JPS63186803A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186803A
JPS63186803A JP1706487A JP1706487A JPS63186803A JP S63186803 A JPS63186803 A JP S63186803A JP 1706487 A JP1706487 A JP 1706487A JP 1706487 A JP1706487 A JP 1706487A JP S63186803 A JPS63186803 A JP S63186803A
Authority
JP
Japan
Prior art keywords
particle size
copper
ascorbic acid
soln
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1706487A
Other languages
Japanese (ja)
Other versions
JPH07107168B2 (en
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1706487A priority Critical patent/JPH07107168B2/en
Publication of JPS63186803A publication Critical patent/JPS63186803A/en
Publication of JPH07107168B2 publication Critical patent/JPH07107168B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce mono-dispersed fine copper particles having a narrow particle size distribution by reducing an aq. copper sulfate soln. with L-ascorbic acid or a salt thereof. CONSTITUTION:The pH of an aq. copper sulfate soln. is adjusted to about 0.3-5. by adding dil. sulfuric acid or the like. The pH of an aq. soln. of L- ascorbic acid or a salt thereof is adjusted to <= about 0.5 by adding NaOH or the like. The temps. of the solns. are regulated to about 10-100 deg.C and the L-ascorbic acid (salt) soln. is added to the copper sulfate soln. with stirring to reduce copper ions in the copper sulfate soln. The resulting fine copper particles are separated by filtration and washed. Thus, mono-dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. It had the disadvantage that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は硫酸銅水溶液中の銅イオンを還元して銅微粒子
を製造する方法において、還元剤としてL−アスコルビ
ン酸又はL−アスコルビン酸塩類を用いることによって
単分散した銅微粒子を得ることを特徴とするものである
(Means for Solving the Problems) The present invention provides a method for producing copper fine particles by reducing copper ions in an aqueous copper sulfate solution. This method is characterized by obtaining dispersed copper fine particles.

而して本発明の製造方法において、L−アスコルビン酸
又は、L−アスコルビン酸塩1を用いる理由は、これら
の酸化還元電位が硫酸銅水溶液を還元するのに適当であ
ると同時に粒子同士の凝集を防ぐ働きがあるためである
The reason why L-ascorbic acid or L-ascorbate 1 is used in the production method of the present invention is that the redox potential thereof is suitable for reducing the aqueous copper sulfate solution, and at the same time, the reason is that L-ascorbic acid or L-ascorbate 1 is used. This is because it works to prevent

また、本発明の請求範囲においてL−アスコルビン酸及
びL−アスコルビン酸塩類としては、ナトリウム塩、カ
リウム塩、アンモニウム塩等を問わない。
In addition, in the scope of the present invention, L-ascorbic acid and L-ascorbate salts include sodium salts, potassium salts, ammonium salts, and the like.

さらに本発明において、硫酸銅水溶液のpHは0.3よ
りも低いと反応が遅くなり、5よりも高いと銅の水酸化
物の沈殿が生成するので、0.3〜5の範囲がより好ま
しく、L−アスコルビン酸のp Hは0.5よりも低い
と反応が極端に遅くなるので、0.5以上がより好まし
く、また、反応時の温度は10℃より低いと反応が遅く
、100℃を超えると銅微粒子が凝集してくるので、1
0〜100℃の範囲がより好ましい。
Furthermore, in the present invention, if the pH of the copper sulfate aqueous solution is lower than 0.3, the reaction will be slow, and if it is higher than 5, copper hydroxide will precipitate, so it is more preferably in the range of 0.3 to 5. If the pH of L-ascorbic acid is lower than 0.5, the reaction will be extremely slow, so a pH of 0.5 or higher is more preferable, and if the reaction temperature is lower than 10°C, the reaction will be slow; If the copper particles exceed 1, the copper particles will aggregate.
The range of 0 to 100°C is more preferable.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し11の水溶液とした後
、希硫酸を加えてp H= 1に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 1.

