JPWO2008001955A1 - 電解液用添加剤及び電解液 - Google Patents

電解液用添加剤及び電解液 Download PDF

Info

Publication number
JPWO2008001955A1
JPWO2008001955A1 JP2008522682A JP2008522682A JPWO2008001955A1 JP WO2008001955 A1 JPWO2008001955 A1 JP WO2008001955A1 JP 2008522682 A JP2008522682 A JP 2008522682A JP 2008522682 A JP2008522682 A JP 2008522682A JP WO2008001955 A1 JPWO2008001955 A1 JP WO2008001955A1
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolyte
methyl
carbon atoms
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008522682A
Other languages
English (en)
Other versions
JP4802243B2 (ja
Inventor
昭範 岡
昭範 岡
博昭 志摩
博昭 志摩
章二 引田
章二 引田
阿部 吉伸
吉伸 阿部
亮浩 鍋島
亮浩 鍋島
昌稔 上谷
昌稔 上谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP2008522682A priority Critical patent/JP4802243B2/ja
Publication of JPWO2008001955A1 publication Critical patent/JPWO2008001955A1/ja
Application granted granted Critical
Publication of JP4802243B2 publication Critical patent/JP4802243B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

式(1)で表わされる電解液用添加剤及びそれを含有する電解液。〔Aは、−CH(X)−、−C=C(X)−、Xは、水素、ハロゲン、炭素数1〜4のアルキル、炭素数2〜5のアルコキシカルボニル、ベンゾイル、炭素数3〜9のアルコキシカルボニルアルキル、Q1、Q2は、同一または相違して、炭素数1〜6のアルキル、炭素数1〜4のアルコキシ、炭素数3〜9のアルコキシカルボニルアルキル、炭素数1〜4のアルキルを置換基として有するアミノを示し、A、Q1およびQ2で環構造を構成しても良い。〕

Description

本発明は、電気化学的な変質時においてもOHイオンの生成を抑制し、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させる電解液及びそれを用いた電気化学デバイスに関する。
電気二重層キャパシタ等の電気化学デバイスでは、電圧を印加した時に電解液中の微量の水分が酸素と共に還元されて、負極近傍でOHイオンが発生する。このOHイオンは、負極の封口部を腐食させて電解液の漏れの原因となり、電気化学デバイスの信頼性を低下させる問題があった。
このような問題を解決する手段として、カチオンが第4級アンモニウム塩の場合は、このOHイオン生成を抑制することはできないが、アミジン系電解質を使用することにより、発生したアルカリを効果的に低減する方法が開示されている(例えば、特許文献1、2)。
特許文献1および2によれば、アミジン系電解質を使用した電解液にすることにより、従来電解質として使用されている第4級アンモニウム塩と比較して定電流電解時の封口ゴムの劣化による液漏れ等の異常は観察されず、アルカリを効果的に低減することが開示されている。しかし、アミジン系電解質を使用した電解液は、一般的に第4級アンモニウム塩と比較して耐電圧が低く、その為、電気化学デバイスの高容量化が難しいという問題がある。
WO 95/15572 特開平08−321439号公報
本発明の課題は、電気化学的な変質時においてもOHイオンの生成を抑制し、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させる電解液及びそれを用いた電気化学デバイスを提供することにある。
本発明は、以下の発明に係る。
1.式(1)で表わされる電解液用添加剤。
Figure 2008001955
〔Aは、−CH(X)−、−C=C(X)−、Xは、水素、ハロゲン、炭素数1〜4のアルキル、炭素数2〜5のアルコキシカルボニル、ベンゾイル、炭素数3〜9のアルコキシカルボニルアルキル、Q、Qは、同一または相違して、炭素数1〜6のアルキル、炭素数1〜4のアルコキシ、炭素数3〜9のアルコキシカルボニルアルキル、炭素数1〜4のアルキルを置換基として有するアミノを示し、A、QおよびQで環構造を構成しても良い。〕
2.電解質と式(1)で表わされる添加剤を含有する電解液。
発明を実施するための最良の形態
本発明の電解液は、式(1)で表される添加剤を含有する。
Figure 2008001955
Aで示される基は、−CH(X)−、−C=C(X)−を挙げることができる。
Xは、水素;フッ素、塩素、臭素、ヨウ素等のハロゲン原子;メチル基、エチル基、プロピル基、ブチル基等の直鎖状、分岐鎖状または環状の炭素数1〜4のアルキル基;メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基等の炭素数2〜5のアルコキシカルボニル基;ベンゾイル基;メトキシカルボニルメチル基、エトキシカルボニルメチル基、ブトキシカルボニルメチル基、メトキシカルボニルエチル基、エトキシカルボニルエチル基、ブトキシカルボニルエチル基、メトキシカルボニルブチル基、エトキシカルボニルブチル基、ブトキシカルボニルブチル基等の炭素数3〜9のアルコキシカルボニルアルキル基を挙げることができる。好ましくは、炭素数2〜5のアルコキシカルボニル基が良い。
またはQで示される基は、同一または相違して、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の直鎖状、分岐鎖状または環状の炭素数1〜6のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の直鎖状、分岐鎖状の炭素数1〜4のアルコキシ基;メトキシカルボニルメチル基、エトキシカルボニルメチル基、ブトキシカルボニルメチル基、メトキシカルボニルエチル基、エトキシカルボニルエチル基、ブトキシカルボニルエチル基、メトキシカルボニルブチル基、エトキシカルボニルブチル基、ブトキシカルボニルブチル基等の炭素数3〜9のアルコキシカルボニルアルキル基;ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、エチルメチルアミノ基等の炭素数1〜4のアルキルを置換基として有するアミノ基を挙げることができる。好ましくは、直鎖状、分岐鎖状の炭素数1〜4のアルコキシ基、炭素数1〜4のアルキルを置換基として有するアミノ基が良い。特に好ましくは、直鎖状、分岐鎖状の炭素数1〜4のアルコキシ基が良い。
上記A、QおよびQで環構造を構成しても良い。具体的には、例えばA、QおよびQでフェニレン基、あるいは置換基を有しても良いフェニレン基を構成しても良い。置換基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1〜4のアルキル基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜4のアルコキシ基;フッ素、塩素等のハロゲン原子;メトキシカルボニル基、エトキシカルボニル基、ブトキシカルボニル基等の炭素数2〜5のアルコキシカルボニル基等を挙げることができる。またAとQ又はAとQで炭素数1〜4のアルキレン基を構成することもできる。
好ましい添加剤としては、Aで示される基は、−CH(X)−を示し、Xは、炭素数2〜5のアルコキシカルボニル基を示し、QまたはQで示される基は、同一または相違して、直鎖状、分岐鎖状の炭素数1〜4のアルコキシ基、炭素数1〜4のアルキルを置換基として有するアミノ基を示すものが良い。また、これらのなかでも、QまたはQで示される基は、同一または相違して、直鎖状、分岐鎖状の炭素数1〜4のアルコキシ基の場合、α位に水素を有する炭素にアルコキシカルボニル基が3つ結合していることにより、α位のプロトンの酸性度が高まるため、アルカリ抑制効果が向上する。また、α位の水素の数を1つにすることで、耐電圧が向上するため好ましい。
上記添加剤としては、具体的には1,3−アセトンジカルボン酸ジメチル、1,3−アセトンジカルボン酸ジエチル、アセチルコハク酸ジメチル、アセチルコハク酸ジエチル、アコニット酸トリメチル、アコニット酸トリエチル、2,6−ジメチル−3,5−ヘプタンジオン、N,N,N′,N′−テトラメチルマロンアミド、N,N,N′,N′−テトラエチルマロンアミド、インダンジオン、トリメチルメタントリカルボン酸、エチルジメチルメタントリカルボン酸、ジエチルメチルメタントリカルボン酸、メチルジイソプロピルメタントリカルボン酸、トリエチルメタントリカルボン酸、ベンゾイルマロン酸ジメチル、ベンゾイルマロン酸ジエチル、アセチルアセトン、ヘプタン−3,5−ジオン、2,6−ジメチルヘプタン−3,5−ジオン、2−アセチルシクロペンタノン、1,3−ジフェニル−1,3−プロパンジオン、シクロペンタノン−2−カルボン酸メチル、シクロペンタノン−2−カルボン酸エチル、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸プロピル、アセト酢酸イソプロピル、ピバロイル酢酸メチル、ピバロイル酢酸エチル、3−オキソヘプタン酸メチル、3−オキソヘキサン酸メチル、3−オキソペンタン酸メチル、3−オキソブタン酸メチル、3−オキソプロパン酸メチル、3−オキソエタン酸メチル、4−メトキシアセト酢酸メチル、マロン酸ジメチル、マロン酸ジエチル、アセトニルマロン酸ジメチル、アセトニルマロン酸ジエチル、フルオロマロン酸ジメチル、フルオロマロン酸ジエチル、メチルマロン酸ジメチル、エチルマロン酸ジメチル、メチルマロン酸ジエチル、エチルマロン酸ジエチル等を挙げることができる。
本発明の電解液で使用される電解質としては、例えば、第4級アンモニウム塩を挙げることができる。第4級アンモニウム塩の第4級アンモニウムカチオンとしては、例えば、テトラアルキルアンモニウム、テトラアルキルホスホニウム、イミダゾリウム、ピラゾリウム、ピリジニウム、トリアゾリウム、ピリダジニウム、チアゾリウム、オキサゾリウム、ピリミジニウム、ピラジニウム等を挙げることができる。
