JPS63186809A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186809A
JPS63186809A JP1707087A JP1707087A JPS63186809A JP S63186809 A JPS63186809 A JP S63186809A JP 1707087 A JP1707087 A JP 1707087A JP 1707087 A JP1707087 A JP 1707087A JP S63186809 A JPS63186809 A JP S63186809A
Authority
JP
Japan
Prior art keywords
particle size
copper
soln
particles
copper sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1707087A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1707087A priority Critical patent/JPS63186809A/en
Publication of JPS63186809A publication Critical patent/JPS63186809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce singly dispersed fine copper particles having a narrow particle size distribution by reducing an aq. copper sulfate soln. with hypophosphorous acid or a salt thereof. CONSTITUTION:The pH of an aq. copper sulfate soln. is adjusted to about 0.3-5 by adding dil. sulfuric acid or the like. The pH of an aq. soln. of hypophosphorous acid or a salt thereof is adjusted to about 1-10 by adding NaOH or the like. The temps. of the solns. are regulated to about 30-100 deg.C and the hypophosphorous acid (salt) soln. is added to the copper sulfate soln. with stirring to reduce copper ions in the copper sulfate soln. The resulting fine copper particles are separated by filtration and washed. Thus, singly dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. It had the disadvantage that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は硫酸銅水溶液中の銅を還元して銅微粒子を製造
する方法において、還元剤として次亜リン酸又は次亜リ
ン酸塩類を用いることによって単分散した銅微粒子を得
ることを特徴とするものである。
(Means for Solving the Problems) The present invention provides a method for producing fine copper particles by reducing copper in an aqueous solution of copper sulfate, in which monodispersion is achieved by using hypophosphorous acid or hypophosphites as a reducing agent. This method is characterized by obtaining fine copper particles.

而して本発明の製造方法において、次亜リン酸又は次亜
リン酸塩類を用いる理由は、これらの酸化還元電位が硫
酸銅水溶液を還元するのに適当であると同時に粒子同士
の凝集を防ぐ働きがあるためである。
In the production method of the present invention, hypophosphorous acid or hypophosphite salts are used because their redox potential is suitable for reducing the copper sulfate aqueous solution and at the same time prevents particles from agglomerating. Because it has a function.

また、本発明の請求範囲において次亜リン酸又は次亜リ
ン酸塩類としては、ナトリウム塩、カリウム塩、アンモ
ニウム塩等を問わない。
Furthermore, in the scope of the claims of the present invention, hypophosphorous acid or hypophosphite salts may be sodium salts, potassium salts, ammonium salts, or the like.

さらに本発明において、硫酸銅水溶液のp Hは0.3
よりも低いと反応が遅くなり、5よりも高いと銅の水酸
化物の沈殿が生成するので、0.3〜5の範囲がより好
ましく、次亜リン酸のp Hは1よりも低いと反応が極
端に遅くなり、10よりも高いと反応が激しくなり、銅
微粒子が凝集してくるので1〜10の範囲がより好まし
く、また、反応時の温度は30℃よりも低いと反応が起
こらず、100℃を超えると銅微粒子が凝集してくるの
で、30〜100°Cの範囲がより好ましい。
Furthermore, in the present invention, the pH of the copper sulfate aqueous solution is 0.3.
If it is lower than 5, the reaction will be slow, and if it is higher than 5, copper hydroxide will precipitate. Therefore, the range of 0.3 to 5 is more preferable, and the pH of hypophosphorous acid is lower than 1. The reaction will be extremely slow, and if it is higher than 10, the reaction will be intense and the copper fine particles will aggregate, so a range of 1 to 10 is more preferable, and if the reaction temperature is lower than 30°C, the reaction will not occur. First, if the temperature exceeds 100°C, the copper fine particles will aggregate, so a temperature range of 30 to 100°C is more preferable.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し11の水溶液とした後
、希硫酸を加えてpH=1に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 1.

また、次亜リン酸30gを水に溶解し1βの水溶液とし
た後、水酸化ナトリウムを加えてp H= 8に調整す
る。ここで、この2液の温度を70℃にし、硫酸銅水溶
液を攪拌しながら次亜リン酸を添加し、10分間反応さ
せる。
Further, 30 g of hypophosphorous acid is dissolved in water to obtain a 1β aqueous solution, and then sodium hydroxide is added to adjust the pH to 8. Here, the temperature of these two liquids is set to 70°C, hypophosphorous acid is added to the aqueous copper sulfate solution while stirring, and the mixture is allowed to react for 10 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が1.
8μm、粒度分布は1.5〜2.0μmに70%が入る
シャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.
8 μm, and the particle size distribution was sharp with 70% falling between 1.5 and 2.0 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し11の水溶液とした後
、希硫酸を加えてpH=4に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to make an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 4.

また、次亜リン酸20gを水に溶解し1βの水溶液とし
た後、水酸化ナトリウムを加えてpH=5に調整する。
Further, 20 g of hypophosphorous acid is dissolved in water to obtain a 1β aqueous solution, and then sodium hydroxide is added to adjust the pH to 5.

ここで、この2液の温度を50℃にし、硫酸銅水溶液を
攪拌しながら次亜リン酸を添加し、5分間反応させる。
Here, the temperature of these two liquids is set to 50°C, hypophosphorous acid is added to the aqueous copper sulfate solution while stirring, and the mixture is allowed to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が1.1
μm、粒度分布は0.7〜1.5μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.1
The particle size distribution was sharp with 70% falling in the range of 0.7 to 1.5 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し11の水溶液とした後
、希硫酸を加えてp H= 2に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 2.

また、次亜リン酸ナトリウム50gを水に溶解し1βの
水溶液にする。ここでこの2液の温度を80℃にし硫酸
銅水溶液を攪拌しながら次亜リン酸ナトリウムを添加し
15分間反応させる。
Further, 50 g of sodium hypophosphite is dissolved in water to make a 1β aqueous solution. Here, the temperature of these two liquids is set to 80°C, and sodium hypophosphite is added while stirring the copper sulfate aqueous solution, and the mixture is allowed to react for 15 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が1.5
μm、粒度分布は1.2〜1.8μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.5.
The particle size distribution was sharp with 70% falling within the range of 1.2 to 1.8 μm.

(従来例) 水1.OOOmj2を攪拌しながら平均粒径5μmの酸
化第2銅50gを分散懸濁させる。
(Conventional example) Water 1. While stirring OOOmj2, 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended.

さらにこの液を攪拌しながら70℃まで昇温し、80%
の抱水ヒドラジン水溶液200m lを添加後、70℃
で2時間攪拌した。
Furthermore, the temperature of this liquid was raised to 70℃ while stirring, and the temperature was increased to 80%.
After adding 200ml of hydrazine hydrate aqueous solution of
The mixture was stirred for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布測定及び電
子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は硫酸銅
水溶液を還元して銅微粒子を製造する方法において、還
元剤として次亜リン酸又は次亜リン酸塩類を用いること
により、従来法では得られなかった単分散した粒度分布
の幅の狭い微細な銅粒子を粒径をコントロールして製造
できるので、従来の製造方法にとって代わることのでき
る画期的なものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses hypophosphorous acid or hypophosphites as a reducing agent in the method of producing copper fine particles by reducing an aqueous copper sulfate solution. By using this method, it is possible to manufacture monodisperse fine copper particles with a narrow particle size distribution, which cannot be obtained using conventional methods, by controlling the particle size, so it can be said to be an epoch-making method that can replace conventional manufacturing methods.

Claims (1)

【特許請求の範囲】[Claims] 硫酸銅水溶液を還元して銅微粒子を製造する方法におい
て、還元剤として次亜リン酸又次亜リン酸塩類を用いる
ことによって単分散した銅微粒子を得ることを特徴とす
る銅微粒子の製造方法。
A method for producing copper microparticles by reducing an aqueous copper sulfate solution, the method comprising obtaining monodispersed copper microparticles by using hypophosphorous acid or hypophosphites as a reducing agent.
JP1707087A 1987-01-27 1987-01-27 Production of fine copper particles Pending JPS63186809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1707087A JPS63186809A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1707087A JPS63186809A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Publications (1)

Publication Number Publication Date
JPS63186809A true JPS63186809A (en) 1988-08-02

Family

ID=11933723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1707087A Pending JPS63186809A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Country Status (1)

Country Link
JP (1) JPS63186809A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294417A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of superfine copper powder
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02294417A (en) * 1989-05-10 1990-12-05 Seidou Kagaku Kogyo Kk Production of superfine copper powder
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
JPS63186803A (en) Production of fine copper particles
JPH08176620A (en) Production of silver powder
JPS63179009A (en) Production of fine silver particles
JPS63186809A (en) Production of fine copper particles
JPS63186805A (en) Production of fine copper particles
JPH0211709A (en) Production of silver colloid
JPH01104338A (en) Manufacture of silver colloid
JPS63186807A (en) Production of fine copper particles
JPS63186811A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPH0211707A (en) Production of silver fine particle
JPS63186808A (en) Production of fine copper particles
JPS63186812A (en) Production of fine copper particles
JPH01287210A (en) Manufacture of silver fine particle
JPS63186804A (en) Production of fine copper particles
JPH01225705A (en) Production of fine copper particles
JPS63186806A (en) Production of fine copper particles
JPS63179010A (en) Production of fine silver particles
JPH01225708A (en) Production of fine palladium particles
JPS63179012A (en) Production of fine silver particles
JPH01225706A (en) Production of fine copper particles
JPS63179011A (en) Production of fine silver particles
JPH032302A (en) Manufacture of high purity copper fine powder
JPH0211706A (en) Production of silver fine particle