また、L−アスコルビン酸200gを水に溶解し12の
水溶液とした後、水酸化ナトリウムを加えてpH=7に
調整する。ここで、この2液の温度を30℃にし、硫酸
銅水溶液を攪拌しなからL−アスコルビン酸溶液を添加
し、5分間反応させる。
Further, 200 g of L-ascorbic acid was dissolved in water to form an aqueous solution of No. 12, and then sodium hydroxide was added to adjust the pH to 7. Here, the temperature of these two liquids is set to 30° C., and while stirring the copper sulfate aqueous solution, the L-ascorbic acid solution is added, and the mixture is allowed to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が1.
2.u m、粒度分布は0.8〜1.5μmに70%が
入るシャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.
2. The particle size distribution was sharp with 70% falling within the range of 0.8 to 1.5 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し、Hの水溶液とした後
、希硫酸を加えてpH=3に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to make an aqueous solution of H, dilute sulfuric acid is added to adjust the pH to 3.

また、L−アスコルビン酸128gを水に溶解し11の
水溶液とした後、水酸化ナトリウムを加えてp H= 
5に調整する。ここで、この2液の温度を70℃にし、
硫酸銅水溶液を攪拌しながらL−アスコルビン酸溶液を
添加し、3分間反応させる。
Further, 128 g of L-ascorbic acid was dissolved in water to make an aqueous solution of 11, and sodium hydroxide was added to adjust the pH=
Adjust to 5. Here, the temperature of these two liquids is set to 70℃,
The L-ascorbic acid solution is added to the copper sulfate aqueous solution while stirring, and the mixture is allowed to react for 3 minutes.

得られたF4微粒子は濾過、洗浄して、粒度分布測定及
び電子顕微鏡観察を行った。
The obtained F4 fine particles were filtered and washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で平均粒径が1.8μ
m、粒度分布は1.5〜2.5μmに70%が入るシャ
ープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 1.8 μm.
m, the particle size distribution was sharp with 70% falling between 1.5 and 2.5 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し1βの水溶液とした後
、希硫酸を加えてp H= 1に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to obtain a 1β aqueous solution, dilute sulfuric acid was added to adjust the pH to 1.

また、L−アスコルビン酸ナトリウム200gを水に溶
解し11の水溶液にする。ここでこの2液の温度を20
°Cにし硫酸銅水溶液を攪拌しながらL−アスコルビン
酸ナトリウムを添加し5分間反応させる。
Further, 200 g of sodium L-ascorbate was dissolved in water to form an aqueous solution of No. 11. Here, the temperature of these two liquids is 20
While stirring the aqueous copper sulfate solution, add sodium L-ascorbate and allow to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が1.0
μm、粒度分布は0.7〜1.3μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.0.
The particle size distribution was sharp with 70% falling in the range of 0.7 to 1.3 μm.

(従来例) 水1.OOOmA’を攪拌しながら平均粒径5μmの酸
化第2銅50gを分散懸濁させる。
(Conventional example) Water 1. While stirring OOOmA', 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended.

さらにこの液を攪拌しながら70℃まで昇温し、80%
の抱水ヒドラジン水溶液200m lを添加後、70℃
で2時間攪拌した。
Furthermore, the temperature of this liquid was raised to 70℃ while stirring, and the temperature was increased to 80%.
After adding 200ml of hydrazine hydrate aqueous solution of
The mixture was stirred for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布測定及び電
子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は硫酸銅
水溶液を還元して銅微粒子を製造する方法において、還
元剤としてL−アスコルビン酸又はL−アスコルビン酸
塩類を用いることにより、従来法では得られなかった単
分散した粒度分布の幅の狭い微細な銅粒子を粒径をコン
トロールして製造できるので、従来の製造方法にとって
代わることのできる画期的なものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses L-ascorbic acid or L-ascorbic acid salts as a reducing agent in the method of producing copper fine particles by reducing an aqueous copper sulfate solution. By using this method, it is possible to manufacture monodisperse fine copper particles with a narrow particle size distribution, which cannot be obtained using conventional methods, by controlling the particle size, so it can be said to be an epoch-making method that can replace conventional manufacturing methods.

Claims (1)

【特許請求の範囲】[Claims] 硫酸銅水溶液を還元して銅微粒子を製造する方法におい
て、還元剤としてL−アスコルビン酸又はL−アスコル
ビン酸塩類を用いることによって単分散した銅微粒子を
得ることを特徴とする銅微粒子の製造方法。
A method for producing copper microparticles by reducing an aqueous copper sulfate solution, the method comprising obtaining monodispersed copper microparticles by using L-ascorbic acid or L-ascorbic acid salts as a reducing agent.
JP1706487A 1987-01-27 1987-01-27 Method for producing fine copper particles Expired - Lifetime JPH07107168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1706487A JPH07107168B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1706487A JPH07107168B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Publications (2)

Publication Number Publication Date
JPS63186803A true JPS63186803A (en) 1988-08-02
JPH07107168B2 JPH07107168B2 (en) 1995-11-15

Family

ID=11933551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1706487A Expired - Lifetime JPH07107168B2 (en) 1987-01-27 1987-01-27 Method for producing fine copper particles

Country Status (1)

Country Link
JP (1) JPH07107168B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050003164A (en) * 2003-06-30 2005-01-10 나노솔루션주식회사 Method for manufacturing copper powder
CN1300381C (en) * 2003-06-16 2007-02-14 昆明理工恒达科技有限公司 Preparing method for conductive composite bronze powder and composite bronze conductive sizing agent
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
CN102601383A (en) * 2012-03-30 2012-07-25 电子科技大学 Method for preparing ultrafine copper powder at room temperature
JP2014118589A (en) * 2012-12-14 2014-06-30 Unitika Ltd Coated fibrous copper fine particle aggregate
JP2014118590A (en) * 2012-12-14 2014-06-30 Unitika Ltd Fibrous silver fine particle aggregate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300381C (en) * 2003-06-16 2007-02-14 昆明理工恒达科技有限公司 Preparing method for conductive composite bronze powder and composite bronze conductive sizing agent
KR20050003164A (en) * 2003-06-30 2005-01-10 나노솔루션주식회사 Method for manufacturing copper powder
JP2010018880A (en) * 2008-04-01 2010-01-28 Dowa Electronics Materials Co Ltd Copper powder for conductive paste, and method for producing the same
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same
CN102601383A (en) * 2012-03-30 2012-07-25 电子科技大学 Method for preparing ultrafine copper powder at room temperature
JP2014118589A (en) * 2012-12-14 2014-06-30 Unitika Ltd Coated fibrous copper fine particle aggregate
JP2014118590A (en) * 2012-12-14 2014-06-30 Unitika Ltd Fibrous silver fine particle aggregate

Also Published As

Publication number Publication date
JPH07107168B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
JPS63186803A (en) Production of fine copper particles
Eshuis et al. A descriptive model for the homogeneous precipitation of zinc sulfide from acidic zinc salt solutions
JPS63186805A (en) Production of fine copper particles
JPS63179009A (en) Production of fine silver particles
JPH01104338A (en) Manufacture of silver colloid
JPH0211709A (en) Production of silver colloid
JPS63186807A (en) Production of fine copper particles
JPS63186809A (en) Production of fine copper particles
JPS63186811A (en) Production of fine copper particles
JPS63186812A (en) Production of fine copper particles
JPS63186804A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPS63186806A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPH0211707A (en) Production of silver fine particle
JPH01225705A (en) Production of fine copper particles
JPH01225708A (en) Production of fine palladium particles
JPS63179012A (en) Production of fine silver particles
JPH01225706A (en) Production of fine copper particles
JPH01287210A (en) Manufacture of silver fine particle
JPS63179010A (en) Production of fine silver particles
JPS63179011A (en) Production of fine silver particles
JPH01225707A (en) Production of fine palladium particles
JPH01225709A (en) Production of fine palladium particles