JPS63186806A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186806A
JPS63186806A JP1706787A JP1706787A JPS63186806A JP S63186806 A JPS63186806 A JP S63186806A JP 1706787 A JP1706787 A JP 1706787A JP 1706787 A JP1706787 A JP 1706787A JP S63186806 A JPS63186806 A JP S63186806A
Authority
JP
Japan
Prior art keywords
copper
particle size
soln
erythorbic acid
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1706787A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1706787A priority Critical patent/JPS63186806A/en
Publication of JPS63186806A publication Critical patent/JPS63186806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce mono-dispersed fine copper particles having a narrow particle size distribution by reducing a copper-ammonium complex soln. with D-erythorbic acid or a salt thereof. CONSTITUTION:The pH of a copper-ammonium complex soln. is adjusted to about 7.5-13. The pH of an aq. soln. of D-erythorbic acid or a salt thereof is adjusted to >= about 0.5 by adding an aq. ammonia soln. or the like. The temps. of the solns. are regulated to about 30-100 deg.C and the D-erythorbic acid (salt) soln. is added to the complex soln. with stirring to reduce copper ions in the complex soln. The resulting fine copper particles are separated by filtration and washed. Thus, mono-dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. It had the disadvantage that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は銅アンモニウム錯体溶液中の銅イオンを還元し
て銅微粒子を製造する方法において、還元剤としてD−
エリソルビン酸又はD−エリソルビン酸塩類を用いるこ
とによって単分散した銅微粒子を得ることを特徴とする
ものである。
(Means for Solving the Problems) The present invention provides a method for producing fine copper particles by reducing copper ions in a copper ammonium complex solution.
It is characterized in that monodispersed copper fine particles are obtained by using erythorbic acid or D-erythorbic acid salts.

而して本発明の製造方法において、D−エリソルビン酸
又は、D−エリソルビン酸塩類を用いる理由は、これら
の酸化還元電位が銅アンモニウム錯体溶液を還元するの
に適当であると同時に粒子同士の凝集を防ぐ働きがある
ためである。
The reason why D-erythorbic acid or D-erythorbic acid salts are used in the production method of the present invention is that their redox potential is suitable for reducing the copper ammonium complex solution, and at the same time, it prevents the aggregation of particles. This is because it works to prevent

また、本発明の請求範囲においてD−エリソルビン酸及
びD−エリソルビン酸塩類としては、ナトリウム塩、カ
リウム塩、アンモニウム塩等を問わない。
Further, in the scope of the present invention, D-erythorbic acid and D-erythorbic acid salts include sodium salts, potassium salts, ammonium salts, and the like.

さらに本発明において、銅アンモニウム錯体溶液のpH
は7.5よりも低いと銅の水酸化物の沈殿か生成し、1
3よりも高いとアンモニアガスが発生が多くなり反応が
遅くなるので、7.5〜13の範囲がより好ましく、D
−エリソルビン酸のpHは0.5よりも低いと反応が極
端に遅くなるので、0.5以上がより好ましく、また、
反応時の温度は30℃よりも低いと反応が遅く、100
℃を超えると銅微粒子が凝集してくるので、30〜10
0℃の範囲がより好ましい。
Furthermore, in the present invention, the pH of the copper ammonium complex solution is
If the value is lower than 7.5, precipitation of copper hydroxide will occur, and 1
If it is higher than 3, ammonia gas will be generated more and the reaction will be slower, so the range of 7.5 to 13 is more preferable.
- If the pH of erythorbic acid is lower than 0.5, the reaction will be extremely slow, so it is more preferably 0.5 or higher, and
If the reaction temperature is lower than 30°C, the reaction will be slow, and
If the temperature exceeds 30 to 10℃, the copper particles will aggregate.
A range of 0°C is more preferred.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し11の水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのp)lを9.5に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of No. 11, 28% ammonia water was added to make a copper ammonium complex solution, and its p)l was adjusted to 9.5.

また、D−エリソルビン酸200gを水に溶解し1βの
水溶液とした後、28%のアンモニア水を加えてpH=
3に調整する。ここで、この2液の温度を90℃にし、
銅アンモニウム錯体溶液を攪拌しながらD−エリソルビ
ン酸溶液を添加し、30分間反応させる。
In addition, after dissolving 200 g of D-erythorbic acid in water to make a 1β aqueous solution, 28% aqueous ammonia was added to pH=
Adjust to 3. Here, the temperature of these two liquids is set to 90℃,
The D-erythorbic acid solution is added to the copper ammonium complex solution while stirring, and the mixture is allowed to react for 30 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が1゜
5μm、粒度分布は1.1〜1,8μmに70%が入る
シャープなものであった。
As a result, the copper fine particles were found to be approximately spherical, with an average particle size of 1.5 μm, and a sharp particle size distribution with 70% of the particles falling between 1.1 and 1.8 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し1βの水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのpHを1工に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to obtain a 1β aqueous solution, 28% ammonia water is added to obtain a copper ammonium complex solution, and the pH thereof is adjusted to 1β.

また、D−エリソルビン酸128gを水に溶解し11の
水溶液とした後、28%のアンモニア水を加えてpH=
4.5に調整する。ここで、この2液の温度を70℃に
し、銅アンモニウム錯体溶液を攪拌しなからD−エリソ
ルビン酸溶液を添加し、40分間反応させる。
In addition, after dissolving 128 g of D-erythorbic acid in water to make an aqueous solution of 11, 28% aqueous ammonia was added to pH=
Adjust to 4.5. Here, the temperature of these two liquids is set to 70°C, and the D-erythorbic acid solution is added while stirring the copper ammonium complex solution, and the mixture is allowed to react for 40 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で平均粒径が1.8μ
m1粒度分布は1.5〜2.0μmに70%が入るシャ
ープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 1.8 μm.
The m1 particle size distribution was sharp with 70% falling between 1.5 and 2.0 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し12の水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのpHを7.5に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of No. 12, 28% ammonia water is added to make a copper ammonium complex solution, and the pH thereof is adjusted to 7.5.

また、D−エリソルビン酸ナトリウム200gを水に溶
解し11の水溶液にする。ここでこの2液の温度を60
℃にし、銅アンモニウム錯体容器を攪拌しなからD−エ
リソルビン酸ナトリウムを添加し60分間反応させる。
Further, 200 g of sodium D-erythorbate was dissolved in water to form an aqueous solution of No. 11. Here, the temperature of these two liquids is 60
℃, and while stirring the copper ammonium complex container, sodium D-erythorbate was added and allowed to react for 60 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、このma粒子はほぼ球状で平均粒径が0.9
μm、粒度分布は0.6〜1.4μmに70%が入るシ
ャープなものであった。
As a result, the ma particles were almost spherical and had an average particle size of 0.9.
The particle size distribution was sharp with 70% falling within the range of 0.6 to 1.4 μm.

(従来例) 水1,0OOnj!を攪拌しながら平均粒径5μmの酸
化第2銅50gを分散懸濁させる。
(Conventional example) Water 1,0OOnj! While stirring, 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended.

さらにこの液を攪拌しながら70℃まで昇温し、80%
の抱水ヒドラジン水溶液200m lを添加後、70℃
で2時間攪拌した。
Further, the temperature of this liquid was raised to 70℃ while stirring, and 80%
After adding 200 ml of hydrazine hydrate aqueous solution of
The mixture was stirred for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布側。The obtained copper fine particles are filtered and washed to obtain a particle size distribution side.

定及び電子顕微鏡観察を行った。and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は銅アン
モニウム錯体溶液を還元して銅微粒子を製造する方法に
おいて、還元剤としてD−エリソルビン酸又はD−エリ
ソルビン酸塩類を用いることにより、従来法では得られ
なかった単分散した粒度分布の幅の狭い微細な銅粒子を
粒径をコントロールして製造できるので、従来の製造方
法にとって代わることのできる画期的なものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses D-erythorbic acid or D-erythorbic acid salts as a reducing agent in the method of producing copper fine particles by reducing a copper ammonium complex solution. As a result, it is possible to produce fine copper particles with a narrow particle size distribution that is monodisperse, which could not be obtained using conventional methods, by controlling the particle size, so it can be said to be an epoch-making method that can replace conventional production methods. .

Claims (1)

【特許請求の範囲】[Claims] 銅アンモニウム錯体溶液を還元して銅微粒子を製造する
方法において、還元剤としてD−エリソルビン酸又はD
−エリソルビン酸塩類を用いることによって単分散した
銅微粒子を得ることを特徴とする銅微粒子の製造方法。
In the method of producing copper fine particles by reducing a copper ammonium complex solution, D-erythorbic acid or D
- A method for producing copper microparticles, which comprises obtaining monodispersed copper microparticles by using erythorbate salts.
JP1706787A 1987-01-27 1987-01-27 Production of fine copper particles Pending JPS63186806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1706787A JPS63186806A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1706787A JPS63186806A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Publications (1)

Publication Number Publication Date
JPS63186806A true JPS63186806A (en) 1988-08-02

Family

ID=11933640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1706787A Pending JPS63186806A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Country Status (1)

Country Link
JP (1) JPS63186806A (en)

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
Eshuis et al. A descriptive model for the homogeneous precipitation of zinc sulfide from acidic zinc salt solutions
JPS63186803A (en) Production of fine copper particles
JPS63186805A (en) Production of fine copper particles
JPS63179009A (en) Production of fine silver particles
JPS63186806A (en) Production of fine copper particles
JPH01104338A (en) Manufacture of silver colloid
JPS63186804A (en) Production of fine copper particles
JPH0211709A (en) Production of silver colloid
JPS63186809A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS63186807A (en) Production of fine copper particles
JPH0211708A (en) Production of silver colloid
JPS63186812A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPH01225708A (en) Production of fine palladium particles
JPS63186811A (en) Production of fine copper particles
JPH01225706A (en) Production of fine copper particles
JPS63179010A (en) Production of fine silver particles
JPH01225707A (en) Production of fine palladium particles
JPH0211707A (en) Production of silver fine particle
JPH01287210A (en) Manufacture of silver fine particle
JPS63179012A (en) Production of fine silver particles
JPH01225705A (en) Production of fine copper particles
JPH01225709A (en) Production of fine palladium particles