具体的には、例えば、下記のような化合物を例示することができる。
テトラアルキルアンモニウムとしては、テトラエチルアンモニウム、テトラメチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、トリエチルメチルアンモニウム、トリメチルエチルアンモニウム、ジメチルジエチルアンモニウム、トリメチルプロピルアンモニウム、トリメチルブチルアンモニウム、ジメチルエチルプロピルアンモニウム、メチルエチルプロピルブチルアンモニウム、N,N−ジメチルピロリジニウム、N−エチル−N−メチルピロリジニウム、N−メチル−N−プロピルピロリジニウム、N−エチル−N−プロピルピロリジニウム、N,N−ジメチルピペリジニウム、N−メチル−N−エチルピペリジニウム、N−メチル−N−プロピルピペリジニウム、N−エチル−N−プロピルピペリジニウム、N,N−ジメチルモルホリニウム、N−メチル−N−エチルモルホリニウム、N−メチル−N−プロピルモルホリニウム、N−エチル−N−プロピルモルホリニウム、トリメチルメトキシメチルアンモニウム、ジメチルエチルメトキシメチルアンモニウム、ジメチルプロピルメトキシメチルアンモニウム、ジメチルブチルメトキシメチルアンモニウム、ジエチルメチルメトキシメチルアンモニウム、メチルエチルプロピルメトキシメチルアンモニウム、トリエチルメトキシメチルアンモニウム、ジエチルプロピルメトキシメチルアンモニウム、ジエチルブチルメトキシメチルアンモニウム、ジプロピルメチルメトキシメチルアンモニウム、ジプロピルエチルメトキシメチルアンモニウム、トリプロピルメトキシメチルアンモニウム、トリブチルメトキシメチルアンモニウム、トリメチルエトキシメチルアンモニウム、ジメチルエチルエトキシメチルアンモニウム、ジメチルプロピルエトキシメチルアンモニウム、ジメチルブチルエトキシメチルアンモニウム、ジエチルメチルエトキシメチルアンモニウム、トリエチルエトキシメチルアンモニウム、ジエチルプロピルエトキシメチルアンモニウム、ジエチルブチルエトキシメチルアンモニウム、ジプロピルメチルエトキシメチルアンモニウム、ジプロピルエチルエトキシメチルアンモニウム、トリプロピルエトキシメチルアンモニウム、トリブチルエトキシメチルアンモニウム、N−メチル−N−メトキシメチルピロリジニウム、N−エチル−N−メトキシメチルピロリジニウム、N−プロピル−N−メトキシメチルピロリジニウム、N−ブチル−N−メトキシメチルピロリジニウム、N−メチル−N−エトキシメチルピロリジニウム、N−メチル−N−プロポキシメチルピロリジニウム、N−メチル−N−ブトキシメチルピロリジニウム、N−メチル−N−メトキシメチルピペリジニウム、N−エチル−N−メトキシメチルピロリジニウム、N−メチル−N−エトキシメチルピロリジニウム、N−プロピル−N−メトキシメチルピロリジニウム、N−メチル−N−プロポキシメチルピロリジニウム、4−アゾニアスピロ[3,4]オクタン、3−アゾニアスピロ[2,4]ヘプタン、5−アゾニアスピロ[4,4]ノナン、6−アゾニアスピロ[5,5]ウンデカン等を挙げることができる。
テトラアルキルホスホニウムとしては、テトラエチルホスホニウム、テトラメチルホスホニウム、テトラプロピルホスホニウム、テトラブチルホスホニウム、トリエチルメチルホスホニウム、トリメチルエチルホスホニウム、ジメチルジエチルホスホニウム、トリメチルプロピルホスホニウム、トリメチルブチルホスホニウム、ジメチルエチルプロピルホスホニウム、メチルエチルプロピルブチルホスホニウム等を挙げることができる。
イミダゾリウムとしては、1,3−ジメチルイミダゾリウム、1−エチル−3−メチルイミダゾリウム、1,3−ジエチルイミダゾリウム、1,2−ジメチル−3−エチルイミダゾリウム、1,2−ジメチル−3−プロピルイミダゾリウム等を挙げることができる。
ピラゾリウムとしては、1,2−ジメチルピラゾリウム、1−メチル−2−エチルピラゾリウム、1−プロピル−2−メチルピラゾリウム、1−メチル−2−ブチルピラゾリウム等を挙げることができる。
ピリジニウムとしては、N−メチルピリジニウム、N−エチルピリジニウム、N−プロピルピリジニウム、N−ブチルピリジニウム等を挙げることができる。
トリアゾリウムとしては、1−メチルトリアゾリウム、1−エチルトリアゾリウム、1−プロピルトリアゾリウム、1−ブチルトリアゾリウム等を挙げることができる。
ピリダジニウムとしては、1−メチルピリダジニウム、1−エチルピリダジニウム、1−プロピルピリダジニウム、1−ブチルピリダジニウム等を挙げることができる。
チアゾリウムとしては、1,2−ジメチルチアゾリウム、1,2−ジメチル−3−プロピルチアゾリウム等を挙げることができる。
オキサゾリウムとしては、1−エチル−2−メチルオキサゾリウム、1,3−ジメチルオキサゾリウム等を挙げることができる。
ピリミジニウムとしては、1,2−ジメチルピリミジニウム、1−メチル−3−プロピルピリミジニウム等を挙げることができる。
ピラジニウムとしては、1−エチル−2−メチルピラジニウム、1−ブチルピラジニウム等を挙げることができる。
本発明に用いられる第4級アンモニウム塩のアニオンとしては、例えば、BF 、PF 、CFCO 、CFSO 、N(CFSO 、N(CFCFSO 、C(CFSO 、N(CFSO)(CFCO)、AlF 、ClBF 、(FSO、CBF 、CFBF 等を挙げることができる。
本発明の電解液は、必要に応じて、有機溶媒を使用しても良い。有機溶媒としては、例えば、以下の化合物が挙げられるがこれらに限定されるものではない。
環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、4−フルオロ−1,3−ジオキソラン−2−オン、4−(トリフルオロメチル)−1,3−ジオキソラン−2−オンなどが挙げられ、好ましくは、エチレンカーボネート、プロピレンカーボネートが良い。
鎖状炭酸エステルとしては、ジメチルカーボネート、エチルメチルカーボネート、メチルノルマルプロピルカーボネート、メチルイソプロピルカーボネート、ノルマルブチルメチルカーボネート、ジエチルカーボネート、エチルノルマルプロピルカーボネート、エチルイソプロピルカーボネート、ノルマルブチルエチルカーボネート、ジノルマルプロピルカーボネート、ジイソプロピルカーボネート、ジノルマルブチルカーボネート、フルオロエチルメチルカーボネート、ジフルオロエチルメチルカーボネート、トリフルオロエチルメチルカーボネートなどが挙げられ、好ましくは、ジメチルカーボネート、エチルメチルカーボネートが良い。
リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチルなどが挙げられる。
環状エーテルとしては、テトラヒドロフラン、2−メチルテトラヒドロフランなどが挙げられる。
鎖状エーテルとしては、ジメトキシエタンなどが挙げられる。
ラクトン化合物としては、γ−バレロラクトン、γ−ブチロラクトンなどが挙げられる。
鎖状エステルとしては、メチルプロピオネート、メチルアセテート、エチルアセテート、メチルホルメートなどが挙げられる。
ニトリル化合物としては、アセトニトリルなどが挙げられる。
アミド化合物としては、ジメチルホルムアミドなどが挙げられる。
スルホン化合物としては、スルホラン、メチルスルホランなどが挙げられる。
好ましくは、環状炭酸エステル、鎖状炭酸エステル、ラクトン化合物、スルホン化合物が良い。
これらの溶媒は1種類でも2種類以上を混合してもよい。
本発明の電解液において、式(1)で表される添加剤の含有量は、電解液において、0.005〜90重量%、好ましくは0.01〜50重量%、更に好ましくは0.1〜10重量%が良い。
本発明の電解液において、有機溶媒を使用する場合の有機溶媒の含有量は、電解液において、0.1〜90重量%、好ましくは20〜80重量%、更に好ましくは30〜70重量%が良い。
式(1)で表される電解液用添加剤を含有した電解液は、含有しない電解液と比較して、電気化学的な変質時において、pHの値を低下することができる。また、驚くべきことに、理由は定かではないが、式(1)で表される電解液用添加剤を含有した電解液は、含有しない電解液と比較して、電解液の耐電圧を向上することができる。
以下、本発明の電気二重層キャパシタ用電解液の調製方法を説明する。作業をおこなう環境としては、水分が電気二重層キャパシタの性能に悪影響を与えるため、大気が混入しない環境であれば特に限定されないが、アルゴンや窒素などの不活性雰囲気のグローブボックス内において調製作業をすることが好ましい。作業環境の水分は露点計で管理することができ、マイナス60℃以下であることが好ましい。マイナス60℃を越えると、作業時間が長くなる場合、電解液が雰囲気中の水分を吸収するため電解液中の水分が上昇してしまう。電解液中の水分はカールフィッシャー水分計で測定することができる。
上記で得られる本発明の電解液を用いて電気二重層キャパシタを好適に作製できる。この電気二重層キャパシタの一例としては、例えば、コイン型電気二重層キャパシタ、ラミネート型電気二重層キャパシタを挙げることができる。しかし、電気二重層キャパシタの形状はコイン型、ラミネート型に限定されるものではなく、缶体中に電極を積層して収納されてなる積層型、捲回して収納されてなる捲回型と称されるものであってもよい。
以下、例としてコイン型電気二重層キャパシタおよびラミネート型電気二重層キャパシタの構造について説明する。
図1は、コイン型電気二重層キャパシタを示す図面である。電極1、2がセパレータ3を介して対向配置され、容器体4、5に収納されている。電極は、活性炭等の炭素材料からなる分極性電極部分と集電体部分とからなる。容器体4、5は、電解液によって腐食されなければよく、例えば、ステンレス鋼、アルミ等からなる。容器体4、5は、絶縁性のガスケット6により電気的に絶縁されており、同時に金属製缶体内部を密封し、缶体外部からの水分や空気が浸入しないようになっている。電極1の集電体及び容器体4、並びに電極2の集電体と金属製のスペーサー7は、それぞれ金属製のスプリング8の存在により適度な圧力で接触しており、電気的接触を保っている。電気伝導性を高めるために、集電体をカーボンペースト等の導電性ペーストを用いて接着しても良い。
図2および図3は、ラミネート型電気二重層キャパシタを示す図面である。電極11とアルミタブ9が接着されていて、セパレータ12を介して対向配置され、ラミネート10に収納されている。電極は、活性炭等の炭素材料からなる分極性電極部分と、集電体部分とからなる。ラミネート容器体10は、熱圧着により密封し、容器外部からの水分や空気が侵入しないようになっている。
分極性電極材料は、比表面積が大きく、電気伝導性が高い材料であることが好ましく、また使用する印加電圧の範囲内で電解液に対して電気化学的に安定であることが必要である。このような材料としては、例えば、炭素材料、金属酸化物材料、導電性高分子材料等を挙げることができる。コストを考慮すると、分極性電極材料は、炭素材料であるのが好ましい。
炭素材料としては、活性炭材料が好ましく、具体的には、おがくず活性炭、やしがら活性炭、ピッチ・コークス系活性炭、フェノール樹脂系活性炭、ポリアクリロニトリル系活性炭、セルロース系活性炭等を挙げることができる。
金属酸化物系材料としては、例えば、酸化ルテニウム、酸化マンガン、酸化コバルト等を挙げることができる。導電性高分子材料としては、例えば、ポリアニリン膜、ポリピロール膜、ポリチオフェン膜、ポリ(3,4−エチレンジオキシチオフェン)膜等を挙げることができる。
電極は、上記分極性電極材料をPTFEなどの結着剤と共に混練し、加圧成型したものを導電性接着剤でアルミニウム箔等の集電体に結着させるか、又は上記分極性電極材料を結着剤と共にCMC等の増粘剤もしくは、ピロリドン等の有機溶剤に混合し、ペースト状にしたものをアルミニウム箔等集電体に塗工後、乾燥して得ることができる。
セパレータとしては、電子絶縁性が高く、電解液の濡れ性に優れイオン透過性が高いものが好ましく、また、印加電圧範囲内において電気化学的に安定である必要がある。セパレータの材質は、特に限定は無いが、レーヨンやマニラ麻等からなる抄紙;ポリオレフィン系多孔質フィルム;ポリエチレン不織布;ポリプロピレン不織布等が好適に用いられる。
図1は本発明のコイン型電気二重層キャパシタの断面図である。
図2は本発明のラミネート型電気二重層キャパシタを示す正面図である。
図3は本発明のラミネート型電気二重層キャパシタを示す内部構成図である。
1 電極、2 電極、3 セパレータ、4 容器体、5 容器体、6 ガスケット、7 スペーサー、8 スプリング、9 アルミタブ、10 ラミネート、11 電極、12 セパレータ
以下、本発明を実施例に基づいて具体的に説明するが何らこれらに限定されるものではない。
定電流電解における電解液のアルカリ度を観測する手法として、pH値を指標とした。定電流電解の負極におけるpH測定は、室温、大気中でH型セルに負極室、正極室にそれぞれ20mlの電解液を入れ、3cm白金プレートを電極として使用し、50mAで電気分解を行った。pH測定には、HORIBA社製のpHメーターを用いた。
耐電圧の測定は、3極式電気化学セルを使用した。作用極として、φ1.0mm、電極面積0.0079cmのグラッシーカーボン電極(BAS株式会社製)、参照極としてφ0.5mmの銀のワイヤー(株式会社ニコラ製、純度99.99%)、対極としてφ0.5mm×50mmの白金電極(BAS株式会社製、11−2233)を使用した。
リニアスイープボルタメンタリーを行い、酸化電流密度および還元電流密度が1mAcm−2になる電位を調べた。これらの電位の差を耐電圧とした。なお電位の差引印加速度は50mVs−1とした。電気化学測定は北斗電工製、HZ−3000を使用した。
実施例1〜19
テトラエチルアンモニウムテトラフルオロボレート(TEA・BF)(キシダ化学社製、リチウムバッテリーグレード)とプロピレンカーボネート(PC)(キシダ化学社製、リチウムバッテリーグレード)をTEA・BFの濃度が、0.75mol/lになるように配合した。
次に、電解液において、表1〜2に記載の添加剤が、10重量%となるように配合し、各種電解液を得た。
配合は、露点が、−60℃以下のアルゴン雰囲気ドライボックス内で配合し、溶液の水分をカールフィッシャー水分計(平沼産業株式会社製、平沼微量水分測定装置AQ−7)で測定し、30ppm以下であることを確認した。
各種電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表1〜2に記載する。
実施例20〜26
テトラエチルアンモニウムテトラフルオロボレート(TEA・BF)をトリエチルメチルアンモニウムテトラフルオロボレート(TEMA・BF)(キシダ化学社製)に変える以外は実施例1と同様にしてpHおよび耐電圧の測定を行った。結果を表2に記載する。
比較例1
添加剤を配合しない以外は、実施例1と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表2に記載する。
比較例2
TEA・BFに替えて、エチルメチルイミダゾリウムテトラフルオロボレート(EMI・BF)にした以外は、比較例1と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表2に記載する。
Figure 2008001955
Figure 2008001955
実施例27
N−メトキシメチル−N−メチルピロリジニウムテトラフルオロボレート(MMMP・BF)(大塚化学社製)30重量部、プロピレンカーボネート(PC)(上記に同じ)60重量部、およびトリエチルメタントリカルボン酸(関東化学社製を蒸留により精製)10重量部の割合で配合し、電解液を得た。
配合は、露点が、−60℃以下の窒素雰囲気ドライボックス内で配合し、後の溶液の水分をカールフィッシャー水分計(上記に同じ)で測定し、30ppm以下であることを確認した。
各種電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例28
PC(上記に同じ)65重量部、トリエチルメタントリカルボン酸(上記に同じ)5重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例29
PC(上記に同じ)68重量部、トリエチルメタントリカルボン酸(上記に同じ)2重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例30
PC(上記に同じ)69重量部、トリエチルメタントリカルボン酸(上記に同じ)1重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例31
PC(上記に同じ)69.5重量部、トリエチルメタントリカルボン酸(上記に同じ)0.5重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例32
N−メチル−N−プロピルピロリジニウムテトラフルオロボレート(MPP・BF)30重量部、PC(上記に同じ)69.5重量部、トリエチルメタントリカルボン酸(上記に同じ)0.5重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例33
N−エチル−N−メチルピロリジニウムテトラフルオロボレート(MEP・BF)30重量部、PC(上記に同じ)69.0重量部、トリメチルメタントリカルボン酸(関東化学社製を蒸留により精製)1.0重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
実施例34
5−アゾニアスピロ[4,4]ノナン(ASN・BF)30重量部、PC(上記に同じ)68.0重量部、トリメチルメタントリカルボン酸(上記に同じ)2.0重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
比較例3
PC(上記に同じ)70重量部、トリエチルメタントリカルボン酸(上記に同じ)0重量部にした以外は、実施例27と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表3に記載する。
Figure 2008001955
実施例35
N−メトキシメチル−N−メチルピロリジニウムテトラフルオロボレート(MMMP・BF)(上記に同じ)75重量部、およびトリエチルメタントリカルボン酸(上記に同じ)25重量部の割合で配合し、電解液を得た。
配合は、露点が、−60℃以下の窒素雰囲気ドライボックス内で配合し、後の溶液の水分をカールフィッシャー水分計(上記に同じ)で測定し、30ppm以下であることを確認した。各種電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表4に記載する。
実施例36
N−メトキシメチル−N−メチルピロリジニウムテトラフルオロボレート(MMMP・BF)(上記と同じ)60重量部、ジメチルカーボネート(DMC)(キシダ化学社製、リチウムバッテリーグレード)20重量部、エチルメチルカーボネート(EMC)(キシダ化学社製、リチウムバッテリーグレード)19重量部、およびトリエチルメタントリカルボン酸(上記に同じ)1重量部の割合で配合し、電解液を得た。
配合は、露点が、−60℃以下の窒素雰囲気ドライボックス内で配合し、後の溶液の水分をカールフィッシャー水分計(上記に同じ)で測定し、30ppm以下であることを確認した。
各種電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表4に記載する。
比較例4
EMC(上記に同じ)20重量部、トリエチルメタントリカルボン酸(上記に同じ)0重量部にした以外は、実施例36と同様にして、電解液を得た。電解液の、定電流電解時の負極におけるpHおよび耐電圧の測定を行った。結果を表4に記載する。
Figure 2008001955
<電気二重層キャパシタ電解液の配合>
実施例37〜43および比較例5〜6
電解質としてMMMP・BF(上記に同じ)、有機溶媒としてPC(上記に同じ)および種々の添加剤を表5に記載の配合で各種電解液を得た。
配合は、露点が、−60℃以下のアルゴン雰囲気ドライボックス内で配合し、溶液の水分をカールフィッシャー水分計(上記に同じ)で測定し、30ppm以下であることを確認した。
Figure 2008001955
<コイン型電気二重層キャパシタの製造>
実施例44〜45および比較例7
上記電解液を使用して図1の構造を有するコイン型電気二重層キャパシタ1を製造した。電極1及び電極2は、活性炭を主成分とする電導性物質、バインダー、N−メチルピロリドンとともに混練して得られたペーストをアルミニウム箔に150μmの厚さで塗工後、乾燥して得られたシート状電極を円板状に切り出したものである。容器体1、容器体2、スペーサー、スプリングは共にステンレス鋼製であり、セパレータは、ポリプロピレン不織布である。電気二重層キャパシタの組み立てはアルゴンガスを満たしたグローブボックス内でおこなった。電極1、電極2、容器体1、容器体2、スプリング、スペーサーは120℃の加熱下、24時間真空乾燥した後、グローブボックス内に持ち込んだ。上記調製した電解液を電極1、電極2、セパレータに含浸させ、図1の構成で容器体1と容器体2をガスケットを介してかしめることによってコイン型電気二重層キャパシタを得た。
<漏れ電流値の測定>
実施例37〜38、比較例5の電解液を用いて作製されたコイン型電気二重層キャパシタに関し、漏れ電流値の測定をおこなった。漏れ電流値の測定は25℃の恒温槽において実施した。コイン型セルを専用のホルダにセットした後、電気二重層キャパシタの充放電を開始した。電流密度が5.0mAcm−2の定電流充電をおこない、電圧が2.4Vに達した時点で定電圧充電に切り替えた。2.4Vで120分保持した後、5.0mAの定電流放電をおこない、電圧が0.1Vに達した時点で低電圧放電に切り替え0.1Vで120分間保持した。以降、定電圧充電の設定を2.6V、2.8V、3.0V、3.2Vとし同様のサイクルをおこなった。定電圧充電時の120分後における電流値を漏れ電流値とした。結果を表6に示した。
Figure 2008001955
<ラミネート型電気二重層キャパシタの作製>
実施例46〜69および比較例8〜11
上記電解液を用い、ラミネート型電極、セルロース型セパレータ、定格電圧2.5V、2.7V、静電容量10F又は60Fのラミネート型電気二重層キャパシタを作製した。
<電極の作製>
分極性電極として、活性炭粉末80重量%とアセチレンブラック10重量部%とポリテトラフルオロエチレン粉末10重量部%とをロールで混練した。その後、厚さ0.1mmのシートを作製し0.03mmのエッチドアルミにカーボンペースト等の導電性ペーストで接着し、電極シートとした。このシートを金型で打ち抜き、ラミネート型電極を作製した。
<評価方法>
耐久性試験では、25℃に設定された恒温槽内にて、2.5V、2.7Vの定電圧充電を24時間行い0.0Vまで放電しエージング処理をした。その後、所定の温度にて数時間静置し、再度定電圧充電を30分間行い、2.0mA/cm2にて所定電圧まで放電を行い、その電圧勾配より静電容量および内部抵抗を求めた。引き続き、定電圧、60℃にてフローティング試験を500時間行い同様の方法にて静電容量及び内部抵抗を求め、維持率を計算した。結果を表7に示した。
Figure 2008001955
本発明の電解液は、電気化学的な変質時においてもOHイオンの生成を抑制し、樹脂、ゴムあるいは金属の劣化や腐食を低減し、電気化学デバイスの信頼性を向上させることができる。その結果本発明の電解液を用いた電気化学デバイスは、信頼性を向上することができる。

Claims (8)

  1. 式(1)で表わされる電解液用添加剤。
    Figure 2008001955
    〔Aは、−CH(X)−、−C=C(X)−、Xは、水素、ハロゲン、炭素数1〜4のアルキル、炭素数2〜5のアルコキシカルボニル、ベンゾイル、炭素数3〜9のアルコキシカルボニルアルキル、Q、Qは、同一または相違して、炭素数1〜6のアルキル、炭素数1〜4のアルコキシ、炭素数3〜9のアルコキシカルボニルアルキル、炭素数1〜4のアルキルを置換基として有するアミノを示し、A、QおよびQで環構造を構成しても良い。〕
  2. 電解質と式(1)で表わされる添加剤を含有する電解液。
  3. 電解質が第4級アンモニウム塩である請求の範囲第2項に記載の電解液。
  4. 更に有機溶媒を含有する請求の範囲第2〜3項のいずれかに記載の電解液。
  5. 式(1)で表わされる添加剤が、1,3−アセトンジカルボン酸ジメチル、1,3−アセトンジカルボン酸ジエチル、インダンジオン、アコニット酸トリメチル、トリエチルメタントリカルボン酸、エチルジメチルメタントリカルボン酸、ジエチルメチルメタントリカルボン酸、メチルジイソプロピルメタントリカルボン酸、トリメチルメタントリカルボン酸、N,N,N′,N′−テトラメチルマロンアミド、N,N,N′,N′−テトラエチルマロンアミド、3−オキソヘプタン酸メチル、3−オキソペンタン酸メチル、シクロペンタノン−2−カルボン酸メチルである請求の範囲第2項に記載の電解液。
  6. 有機溶媒がプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、γ−ブチロラクトンである請求の範囲第4項に記載の電解液。
  7. 請求項2〜6のいずれかに記載の電解液を用いた電気化学デバイス。
  8. 請求項2〜6のいずれかに記載の電解液を用いた電気二重層キャパシタ。
JP2008522682A 2006-06-30 2007-06-29 電解液用添加剤及び電解液 Expired - Fee Related JP4802243B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008522682A JP4802243B2 (ja) 2006-06-30 2007-06-29 電解液用添加剤及び電解液

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006182629 2006-06-30
JP2006182629 2006-06-30
JP2008522682A JP4802243B2 (ja) 2006-06-30 2007-06-29 電解液用添加剤及び電解液
PCT/JP2007/063524 WO2008001955A1 (en) 2006-06-30 2007-06-29 Additive for electrolyte solution and electrolyte solution

Publications (2)

Publication Number Publication Date
JPWO2008001955A1 true JPWO2008001955A1 (ja) 2009-12-03
JP4802243B2 JP4802243B2 (ja) 2011-10-26

Family

ID=38845705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008522682A Expired - Fee Related JP4802243B2 (ja) 2006-06-30 2007-06-29 電解液用添加剤及び電解液

Country Status (7)

Country Link
US (2) US8163195B2 (ja)
EP (1) EP2037468B1 (ja)
JP (1) JP4802243B2 (ja)
KR (1) KR101045749B1 (ja)
CN (1) CN101479818B (ja)
TW (1) TWI376707B (ja)
WO (1) WO2008001955A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045749B1 (ko) * 2006-06-30 2011-06-30 오츠카 가가쿠 가부시키가이샤 전해액용 첨가제 및 전해액
JP5184013B2 (ja) * 2007-09-07 2013-04-17 ステラケミファ株式会社 電気二重層キャパシタ用電解液
US8580429B2 (en) 2008-03-13 2013-11-12 Ube Industries, Ltd. Non-aqueous electrolyte for a lithium battery, lithium battery wherein said electrolyte is used, and hydroxy-acid derivative for use in said electrolyte
EP2908376A1 (en) * 2009-09-15 2015-08-19 Ube Industries, Ltd. Nonaqueous electrolyte solution and electrochemical element using same
US8767376B2 (en) * 2009-12-11 2014-07-01 Daikin Industries, Ltd. Electric double layer capacitor
DE102010020992A1 (de) * 2010-05-19 2011-11-24 Li-Tec Battery Gmbh Additiv für Elektrolyte in wiederaufladbaren Lithiumionen-Batterien
JP5593982B2 (ja) * 2010-09-03 2014-09-24 日産自動車株式会社 非水電解質組成物及び非水電解質二次電池
US9130240B2 (en) * 2010-10-12 2015-09-08 Toyota Jidosha Kabushiki Kaisha Ionic liquid, lithium secondary battery electrolyte comprising the ionic liquid, and lithium secondary battery comprising the electrolyte
JP5477657B2 (ja) * 2010-11-16 2014-04-23 トヨタ自動車株式会社 非水電解質およびその利用
DE102011052383A1 (de) * 2011-08-03 2013-02-07 Westfälische Wilhelms Universität Münster Elektrolyt für Lithium-basierte Energiespeicher
EP2667444A1 (en) * 2012-05-21 2013-11-27 Solvay Sa Use of fluorinated 2-methoxymalonic acid esters in electrolyte or solvent compositions
JP6119746B2 (ja) * 2012-06-06 2017-04-26 日本電気株式会社 電解液、これに含まれるエステル化合物の製造方法及びリチウム二次電池
EP2975620B1 (en) * 2013-03-12 2019-05-22 Sanyo Chemical Industries, Ltd. Aluminum electrolytic capacitor-use electrolytic solution and aluminum electrolytic capacitor using same
EP3203569B1 (en) * 2014-09-30 2018-10-31 Mitsubishi Chemical Corporation Nonaqueous electrolyte, and nonaqueous electrolyte secondary battery using same
KR20170081199A (ko) * 2014-11-03 2017-07-11 사켐,인코포레이티드 전기 에너지 저장 및 발생 장치용 혼합된 알킬 4급 암모늄염 또는 포스포늄 염계 전해 조성물
WO2016084704A1 (ja) * 2014-11-28 2016-06-02 富士フイルム株式会社 電解液、リチウムイオン電池およびリチウムイオンキャパシタ
JP6693200B2 (ja) * 2015-03-24 2020-05-13 三菱ケミカル株式会社 非水系電解液及びそれを用いた非水系電解液電池
JP6222389B1 (ja) * 2017-02-17 2017-11-01 Tdk株式会社 非水電解液およびそれを用いた非水電解液電池
CN110800150B (zh) * 2017-03-31 2022-11-29 株式会社村田制作所 包含电解质稳定材料的非水电解质和电解液、包含它们的二次电池及其用途
JP6924264B2 (ja) * 2017-07-26 2021-08-25 株式会社日立製作所 半固体電解液、半固体電解質、半固体電解質層および二次電池
US10971758B2 (en) 2017-09-20 2021-04-06 Soulbrain Co., Ltd. Electrolyte additive and lithium secondary battery comprising the same
KR20190033004A (ko) 2017-09-20 2019-03-28 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
KR20190033005A (ko) 2017-09-20 2019-03-28 솔브레인 주식회사 전해액 첨가제 및 이를 포함하는 리튬 이차 전지
CN109980278B (zh) * 2017-12-28 2021-06-08 张家港市国泰华荣化工新材料有限公司 一种电解液及二次锂电池
CN109545563A (zh) * 2019-01-15 2019-03-29 麻城市天力科技有限公司 一种电容器用电解液
CN116918123A (zh) * 2021-02-04 2023-10-20 中央硝子株式会社 非水电解液、非水电解液电池、及化合物
KR20240051747A (ko) * 2022-10-13 2024-04-22 삼성에스디아이 주식회사 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367674A (ja) * 2001-06-11 2002-12-20 Mitsubishi Chemicals Corp 電解液及び二次電池
JP2003272956A (ja) * 2002-03-20 2003-09-26 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液
JP2005347222A (ja) * 2004-06-07 2005-12-15 Sony Corp 電解液および電池
JP2007043105A (ja) * 2005-06-30 2007-02-15 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3663378A (en) * 1971-03-16 1972-05-16 Udylite Corp Electroplating of nickel
US4008293A (en) * 1974-08-01 1977-02-15 Ppg Industries, Inc. Crosslinkable coating compositions and method of using the same
US3917686A (en) * 1974-10-07 1975-11-04 Bjorksten Research Lab Inc Method for producing citric acid and citrates
US3998999A (en) * 1975-10-20 1976-12-21 Hoffmann-La Roche Inc. Process for preparing pyrazomycin and pyrazomycin B
US4087539A (en) * 1976-07-14 1978-05-02 Syntex (U.S.A.) Inc. 5-(2-Furoyl)-, 5-(2-thenoyl)-, 5-(3-furoyl)- and 5-(3-thenoyl)-1,2-dihydro-3H-pyrrolo[1,2-a]pyrrole-1-carboxylic acid derivatives and process for the production thereof
US4113740A (en) * 1977-05-17 1978-09-12 Hoffmann-La Roche Inc. Synthesis of optically active vitamin E
US4327400A (en) * 1979-01-10 1982-04-27 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor
CN1039264C (zh) 1993-12-03 1998-07-22 三洋化成工业株式会社 电解液和使用该电解液的电子元件
JP3751048B2 (ja) 1995-05-26 2006-03-01 松下電器産業株式会社 電解液およびそれを用いた電気化学素子
JP3496460B2 (ja) * 1997-06-13 2004-02-09 ダイキン工業株式会社 電解液およびそれを用いるリチウム2次電池
JP2002025867A (ja) * 2000-07-04 2002-01-25 Jeol Ltd 電気二重層キャパシタおよび電気二重層キャパシタ用炭素材料
CA2422109C (en) * 2000-09-07 2010-08-17 Bridgestone Corporation Additive for non-aqueous liquid electrolyte secondary cell, non-aqueous liquid electrolyte secondary cell, additive for non-aqueous liquid electrolyte electric double layer capacitor and non-aqueous liquid electrolyte electric double layer capacitor
JP4287073B2 (ja) 2001-05-31 2009-07-01 株式会社リガク ガラスビードの希釈率の算出装置およびプログラムならびに前記算出装置を有するx線分析装置
JP2003163139A (ja) * 2001-11-26 2003-06-06 Daicel Chem Ind Ltd 電解コンデンサ用電解液
EP1324358A3 (en) * 2001-12-11 2003-12-17 Asahi Glass Co., Ltd. Electric double layer capacitor
JP2004221557A (ja) 2002-12-25 2004-08-05 Sanyo Chem Ind Ltd 電解液
CN100382213C (zh) * 2003-08-22 2008-04-16 中国科学院电工研究所 有机电解液及其制备方法
JP2005142439A (ja) * 2003-11-07 2005-06-02 Honda Motor Co Ltd 電気二重層キャパシタ電極用活性炭の製造方法およびその炭素原料
JP2005285377A (ja) * 2004-03-26 2005-10-13 Shirouma Science Co Ltd ポリシロキサンおよびポリオレフィン複合ゲル電解質およびそれを用いたリチウム電池
JP4536436B2 (ja) * 2004-06-29 2010-09-01 三洋化成工業株式会社 電解液およびそれを用いた電解コンデンサ
JP2006156728A (ja) 2004-11-30 2006-06-15 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液及び電気化学キャパシタ
JP5018089B2 (ja) * 2004-12-27 2012-09-05 宇部興産株式会社 非水電解液及びそれを用いたリチウム二次電池
KR101045749B1 (ko) * 2006-06-30 2011-06-30 오츠카 가가쿠 가부시키가이샤 전해액용 첨가제 및 전해액

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367674A (ja) * 2001-06-11 2002-12-20 Mitsubishi Chemicals Corp 電解液及び二次電池
JP2003272956A (ja) * 2002-03-20 2003-09-26 Sanyo Chem Ind Ltd 電気化学キャパシタ用電解液
JP2005347222A (ja) * 2004-06-07 2005-12-15 Sony Corp 電解液および電池
JP2007043105A (ja) * 2005-06-30 2007-02-15 Honda Motor Co Ltd 電気二重層キャパシタ用電解液および電気二重層キャパシタ

Also Published As

Publication number Publication date
US8372300B2 (en) 2013-02-12
EP2037468A1 (en) 2009-03-18
CN101479818A (zh) 2009-07-08
US20090309060A1 (en) 2009-12-17
KR101045749B1 (ko) 2011-06-30
EP2037468B1 (en) 2012-10-24
CN101479818B (zh) 2012-10-17
JP4802243B2 (ja) 2011-10-26
WO2008001955A1 (en) 2008-01-03
TWI376707B (en) 2012-11-11
TW200816243A (en) 2008-04-01
EP2037468A4 (en) 2010-07-28
KR20090026203A (ko) 2009-03-11
US20120170172A1 (en) 2012-07-05
US8163195B2 (en) 2012-04-24

Similar Documents

Publication Publication Date Title
JP4802243B2 (ja) 電解液用添加剤及び電解液
JP5392355B2 (ja) 電気二重層キャパシタ
KR101076513B1 (ko) 전기 이중층 캐패시터용 전해액
JP2012216833A (ja) 電気二重層キャパシタ及び電気二重層キャパシタ用非水電解液
JP2012074541A (ja) 電気二重層キャパシタ用電解液及び電気化学デバイス
US11114695B2 (en) Electrolyte for electrochemical device, electrolytic solution, and electrochemical device
JP6187688B2 (ja) 電解液、及び、電気化学デバイス
JP2013197535A (ja) 電解液及び電気二重層キャパシタ
JP2003173936A (ja) 電気化学キャパシタ用電解液およびそれを用いた電気化学キャパシタ
JP5430464B2 (ja) 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP2008091823A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP5473296B2 (ja) 第4級アンモニウム塩
JP5063172B2 (ja) 電気二重層キャパシタ用電解液
JP6314409B2 (ja) 電解液、及び、電気化学デバイス
JP4798609B2 (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP4707425B2 (ja) 電気二重層キャパシタ用電解質及び電気二重層キャパシタ
KR101583525B1 (ko) 슈퍼캐패시터용 전해액 및 이를 함유한 슈퍼캐패시터
JP2003173935A (ja) 電気化学キャパシタ用電解液およびそれを用いた電気化学キャパシタ
JP2019114661A (ja) 電解質及び電解液
JP2008091821A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2012212741A (ja) 電気二重層キャパシタ
JP2009065073A (ja) 電気二重層キャパシタ用電解液及び電気二重層キャパシタ
JP2009218398A (ja) 電解液及び電気化学デバイス
JP2014183088A (ja) 電気二重層キャパシタ用電解液およびこれを用いた電気二重層キャパシタ
JP2006332298A (ja) 電気化学デバイス用電解質及び電気化学デバイス

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4802243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees