JP4640570B2 - Metal fine particles and production method thereof - Google Patents

Metal fine particles and production method thereof Download PDF

Info

Publication number
JP4640570B2
JP4640570B2 JP2004183233A JP2004183233A JP4640570B2 JP 4640570 B2 JP4640570 B2 JP 4640570B2 JP 2004183233 A JP2004183233 A JP 2004183233A JP 2004183233 A JP2004183233 A JP 2004183233A JP 4640570 B2 JP4640570 B2 JP 4640570B2
Authority
JP
Japan
Prior art keywords
fine particles
solution
metal ion
gold
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004183233A
Other languages
Japanese (ja)
Other versions
JP2005036316A (en
Inventor
芳昌 林
寛樹 平田
隆行 高萩
正三 新宮原
弘之 坂上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004183233A priority Critical patent/JP4640570B2/en
Publication of JP2005036316A publication Critical patent/JP2005036316A/en
Application granted granted Critical
Publication of JP4640570B2 publication Critical patent/JP4640570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒径が均一な金属微粒子、特に電子部品の配線材料、色材、光学フィルター、触媒などに用いられる金微粒子とその製造に関する。 The present invention relates to fine metal particles having a uniform particle size, particularly gold fine particles used for wiring materials, coloring materials, optical filters, catalysts, and the like of electronic components and the production thereof.

従来、金の微粒子は金イオンを含む溶液に還元液を添加して金イオンを還元する液相還元法によって主に製造されている。しかし、従来の液相還元法では金イオンの濃度が高くなると粒径のばらつきが大きくなり、従って、高濃度の金イオン溶液を用いて大量に金微粒子を製造することができず、低濃度溶液による少量生産に限られていた。しかし、このような少量製造では工業レベルでの実用化に適さず、コスト高になる問題がある。 Conventionally, gold fine particles are mainly produced by a liquid phase reduction method in which a reducing solution is added to a solution containing gold ions to reduce gold ions. However, in the conventional liquid phase reduction method, when the concentration of gold ions increases, the dispersion of the particle size increases, and therefore, a large amount of gold fine particles cannot be produced using a high concentration gold ion solution. Was limited to small-scale production. However, such a small amount production is not suitable for practical use at an industrial level, and there is a problem that costs increase.

一方、複数の金属イオン含む合水溶液に界面活性剤を添加して超音波を照射することによって合金の微粒子を製造する方法が知られている(特許文献1)。この方法は、金属イオン含有水溶液に界面活性剤を添加することによって粒子表面を安定化させ、また界面活性剤が超音波によって熱分解されることによって生じる還元性ラジカルを金属イオンの還元に利用する製造方法である。しかし、この界面活性剤を添加した超音波照射による製造方法でも金属イオン濃度が高くなると、形成される金属微粒子の粒径変動が大きく、均一な微粒子を得るのが難しい。 On the other hand, there is known a method of producing fine particles of an alloy by adding a surfactant to a mixed aqueous solution containing a plurality of metal ions and irradiating ultrasonic waves (Patent Document 1). This method stabilizes the particle surface by adding a surfactant to a metal ion-containing aqueous solution, and utilizes a reducing radical generated by thermally decomposing the surfactant by ultrasonic waves to reduce metal ions. It is a manufacturing method. However, even in the production method by ultrasonic irradiation to which this surfactant is added, if the metal ion concentration increases, the particle size variation of the formed metal fine particles is large, and it is difficult to obtain uniform fine particles.

また、従来の方法によって製造された金微粒子は粒径のばらつきが大きいため、配線材料として用いた場合に凹凸の少ない均一な膜を得るのが難しく、色材としては用いた場合には均一な色相、明度および彩度を得るのが難しいなどの問題がある。
特開2001−152213号
In addition, since the fine gold particles produced by the conventional method have a large variation in particle size, it is difficult to obtain a uniform film with less unevenness when used as a wiring material, and uniform when used as a coloring material. There are problems such as difficulty in obtaining hue, brightness, and saturation.
JP 2001-152213 A

本発明は、従来の金属微粒子の製造方法における上記問題を解決したものであり、製造された金属微粒の粒子が均一であって、粒子径の変動係数(相対標準偏差)が小さい金属微粒子、とくに金微粒子と、これらを効率よく製造する方法を提供するものである。 The present invention solves the above-mentioned problems in the conventional method for producing metal fine particles, and the produced metal fine particles are uniform and have a small variation coefficient (relative standard deviation) in particle diameter, in particular, The present invention provides gold fine particles and a method for efficiently producing them.

すなわち本発明は、以下の構成からなる金微粒子と金属微粒子の製造方法に関する。
〔1〕金属イオン溶液に還元剤の存在下で超音波を照射して金属微粒子を製造する方法において、金属イオン濃度が0.001mol/L以上の高濃度水溶液を用い、金属イオン溶液に攪拌子を入れて該金属イオン溶液を攪拌すると共に、さらに金属イオン溶液の液中に超音波分散機の先端チップを挿入して該液中に超音波を直接照射することによって、平均粒子径4nm〜20nmであって、粒子径の変動係数が12%以下の金属微粒子を製造することを特徴とする金属微粒子の製造方法。
〔2〕上記[1]に記載する方法によって製造された、平均粒子径4nm〜20nmであって、粒子径の変動係数が12%以下である金微粒子。
〔3〕上記[2]に記載する金微粒子を含むペースト、金コロイド、膜、または光学フィルター。
That is, the present invention relates to a method for producing gold fine particles and metal fine particles having the following constitution.
[1] A method for producing metal fine particles by irradiating the ultrasonic wave in the presence of a reducing agent to the metal ion solution, the metal ion concentration using the above highly concentrated aqueous solutions 0.001 mol / L, stirring bar in the metal ion solution And stirring the metal ion solution, and further inserting an end tip of an ultrasonic disperser into the liquid of the metal ion solution and directly irradiating the liquid with ultrasonic waves, thereby obtaining an average particle diameter of 4 nm to 20 nm. A method for producing metal fine particles, comprising producing metal fine particles having a particle diameter variation coefficient of 12% or less.
[2] Gold fine particles produced by the method described in [1 ] above, having an average particle diameter of 4 nm to 20 nm and a coefficient of variation of the particle diameter of 12% or less.
[3] A paste, gold colloid, film, or optical filter containing the gold fine particles described in [2] above.

〔具体的な説明〕
本発明の製造方法は、金属イオン溶液に還元剤の存在下で超音波を照射して金属微粒子を製造する方法において、金属イオン濃度が0.001mol/L以上の高濃度水溶液を用い、金属イオン溶液に攪拌子を入れて該金属イオン溶液を攪拌すると共に、さらに金属イオン溶液の液中に超音波分散機の先端チップを挿入して該液中に超音波を直接照射することによって、平均粒子径4nm〜20nmであって、粒子径の変動係数が12%以下の金属微粒子を製造することを特徴とする金属微粒子の製造方法である。


[Specific description]
Production method of the present invention, a process for the preparation of irradiating the fine metal particles ultrasound in the presence of a reducing agent to the metal ion solution, the metal ion concentration using the above highly concentrated aqueous solutions 0.001 mol / L, metal ions A stirrer is placed in the solution to stir the metal ion solution, and an average particle is obtained by inserting a tip of an ultrasonic disperser into the liquid of the metal ion solution and directly irradiating the liquid with ultrasonic waves. A method for producing metal fine particles, comprising producing metal fine particles having a diameter of 4 nm to 20 nm and a coefficient of variation of the particle diameter of 12% or less.


本発明の製造方法が適用される金属イオンの種類は金などの貴金属であり、特に金微粒子の製造に有用である。金属イオン溶液は金属塩水溶液、例えば、金イオン溶液は塩化金酸水溶液などである。高濃度の金属イオン含有溶液とは、例えば金などの金属イオン濃度が0.001mol/L以上の水溶液である。本発明の製造方法は高濃度の金属イオンを含有する溶液に対して顕著な効果を有する。従来の製造方法はこのような高濃度水準の金属イオン溶液を用いると粒径の変動が大きく、均一な粒径の金微粒子を得るのが難しい。 The kind of metal ion to which the production method of the present invention is applied is a noble metal such as gold, and is particularly useful for producing fine gold particles. The metal ion solution is an aqueous metal salt solution, for example, the gold ion solution is an aqueous chloroauric acid solution. A high-concentration metal ion-containing solution is an aqueous solution having a metal ion concentration of, for example, gold of 0.001 mol / L or more. The production method of the present invention has a remarkable effect on a solution containing a high concentration of metal ions. In the conventional manufacturing method, when such a high-concentration level metal ion solution is used, the variation in particle size is large, and it is difficult to obtain gold fine particles having a uniform particle size.

上記高濃度金属イオン溶液に対して還元剤の存在下で超音波を照射する。還元剤としてはクエン酸、タンニン酸、水素化ホウ素ナトリウム、ヒドラジン等が用いられる。これらは混合して用いても良い。界面活性剤を用いる従来法では界面活性剤の分解によって生じた還元性ラジカルを利用しているが、高濃度の金属イオン溶液ではこの還元作用が不十分であり、粒径の均一な金属微粒子を得るのは難しい。還元剤の添加量は溶液中の金属イオン量に応じて定めれば良い。 The high concentration metal ion solution is irradiated with ultrasonic waves in the presence of a reducing agent. As the reducing agent, citric acid, tannic acid, sodium borohydride, hydrazine and the like are used. These may be used as a mixture. In the conventional method using a surfactant, reducing radicals generated by the decomposition of the surfactant are used. However, a high concentration metal ion solution does not sufficiently reduce this, and metal fine particles having a uniform particle size are used. Hard to get. What is necessary is just to determine the addition amount of a reducing agent according to the metal ion amount in a solution.

超音波は金属イオン溶液を攪拌し、液中に直接照射するのが好ましい。液中に超音波を直接照射する方法の一例を図1に示す。図示する方法は、スターラ10に載せた容器11の金属イオン溶液中に攪拌子12を入れ、さらに溶液中に超音波分散機の先端チップ13を挿入し、溶液を攪拌子12で攪拌しながら超音波を照射する。 Ultrasonic waves are preferably irradiated directly into the liquid after stirring the metal ion solution. An example of a method for directly irradiating a liquid with ultrasonic waves is shown in FIG. In the illustrated method, a stirrer 12 is placed in a metal ion solution in a container 11 placed on a stirrer 10, and a tip tip 13 of an ultrasonic disperser is further inserted into the solution. Irradiate sound waves.

一般に、容器底部から超音波を照射すると平面状に定在波が発生してエネルギーの強弱が生じる。このため超音波照射による液の均一な分散が行われない。これは攪拌子による攪拌を併用しても十分ではない。一方、本発明のように溶液中に超音波を直接に照射した場合には、超音波照射による液の分散に加えて攪拌も起こり、液が均一な分散状態となる。攪拌子による攪拌を併用することによって液の均一な分散状態がさらに促進される。超音波の照射時間は最初の数分間で効果を発揮するが10分間以上が望ましい。 In general, when an ultrasonic wave is irradiated from the bottom of a container, a standing wave is generated in a planar shape, resulting in energy intensity. For this reason, uniform dispersion of the liquid by ultrasonic irradiation is not performed. This is not sufficient even when stirring with a stirrer is used in combination. On the other hand, when the ultrasonic wave is directly irradiated into the solution as in the present invention, stirring occurs in addition to the dispersion of the liquid by the ultrasonic irradiation, and the liquid becomes a uniform dispersed state. By using stirring with a stirrer in combination, a uniform dispersion state of the liquid is further promoted. The ultrasonic irradiation time is effective in the first few minutes, but is preferably 10 minutes or more.

上記製造方法によって、平均粒子径が4nm〜20nmであって粒子径の変動係数が12%以下の金微粒子を得ることができる。この金微粒子は粒子径および変動係数が小さいので、充填率を高めることができ、例えば、配線材料や色材などに用いた場合に凹凸の少ない均一な厚さの膜を得ることができる。 According to the above production method, gold fine particles having an average particle diameter of 4 nm to 20 nm and a particle diameter variation coefficient of 12% or less can be obtained. Since the gold fine particles have a small particle diameter and coefficient of variation, the filling rate can be increased. For example, when used as a wiring material or a coloring material, a film having a uniform thickness with little unevenness can be obtained.

本発明の製造方法によれば、高濃度の金属イオン溶液を用いて粒径の変動係数が12%以下の均一な金属微粒子を容易に製造することができる。従って、本発明の製造方法は粒径の均一な金属微粒子を効率よく大量に製造することができ、工業的な実用生産に適する。また、本発明の製造方法によって得た平均粒子径4nm〜20nmの金微粒子によれば、充填率が高く、凹凸の少ない導電膜や塗膜を形成することができ、光学フィルターや電子部品の配線材料、色材などの材料として好適である。また、ナノレベルの微細粒子であるので活性が大きくなり、触媒などに用いることができる。 According to the production method of the present invention, uniform metal fine particles having a coefficient of variation of particle size of 12% or less can be easily produced using a high concentration metal ion solution. Therefore, the production method of the present invention can efficiently produce a large amount of fine metal particles having a uniform particle size, and is suitable for industrial practical production. Moreover, according to the gold fine particles having an average particle size of 4 nm to 20 nm obtained by the production method of the present invention, a conductive film or a coating film with a high filling rate and less unevenness can be formed, and wiring for optical filters and electronic components can be formed. It is suitable as a material such as a material or a color material. Moreover, since it is a nano level fine particle, activity becomes large and it can use for a catalyst etc.

以下、本発明を実施例によって具体的に示す。 Hereinafter, the present invention will be specifically described by way of examples.

(イ)塩化金酸1wt%水溶液10mlに純水70ml加えて希釈した塩化金酸水溶液80mlを調製し、また(ロ)クエン酸10wt%水溶液4mlとタンニン酸1wt%水溶液5mlに純水15mlを加えて20mlにした還元液を調製した。反応容器に上記塩化金酸水溶液と還元液を加えて攪拌し、180分間反応させて金微粒子を製造した。このとき、図1に示すように超音波ホモジナイザーの先端を溶液に差し入れて超音波照射を行った(実施例1)。一方、比較のため超音波照射を行わなわない他は同様の条件で金微粒子を製造した(比較例1-1)。また、還元液に代えて界面活性剤(PEG)を加えて超音波照射し、金微粒子を製造した(比較例1-2)。 (B) Prepare 80 ml of diluted chloroauric acid solution by adding 70 ml of pure water to 10 ml of 1 wt% aqueous solution of chloroauric acid. (B) Add 15 ml of pure water to 4 ml of 10 wt% aqueous solution of citric acid and 5 ml of 1 wt% aqueous solution of tannic acid. A reducing solution of 20 ml was prepared. The aqueous chloroauric acid solution and the reducing solution were added to the reaction vessel and stirred, and reacted for 180 minutes to produce gold fine particles. At this time, as shown in FIG. 1, the tip of an ultrasonic homogenizer was inserted into the solution to perform ultrasonic irradiation (Example 1). On the other hand, for comparison, gold fine particles were produced under the same conditions except that ultrasonic irradiation was not performed (Comparative Example 1-1). Further, a surfactant (PEG) was added in place of the reducing solution, and ultrasonic irradiation was performed to produce gold fine particles (Comparative Example 1-2).

実施例1の製造方法によって得た金微粒子は粒子径が7.0〜13.0nmであり、粒子径の変動係数は10%であった。一方、比較例1-1の方法で得た金微粒子の粒子径は5.0〜13.0nm、粒子径の変動係数は18%であり、また比較例1-2の方法で得た金微粒子の粒子径は6.0〜13.0nm、粒子径の変動係数は15%であり、何れも変動係数が大きかった。 The gold fine particles obtained by the production method of Example 1 had a particle size of 7.0 to 13.0 nm, and the variation coefficient of the particle size was 10%. On the other hand, the particle size of the gold fine particles obtained by the method of Comparative Example 1-1 is 5.0 to 13.0 nm, the variation coefficient of the particle size is 18%, and the gold fine particles obtained by the method of Comparative Example 1-2. The particle diameter was 6.0 to 13.0 nm, and the variation coefficient of the particle diameter was 15%.

塩化金酸1wt%水溶液を30ml、クエン酸10wt%水溶液を12mlとし、タンニン酸の1wt%水溶液5mlに代えて2wt%水溶液8mlを用いた以外は実施例1と同様にして金微粒子を製造した(実施例2)。一方、比較のため超音波照射を行わなわない他は同様の条件で金微粒子を製造した(比較例2-1)。また還元液に代えて界面活性剤(PEG)を加えて超音波照射し、金微粒子を製造した(比較例2-2)。 Gold fine particles were produced in the same manner as in Example 1, except that 30 ml of 1 wt% aqueous solution of chloroauric acid and 12 ml of 10 wt% aqueous solution of citric acid were used instead of 5 ml of 1 wt% aqueous solution of tannic acid. Example 2). On the other hand, for comparison, gold fine particles were produced under the same conditions except that ultrasonic irradiation was not performed (Comparative Example 2-1). In addition, a surfactant (PEG) was added instead of the reducing solution, and ultrasonic irradiation was performed to produce gold fine particles (Comparative Example 2-2).

実施例2の製造方法によって得た金微粒子の粒子径は10.0〜16.0nmであり、粒子径の変動係数は12%であった。一方、比較例2-1の方法で得た金微粒子の粒子径は8.0〜17.0nm、粒子径の変動係数は19%であり、また比較例2-2の方法で得た金微粒子の粒子径は9.0〜17.0nm、粒子径の変動係数は16%であり、何れも変動係数が大きかった。 The particle diameter of the gold fine particles obtained by the production method of Example 2 was 10.0 to 16.0 nm, and the coefficient of variation of the particle diameter was 12%. On the other hand, the particle size of the gold fine particles obtained by the method of Comparative Example 2-1 is 8.0 to 17.0 nm, the coefficient of variation of the particle size is 19%, and the gold fine particles obtained by the method of Comparative Example 2-2. The particle size was 9.0 to 17.0 nm, and the variation coefficient of the particle size was 16%.

(イ)塩化金酸1wt%水溶液10mlに純水70ml加えて希釈した塩化金酸水溶液80mlを調製し、また(ロ)水素化ホウ素ナトリウム1wt%水溶液4mlに純水を16ml加えて希釈した還元液20mlを調製した。反応容器に上記塩化金酸水溶液と還元液を加えて攪拌し、180分間反応させて金微粒子を製造した。このとき、図1に示すように超音波ホモジナイザーの先端を溶液に差し入れて超音波照射を行った(実施例3)。一方、比較のため超音波照射を行わなわない他は同様の条件で金微粒子を製造した(比較例3-1)。また還元液に代えて界面活性剤(PEG)を加えて超音波照射し、金微粒子を製造した(比較例3-1)。 (B) Prepare 80 ml of diluted chloroauric acid solution by adding 70 ml of pure water to 10 ml of 1 wt% aqueous solution of chloroauric acid, and (b) Reduced solution diluted by adding 16 ml of pure water to 4 ml of 1 wt% aqueous solution of sodium borohydride. 20 ml was prepared. The aqueous chloroauric acid solution and the reducing solution were added to the reaction vessel and stirred, and reacted for 180 minutes to produce gold fine particles. At this time, as shown in FIG. 1, the tip of an ultrasonic homogenizer was inserted into the solution to perform ultrasonic irradiation (Example 3). On the other hand, gold fine particles were produced under the same conditions except that ultrasonic irradiation was not performed for comparison (Comparative Example 3-1). In addition, a surfactant (PEG) was added in place of the reducing solution and irradiated with ultrasonic waves to produce gold fine particles (Comparative Example 3-1).

実施例3の製造方法によって得た金微粒子は粒子径が13.0〜17.0nmであり、粒子径の変動係数は10%であった。一方、比較例3-1の方法で得た金微粒子の粒子径は11.0〜18.0nm、粒子径の変動係数は18%であり、また比較例3-2の方法で得た金微粒子の粒子径は12.0〜18.0nm、粒子径の変動係数は15%であり、何れも変動係数が大きかった。 The gold fine particles obtained by the production method of Example 3 had a particle size of 13.0 to 17.0 nm and a variation coefficient of the particle size of 10%. On the other hand, the particle size of the gold fine particles obtained by the method of Comparative Example 3-1 is 11.0 to 18.0 nm, the coefficient of variation of the particle size is 18%, and the gold fine particles obtained by the method of Comparative Example 3-2 The particle size was 12.0 to 18.0 nm, and the variation coefficient of the particle size was 15%.

本発明の製造方法における超音波照射の態様を示す概念図The conceptual diagram which shows the aspect of the ultrasonic irradiation in the manufacturing method of this invention

符号の説明Explanation of symbols

10−スターラー、11−容器、12−攪拌子、13−超音波分散機の先端チップ。


10-stirrer, 11-container, 12-stir bar, 13-tip tip of ultrasonic disperser.


Claims (3)

金属イオン溶液に還元剤の存在下で超音波を照射して金属微粒子を製造する方法において、金属イオン濃度が0.001mol/L以上の高濃度水溶液を用い、金属イオン溶液に攪拌子を入れて該金属イオン溶液を攪拌すると共に、さらに金属イオン溶液の液中に超音波分散機の先端チップを挿入して該液中に超音波を直接照射することによって、平均粒子径4nm〜20nmであって、粒子径の変動係数が12%以下の金属微粒子を製造することを特徴とする金属微粒子の製造方法。 In a method for producing metal fine particles by irradiating a metal ion solution with ultrasonic waves in the presence of a reducing agent, a high concentration aqueous solution having a metal ion concentration of 0.001 mol / L or more is used, and a stirrer is placed in the metal ion solution. By stirring the metal ion solution and further inserting a tip of an ultrasonic disperser into the liquid of the metal ion solution and directly irradiating the liquid with ultrasonic waves, the average particle diameter is 4 nm to 20 nm. A method for producing metal fine particles, comprising producing metal fine particles having a particle diameter variation coefficient of 12% or less. 請求項1に記載する方法によって製造された、平均粒子径4nm〜20nmであって、粒子径の変動係数が12%以下である金微粒子。 Gold fine particles produced by the method according to claim 1 and having an average particle size of 4 nm to 20 nm and a coefficient of variation of the particle size of 12% or less. 請求項2に記載する金微粒子を含むペースト、金コロイド、膜、または光学フィルター。 A paste, gold colloid, film or optical filter comprising the gold fine particles according to claim 2 .
JP2004183233A 2003-06-23 2004-06-22 Metal fine particles and production method thereof Expired - Fee Related JP4640570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004183233A JP4640570B2 (en) 2003-06-23 2004-06-22 Metal fine particles and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003178311 2003-06-23
JP2004183233A JP4640570B2 (en) 2003-06-23 2004-06-22 Metal fine particles and production method thereof

Publications (2)

Publication Number Publication Date
JP2005036316A JP2005036316A (en) 2005-02-10
JP4640570B2 true JP4640570B2 (en) 2011-03-02

Family

ID=34220144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004183233A Expired - Fee Related JP4640570B2 (en) 2003-06-23 2004-06-22 Metal fine particles and production method thereof

Country Status (1)

Country Link
JP (1) JP4640570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031799A (en) * 2005-07-28 2007-02-08 Toda Kogyo Corp Method for producing metal nanoparticle
JP2009270128A (en) * 2008-04-30 2009-11-19 Osaka Prefecture Univ Method for producing gold nanorod
JP5155840B2 (en) * 2008-12-12 2013-03-06 三井金属鉱業株式会社 Method for producing metal hydroxide particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136904A (en) * 1980-03-31 1981-10-26 Toshiba Corp Production of platinum group particle
JPS6357703A (en) * 1986-08-29 1988-03-12 Daido Steel Co Ltd Production of fine metallic powder
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56136904A (en) * 1980-03-31 1981-10-26 Toshiba Corp Production of platinum group particle
JPS6357703A (en) * 1986-08-29 1988-03-12 Daido Steel Co Ltd Production of fine metallic powder
JPH02277705A (en) * 1989-04-19 1990-11-14 Tanaka Kikinzoku Kogyo Kk Method for preparing ultra fine gold particles

Also Published As

Publication number Publication date
JP2005036316A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
Teh et al. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant
Okitsu et al. Formation of noble metal particles by ultrasonic irradiation
Haas et al. Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly (N-vinylpyrrolidone)
Liu et al. Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method
JP2017206750A (en) Method for producing metal nanoparticle
JP4640570B2 (en) Metal fine particles and production method thereof
Domini et al. Merging metallic catalysts and sonication: A periodic table overview
KR20120116169A (en) Method for manufacturing metal nanoparticle of core-shell structure having excellent oxidation stability
CN106984330A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN104014348B (en) A kind of nickel/precious metal/class alpha-phase nickel hydroxide nano composite material, preparation method and application thereof
TWI273133B (en) Wines containing au nanoparticles and manufacturing methods
CN115517268B (en) Silver-loaded zinc-copper single-layer zirconium phosphate nano-sheet and preparation method thereof
JPS6357703A (en) Production of fine metallic powder
CN107008428A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107051511A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008350A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020106A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN106984329A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020095A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008374A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107029747A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107020119A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107008439A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
CN107088419A (en) The preparation method of ozone Heterogeneous oxidation solid catalyst
POTAPENKO et al. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 1999 THE PARTICLE SIZE CONTROL OF HIGHLY DISPERSED SILVER IN CHEMICAL AND SONOCHEMICAL REDUCTION OF Ag* IONS IN AQUEOUS SOLUTIONS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101117

R150 Certificate of patent or registration of utility model

Ref document number: 4640570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees