JPH01225706A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPH01225706A
JPH01225706A JP5029888A JP5029888A JPH01225706A JP H01225706 A JPH01225706 A JP H01225706A JP 5029888 A JP5029888 A JP 5029888A JP 5029888 A JP5029888 A JP 5029888A JP H01225706 A JPH01225706 A JP H01225706A
Authority
JP
Japan
Prior art keywords
particle size
copper
fine particles
particles
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5029888A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Tadao Nagai
永井 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP5029888A priority Critical patent/JPH01225706A/en
Publication of JPH01225706A publication Critical patent/JPH01225706A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain singly dispersed fine copper particles of arbitrary particle size having a narrow particle size distribution by reducing a soln. of a copper- ammonium complex with an arom. compd. contg. a hydroxyl group as a reducing agent. CONSTITUTION:An arom. compd. contg. one or plural hydroxyl (-OH) groups is prepd. and a soln. of a copper-ammonium complex is reduced with the compd. as a reducing agent to obtain singly dispersed fine copper particles of arbitrary particle size having a narrow particle size distribution.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を有していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. It had the disadvantage that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は銅アンモニウム錯体溶液中の銅イオンを還元し
て銅微粒子を製造する方法において、還元剤としてヒド
ロキシル(−OH)基を1個もしくは数個含む芳香族化
合物を用いることによって単分散した銅微粒子を得るこ
とを特徴とするものである。
(Means for Solving the Problems) The present invention provides a method for producing copper fine particles by reducing copper ions in a copper ammonium complex solution, in which an aromatic compound containing one or several hydroxyl (-OH) groups is used as a reducing agent. The method is characterized in that monodisperse copper fine particles are obtained by using a group compound.

而して本発明の製造方法において、ヒドロキシル(−O
H)基を1個もしくは数個含む芳香族化合物を用いる理
由は、これらの酸化還元電位が銅アンモニウム錯体溶液
を還元するのに適当であると同時に粒子同士の凝集を防
ぐ働きがあるためである。
Therefore, in the production method of the present invention, hydroxyl (-O
The reason for using aromatic compounds containing one or several H) groups is that their redox potential is appropriate for reducing the cupric ammonium complex solution, and at the same time, they have the ability to prevent particles from aggregating with each other. .

さらに本発明において、銅アンモニウム錯体溶液のpH
は7.5よりも低いと銅の水酸化物の沈殿が生成し、1
3より高いとアンモニアガスの発生が多くなり、反応が
遅くなるので、7.5〜13の範囲がより好ましく、還
元剤としてヒドロキシル基を1個もしくは数個を含む芳
香族化合物水溶液のpHは0.5よりも低いと反応が極
端に遅くなるので、0.5以上がより好ましい。また、
反応時の温度は30°Cより低いと反応が遅く、 10
0°Cを超えると銅微粒子が凝集してくるので、30〜
100°Cの範囲がより好ましい。
Furthermore, in the present invention, the pH of the copper ammonium complex solution
If the value is lower than 7.5, copper hydroxide precipitates will form, and 1
If the pH is higher than 3, the generation of ammonia gas will increase and the reaction will be slow, so the range of 7.5 to 13 is more preferable, and the pH of the aqueous solution of an aromatic compound containing one or several hydroxyl groups as a reducing agent is 0. If it is lower than .5, the reaction will be extremely slow, so it is more preferably 0.5 or more. Also,
If the reaction temperature is lower than 30°C, the reaction will be slow.
If the temperature exceeds 0°C, copper fine particles will aggregate, so
A range of 100°C is more preferred.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶19.7gを水に溶解し11の水溶液とした
後、28%のアンモニア水を加えて銅アンモニウム錯体
溶液とし、そのpHを9に調整する。
(Example 1) After dissolving 19.7 g of copper sulfate crystals in water to make an aqueous solution of No. 11, 28% aqueous ammonia is added to make a copper ammonium complex solution, and the pH thereof is adjusted to 9.

また、ヒドロキノン150gを水に溶解し11の水溶液
とした後、28%のアンモニア水を加えてpH=3.0
に調整する。ここで、この2液の温度を40°Cにし、
銅アンモニウム錯体溶液を撹拌しながらヒドロキノン水
溶液を添加し、30分間反応させる。
In addition, after dissolving 150 g of hydroquinone in water to make an aqueous solution of 11, 28% aqueous ammonia was added to make the pH = 3.0.
Adjust to. Now, set the temperature of these two liquids to 40°C,
An aqueous hydroquinone solution is added to the copper ammonium complex solution while stirring, and the mixture is allowed to react for 30 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で、平均粒径が1.1
μm、粒度分布は0.8〜1.5μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 1.1.
The particle size distribution was sharp with 70% falling in the range of 0.8 to 1.5 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し12の水溶液とした後
、28%のアンモニア水を加えて銅アンモニウム錯体溶
液とし、そのpHを12に調整する。
(Example 2) After dissolving 126 g of copper sulfate crystals in water to make an aqueous solution of 12, 28% ammonia water is added to make a copper ammonium complex solution, and the pH thereof is adjusted to 12.

また、ヒドロキノン100gを水に溶解し12の水溶液
とした後、28%のアンモニア水を加えてpH−5に調
整する。ここで、この2液の温度を70°Cにし、銅ア
ンモニウム錯体溶液を撹拌しながらヒドロキノン水溶液
を添加し、30分間反応させる。
Moreover, after dissolving 100 g of hydroquinone in water to make an aqueous solution of 12, 28% aqueous ammonia was added to adjust the pH to -5. Here, the temperature of these two liquids is set to 70°C, and the hydroquinone aqueous solution is added while stirring the copper ammonium complex solution, and the mixture is allowed to react for 30 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で平均粒径が1.5μ
m、粒度分布は1.2〜1.8μmに70%が入るシャ
ープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 1.5 μm.
m, the particle size distribution was sharp with 70% falling in the range of 1.2 to 1.8 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し12の水溶液とした後
、28%のアン、モニア水を加えて銅アンモニウム錯体
溶液とし、そのpHを8に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to make an aqueous solution of 12, 28% aqueous ammonium and monium was added to make a copper ammonium complex solution, and its pH was adjusted to 8.

また、ピロガロール100gを水に溶解し11の水溶液
とした後、28%のアンモニア水を加えてpH=4.0
に調整する。ここでこの2液の温度を50°Cにし銅ア
ンモニウム錯体溶液を撹拌しながらピロガロール水溶液
を添加し50分間反応させる。
In addition, 100 g of pyrogallol was dissolved in water to make an aqueous solution of 11, and then 28% ammonia water was added to the solution to pH = 4.0.
Adjust to. Here, the temperature of these two liquids is set to 50°C, and the aqueous pyrogallol solution is added while stirring the copper ammonium complex solution, and the mixture is allowed to react for 50 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は多面体で平均粒径が0.7μ
m、粒度分布は0.5〜1.0μmに70%が入るシャ
ープなものであった。
As a result, the copper fine particles were polyhedral and had an average particle size of 0.7 μm.
m, the particle size distribution was sharp with 70% falling in the range of 0.5 to 1.0 μm.

(従来例) 水1.000mIlを撹拌しながら平均粒径5μmの酸
化第2銅50gを分散懸濁させる。
(Conventional example) 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended in 1.000 ml of water while stirring.

さらにこの液を撹拌しながら70’Cまで昇温し、80
%の抱水ヒドラジン水溶液200m lを添加後、70
゛Cで2時間撹拌した。
Further, the temperature of this liquid was raised to 70'C while stirring, and the temperature was raised to 80'C.
After adding 200 ml of hydrazine hydrate aqueous solution of 70%
The mixture was stirred at °C for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布測定及び電
子顕微鏡観察をおこなった。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は銅アン
モニウム錯体溶液を還元して銅微粒子を製造する方法に
おいて、還元剤としてヒドロキシル(−0H)基を1個
もしくは数個含む芳香族化合物を用いることにより、従
来法では得られなかった単分散した粒度分布の幅の狭い
微細な銅粒子を粒径をコントロールして製造できるので
、従来の製造方法にとって代わることのできる画期的な
ものと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention is a method for producing copper fine particles by reducing a copper ammonium complex solution, in which one or several hydroxyl (-0H) groups are used as a reducing agent. By using aromatic compounds containing aromatic compounds, it is possible to produce monodispersed fine copper particles with a narrow particle size distribution, which could not be obtained using conventional methods, by controlling the particle size. It can be said that it is temporary.

出願人  田中貴金属工業株式会社 永井忠雄Applicant: Tanaka Kikinzoku Kogyo Co., Ltd. Tadao Nagai

Claims (1)

【特許請求の範囲】[Claims]  銅アンモニウム錯体溶液を還元して銅微粒子を製造す
る方法において、還元剤としてヒドロキシル(−OH)
基を1個もしくは数個含む芳香族化合物を用いることに
よって単分散した銅微粒子を得ることを特徴とする銅微
粒子の製造方法。
In a method for producing copper fine particles by reducing a copper ammonium complex solution, hydroxyl (-OH) is used as a reducing agent.
A method for producing copper fine particles, which comprises obtaining monodispersed copper fine particles by using an aromatic compound containing one or several groups.
JP5029888A 1988-03-03 1988-03-03 Production of fine copper particles Pending JPH01225706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5029888A JPH01225706A (en) 1988-03-03 1988-03-03 Production of fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5029888A JPH01225706A (en) 1988-03-03 1988-03-03 Production of fine copper particles

Publications (1)

Publication Number Publication Date
JPH01225706A true JPH01225706A (en) 1989-09-08

Family

ID=12854990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5029888A Pending JPH01225706A (en) 1988-03-03 1988-03-03 Production of fine copper particles

Country Status (1)

Country Link
JP (1) JPH01225706A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141948A (en) * 2001-11-06 2003-05-16 Sumitomo Electric Ind Ltd Forming method of micro metal structural body and ceramic package, multi-chip substrate, and substrate for plasma display panel using the same
CN111530636A (en) * 2020-05-09 2020-08-14 昆明理工大学 Method for enhanced sulfuration flotation recovery of copper oxide ore by copper ammonia complex gradient activation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141948A (en) * 2001-11-06 2003-05-16 Sumitomo Electric Ind Ltd Forming method of micro metal structural body and ceramic package, multi-chip substrate, and substrate for plasma display panel using the same
CN111530636A (en) * 2020-05-09 2020-08-14 昆明理工大学 Method for enhanced sulfuration flotation recovery of copper oxide ore by copper ammonia complex gradient activation
CN111530636B (en) * 2020-05-09 2021-03-23 昆明理工大学 Method for enhanced sulfuration flotation recovery of copper oxide ore by copper ammonia complex gradient activation

Similar Documents

Publication Publication Date Title
US4863510A (en) Reduction process for preparing copper, silver, and admixed silver-palladium metal particles
JPS63307206A (en) Production of fine silver particles
Eshuis et al. A descriptive model for the homogeneous precipitation of zinc sulfide from acidic zinc salt solutions
JPS63186803A (en) Production of fine copper particles
JPH01225706A (en) Production of fine copper particles
JPH0920903A (en) Production of monodisperse gold grain powder
JPH01104338A (en) Manufacture of silver colloid
JPH0211709A (en) Production of silver colloid
JPS63186805A (en) Production of fine copper particles
JPS63179009A (en) Production of fine silver particles
JPH0211708A (en) Production of silver colloid
JPH01225705A (en) Production of fine copper particles
JPH01225709A (en) Production of fine palladium particles
JPH01287210A (en) Manufacture of silver fine particle
JPH07107169B2 (en) Method for producing fine copper particles
JPH01225710A (en) Production of fine palladium particles
JPH01225708A (en) Production of fine palladium particles
JPS63186809A (en) Production of fine copper particles
JPS63186807A (en) Production of fine copper particles
JPS63186812A (en) Production of fine copper particles
JPS63186811A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPS63186810A (en) