JPS63186811A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186811A
JPS63186811A JP1707287A JP1707287A JPS63186811A JP S63186811 A JPS63186811 A JP S63186811A JP 1707287 A JP1707287 A JP 1707287A JP 1707287 A JP1707287 A JP 1707287A JP S63186811 A JPS63186811 A JP S63186811A
Authority
JP
Japan
Prior art keywords
particle size
copper
borohydride
soln
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1707287A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1707287A priority Critical patent/JPS63186811A/en
Publication of JPS63186811A publication Critical patent/JPS63186811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce singly dispersed fine copper particles having a narrow particle size distribution by reducing an aq. copper sulfate soln. with a borohydride compd. CONSTITUTION:The pH of an aq. copper sulfate soln. is adjusted to about 0.5-5 by adding dil. sulfuric acid or the like. The pH of an aq. soln. of a borohydride compd. such as sodium borohydride is adjusted to about 3-10 by adding dil. sulfuric acid or the like. The temps. of the solns. are regulated to about 10-60 deg.C and the borohydride compd. soln. is added to the copper sulfate soln. with stirring to reduce copper ions in the copper sulfate soln. The resulting fine copper particles are separated by filtration and washed. Thus, singly dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うためにWE集
した粒度分布の幅の広い銅粒子しか得られないという欠
点を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and because the reduced particles are attracted to each other, it is difficult to control the width of the particle size distribution collected by WE. This method had the disadvantage that only wide copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は硫酸銅水溶液中の銅を還元して銅微粒子を製造
する方法において、還元剤として水素化ホウ素化合物を
用いることによって単分散した銅微粒子を得ることを特
徴とするものである。
(Means for Solving the Problems) The present invention provides a method for producing copper fine particles by reducing copper in an aqueous copper sulfate solution, in which monodispersed copper fine particles are obtained by using a boron hydride compound as a reducing agent. It is characterized by:

而して本発明の製造方法において、水素化ホウ素化合物
を用いる理由は、これらの酸化還元電位が硫酸銅水溶液
を還元するのに適当であるためである。
The reason why boron hydride compounds are used in the production method of the present invention is that their redox potential is suitable for reducing an aqueous copper sulfate solution.

また、本発明の請求範囲において水素化ホウ素化合物と
しては、水素化ホウ素ナトリウム、水素化ホウ素カリウ
ム、水素化ホウ素アルミニウム等である。
Further, in the scope of the claims of the present invention, examples of the borohydride compound include sodium borohydride, potassium borohydride, aluminum borohydride, and the like.

さらに本発明において、硫酸銅水溶液のp Hは0.5
よりも低いと反応が遅くなり、5よりも高いと銅の水酸
化物の沈殿が生成するので、0.5〜5の範囲がより好
ましく、水素化ホウ素化合物のp Hは3よりも低いと
反応が極端に遅くなり、10よりも高いと反応が激しく
なり、銅微粒子が凝集してくるので、3〜10の範囲が
より好ましく、また、反応時の温度は10℃よりも低い
と反応が遅<、60℃を超えると!rla粒子が凝集し
てくるので、10〜60℃の範囲がより好ましい。
Furthermore, in the present invention, the pH of the copper sulfate aqueous solution is 0.5.
If it is lower than 5, the reaction will be slow, and if it is higher than 5, copper hydroxide will precipitate, so the range of 0.5 to 5 is more preferable, and the pH of the borohydride compound is lower than 3. The reaction will be extremely slow, and if the temperature is higher than 10, the reaction will be intense and the copper particles will aggregate, so a range of 3 to 10 is more preferable. When the temperature exceeds 60℃! Since the rla particles will aggregate, a temperature range of 10 to 60°C is more preferable.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し12の水溶液とした後
、希硫酸を加えてpH=1に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of 12, dilute sulfuric acid was added to adjust the pH to 1.

また、水素化ホウ素ナトリウム20gを水に溶解し11
の水溶液とした後、希硫酸を加えてp H=8に調整す
る。ここで、この2液の温度を30℃にし、硫酸銅水溶
液を攪拌しながら水素化ホウ素ナトリウム水溶液を添加
し、5分間反応させる。
In addition, 20 g of sodium borohydride was dissolved in water and 11
After making an aqueous solution, dilute sulfuric acid is added to adjust the pH to 8. Here, the temperature of these two liquids is set to 30° C., and the sodium borohydride aqueous solution is added while stirring the copper sulfate aqueous solution, and the mixture is allowed to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が0.
5μm、粒度分布は0.2〜0.7μmに70%が入る
シャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 0.
5 μm, and the particle size distribution was sharp with 70% falling in the range of 0.2 to 0.7 μm.

(実施例2) 硫酸銅結晶126gを水に熔解し11の水溶液とした後
、希硫酸を加えてpH=3に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to make an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 3.

また、水素化ホウ素カリウム10gを水に溶解し11の
水溶液とした後、希硫酸を加えてp +−1= 5に調
整する。ここで、この2液の温度を50°Cにし、硫酸
銅水溶液を攪拌しながら、水素化ホウ素カリウム水溶液
を添加し、3分間反応させる。
Further, after dissolving 10 g of potassium borohydride in water to obtain an aqueous solution of No. 11, dilute sulfuric acid was added to adjust p +-1 = 5. Here, the temperature of these two liquids is set to 50° C., and while stirring the copper sulfate aqueous solution, the potassium borohydride aqueous solution is added, and the mixture is allowed to react for 3 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が0.3
μm、粒度分布は0.1〜0.5μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 0.3.
The particle size distribution was sharp with 70% falling in the range of 0.1 to 0.5 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し1aの水溶液とした後
、希硫酸を加えてpH=4に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to obtain an aqueous solution of 1a, dilute sulfuric acid was added to adjust the pH to 4.

また、水素化ホウ素アルミニウム25gを水に溶解し1
βの水溶液とした後、希硫酸を加えてp )1=3に調
整する。ここでこの2液の温度を20℃にし、硫酸銅水
溶液を攪拌しながら、水素化ホウ素アルミニウム水溶液
を添加し、10分間反応させる。
In addition, 25 g of aluminum borohydride was dissolved in water and 1
After making an aqueous solution of β, dilute sulfuric acid is added to adjust p) to 1=3. Here, the temperature of these two liquids is set to 20° C., and while stirring the copper sulfate aqueous solution, an aluminum borohydride aqueous solution is added, and the mixture is allowed to react for 10 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が0.7
μm、粒度分布は0.5〜1.0μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 0.7.
The particle size distribution was sharp with 70% falling in the range of 0.5 to 1.0 μm.

(従来例) 水1,0OOnj!を攪拌しながら平均粒径5μmの酸
化第2銅50gを分散′?A濁させる。
(Conventional example) Water 1,0OOnj! While stirring, disperse 50 g of cupric oxide with an average particle size of 5 μm. A: Make it cloudy.

さらにこの液を攪拌しながら70℃まで昇温し、80%
のヒドラジンヒトラード水溶液200m I!を添加後
、70℃で2時間攪拌した。
Furthermore, the temperature of this liquid was raised to 70℃ while stirring, and the temperature was increased to 80%.
200ml of hydrazine hittride aqueous solution I! After addition, the mixture was stirred at 70°C for 2 hours.

得られた!PIi粒子は濾過、洗浄して粒度分布測定及
び電子顕微鏡観察を行った。
Got it! The PIi particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm1粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The μm1 particle size distribution was wide, ranging from 0.5 to 10 μm, and the particles were agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は硫酸銅
水溶液を還元して銅微粒子を製造する方法において、還
元剤として水素化ホウ素化合物を用いることにより、従
来法では得られなかった単分散した粒度分布の幅の狭い
微細な銅粒子を粒径をコントロールして製造できるので
、従来の製造方法にとって代わることのできる画期的な
ものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses a boron hydride compound as a reducing agent in the method of producing copper fine particles by reducing an aqueous copper sulfate solution. Since it is possible to manufacture fine copper particles with a narrow particle size distribution that are monodispersed, which was previously impossible to achieve, by controlling the particle size, it can be said to be an epoch-making method that can replace conventional manufacturing methods.

Claims (1)

【特許請求の範囲】[Claims] 硫酸銅水溶液を還元して銅微粒子を製造する方法におい
て、還元剤として水素化ホウ素化合物を用いることによ
って単分散した銅微粒子を得ることを特徴とする銅微粒
子の製造方法。
A method for producing copper microparticles by reducing an aqueous copper sulfate solution, the method comprising obtaining monodispersed copper microparticles by using a boron hydride compound as a reducing agent.
JP1707287A 1987-01-27 1987-01-27 Production of fine copper particles Pending JPS63186811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1707287A JPS63186811A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1707287A JPS63186811A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Publications (1)

Publication Number Publication Date
JPS63186811A true JPS63186811A (en) 1988-08-02

Family

ID=11933782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1707287A Pending JPS63186811A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Country Status (1)

Country Link
JP (1) JPS63186811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
WO2012043267A1 (en) 2010-09-30 2012-04-05 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for manufacturing same
US9248504B2 (en) 2010-09-30 2016-02-02 Dowa Electronics Materials Co., Ltd. Copper powder for conductive paste and method for producing same

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
JPS63186803A (en) Production of fine copper particles
JPS63186811A (en) Production of fine copper particles
JPS63179009A (en) Production of fine silver particles
JPS63186805A (en) Production of fine copper particles
JPH0211709A (en) Production of silver colloid
JPH01104338A (en) Manufacture of silver colloid
JPS63186812A (en) Production of fine copper particles
JPS63186807A (en) Production of fine copper particles
JPS63186809A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JP2834199B2 (en) Method for producing ultrafine tungsten particles
JPH0211707A (en) Production of silver fine particle
JPH0211708A (en) Production of silver colloid
JPS63186804A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS63179012A (en) Production of fine silver particles
JPH01225705A (en) Production of fine copper particles
JPH07107172B2 (en) Method for producing fine silver particles
JPH01287210A (en) Manufacture of silver fine particle
JPH01225708A (en) Production of fine palladium particles
JPS63307207A (en) Production of fine silver particles
JPH01225706A (en) Production of fine copper particles
JPS63186806A (en) Production of fine copper particles
JPH032302A (en) Manufacture of high purity copper fine powder