KR100237976B1 - 바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용촉매 및 탄화수소류의 부분기상산화방법 - Google Patents

바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용촉매 및 탄화수소류의 부분기상산화방법 Download PDF

Info

Publication number
KR100237976B1
KR100237976B1 KR1019970012054A KR19970012054A KR100237976B1 KR 100237976 B1 KR100237976 B1 KR 100237976B1 KR 1019970012054 A KR1019970012054 A KR 1019970012054A KR 19970012054 A KR19970012054 A KR 19970012054A KR 100237976 B1 KR100237976 B1 KR 100237976B1
Authority
KR
South Korea
Prior art keywords
vanadium
phosphorus
peaks
oxide
catalyst
Prior art date
Application number
KR1019970012054A
Other languages
English (en)
Other versions
KR19980032073A (ko
Inventor
히데토 하시바
아키요시 나카지마
신이치 히가시
Original Assignee
겐지 아이다
니폰 쇼쿠바이 컴파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27302894&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100237976(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 겐지 아이다, 니폰 쇼쿠바이 컴파니 리미티드 filed Critical 겐지 아이다
Publication of KR19980032073A publication Critical patent/KR19980032073A/ko
Application granted granted Critical
Publication of KR100237976B1 publication Critical patent/KR100237976B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/372Phosphates of heavy metals of titanium, vanadium, zirconium, niobium, hafnium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)

Abstract

X선 회절 스펙트럼(음극Cu-Kα)에 있어서, 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에 있는 바나듐-인계 산화물:
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
그 제조방법, 상기 산화물로 이루어지는 기상산화용 촉매 및 탄화수소류의 부분기상산화방법.

Description

바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용 촉매 및 탄화수소류의 부분기상산화방법
본 발명은 특정한 X선 회절 패턴을 갖는 새로운 바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용 촉매 및 탄화수소류의 부분기상산화방법에 관한 것이다.
종래부터, 바나듐-인계 산화물에 대해서는 각종 연구가 이루어지고 있으며, 그와 동시에 이들 산화물에 대한 물성 및 용도도 개발되고 있다. 특히, 바나듐-인계 산화물이 부탄, 부텐, 부타디엔 등의 탄소수가 4인 탄화수소(C4탄화수소)의 기상산화에 의한 무수말레인산의 제조에 효과적이라는 것은 널리 알려져 있다. 또한, 바나듐-인계 산화물의 촉매유효성분은 (VO)2P2O7의 조성을 갖는 결정성 산화물인 피로인산바나딜이라는 사실도 널리 알려져 있다. 이러한 피로인산바나딜은 그 전구체인 오르토인산-수소바나딜(VOHPO4·0.5H2O)을 합성하고, 이 전구체를 소성한 다음, 불활성 가스, 혹은 부탄 등의 탄화수소 가스와 공기의 혼합 가스 기류하에서 소성함으로써(활성화 처리), 이 전구체로부터의 위상적인 전이에 의해 얻어진다.
n-부탄, 1-부텐, 2-부텐, 부타디엔 또는 이들의 혼합물(본 발명에 있어서는, 이들을 'C4탄화수소'라고 총칭한다)을 바나듐-인계 촉매의 존재하에 기상산화함으로써 무수말레인산이 얻어진다는 것은 널리 알려진 사실이며, 이미 다수의 개선된 바나듐-인계 촉매 및 제조방법이 제안되었다.
이들 개선된 바나듐-인계 촉매로서는, 그 제조법에 의해 특정된 것 이외에, X선 회절 피크의 패턴에 의해 특정된 것도 있다(특개소53-61588호, 56-41816호, 56-45815호, 59-132938호, 특개평5-15781호 각 공보 등). 그리고, 바나듐-인계 촉매에 있어서는, 5가 바나듐보다도 4가 부근의 상태에 있는 바나듐이 무수말레인산의 제조에 더 적합하다고 여겨지고 있다(특개소50-35088호, 56-41816호 각 공보 등).
또한, 바나듐-인계 촉매를 이용한 C4탄화수소의 기상산화를 실시하는 데 있어서의 반응조건을 개선한 것도 있다(특개소61-191680호, 61-251678호 각 공보 등).
그리고, 무수말레인산 제조용 촉매로서의 바나듐-인계 산화물의 제조방법에 대해서는 상기 공보 이외에도 다수의 문헌에 기재되어 있는데, 예를 들면 B. K. 호드넷 캐탈리시스 투데이 (B. K. Hodnett, ed., Catalysis Today, Vol. 1, No. 5 (1987))에 상세히 기재되어 있다.
그러나, 종래의 바나듐-인계 산화물은, 기상산화, 예를 들면 부탄의 기상산화에 의한 무수말레인산 제조용 촉매로서 사용되는 경우, 촉매활성이 충분치 않고 비교적 낮은 온도에서의 촉매 활성이 둔화되므로 공업적으로 유리한 조건에서 무수말레인산을 제조하는 경우에는 무수말레인산의 수율이 낮다는 문제점이 있었다. 또한, 종래의 바나듐-인계 촉매에 있어서는, 바나듐의 가수(價數)가 변동하기 때문에, 초기의 촉매성능을 갖는 바나듐-인계 촉매가 제조 가능한 경우와 제조 불가능한 경우가 생기고, 그 결과, 무수말레인산의 수율이 촉매의 롯트에 의해 변동되는, 공업적 실시예에 있어서는 극히 바람직하지 않은 문제도 발생했다.
따라서, 본 발명의 목적은 상기와 같은 종래의 바나듐-인계 산화물 촉매의 결점을 해결하고, 기상산화반응에 적합한 바나듐-인계 산화물을 제공하는 것이다.
또한, 본 발명의 다른 목적은 특정한 X선 회절 패턴을 갖는 새로운 바나듐-인계 산화물 및 그 제조방법을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 촉매성능에 있어 우수한 재현성으로 제조될 수 있는 새로운 바나듐-인계 산화물을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 바나듐-인계 산화물로 이루어지는 기상산화용 촉매를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 탄화수소류의 부분기상산화방법을 제공하는 것이다.
본 발명의 다른 목적은, 탄소원자수가 4인 탄화수소류의 부분기상산화에 의한 무수말레인산의 제조방법을 제공하는 것이다.
도 1은 실시예 1에서 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼(음극Cu-Kα)이다. 가로축은 회절각 2θ이고, 세로축은 피크 강도(cps)이다.
도 2는 실시예 1에서 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼(음극Cu-Kα)이다. 가로축 및 세로축은 도 1과 같다.
도 3은 실시예 2에서 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼(음극Cu-Kα)이다. 가로축 및 세로축은 도 1과 같다.
도 4는 실시예 3에서 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼(음극Cu-Kα)이다. 가로축 및 세로축은 도 1과 같다.
상기 여러 목적은, X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2°)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있는 바나듐-인계 산화물에 의해 달성된다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
상기 여러 목적은, 유기용매 중에서 4가 바나듐 화합물과 인 화합물을 60-150℃ 범위의 온도에서 반응시켜, 얻어지는 반응생성물을 소성함으로써 이루어지는 방법에 있어서, X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°)=23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있는 것을 특징으로 하는, 바나듐-인계 산화물의 제조방법에 의해서도 달성된다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
상기 여러 목적은, 유기용매 중에서 5가 바나듐 화합물을 환원하고, 이어서 인 화합물과 60-150℃ 범위의 온도에서 반응시켜, 얻어지는 반응생성물을 소성함으로써 이루어지는 방법에 있어서, X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있는 성질을 갖는 바나듐-인계 산화물의 제조방법에 의해서도 달성된다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
상기 여러 목적은, X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있는 바나듐-인계 산화물을 함유하여 이루어지는 기상산화용 촉매에 의해서도 달성된다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
상기 여러 목적은, 탄화수소류를 분자상 산소함유 가스를 이용하여 부분기상산화하는 방법에 있어서, 촉매로서 X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있는 성질을 갖는 바나듐-인계 산화물을 이용하여 이루어지는 부분기상산화방법에 의해서도 달성된다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
본 발명의 바나듐-인계 산화물은, 기상산화용 촉매로서 우수한 활성을 나타낸다. 예를 들면, 부탄을 기상산화하여 무수말레인산을 제조할 때, 종래의 촉매와 비교하여, 낮은 반응온도에서도 높은 촉매활성을 나타내며, 고선택율 및 고수율로 무수말레인산을 제조할 수 있다. 때문에, 무수말레인산의 공업적인 제조에 있어서, 제조 원가를 크게 줄일 수 있다.
또한, 본 발명의 바나듐-인계 산화물은, 그 촉매성능면에서 우수한 재현성으로 제조될 수 있다. 때문에, 목적하는 생성물의 수율이 롯트에 따라 변동되지 않으며, 높은 신뢰성을 가지고, 고수율로 기상산화반응을 실시할 수 있다.
이하, 도면을 참조하여 본 발명을 보다 상세히 설명하기로 한다.
본 발명에 의한 바나듐-인계 산화물은, X선 회절 스펙트럼(음극Cu-Kα)에 있어서, 회절각 2θ(±0.2°)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°)=23.0°및 28.4°의 피크 강도비가 하기 범위 내에 있다.
0.3 "f I (23.0) / I (28.4) "f 0.7
단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
특히, 피크의 강도비인 I (23.0) / I (28.4)가 0.35-0.65, 바람직하게는 0.4-0.6 범위 내에 있는 것이 바람직하다.
본 발명에 의한 바나듐-인계 산화물은, 종래에 공지된 바나듐-인계 산화물과 비교하여 대단히 강한 피크가 회절각 2θ(±0.2°) = 28.4°인 것을 특징으로 한다.
본 발명에 의한 바나듐-인계 산화물은 다음과 같이 제조된다.
공정 (1)
본 발명의 방법에 의하면, 우선, 유기용매 중에서 4가 바나듐 화합물과 인 화합물을 60-150℃ 범위의 온도에서 반응시키거나, 혹은 5가 바나듐 화합물을 환원하여 인 화합물과 60-150℃ 범위의 온도에서 반응시킨다. 특히, 후자인 5가 바나듐 화합물을 출발 원료로 이용하는 방법이 더욱 적절하다. 그러므로, 먼저, 5가 바나듐 화합물을 출발 원료로 이용하는 방법에 대하여 설명한다.
이 방법에 의한 경우, 우선, 5가 바나듐 화합물을 유기용매 중에서 환원하여 용해시킨다. 이러한 환원처리에 따라, 5가 바나듐은 +3.9∼4.1의 범위가 되는 것으로 생각되고 있다.
본 발명의 유기용매란, 5가 바나듐 화합물을 환원할 수 있는 환원제로서의 기능과 반응용매로서의 기능을 갖는 것을 의미하며, 이러한 기능을 갖는 것이면 어떤 것이라도 사용할 수 있다. 이러한 유기용매의 대표적인 예로는, 벤질알콜류, 예를 들면 벤질알콜, 메틸벤질알콜, 디메틸벤질알콜, 에틸벤질알콜, 아니스알콜 등의 단일 또는 복수의, 탄소수 1-3의 알킬기 또는 알콕시기로 치환된 벤질알콜 유도체를 들 수 있다. 이들 중, 특히 벤질알콜이 가장 적합하다.
또한, 벤질알콜류의 환원 기능을 해치지 않는 범위에서, 메탄올, 에탄올, n-프로판올, 이소프로판올, n-부탄올, 이소부탄올, 아밀알콜 등의 지방족 알콜 ; 벤즈알데히드, 토르알데히드, 디메틸벤즈알데히드, 아니스알데히드 등의 방향족 알데히드 등을 조합하여 사용할 수도 있다.
본 발명의 5가 바나듐 화합물이란, 5가 바나듐을 포함하는 유기 또는 무기 화합물을 의미하며, 그 대표적인 예로는 오산화바나듐 및 메타바나딘산염, 예를 들면 메타바나딘산암모늄 등을 들 수 있다. 이들 중, 오산화바나듐이 가장 적합하다.
본 발명의 인 화합물이란, 인을 포함하는 유기 또는 무기 화합물을 의미하며, 그 대표적인 예로는 오르토인산, 피로인산, 아인산, 폴리인산, 오산화인 등을 들 수 있다. 이들 중, 약 99%(98-101%) 오르토인산이 가장 적합하다.
따라서, 본 발명의 가장 적합한 양태에 의하면, 벤질알콜에 오산화바나듐을 첨가한 후에 80-150℃, 바람직하게는 100-130℃에서 교반하에 가열하여, 용액이 흑청색으로 변하여 바나듐이 벤질알콜에 완전히 용해될 때까지 바나듐을 환원시킨다. 이러한 환원처리에 의해, 상기와 같이 바나듐은 +3.9∼4.1의 범위로 되는 것으로 생각된다. 이어서, 오르토인산을 벤질알콜에 용해시킨 용액을 상기 환원된 바나듐용액에 첨가하고, 60-150℃, 바람직하게는 80-140℃ 범위의 온도에서 교반하여 반응시킨다.
상기 환원처리에 있어서, 처리 온도가 80℃보다 낮으면 바나듐 화합물의 환원이 진행되지 않거나 처리에 장시간이 소요된다. 한편, 처리 온도가 150℃를 초과하면 유기용매의 산화가 진행된 후 축합되어 유기용매와 생성산화물간의 분리가 곤란해지는 경우도 있다. 양쪽 모두 환원처리를 80-150℃, 바람직하게는 100-130℃에서 실시함으로써, 전술한 바와 같은 X선 회절 스펙트럼의 패턴 및 피크의 강도비를 갖는 바나듐-인계 산화물을 얻을 수 있다. 환원처리 시간은, 용액이 흑청색으로 변하고 바나듐이 완전히 용해될 때까지 실시하는데, 통상적으로 2-10시간 정도면 충분하다.
바나듐 화합물과 인 화합물의 사용 비율에 대해서는, 바나듐/인(원자비)로 1/0.9-1/1.2, 바람직하게는 1/0.95-1/1.1이 되도록 사용하는 것이 좋다.
상기 반응에 있어서, 혼합 교반을 60-150℃, 바람직하게는 80-140℃의 온도에서 실시함으로써, 전술한 바와 같은 X선 회절 스펙트럼의 패턴 및 피크의 강도비를 갖는 바나듐-인계 산화물을 얻을 수 있다. 이러한 교반 하에서의 반응 시간은, 통상적으로 3-24시간 정도이면 충분하다.
이어서, 출발 원료로서 4가 바나듐 화합물을 이용하는 방법에 대하여 설명한다.
이 방법의 경우, 출발 원료로서 4가 바나듐 화합물을 이용하고, 이것을 유기 용매에 용해하여 인 화합물과 60-150℃의 온도에서 반응시킨다.
본 발명의 4가 바나듐 화합물이란, 4가 바나듐을 포함하는 유기 또는 무기 화합물을 의미하며, 그 대표적인 예로는 이산화바나듐, 옥시이염화바나듐 등을 들 수 있다. 이들 중, 이산화바나듐이 특히 바람직하다.
