KR100663717B1 - Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition - Google Patents

Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition Download PDF

Info

Publication number
KR100663717B1
KR100663717B1 KR1020040033653A KR20040033653A KR100663717B1 KR 100663717 B1 KR100663717 B1 KR 100663717B1 KR 1020040033653 A KR1020040033653 A KR 1020040033653A KR 20040033653 A KR20040033653 A KR 20040033653A KR 100663717 B1 KR100663717 B1 KR 100663717B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
synthesis
thin
catalyst
thermochemical
Prior art date
Application number
KR1020040033653A
Other languages
Korean (ko)
Other versions
KR20050108665A (en
Inventor
이영희
조영상
정희진
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020040033653A priority Critical patent/KR100663717B1/en
Publication of KR20050108665A publication Critical patent/KR20050108665A/en
Application granted granted Critical
Publication of KR100663717B1 publication Critical patent/KR100663717B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes

Abstract

본 발명은 담지체에 담지된 전이금속촉매를 보트 위에 올려놓고 상압 열화학기상법 (혹은 열분해법)을 이용하여 벽수가 2-10 개의 얇은 다층 탄소나노튜브를 대량으로 합성하는 방법을 개시한다. 본 발명의 일 관점에 의한 얇은 다층 탄소나노튜브 대량합성법은 전이금속촉매를 담지체에 담지하는 방법, 상압 열화학기상법으로 메탄기체와 에틸렌기체를 혼합하여 상기 탄소나노튜브를 대량으로 합성하는 방법, 일괄처리 공정을 연속적으로 수행하는 단계를 포함한다. The present invention discloses a method of mass-producing a multi-walled multi-walled carbon nanotube having 2 to 10 thin walls using atmospheric pressure thermochemical technique (or pyrolysis) by placing a transition metal catalyst supported on a carrier on a boat. Thin multi-layered carbon nanotube mass synthesis method according to an aspect of the present invention is a method for supporting a transition metal catalyst on a support, a method for synthesizing the carbon nanotubes in a large amount by mixing a methane gas and an ethylene gas by atmospheric thermochemical method, batch Continuously carrying out the treatment process.

탄소나노튜브, 얇은다층탄소나노튜브, 열화학기상증착법, FeMoMgOCarbon nanotubes, thin multilayer carbon nanotubes, thermochemical vapor deposition, FeMoMgO

Description

화학 증착법을 이용한 얇은 다층탄소나노튜브 대량합성법{Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition}Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition}

도 1은 본 발명에 따른 탄소나노튜브의 합성 흐름도이다.1 is a flow chart of the synthesis of carbon nanotubes according to the present invention.

도 2은 발명의 실시 예에 따라 제조된 탄소나노튜브의 전자현미경 및 투과전자현미경 사진이다. 2 is an electron microscope and transmission electron micrograph of a carbon nanotube prepared according to an embodiment of the present invention.

도 3는 합성된 시료의 TGA 및 Raman data이다.3 is TGA and Raman data of the synthesized sample.

도 4은 도입 기체비 (메탄/에틸렌)에 따른 합성된 얇은 다층 탄소나노튜브 양 (원래 투입된 촉매량 대비 무게비)의 변화이다.4 is a change in the amount of thin multilayer carbon nanotubes (weight ratio to the amount of catalyst originally introduced) according to the introduction gas ratio (methane / ethylene).

본 발명은 얇은 다층 (혹은 다중벽) 탄소나노튜브를 연속공정과정에 의해 대량 합성하는 방법을 개발하는 것으로, 전이금속촉매를 담지체에 담지 하는 단계, 상압 열화학기상법으로 메탄기체와 에틸렌기체를 혼합하여 상기 탄소나노튜브를 대량으로 합성하는 단계, 일괄처리 공정을 연속적으로 수행하는 단계를 포함한다. The present invention is to develop a method for mass synthesis of thin multilayer (or multi-walled) carbon nanotubes by a continuous process, in which a transition metal catalyst is supported on a support, and a methane gas and an ethylene gas are mixed by an atmospheric thermochemical method. By synthesizing the carbon nanotubes in a large amount, comprising the step of performing a batch processing process continuously.

탄소나노튜브는 구조에 따라서 다양한 특성을 가진다. 탄소층이 말린 각도에 따라 금속성 또는 반도체 특성을 가지게 되며, 쌓인 층 수에 따라 단층 탄소나노튜브와 다층 탄소나노튜브가 된다. 이러한 탄소나노튜브들은 궁극적으로 응용 목적에 따라서 금속성, 반도체성 또는 단, 다층 탄소나노튜브를 쓰는 경우가 정해진다. 예를 들어 탄소나노튜브를 전계방출소자에 응용하는 경우 이제까지 단층 탄소나노튜브를 이용하였으나 안정성이 떨어져 그 대안으로 다층 탄소나노튜브가 제안되었으나 field enhancement factor가 상대적으로 작아서 전자방출 능력이 떨어진다. 따라서 직경이 작은 얇은 다층 탄소나노튜브가 field emitter로서 적합하고 이를 위한 대량합성의 필요성이 증대되고 있다. 탄소나노튜브를 합성하는 방법으로는 전기 방전법, 레이져 증착법, 고압 기상법, 상압 열화학 기상법 ( 혹은 열분해법)등이 제안되어 왔다. 전기방전법과 레이져 증발법은 원리가 간단하여 적용하기 쉬우나 불순물이 많이 포함되어 있는 단점이 있을 뿐만 아니라 수톤 단위의 탄소나노튜브를 대량합성하기 어려운 단점이 있고, 고압 기상법은 단층 탄소나노튜브 연속공정이 가능하나 하루에 생산하는 양 역시 수 gm 에 불과하여 응용에 필요한 대량합성이 불가능하고 얇은 다층 탄소나노튜브에 관한 합성방법 역시 확립되어 있지 않다. 열화학 기상법을 이용한 합성법은 주로 메탄기체를 이용하여 소량의 질 좋은 탄소나노튜브를 제작하였으며 단층 혹은 얇은 다층 탄소나노튜브의 대량합성에는 아직 보고된 바 없다. Carbon nanotubes have various properties depending on their structure. The carbon layer has metallic or semiconducting properties depending on the angle at which it is dried, and becomes single-walled carbon nanotubes and multilayered carbon nanotubes depending on the number of stacked layers. These carbon nanotubes are ultimately determined to use metallic, semiconducting or multi-layered carbon nanotubes depending on the application purpose. For example, in the case of applying carbon nanotubes to field emission devices, single-layer carbon nanotubes have been used so far. However, multilayer carbon nanotubes have been proposed as alternatives due to their low stability. However, the field enhancement factor is relatively small, resulting in poor electron emission capability. Therefore, thin multi-layered carbon nanotubes with small diameters are suitable as field emitters and the necessity of mass synthesis for these is increasing. As a method for synthesizing carbon nanotubes, an electric discharge method, a laser deposition method, a high pressure gas phase method, an atmospheric pressure thermochemical gas phase method (or pyrolysis method) has been proposed. The electric discharge method and the laser evaporation method are easy to apply due to the simple principle, but also have a disadvantage of containing a large amount of impurities, and it is difficult to mass synthesize a ton of carbon nanotubes, and the high pressure gas phase method has a single-layered carbon nanotube continuous process. It is possible, however, that the amount produced per day is only a few gm. Therefore, the mass synthesis required for the application is impossible, and a synthesis method for thin multilayer carbon nanotubes is not established. The synthesis method using the thermochemical vapor phase has mainly produced a small amount of high quality carbon nanotubes using methane gas and has not been reported for the mass synthesis of single or thin multilayer carbon nanotubes.

본 발명이 이루고자 하는 기술적 과제는, 기존의 열화학기상법을 사용하여 얇은 다층 탄소나노튜브를 대량 합성하는 방법에 관한 것으로, 나노촉매 준비 단 계, 합성조건 최적화 단계, 일괄처리 공정을 연속적으로 수행하는 단계를 포함한다. 이 방법은 나노담지체를 이용하여 나노크기의 촉매를 담지하고, 열화학기상법에서, 메탄/에틸렌 혼합기체 비율, 온도등을 조절하여 고 순도, 고수율의 얇은 다층 탄소나노튜브를 대량 합성하는 것을 특징으로 한다. 또 합성된 탄소나노튜브의 결함을 줄이기 위해 합성 후 동일 chamber 내에서 열처리하여 탄소나노튜브를 연속적으로 얻어낼 수 있도록 하였다. 따라서 이 장치는 고수율의 얇은 다층 탄소나노튜브를 대량 합성할 수 있는 연속공정을 특징으로 한다.The technical problem to be achieved by the present invention relates to a method for mass-synthesizing thin multilayer carbon nanotubes using a conventional thermochemical method, the step of sequentially performing a nanocatalyst preparation step, synthesis conditions optimization step, batch processing process It includes. This method is characterized by the support of nano-sized catalyst using a nano-carrier, and in the thermochemical technique, by controlling the methane / ethylene mixed gas ratio, temperature and the like to synthesize a large amount of thin multilayer carbon nanotubes of high purity and high yield. It is done. In addition, in order to reduce the defects of the synthesized carbon nanotubes, the carbon nanotubes were continuously heat-treated in the same chamber after synthesis. Thus, the device features a continuous process that allows the synthesis of high yields of thin multilayer carbon nanotubes in large quantities.

상기의 기술적 과제를 달성하기 위한 본 발명에 따른 얇은 다층 탄소나노튜브 대량 합성법은 나노촉매 준비 단계, 합성조건 최적화 단계, 일괄처리 공정을 연속적으로 수행하는 단계를 포함한다. Thin multi-layered carbon nanotube mass synthesis method according to the present invention for achieving the above technical problem includes a step of sequentially performing a nanocatalyst preparation step, synthesis conditions optimization step, batch processing process.

상기 단계 중 나노촉매 준비 단계는 크게 나노촉매와 이를 지지하는 담지체의 준비로 구성된다. 일반적으로 탄소나노튜브의 합성에 사용되는 촉매의 크기는 합성되는 탄소나노튜브의 직경에 밀접한 관련이 있기 때문에 단층 혹은 얇은 다층 탄소나노튜브의 합성을 위해서는 촉매의 크기를 수 나노 크기로 제어해야 한다. 또한 나노촉매는 탄소나노튜브의 합성을 위한 높은 온도에도 그 크기가 변함없이 유지되어야 하는데 이를 위해 본 발명에서는 MgO 담지체를 이용하여 나노촉매를 지지함으로서 그 효과를 확보하였다. 나노촉매의 주요 구성 물질은 탄소나노튜브의 성장을 위한 Fe, Ni, Co등과 촉매 활성제인 Mo, sulphur등인데, 나노촉매 원료 물질은 Iron nitrate nonhydrate, Ni nitrate nonhydrate, Co nitrate nonhydrate등이 있고, 촉 매활성제로서는 Ammonium heptamolybdate tetrahydrate, Ni sulphate, Iron sulphate, sulphur powder등이 있다. 적당량의 원료 물질을 물에 각각 용해한 뒤 담지체로 사용되는 MgO를 원료 물질인 Magnesium nitrate hexahydrate를 사용하여 같은 방법으로 물에 용해한다. 이렇게 준비된 수용액들을 함께 초음파 처리를 하면서 혼합한다. 이때, 수용액의 ph를 중성으로 유지하고 반응을 촉진시키기 위하여 Citric acid 용액을 몇 방울 떨어뜨린다. 이 과정으로부터 MgO 담지체에 지지된 나노크기의 Fe-Mo 촉매가 형성이 되고 사용된 원료 물질들의 혼합 비율을 조절하고 촉매 제조 시 초음파 처리와 교반기를 통해 나노크기를 제어하였다. 준비된 수용액의 Fe-Mo-MgO 촉매를 분말 형태로 만들기 위해 섭씨 550 도에서 10분간 공기 중에서 열처리를 하였다. 일반적으로 Fe-Mo-MgO는 여러 방법으로 합성 될 수 있는데 본 발명에서 사용한 방법은 빠른 시간 안에 많은 양의 촉매를 합성 할 수 있다는 장점과 원료 물질의 혼합 비율과 제조 과정 중에 초음파 처리와 교반기를 통해 나노 크기의 촉매를 제조 할 수 있다는 장점을 함유하고 있어 단층 혹은 얇은 다층 탄소나노튜브의 대량 합성을 위한 촉매 제조에 아주 적합한 방법이다. The nanocatalyst preparation step of the step is largely composed of the preparation of the nanocatalyst and the carrier supporting it. In general, since the size of the catalyst used for the synthesis of carbon nanotubes is closely related to the diameter of the carbon nanotubes synthesized, it is necessary to control the size of the catalyst to several nanoscales for the synthesis of single or thin multilayer carbon nanotubes. In addition, the size of the nanocatalyst should be maintained unchanged even at high temperature for the synthesis of carbon nanotubes. To this end, the present invention secured the effect by supporting the nanocatalyst using an MgO carrier. The major constituents of nanocatalysts are Fe, Ni, Co, etc. for growth of carbon nanotubes, and Mo, sulphur, which are catalyst activators, and nanocatalyst raw materials include iron nitrate nonhydrate, Ni nitrate nonhydrate, and co nitrate nonhydrate. Ammonium heptamolybdate tetrahydrate, Ni sulphate, Iron sulphate, sulphur powder, etc. After dissolving an appropriate amount of raw materials in water, MgO used as a carrier is dissolved in water in the same manner using the raw material Magnesium nitrate hexahydrate. The aqueous solutions thus prepared are mixed while sonicating together. At this time, in order to keep the pH of the aqueous solution neutral and to promote the reaction, drop a few drops of Citric acid solution. From this process, the nano-sized Fe-Mo catalyst supported on the MgO support was formed, and the mixing ratio of the raw materials used was controlled, and the nano-sized was controlled through the ultrasonic treatment and the stirrer during the preparation of the catalyst. The Fe-Mo-MgO catalyst of the prepared aqueous solution was heat-treated in air for 10 minutes at 550 degrees Celsius. In general, Fe-Mo-MgO can be synthesized by various methods, and the method used in the present invention has the advantage of synthesizing a large amount of catalyst in a short time and the mixing ratio of the raw materials and the sonication and agitator during the manufacturing process. It has the advantage of producing nano sized catalysts, making it a very suitable method for the preparation of catalysts for mass synthesis of single or thin multilayer carbon nanotubes.

다음으로 합성조건 최적화 단계는 위의 방법으로 제조된 분말형의 Fe-Mo-MgO 촉매를 사용하여 얇은 다층 탄소나노튜브의 대량 합성을 위해 열화학기상법에서 혼합기체의 종류 및 비율, 온도 등을 최적화하는 단계이다. 위에서 언급했듯이 단층 또는 얇은 다층 탄소나노튜브를 합성하기 위해서는 사용되는 촉매가 수 나노 크기여야 하고 이와 더불어 열화학기상법의 합성 조건도 매우 중요한 변수이다. 예를 들어, 탄소나노튜브의 합성을 위한 기체에는 메탄, 에틸렌, 아세틸렌 등 여러 종류가 사 용될 수 있는데 이들은 각각 탄소 원자의 함유량과 분해 온도, 분해 후 발생되는 화학기가 다르기 때문에 목적에 따라 적절한 제어가 필요하다. 적당량의 분말형 Fe-Mo-MgO 촉매를 세라믹 보트에 촘촘히 깔고 상압 열화학기상 chamber에 넣어 얇은 다층 탄소나노튜브를 합성하였다. 일반적으로 열화학기상법을 이용하여 단층 또는 얇은 다층 탄소나노튜브의 합성을 위한 온도는 대략 섭씨 800도 이상이어야 하는데 이는 산화된 나노촉매의 환원을 위한 온도와 밀접할 뿐만 아니라 사용되는 주요 원료 기체인 메탄이 탄소 원자로 분해하는 온도와도 밀접하기 때문이다. 에틸렌이나 아세틸렌은 메탄보다 낮은 온도에서도 분해가 가능하므로 온도가 높아지면 높아질수록 사용되는 메탄/에틸렌 또는 메탄/아세틸렌의 비율에 따라 분해하는 탄소원자의 상대적 양이 변화하기 때문에 본 발명에서는 합성 온도를 섭씨 700-900도로 유지하고 메탄/에틸렌의 비율을 변화하면서 얇은 다층 탄소나노튜브를 합성하였다. 수소 기체를 흘려주면서 chamber를 15분 동안 섭씨 900도로 승온하고 1시간 유지하면서 산화된 Fe-Mo/MgO 촉매를 환원하였다. 환원과정을 거치지 않으면 대부분의 Fe-Mo-MgO 촉매는 표면이 산소에 의해 감싸여 있기 때문에 탄소나노튜브의 성장을 위한 촉매로서 작용 할 수 없다. 메탄 기체의 분해 시 발생되는 수소기에 의해 적은 양의 Fe-Mo-MgO 촉매가 환원되기도 하지만 대량 합성을 위해서는 수소 기체에 의한 환원 과정이 필수적이다. 비교를 위해 환원 과정을 거친 촉매와 거치지 않은 샘플에 메탄 기체를 흘려주어 합성한 얇은 다층 탄소나노튜브의 수율을 측정 한 결과 대략 10배 차이가 발생함을 알 수 있었다. 또한 나노촉매 제조 시 위의 환원 과정을 미리 처리한 샘플의 경우와 비교해도 위 방법은 대략 3배 더 많은 얇은 다층 탄소나노튜브의 합성을 할 수 있었는데 이것은 나노촉매가 공기중의 산소에 노출되어 산화되는 현상을 방지했기 때문이고 본 방법이 얇은 다층 탄소나노튜브의 대량 합성에 적절한 방법임을 증명하는 한 예가 될 수 있다. 이렇게 환원 과정을 거친 Fe-Mo-MgO 나노촉매는 같은 온도에서 30분-2시간 동안 메탄/에틸렌 혼합기체의 비율을 변화하면서 얇은 다층 탄소나노튜브의 합성을 하였다. 이렇게 합성된 탄소나노튜브는 batch 형태로 boat의 크기에 따라 한번에 수 gm 내지 수 십 gm 성장이 가능하며 이를 일괄처리 공정화시키면 연속공정으로 얇은 다층 탄소나노튜브를 대량으로 합성할 수 있다. Next, the synthesis condition optimization step is to optimize the type, ratio, temperature, etc. of the mixed gas in the thermochemical technique for mass synthesis of thin multilayer carbon nanotubes using the powdered Fe-Mo-MgO catalyst prepared by the above method. Step. As mentioned above, in order to synthesize single or thin multi-walled carbon nanotubes, the catalyst used must be several nano-sizes. In addition, the synthesis conditions of the thermochemical technique are also very important variables. For example, various kinds of gases, such as methane, ethylene, and acetylene, may be used for the synthesis of carbon nanotubes, which are different from each other in terms of carbon atom content, decomposition temperature, and chemical groups generated after decomposition. need. An appropriate amount of powdery Fe-Mo-MgO catalyst was placed in a ceramic boat and placed in an atmospheric pressure thermochemical chamber to synthesize thin multilayer carbon nanotubes. In general, the temperature for the synthesis of single- or thin-walled carbon nanotubes using thermochemical weathering should be approximately 800 degrees Celsius or higher, which is not only close to the temperature for the reduction of oxidized nanocatalysts, This is because the temperature is also close to the temperature at which carbon atoms decompose. Since ethylene and acetylene can be decomposed at a lower temperature than methane, the synthesis temperature is changed to 700 degrees Celsius because the higher the temperature, the relative amount of decomposed carbon atoms changes depending on the ratio of methane / ethylene or methane / acetylene used. Thin multi-layered carbon nanotubes were synthesized by maintaining the methane / ethylene ratio at -900 degrees. While flowing hydrogen gas, the chamber was heated to 900 degrees Celsius for 15 minutes and maintained for 1 hour to reduce the oxidized Fe-Mo / MgO catalyst. Without the reduction process, most Fe-Mo-MgO catalysts cannot act as catalysts for the growth of carbon nanotubes because their surfaces are surrounded by oxygen. Although a small amount of Fe-Mo-MgO catalyst is reduced by the hydrogen group generated during the decomposition of methane gas, the reduction process by hydrogen gas is essential for mass synthesis. For comparison, a 10-fold difference was observed as a result of measuring the yield of the thin multi-layered carbon nanotubes synthesized by flowing methane gas into the catalyst that had undergone the reduction process and the sample that had not been subjected to the reduction process. In addition, compared to the case of pretreatment of the above reduction process in the preparation of the nanocatalyst, the above method was able to synthesize about three times more thin multilayer carbon nanotubes, which was exposed to oxygen in the air and oxidized. This is an example to prove that the present method is suitable for mass synthesis of thin multilayer carbon nanotubes. The reduced Fe-Mo-MgO nanocatalyst synthesized thin multi-walled carbon nanotubes while varying the ratio of methane / ethylene mixture for 30 minutes-2 hours at the same temperature. The synthesized carbon nanotubes can be grown in a batch form from several gm to several ten gm at a time, depending on the size of the boat, and when batch-processed, thin multi-walled carbon nanotubes can be synthesized in a continuous process in large quantities.

도 1은 본 발명에 따른 탄소나노튜브의 합성 흐름도이다. 1 is a flow chart of the synthesis of carbon nanotubes according to the present invention.

도 2은 발명의 실시 예에 따라 제조된 탄소나노튜브의 전자현미경 및 투과전자현미경 사진이다. 그림 21A-B는 합성시간은 60분이고 메탄기체만 사용한 경우의 사진이고, 그림 2C-D는 에틸렌이 2 % 함유되어 있을 때의 사진이다. 두 경우 다 합성 시 사용된 촉매는 보이지 않고 순수한 탄소나노튜브 다발만 보인다. 투과전자현미경을 보면 다발의 크기가 단층탄소나노튜브에 비해 훨씬 작고 평균적으로 직경이 1-8 nm이며 벽수가 2-10개 정도이다. 또 열화학 기상법에 의해 합성된 다층 탄소나노튜브에 비해 직진성이 아주 좋다. 2 is an electron microscope and transmission electron micrograph of a carbon nanotube prepared according to an embodiment of the present invention. Fig. 21A-B is a picture when the synthesis time is 60 minutes and only methane gas is used. Fig. 2C-D is a picture when 2% of ethylene is contained. In both cases, the catalyst used in the synthesis is not seen, only pure carbon nanotube bundles. Transmission electron microscopy shows that the bundle size is much smaller than single-walled carbon nanotubes, on average 1-8 nm in diameter and 2-10 in number of walls. In addition, the linearity is very good compared to the multilayer carbon nanotubes synthesized by the thermochemical vapor phase method.

도 3는 합성된 시료의 열분석기(TGA) 및 라만(Raman) data이다. TGA곡선은 에틸렌의 농도에 관계없이 비정질탄소의 함유량이 아주 적고, 촉매 잔유량이 5 % 이하임을 알 수 있다. Raman 데이터의 경우 514.5 nm 나 1064 nm의 여기파장 모두 3 nm 이하의 직경을 가진 튜브가 많이 존재하고 나노튜브의 결함도 어느 정도 존재함을 알 수 있다. 그러나 이러한 결함은 연이은 열처리에 의해 현저히 줄어든다.3 is a thermal analyzer (TGA) and Raman data of the synthesized sample. Regardless of the concentration of ethylene, the TGA curve shows a very small amount of amorphous carbon and a catalyst residual amount of 5% or less. In the case of Raman data, it can be seen that there are many tubes having a diameter of less than 3 nm in both excitation wavelengths of 514.5 nm or 1064 nm and some defects of nanotubes. However, these defects are significantly reduced by subsequent heat treatments.

도 4은 도입 기체비에 따른 합성된 얇은 다층 탄소나노튜브 양 (초기에 투입된 촉매 무게 대비 최종 생산물의 무게 비율)의 변화이다. 에틸렌 양이 증가함에 따라 생성된 탄소나노튜브의 양이 증가하지만 에틸렌 양이 5 %가 넘으면 직경이 10 nm 이상인 보통의 다층 탄소나노튜브가 합성된다. 이 경우 에틸렌 대신 아세틸렌이나 다른 탄화수소기체를 섞어도 이 같은 현상이 일어난다. 이 경우 다만 섞는 비율이 조금 달라진다.4 is a change in the amount of synthesized thin multilayer carbon nanotubes (weight ratio of the final product to the initial catalyst weight) according to the introduction gas ratio. As the amount of ethylene increases, the amount of carbon nanotubes produced increases, but when the amount of ethylene exceeds 5%, ordinary multilayer carbon nanotubes having a diameter of 10 nm or more are synthesized. This happens even if acetylene or other hydrocarbons are mixed instead of ethylene. In this case, the mixing ratio is slightly different.

술한 본 발명에 따르면, 메탄을 주 기체로 하고 탄소가 많이 포함되어 있고 분해온도가 낮은 다른 탄화수소기체를 10 % 이내로 혼합하여 얇은 다층 탄소나노튜브를 합성할 수 있다. 이 경우 합성된 탄소나노튜브는 1-8 nm의 내 외경 직경분포를 갖고 있으며, 원래 전이금속 양에 비해 탄소나노튜브의 질량이 30배 정도가 되기 때문에 5% 미만의 전이금속을 포함하고 비정질탄소는 거의 포함되어 있지 않은 고 순도의 탄소나노튜브이다. 또 모든 과정이 자동화된 연속 일괄공정이므로 불필요한 인력소모를 줄일 수 있어 합성된 탄소나노튜브의 가격을 현저히 줄일 수 있다. According to the present invention described above, a thin multilayer carbon nanotube can be synthesized by mixing methane as a main gas and other hydrocarbon gas containing a large amount of carbon and having a low decomposition temperature within 10%. In this case, the synthesized carbon nanotubes have an inner diameter distribution of 1-8 nm and contain less than 5% of the transition metals because the mass of the carbon nanotubes is about 30 times that of the original transition metals. Is a high purity carbon nanotube which is rarely contained. In addition, since all processes are automated and continuous batch process, unnecessary manpower consumption can be reduced, thereby significantly reducing the price of the synthesized carbon nanotubes.

Claims (6)

삭제delete 공기분위기에서 높은 온도로 연소하는 연소법을 사용하여 제조한 FeMoMgO 촉매 위에 상압 열화학기상증착법을 이용, 벽 수가 2-10개인 얇은 다층 탄소나노튜브를 대량 합성하는 방법에 있어서, In a method for mass synthesis of thin multilayer carbon nanotubes having 2-10 walls using atmospheric pressure thermochemical vapor deposition on a FeMoMgO catalyst prepared by combustion at high temperature in an air atmosphere, 제조된 FeMoMgO 촉매의 재산화 방지 목적으로 환원 과정과 나노튜브 합성 과정을 같은 챔버에서 연속 수행하여 나노튜브 수율을 증가시키는 것을 특징으로 하는 다층탄소나노튜브 대량합성방법.A method for mass synthesis of multi-walled carbon nanotubes, characterized by increasing the yield of nanotubes by continuously performing reduction and nanotube synthesis processes in the same chamber to prevent reoxidation of the prepared FeMoMgO catalyst. 제 2항에 있어서, 합성 후 고온 열처리를 동시에 수행하여 합성된 탄소나노튜브의 결정성을 향상시키는 것을 특징으로 하는 다층탄소나노튜브 대량합성방법.The method of claim 2, wherein the high temperature heat treatment is performed simultaneously after synthesis to improve the crystallinity of the synthesized carbon nanotubes. 삭제delete 삭제delete 삭제delete
KR1020040033653A 2004-05-12 2004-05-12 Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition KR100663717B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040033653A KR100663717B1 (en) 2004-05-12 2004-05-12 Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040033653A KR100663717B1 (en) 2004-05-12 2004-05-12 Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition

Publications (2)

Publication Number Publication Date
KR20050108665A KR20050108665A (en) 2005-11-17
KR100663717B1 true KR100663717B1 (en) 2007-01-03

Family

ID=37284720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040033653A KR100663717B1 (en) 2004-05-12 2004-05-12 Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition

Country Status (1)

Country Link
KR (1) KR100663717B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102303667B1 (en) 2017-10-31 2021-09-16 에스케이이노베이션 주식회사 Catalyst for synthesizing carbon nanotube and method of preparing carbon nanotube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023522A (en) * 2000-09-22 2002-03-29 최규술 Method of synthesizing carbon nanotubes and apparatus being used therein.
KR20040017731A (en) * 2002-08-23 2004-02-27 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR20040031714A (en) * 2001-07-03 2004-04-13 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 Catalyst supports and carbon nanotubes produced thereon
KR20040082950A (en) * 2003-03-20 2004-09-30 이철진 Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
KR20050072056A (en) * 2002-11-26 2005-07-08 카본 나노테크놀로지스 인코포레이티드 Carbon nanotube particulates, compositions and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020023522A (en) * 2000-09-22 2002-03-29 최규술 Method of synthesizing carbon nanotubes and apparatus being used therein.
KR20040031714A (en) * 2001-07-03 2004-04-13 패컬티스 유니버시테이레스 노트레-다메 드 라 파익스 Catalyst supports and carbon nanotubes produced thereon
KR20040017731A (en) * 2002-08-23 2004-02-27 나노미래 주식회사 Catalyst for Process of Graphite Nanofibers And Process Thereof, Graphite Nanofibers And Process of Graphite Nanofibers
KR20050072056A (en) * 2002-11-26 2005-07-08 카본 나노테크놀로지스 인코포레이티드 Carbon nanotube particulates, compositions and use thereof
KR20040082950A (en) * 2003-03-20 2004-09-30 이철진 Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth

Also Published As

Publication number Publication date
KR20050108665A (en) 2005-11-17

Similar Documents

Publication Publication Date Title
JP6538115B2 (en) Synthesis of high quality carbon single-walled nanotubes
TWI383952B (en) Single-layered carbon nanotube, carbon fiber aggregation containing the same and manufacturing method thereof
TWI465391B (en) Carbon nanotube aggregate and manufacturing method
JP5106123B2 (en) Synthesis method of carbon nanohorn carrier and carbon nanotube
WO2010036394A2 (en) Effect of hydrocarbon and transport gas feedstock on efficiency and quality of grown single-walled nanotubes
Somanathan et al. Helical multiwalled carbon nanotubes (h-MWCNTs) synthesized by catalytic chemical vapor deposition
Balogh et al. CVD-synthesis of multiwall carbon nanotubes over potassium-doped supported catalysts
Li et al. Synthesis and properties of aligned ZnO microtube arrays
Shukrullah et al. Synthesis of MWCNT Forests with Alumina-Supported Fe 2 O 3 Catalyst by Using a Floating Catalyst Chemical Vapor Deposition Technique
Yoshihara et al. Growth mechanism of carbon nanotubes over gold-supported catalysts
KR100663717B1 (en) Method for Mass Production of Thin Multiwall Carbon Nanotubes Using Chemical Vapor Deposition
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
Kruszka et al. Synthesis of carbon nanotubes and nanotube forests on copper catalyst
Liu et al. Effects of argon flow rate and reaction temperature on synthesizing single-walled carbon nanotubes from ethanol
KR101679693B1 (en) Method for preparing carbon nanotube and hybrid carbon nanotube composite
KR102164225B1 (en) Carbon nanotubes and production method thereof
Bertoni et al. Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition
US20140193323A1 (en) Double Wall Carbon Nanotubes and Method for Manufacturing Same
JP2006219358A (en) Nanocarbon and method for producing the nanocarbon
EP1848531A1 (en) Catalysts for the large scale production of high purity carbon nanotubes with chemical vapor deposition
TWI308132B (en) Method for manufacturing carbon nanotubes
WO2013191247A1 (en) Carbon-containing metal catalyst particles for carbon nanotube synthesis and method of producing the same, catalyst carrier support, and method of producing carbon nanotubes
Li et al. Preparation of Carbon Nano-Microcoils by Ni3S2-Catalyzed Pyrolysis of Acetylene and Its Vapor–Liquid–Solid–Solid Growth Mechanism
Saleh et al. Development a method for production of carbon nanotubes
Nasser et al. Effect of Molecular Interaction Towards Homogenous Diameters for Synthesized MWCNTs from Methanol/Butanol mixture by CVDs

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131007

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee