂
US9728228B2 (en) 2012-08-10 2017-08-08 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
JP5836231B2 (ja) * 2012-09-07 2015-12-24 本田技研工業株式会社 動力伝達装置
RU2640663C2 (ru) * 2012-11-02 2018-01-11 Федеральное государственное унитарное предприятие "Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт "НАМИ" Способ распределения крутящих моментов, подводимых к колесам полноприводных автомобилей
US9344683B1 (en) 2012-11-28 2016-05-17 Lytx, Inc. Capturing driving risk based on vehicle state and automatic detection of a state of a location
JP5943138B2 (ja) * 2013-02-19 2016-06-29 トヨタ自動車株式会社 衝突回避支援装置及び衝突回避支援方法
GB2511827B (en) * 2013-03-14 2015-08-12 Jaguar Land Rover Ltd Control unit for a vehicle suspension
DE102014204519A1 (de) 2013-04-08 2014-10-09 Ford Global Technologies, Llc Vorrichtung und Verfahren zur proaktiven Steuerung eines Schwingungsdämpfungssystems eines Fahrzeugs
JP2015058914A (ja) * 2013-09-20 2015-03-30 日立オートモティブシステムズ株式会社 サスペンション装置
US9501878B2 (en) 2013-10-16 2016-11-22 Smartdrive Systems, Inc. Vehicle event playback apparatus and methods
US9610955B2 (en) 2013-11-11 2017-04-04 Smartdrive Systems, Inc. Vehicle fuel consumption monitor and feedback systems
US9168925B2 (en) 2013-12-30 2015-10-27 Ford Global Technologies, Llc Method for estimating grade and rolling direction
US8892310B1 (en) 2014-02-21 2014-11-18 Smartdrive Systems, Inc. System and method to detect execution of driving maneuvers
DE102015205369B4 (de) * 2014-04-04 2019-08-22 Ford Global Technologies, Llc Verfahren zum Betrieb eines Federungssystems
US9663127B2 (en) 2014-10-28 2017-05-30 Smartdrive Systems, Inc. Rail vehicle event detection and recording system
US11069257B2 (en) 2014-11-13 2021-07-20 Smartdrive Systems, Inc. System and method for detecting a vehicle event and generating review criteria
JP6103163B2 (ja) * 2014-12-25 2017-04-05 日本精工株式会社 電動パワーステアリング装置
US9679420B2 (en) 2015-04-01 2017-06-13 Smartdrive Systems, Inc. Vehicle event recording system and method
DE102016113454B4 (de) * 2015-07-22 2021-04-01 Steering Solutions Ip Holding Corporation Lenkungssystem zum Bereitstellen einer Dämpfung im Gelände
JP2017043290A (ja) * 2015-08-28 2017-03-02 トヨタ自動車株式会社 車両用操舵制御装置
TW201710924A (zh) * 2015-09-14 2017-03-16 義守大學 以多項式估測感應機參數之方法
US10160447B2 (en) 2015-10-20 2018-12-25 Ford Global Technologies, Llc Systems and methods for abrupt road change assist and active suspension control
JP6544878B2 (ja) * 2016-05-16 2019-07-17 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP6331159B2 (ja) * 2016-05-18 2018-05-30 マツダ株式会社 車両の制御装置
JP6750341B2 (ja) * 2016-06-22 2020-09-02 株式会社ジェイテクト 操舵制御装置
US10065636B2 (en) * 2016-06-23 2018-09-04 Ford Global Technologies, Llc Vehicle tire saturation estimator
JP6868173B2 (ja) * 2016-09-20 2021-05-12 日立Astemo株式会社 車両制御装置、車両制御方法および電動パワーステアリング装置
EP3583015A1 (en) * 2017-02-17 2019-12-25 ThyssenKrupp Presta AG Vehicle lateral motion control
US10315565B2 (en) * 2017-02-23 2019-06-11 Modular Mining Systems, Inc. Vehicle slide detection
DE102017205564B4 (de) * 2017-03-31 2019-10-17 Ford Global Technologies, Llc Lenkungsunterstützungssystem und Verfahren zum Bestimmen einer voraussichtlich auftretenden Lenkwinkelamplitude eines Lenkrads eines Fahrzeugs bei einem Fahrspurwechsel
DE102017111077A1 (de) * 2017-05-22 2018-11-22 Lsp Innovative Automotive Systems Gmbh Bremsvorrichtung, insbesondere für elektrisch angetriebene Kraftfahrzeuge
JP6286091B1 (ja) * 2017-05-30 2018-02-28 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、及びサスペンション装置。
JP6666304B2 (ja) * 2017-06-02 2020-03-13 本田技研工業株式会社 走行制御装置、走行制御方法、およびプログラム
US10474157B2 (en) * 2017-06-06 2019-11-12 Baidu Usa Llc Data-based control error detection and parameter compensation system
US10589738B1 (en) * 2017-09-15 2020-03-17 Zoox, Inc. Electronic braking systems and methods
JP6838661B2 (ja) * 2017-09-27 2021-03-03 日立Astemo株式会社 車両制御装置
JP6360246B1 (ja) * 2017-11-16 2018-07-18 株式会社ショーワ 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
CN108062515B (zh) * 2017-12-04 2022-01-18 北京中科慧眼科技有限公司 基于双目视觉的障碍物检测方法、***及存储介质
KR102585752B1 (ko) * 2018-09-19 2023-10-10 현대자동차주식회사 후륜조향시스템의 제어방법
EP3881025A4 (en) 2018-12-31 2022-08-10 Tomahawk Robotics SYSTEMS AND METHODS FOR REMOTE CONTROL OF ROBOTIC VEHICLES
US11641121B2 (en) 2019-02-01 2023-05-02 Crown Equipment Corporation On-board charging station for a remote control device
EP3979220A1 (en) 2019-02-01 2022-04-06 Crown Equipment Corporation On-board charging station for a remote control device
JP7109406B2 (ja) * 2019-07-01 2022-07-29 本田技研工業株式会社 車両制御装置
CN112406889B (zh) * 2019-08-22 2022-05-27 魔门塔(苏州)科技有限公司 基于运动学的车辆预测控制方法及处理器
CN112406890B (zh) * 2019-08-22 2022-04-01 魔门塔(苏州)科技有限公司 基于动力学的车辆预测控制方法及处理器
US11945440B2 (en) 2019-08-23 2024-04-02 Motional Ad Llc Data driven rule books
JPWO2021044811A1 (ko) * 2019-09-03 2021-03-11
JP7298434B2 (ja) * 2019-10-11 2023-06-27 トヨタ自動車株式会社 運転支援装置
JP6908144B1 (ja) * 2020-02-06 2021-07-21 株式会社明電舎 自動操縦ロボットの制御装置及び制御方法
US11492008B2 (en) * 2020-02-21 2022-11-08 Baidu Usa Llc Model reference adaptive control algorithm to address the vehicle actuation dynamics
WO2021199662A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 運動制御装置、運動制御方法および記録媒体
WO2022035797A1 (en) 2020-08-11 2022-02-17 Crown Equipment Corporation Remote control device
CN112509173B (zh) * 2020-12-08 2023-03-03 中国第一汽车股份有限公司 一种车辆监控方法、装置、设备及存储介质
DE102021106495A1 (de) * 2021-03-17 2022-09-22 Kiekert Aktiengesellschaft Verfahren zum Bestimmen eines Wertes für einen Aktuatorparameter
CN113212538B (zh) * 2021-05-24 2022-04-26 福建盛海智能科技有限公司 一种遥控无人驾驶车辆方向自主纠正方法及终端
JP2023011190A (ja) * 2021-07-12 2023-01-24 日立Astemo株式会社 車両の運動制御装置、車両の運動制御方法
CN117836193A (zh) * 2021-08-31 2024-04-05 沃尔沃卡车集团 用于简化的自主驾驶的车辆控制
CN113753054B (zh) * 2021-09-23 2023-01-20 扬州亚星客车股份有限公司 一种车辆线控底盘控制方法、装置、电子设备及介质
US20230102929A1 (en) * 2021-09-24 2023-03-30 Embark Trucks, Inc. Autonomous vehicle automated scenario characterization
WO2023091104A1 (en) * 2021-11-19 2023-05-25 Oyak Renault Otomobi̇l Fabri̇kalari Anoni̇m Şi̇rketi̇ A method for energy efficient control of active and semi-active suspension systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002019485A (ja) 2000-07-07 2002-01-23 Hitachi Ltd 運転支援装置
US20020087251A1 (en) 2000-11-16 2002-07-04 Masaru Kogure Road friction coefficients estimating apparatus for vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2606295B2 (ja) 1988-07-04 1997-04-30 日産自動車株式会社 車両用実舵角制御装置
US5043896A (en) * 1990-06-11 1991-08-27 Ford Motor Company Vehicle braking system controller/road friction and hill slope tracking system
DE4201146C2 (de) * 1991-01-18 2003-01-30 Hitachi Ltd Vorrichtung zur Steuerung des Kraftfahrzeugverhaltens
DE4305155C2 (de) * 1993-02-19 2002-05-23 Bosch Gmbh Robert Vorrichtung zur Regelung der Fahrdynamik
JP3198797B2 (ja) 1994-05-10 2001-08-13 日産自動車株式会社 車両運動制御装置
US5701248A (en) 1994-11-25 1997-12-23 Itt Automotive Europe Gmbh Process for controlling the driving stability with the king pin inclination difference as the controlled variable
US5671143A (en) * 1994-11-25 1997-09-23 Itt Automotive Europe Gmbh Driving stability controller with coefficient of friction dependent limitation of the reference yaw rate
US6547343B1 (en) * 1997-09-08 2003-04-15 General Motors Corporation Brake system control
WO1999056994A1 (fr) * 1998-05-07 1999-11-11 Unisia Jecs Corporation Dispositif pour reguler les mouvements d'embardee d'un vehicule
US6453226B1 (en) * 2001-01-25 2002-09-17 Delphi Technologies, Inc. Integrated control of active tire steer and brakes
EP1332910B1 (en) * 2002-02-01 2009-11-04 Nissan Motor Co., Ltd. Method and system for vehicle operator assistance improvement
JP3780985B2 (ja) * 2002-07-26 2006-05-31 トヨタ自動車株式会社 車輌用操舵制御装置
JP2005125986A (ja) 2003-10-27 2005-05-19 Fuji Heavy Ind Ltd 車両制御装置および車両制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002019485A (ja) 2000-07-07 2002-01-23 Hitachi Ltd 運転支援装置
US20020087251A1 (en) 2000-11-16 2002-07-04 Masaru Kogure Road friction coefficients estimating apparatus for vehicle

Also Published As

Publication number Publication date
EP1775188A4 (en) 2009-10-21
BRPI0513156A (pt) 2008-04-29
RU2389625C2 (ru) 2010-05-20
WO2006013922A1 (ja) 2006-02-09
CN101005981B (zh) 2010-06-16
JP4143104B2 (ja) 2008-09-03
RU2007108384A (ru) 2008-09-20
JPWO2006013922A1 (ja) 2008-05-01
EP1775188B1 (en) 2011-05-04
CA2568220C (en) 2012-10-30
CN101005981A (zh) 2007-07-25
BRPI0513156B1 (pt) 2017-12-26
KR20070043702A (ko) 2007-04-25
US7702442B2 (en) 2010-04-20
CA2568220A1 (en) 2006-02-09
US20080133066A1 (en) 2008-06-05
DE602005027845D1 (de) 2011-06-16
EP1775188A1 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
KR101172670B1 (ko) 차량의 제어 장치
US8271175B2 (en) Vehicle control device
JP4672761B2 (ja) 車両の制御装置
JP4143111B2 (ja) 車両の制御装置
JP4143113B2 (ja) 車両の制御装置
Hendrikx et al. Application of optimal control theory to inverse simulation of car handling
JP4143112B2 (ja) 車両の制御装置
JP4226060B2 (ja) 車両の制御装置
JPWO2007074718A1 (ja) 車両の制御装置
CN112026533B (zh) 一种极限工况下的四轮独立驱动电动汽车牵引力控制方法
Kim et al. Drive control algorithm for an independent 8 in-wheel motor drive vehicle
JP6360246B1 (ja) 車両状態推定装置、制御装置、サスペンション制御装置、サスペンション装置、ステアリング制御装置、及びステアリング装置
JP2019189187A (ja) 走行軌道設計方法及び車両運動制御装置
CN113246961A (zh) 用于带有标准的稳定性特征的集成车轮和车身动态控制的架构和方法
WO2022113740A1 (ja) 車両統合制御装置、および、車両統合制御方法
Bevan Development of a vehicle dynamics controller for obstacle avoidance
Wang Autonomous driving car model and its control
Lewander Actuator Comparison and Coordination for Integrated Vehicle Dynamics Control
Fijalkowski et al. SBW AWS Conversion Mechatronic Control System

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190722

Year of fee payment: 8