이 방법에 있어서, 사용되는 인 화합물과 유기용매 및 바나듐 화합물과 인 화합물간의 사용비율은 전술한 방법에서 설명한 바와 같다.
따라서, 바람직한 양태에 의하면, 벤질알콜에 이산화바나듐을 첨가한 후, 80-150℃, 바람직하게는 100-130℃에서 교반하에 가열하여, 바나듐 화합물을 완전히 용해시키고, 이어서 오르토인산을 벤질알콜에 용해시킨 용액을 상기 바나듐 화합물 용액에 첨가하고, 60-150℃, 바람직하게는 80-140℃ 범위의 온도에서 교반하여 반응시킨다.
상기 용해 처리 공정에 있어서, 4가 바나듐 화합물이 환원되어 3가 바나듐으로 되는 일은 없다. 이것은 벤질알콜류가 4가 바나듐을 3가로 환원시킬만한 기능이 충분하지 않기 때문이라고 생각된다.
또한, 상기 반응에 있어서, 혼합 교반을 60-150℃, 바람직하게는 80-140℃의 온도에서 실시함에 따라, 전술한 바와 같은 X선 회절 스펙트럼 패턴 및 피크의 강도비를 갖는 바나듐-인계 산화물을 얻을 수 있다. 이러한 교반하에서의 반응 시간은 통상적으로 3-24시간 정도면 충분하다.
그리고, 출발 원료로서 5가 바나듐 화합물을 이용하는 방법 및 4가 화합물을 이용하는 방법 모두 60-150℃의 온도에서 교반하여 반응시킨 후, 다시 계속하여 교반하면서 반응생성물이 침전될 때까지 숙성시키는 것이 좋다. 반응 온도가 60℃ 미만이면 바나듐 화합물과 인 화합물간의 반응이 진행되기 어려우며, 150℃를 초과하면 유기용매의 산화가 진행되고 축합되어 유기용매와 생성산화물간의 분리가 곤란해지는 경우도 있기 때문이다.
공정 (2)
공정 (2)에서는, 공정 (1)에서 얻어진 반응생성물(침전물)을 소성한다.
즉, 얻어진 침전물을 세정, 여과한 후, 통상적으로 100-150℃, 바람직하게는 120-150℃의 온도에서 약 6-24시간 정도 불활성 가스 중, 또는 공기 기류 중에서 건조하여, 이 건조물을 분말상태 혹은 성형체로 한 후, 공기 등의 산소함유가스 분위기, 혹은 불화성 가스와 공기의 혼합가스 분위기에서 350-600℃, 바람직하게는 400-550℃의 온도에서 약 2-10시간 소성한다. 상기 불활성 가스로는, 통상적으로 질소를 이용한다.
공정 (3)
공정 (3)에 있어서 활성화 방법에는 특별한 제한이 없으며, 이러한 종류의 산화촉매의 조제에 있어서 일반적으로 이용되고 있는 활성화 방법을 채용할 수 있다. 예를 들면, 공정 (2)에서 소성한 분말 혹은 성형체를 불활성 가스 기류 중에서 600-800℃, 바람직하게는 650-750℃의 온도, 혹은 부탄 등의 탄화수소 가스와 공기의 혼합 가스 기류에서 350-600℃, 바람직하게는 400-450℃의 온도에서 약 5-24시간, 바람직하게는 10-24시간 동안 처리하여 활성화한다.
상기 활성화 공정에서 이용되는 불활성 가스로는 통상적으로 질소가 이용된다. 또한, 탄화수소로는, 부탄 외에 부텐, 부타디엔, 펜탄, 이소펜탄 등의 탄소수 4-5 정도의 탄화수소를 이용할 수 있다. 활성화 처리를 탄화수소 가스를 공기와의 혼합가스 기류 중에서 실시할 경우, 혼합 가스 중의 탄화수소 가스의 농도는 통상적으로 부탄 환산으로 0.5-10용량%, 바람직하게는 1-5용량%로 하는 것이 좋다. 또한, 불활성 가스 기류 중에서 활성화를 실시할 경우, 처리 온도를 높게 할 필요가 있으며, 이 때문에 표면적이 저하하여 촉매의 활성이 저하되는 경향이 있으므로, 활성화 처리는 탄화수소 가스와 공기의 혼합 가스 기류 중에서 실시하는 것이 바람직하다.
상기, 제조방법 1에 의해 얻어진 바나듐-인계 산화물을 촉매로 사용하는 경우에는, 상기 산화물을 특정한 형상으로 성형하여 이용할 수 있을 뿐만 아니라, 성형시에 성형조제를 첨가할 수도 있다. 성형조제로서는, 실리카겔, 알루미나졸, 탈크 등의 무기물, 혹은 그라파이트, 지방산염 등의 유기물도 사용할 수 있다. 또한, 성형시에는 무기질의 섬유를 사용할 수도 있다.
본 발명의 기상산화용 촉매는, 단독으로 또는 실리카, 알루미나, 티타니아, 탄화규소, 도기 등의 담체와 함께 성형 내지는, 이들 담체에 담지하여 사용할 수 있다. 또한, 그 형상에 대해서도 특별한 제한이 없으며, 분말상으로도, 혹은 구형, 원통형, 아치형, 안장형 등으로, 타정(打錠)성형, 압출성형 등의 종래에 널리 알려진 성형법에 의해 성형하여 사용할 수 있다.
이러한 바나듐-인계 산화물은 고체산을 나타낸다. 이 고체산의 성질을 이용하여 탄화수소류, 특히 탄소원자수가 3-5인 지방족 탄화수소류의 부분접촉기상산화반응용 촉매로서 사용할 수 있다.
상기 접촉기상산화반응으로서는, 부탄의 산화에 의한 무수말레인산의 제조, 이소부탄의 산화에 의한 메타크롤레인 및 메타크릴산의 제조, 메타크롤레인의 산화에 의한 메타크릴산의 제조, 프로판의 암모산화에 의한 아크릴로니트릴의 제조, 이소부티르산의 산화탈수소에 의한 메타크릴산의 제조 등의 반응을 예로 들 수 있다. 특히, 노르말부탄을 분자상 산소의 존재하에 무수말레인산으로 선택 산화하는데 이용할 수 있다.
본 발명의 기상산화용 촉매는 상기 바나듐-인계 산화물로 이루어지며, 이 기상산화용 촉매는 바나듐-인계 산화물 외에 그것을 특정하는 X선 회절의 피크 및 피크의 강도비 : I (23.0) / I (28.4)가 변화하지 않는 범위내에서 칼륨, 나트륨, 루비듐, 세슘 등의 알칼리 금속; 마그네슘, 칼슘, 바륨 등의 알칼리토류 금속; 철, 니켈, 코발트, 루테늄, 로듐, 팔라듐, 이리듐, 백금, 금, 은, 구리, 망간, 텅스텐, 몰리브덴, 크롬, 비소, 안티몬, 비스무스, 탈륨, 납, 주석 등의 천이 금속을 포함하여도 좋다. 이들 금속성분을 첨가하는 경우, 그 공급원으로서는, 각각의 산화물, 질산염, 황산염, 탄산염, 유기산염, 인산염 등을 이용할 수 있다.
본 발명의 기상산화용 촉매는, 상기와 같이, 부탄을 기상산화하여 무수말레인산을 제조하는데 특히 적합하다.
부탄으로서는, 통상적으로 n-부탄이 이용되는데, n-부탄은 이소부탄, 부텐류, 프로판, 펜텐류 등을 소량 함유하여도 좋다. 기상산화에 이용되는 산소원으로는 공기가 바람직하지만 순산소도 좋으며, 수증기, 질소 등의 불활성 가스로 희석하여 사용하여도 좋다. 통상적으로, 전원료 가스 중의 n-부탄 농도는 0.5-10용량%, 바람직하게는 0.5-4용량%이며, 산소 농도는 10-30용량%이다. 촉매를 고정상(床)으로 이용하는 경우, 공간속도는 500-10000hr-1, 바람직하게는 1000-5000hr-1이다. 반응온도는 300-550℃, 바람직하게는 300-450℃이다. 반응압력은, 상압이나 가압 중 그 어느것이라도 좋으나, 통상적으로 상압에서 이루어진다. 또한, 고정상 방식 대신에 유동상 방식을 채용해도 좋음은 물론이다.
이하, 실시예 및 비교예를 들어 더욱 구체적으로 설명하는데, 본 발명은 여기에 따른 제한을 받지 않는다. 또한, 실시예 및 비교예에 있어서 전화율(轉化率), 선택율 및 수율은 다음과 같이 정의된다.
전화율(몰%) = (반응한 부탄의 몰수/공급한 부탄의 몰수)×100
선택율(몰%) = (생성된 무수말레인산의 몰수/반응한 부탄의 몰수)×100
수율(몰%) = (생성된 무수말레인산의 몰수/공급한 부탄의 몰수)×100
실시예 1
벤질알콜 4000ml에 오산화바나듐(V2O5) 400g을 현탁시키고, 교반하면서 120℃로 유지하여 5시간 환원하여 오산화바나듐을 완전히 용해시켰다. 99%의 오르토인산 435.4g을 1000ml의 벤질알콜에 용해하여 인산 용액을 조제한 후 100℃로 유지시켰다. 환원된 바나듐의 흑청색 용액에 100℃의 인산 용액을 첨가시키고, 120℃로 가열 유지하면서 10시간 동안 교반한 결과, 군청색의 침전물을 얻었다. 반응액 슬러리를 냉각시킨 후, 생성된 침전물을 분리하여, 이것을 아세톤으로 세정하고, 140℃에서 12시간 동안 건조하였다. 이어서, 길이가 5mm이고 직경이 5mm인 펠렛 형태로 성형하였다. 이 성형체를 500℃ 공기 기류하에서 4시간 동안 소성하고, 온도를 400℃로 낮춘 후, n-부탄 농도 1.5용량%인 n-부탄과 공기의 혼합가스 기류로 전환한 후, 500℃가 될 때까지 1℃/분으로 승온하고, 500℃에서 12시간 동안 활성화 처리하였다.
상기와 같이 하여 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼을 도 1에 나타냈다. 이 X선 회절 스펙트럼에 나타난 바와 같이, 상기 바나듐-인계 산화물은 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 피크의 강도비인 I (23.0) / I (28.4)는 0.5였다.
상기 바나듐-인계 산화물 100g을 직경 25mm, 길이 300mm인 유통식 반응기에 충전하여, 여기에 n-부탄 농도 1.5용량%인 n-부탄과 공기의 혼합가스를 공간속도 2000hr-1로 도입하고, 반응온도 385℃ 및 390℃에서, n-부탄의 기상산화를 실시하였다. 그 결과를 표 1에 나타냈다.
비교예 1
이소부틸알콜 4000ml에 오산화바나듐 400g을 현탁시키고, 교반하면서 105℃로 유지하여 12시간 환원하였으나, 오산화바나듐은 완전히 환원되지 않았다. 99%의 오르토인산 435.4g을 1000ml의 이소부틸알콜에 용해하여 인산 용액을 조제한 후 100℃로 유지시켰다. 바나듐 용액에 100℃의 인산 용액을 첨가하고, 105℃로 가열 유지하면서 10시간 동안 교반한 결과, 군청색의 침전물을 얻었다. 반응액 슬러리를 냉각시켜, 생성된 침전물을 분리한 후, 아세톤으로 세정하고, 140℃에서 12시간 동안 건조시켰다. 이어서, 길이 5mm, 직경 5mm로 성형하였다. 이 성형체를 실시예 1과 동일하게 성형 및 활성화 처리하였다.
상기와 같이 하여 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼을 도 2에 나타냈다. 이 X선 회절 스펙트럼에 나타난 바와 같이, 상기 바나듐-인계 산화물은 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 피크의 강도비인 I (23.0) / I (28.4)는 1.3이었다.
상기 바나듐-인계 산화물을 이용하고, 반응 온도를 표 1에 나타낸 온도로 변경한 것 이외에는 실시예 1과 동일한 조건에서 n-부탄의 기상산화를 실시하였다. 그 결과를 표 1에 나타냈다.
실시예 2
벤질알콜 4000ml에 오산화바나듐(V2O5) 400g을 현탁시키고, 교반하면서 130℃로 유지하여 3시간 환원하여 오산화바나듐을 완전히 용해시켰다. 99%의 오르토인산 500.7g을 1000ml의 벤질알콜에 용해하여 인산 용액을 조제한 후 80℃로 유지시켰다. 환원된 바나듐의 흑청색 용액에 80℃의 인산 용액을 첨가시키고, 110℃로 가열 유지하면서 10시간 동안 교반한 결과, 군청색의 침전물을 얻었다. 반응액 슬러리를 냉각시킨 후, 생성된 침전물을 분리하여, 이것을 아세톤으로 세정하고, 140℃에서 12시간 동안 건조하였다. 이어서, 길이가 5mm이고 직경이 5mm인 펠렛 형태로 성형하였다. 이 성형체를 실시예 1과 동일한 조건에서 소성 및 활성화 처리하였다.
상기와 같이 하여 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼을 도 3에 나타냈다. 이 X선 회절 스펙트럼에 나타난 바와 같이, 상기 바나듐-인계 산화물은 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 피크의 강도비인 I (23.0) / I (28.4)는 0.5였다.
상기 바나듐-인계 산화물을 이용하고, 반응 온도를 표 1에 나타낸 온도로 변경한 것 이외에는 실시예 1과 동일한 조건에서 n-부탄의 기상산화를 실시하였다. 그 결과를 표 1에 나타냈다.
실시예 3
벤질알콜 4000ml에 이산화바나듐(VO2) 400g을 현탁시키고, 교반하면서 130℃로 유지하여 2시간 환원하여 이산화바나듐을 완전히 용해시켰다. 99%의 오르토인산 477.4g을 1000ml의 벤질알콜에 용해하여 인산 용액을 조제한 후 80℃로 유지시켰다. 바나듐 화합물의 흑청색 용액에 80℃의 인산 용액을 첨가시키고, 110℃로 가열 유지하면서 10시간 동안 교반한 결과, 군청색의 침전물을 얻었다. 반응액 슬러리를 냉각시킨 후, 생성된 침전물을 분리하여, 이것을 아세톤으로 세정하고, 140℃에서 12시간 동안 건조하였다. 이어서, 길이 5mm, 직경 5mm로 성형하였다. 이 성형체를 실시예 1과 동일한 조건에서 소성 및 활성화 처리하였다.
상기와 같이 하여 얻어진 바나듐-인계 산화물의 X선 회절 스펙트럼을 도 4에 나타냈다. 이 X선 회절 스펙트럼에 나타난 바와 같이, 상기 바나듐-인계 산화물은 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 피크의 강도비인 I (23.0) / I (28.4)는 0.6이었다.
상기 바나듐-인계 산화물을 이용하고, 반응 온도를 표 1에 나타낸 온도로 변경한 것 이외에는 실시예 1과 동일한 조건에서 n-부탄의 기상산화를 실시하였다. 그 결과를 표 1에 나타냈다.
[표 1]
Figure kpo00001
내용없음

Claims (18)

  1. X선 회절 스펙트럼(음극Cu-Kα)에 있어서, 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에 있는 것을 특징으로 하는 바나듐-인계 산화물:
    0.3 "f I (23.0) / I (28.4) "f 0.7
    단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도를 나타낸다.
  2. 제1항에 있어서, 0.35 "f I (23.0) / I (28.4) "f 0.7인 것을 특징으로 하는 산화물.
  3. 제1항에 있어서, 0.4 "f I (23.0) / I (28.4) "f 0.6인 것을 특징으로 하는 산화물.
  4. 제1항에 있어서, 바나듐/인의 원자비가 1/0.9∼1/1.2인 것을 특징으로 하는 산화물.
  5. 유기용매 중에서 4가 바나듐 화합물과 인 화합물을 60-150℃ 범위의 온도에서 반응시켜, 얻어지는 반응생성물을 소성함으로써, X선 회절 스펙트럼(음극Cu-Kα)에 있어서, 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에 있는, 바나듐-인계 산화물을 제조하는 방법:
    0.3 "f I (23.0) / I (28.4) "f 0.7
    단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
  6. 제5항에 있어서, 바나듐/인의 원자비가 1/0.9∼1/1.2인 것을 특징으로 하는 방법.
  7. 제5항에 있어서, 반응온도가 80-140℃인 것을 특징으로 하는 방법.
  8. 유기용매 중에서 5가 바나듐 화합물을 환원하고, 이어서 인 화합물과 60-150℃ 범위의 온도에서 반응시켜, 얻어지는 반응생성물을 소성한 후 활성화함으로써, X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에있는 바나듐-인계 산화물을 제조하는 방법:
    0.3 "f I (23.0) / I (28.4) "f 0.7
    단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크 강도를 나타낸다.
  9. 제8항에 있어서, 바나듐/인의 원자비가 1/0.9∼1/1.2인 것을 특징으로 하는 방법.
  10. 제8항에 있어서, 반응온도가 80-140℃인 것을 특징으로 하는 방법.
  11. X선 회절 스펙트럼(음극Cu-Kα)에 있어서, 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에 있는 바나듐-인계 산화물을 함유하여 이루어지는 기상산화용 촉매:
    0.3 "f I (23.0) / I (28.4) "f 0.7
    단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도를 나타낸다.
  12. 제11항에 있어서, 0.35 "f I (23.0) / I (28.4) "f 0.65인 것을 특징으로 하는 촉매.
  13. 제11항에 있어서, 0.4 "f I (23.0) / I (28.4) "f 0.6인 것을 특징으로 하는 촉매.
  14. 제11항에 있어서, 바나듐/인의 원자비가 1/0.9∼1/1.2인 것을 특징으로 하는 촉매.
  15. 탄화수소류를 분자상 산소함유 가스를 이용하여 부분기상산화하는 방법에 있어서, 촉매로서 X선 회절 스펙트럼(음극Cu-Kα)에 있어서 회절각 2θ(±0.2 W)가 18.5°, 23.0°, 28.4°, 29.9°및 43.1°의 주요 피크를 가지며, 회절각 23.0°및 28.4°의 피크의 강도비가 하기 범위 내에 있는 바나듐-인계 산화물을 이용하는 것을 특징으로 하는 부분기상산화방법:
    0.3 "f I (23.0) / I (28.4) "f 0.7
    단, I (23.0) 및 I (28.4)는, 각각 회절각 2θ(±0.2°) = 23.0°및 28.4°의 피크의 강도를 나타낸다.
  16. 제15항에 있어서, 탄화수소류는 탄소수 3-5의 지방족 탄화수소류인 것을 특징으로 하는 부분기상산화방법.
  17. 제16항에 있어서, 지방족 탄화수소의 탄화원자수는 4인 것을 특징으로 하는 부분기상산화방법.
  18. 제17항에 있어서, 탄소원자수4인 지방족 탄화수소는 부탄이며, 부분산화물은 무수말레인산인 것을 특징으로 하는 부분기상산화방법.
KR1019970012054A 1996-04-01 1997-04-01 바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용촉매 및 탄화수소류의 부분기상산화방법 KR100237976B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8-079019 1996-04-01
JP7901996 1996-04-01
JP8-079851 1996-04-02
JP7985196 1996-04-02
JP26823596 1996-10-09
JP8-268235 1996-10-09

Publications (2)

Publication Number Publication Date
KR19980032073A KR19980032073A (ko) 1998-07-25
KR100237976B1 true KR100237976B1 (ko) 2000-01-15

Family

ID=27302894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970012054A KR100237976B1 (ko) 1996-04-01 1997-04-01 바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용촉매 및 탄화수소류의 부분기상산화방법

Country Status (7)

Country Link
US (1) US5959124A (ko)
EP (1) EP0799795B1 (ko)
KR (1) KR100237976B1 (ko)
CN (1) CN1073051C (ko)
DE (1) DE69702728T2 (ko)
ID (1) ID18937A (ko)
TW (1) TW425373B (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE207387T1 (de) 1997-06-04 2001-11-15 Sasol Tech Pty Ltd Verfahren zur herstellung eines vanadium- phosphoroxide-katalysators
WO2000062926A1 (en) * 1999-04-15 2000-10-26 E.I. Du Pont De Nemours And Company Vanadyl pyrophosphate oxidation catalyst
US6660681B1 (en) * 1999-04-15 2003-12-09 E. I. Du Pont De Nemours And Company Vanadium phosphorus oxide catalyst having a thermally conductive support
EP1110603A1 (en) * 1999-12-22 2001-06-27 Haldor Topsoe A/S Process for the synthesis of VPO catalysts
ZA200200049B (en) * 2001-01-25 2002-07-16 Nippon Catalytic Chem Ind Fixed-bed shell-and-tube reactor and its usage.
DE10211449A1 (de) 2002-03-15 2003-09-25 Basf Ag Katalysator-Precursor für die Herstellung von Maleinsäureanhydrid und Verfahren zu dessen Herstellung
JP2011121048A (ja) * 2009-12-09 2011-06-23 Rohm & Haas Co 固体触媒物質をブレンドし、管状構造物に装填する方法
DE102010040921A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Methanol und Essigsäure
DE102010040923A1 (de) 2010-09-16 2012-03-22 Basf Se Verfahren zur Herstellung von Acrylsäure aus Ethanol und Formaldehyd
DE102013008207A1 (de) 2013-05-14 2014-11-20 Basf Se Verfahren zur Herstellung von Acrylsäure mit hoher Raum-Zeit-Ausbeute
US9073846B2 (en) 2013-06-05 2015-07-07 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
US9120743B2 (en) 2013-06-27 2015-09-01 Celanese International Corporation Integrated process for the production of acrylic acids and acrylates
US10647143B2 (en) 2014-05-26 2020-05-12 Omya International Ag Calcium carbonate for rotogravure printing medium
SI2949477T1 (sl) 2014-05-26 2017-03-31 Omya International Ag Kalcijev karbonat za medij za globoki tisk
CN104056647A (zh) * 2014-06-13 2014-09-24 大连拓润化工科技有限公司 可用于正丁烷氧化的催化剂制备方法
CN115181502B (zh) 2016-12-21 2023-09-22 康宁股份有限公司 烧结***和烧结制品
DE102019100983A1 (de) * 2019-01-16 2020-07-16 Clariant International Ltd Verfahren zur herstellung eines vpo-katalysators
CN109841423B (zh) * 2019-04-18 2022-03-04 江西师范大学 价态调控和表面修饰制备新型钒氧化物负极材料

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017521A (en) * 1972-06-19 1977-04-12 Chevron Research Company Process for the manufacture of maleic anhydride using high surface area catalyst
JPS5339037B2 (ko) 1973-06-15 1978-10-19
GB1591307A (en) * 1976-11-11 1981-06-17 Ici Ltd Production of maleic anhydride and catalysts therefor
BE850222A (fr) * 1977-01-07 1977-05-02 Chevron Res Procede de preparation d'une composition de phosphate de vanadium (iv) a surface active intrinseque elevee
US4151116A (en) * 1977-08-05 1979-04-24 Halcon Research And Development Corporation Preparation of maleic anhydride
JPS5641816A (en) 1979-09-11 1981-04-18 Mitsubishi Chem Ind Ltd Crystalline vanadium-phosphorus oxide
JPS5645815A (en) 1979-09-19 1981-04-25 Mitsubishi Chem Ind Ltd Manufacture of crystalline vanadium-phosphorus oxide
US4361501A (en) * 1980-12-29 1982-11-30 The Standard Oil Company Preparation of vanadium phosphorus catalysts using a mixed phosphorus source
JPS59132938A (ja) 1983-01-19 1984-07-31 Nippon Shokubai Kagaku Kogyo Co Ltd バナジウム−リン系酸化物触媒中間体およびそれを用いてなる無水マレイン酸製造用触媒製造法
US4668802A (en) 1985-01-18 1987-05-26 E. I. Du Pont De Nemours And Company Improved vapor phase catalytic oxidation of butane to maleic anhydride
JPH0681749B2 (ja) 1985-04-30 1994-10-19 三菱化成株式会社 無水マレイン酸の製造方法
JPS627615A (ja) * 1985-07-02 1987-01-14 Mitsubishi Chem Ind Ltd 結晶性バナジウム−リン酸化物及びその製造方法
SU1406123A1 (ru) * 1986-08-04 1988-06-30 Научно-исследовательский институт физико-химических проблем Белорусского государственного университета им.В.И.Ленина Способ получени тетрагидрата гидроортофосфата ванадила
JP2893539B2 (ja) * 1988-10-05 1999-05-24 三菱化学株式会社 バナジウム―リン系結晶性酸化物およびそれを含有する触媒の製造法
JP2895142B2 (ja) * 1989-02-23 1999-05-24 三井化学株式会社 触媒先駆体および対応する触媒の製造法
JPH0710353B2 (ja) 1991-07-08 1995-02-08 郁也 松浦 バナジウム−リン酸化物系酸化触媒およびその製造法
US5530144A (en) * 1993-12-22 1996-06-25 Mitsubishi Chemical Corporation Process for producing a phosphorus-vanadium oxide catalyst precursor, process for producing a phosphorus-vanadium oxide catalyst, and process for producing maleic anhydride by vapor phase oxidation using the catalyst
JP3555205B2 (ja) * 1993-12-22 2004-08-18 三菱化学株式会社 リン−バナジウム酸化物触媒前駆体の製造方法
JPH0879019A (ja) 1994-09-05 1996-03-22 Matsushita Electric Ind Co Ltd ゲートパルス発生回路
JPH0879851A (ja) 1994-09-08 1996-03-22 Sony Corp 赤外線送信装置および赤外線受信装置および赤外線伝送システム
DE69617556T9 (de) * 1995-02-17 2005-04-07 Basf Ag Verfahren zur Herstellung eines Oxidationskatalysators und Verwendung desselben
JPH08268235A (ja) 1995-03-28 1996-10-15 Asmo Co Ltd ワイパピボットシャフト構造

Also Published As

Publication number Publication date
US5959124A (en) 1999-09-28
DE69702728T2 (de) 2001-02-01
ID18937A (id) 1998-05-28
EP0799795B1 (en) 2000-08-09
EP0799795A3 (en) 1998-01-07
CN1073051C (zh) 2001-10-17
DE69702728D1 (de) 2000-09-14
KR19980032073A (ko) 1998-07-25
EP0799795A2 (en) 1997-10-08
CN1167086A (zh) 1997-12-10
TW425373B (en) 2001-03-11

Similar Documents

Publication Publication Date Title
KR100237976B1 (ko) 바나듐-인계 산화물과 그 제조방법, 상기 산화물로 이루어지는 기상산화용촉매 및 탄화수소류의 부분기상산화방법
EP0043100B1 (en) Oxidation catalyst and process for preparation thereof
US5994580A (en) Process for producing acrylic acid
US7009075B2 (en) Process for the selective conversion of alkanes to unsaturated carboxylic acids
JP2003528706A (ja) プロピレンの低温度選択的酸化用のモリブデン−バナジウム系触媒、その製造方法及び使用方法
HUT69294A (en) Process for the transformation of vanadium/posphorus mixed oxide catalyst precursors into active catalysts for the production of maleic- anhydride
US8586499B2 (en) Method for producing catalyst for preparation of methacrylic acid and method for preparing methacrylic acid
US4720575A (en) H8 PMo10 VO39 and its anhydride, PMo10 VO35 and preparation therewith of methacrylic acid and its lower alkyl ester
JPH085820B2 (ja) メタクリル酸および/またはメタクロレインの製造法
US20080188681A1 (en) Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
CA2534293C (en) Niobium-doped vanadium/phosphorus mixed oxide catalyst
US4272408A (en) Stable molybdenum catalysts for high conversion of C3 and C4 olefins to corresponding unsaturated aldehydes and acids
JP4081824B2 (ja) アクリル酸の製造方法
JP4182237B2 (ja) イソブタンの気相接触酸化反応用触媒およびこれを用いてなるアルケンおよび/または含酸素化合物の製造方法
JP2558036B2 (ja) メタクロレインおよび/またはメタクリル酸の製造方法
KR19980071834A (ko) 산화환원 반응에 의해 아크롤레인으로부터 이크릴산의 제조 방법 및 상기 반응에서 산화환원계로서 고체 혼합 산화물 조성물의 용도
JPH0832644B2 (ja) メタクリル酸および/またはメタクロレインの製造方法
JP3502526B2 (ja) バナジウム−リン系酸化物、その製造方法、該酸化物からなる気相酸化用触媒および炭化水素類の部分気相酸化方法
JP3855298B2 (ja) アルケンおよび/または含酸素化合物の製造方法
JP3316881B2 (ja) メタクリル酸製造用触媒の製造方法
JP3482476B2 (ja) メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JPH031059B2 (ko)
JP3316880B2 (ja) メタクリル酸製造用触媒の製造方法
JPH09299802A (ja) 酸化触媒の製造方法及びメタクリル酸の製造方法
JP3036938B2 (ja) 飽和炭化水素の酸化方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071010

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee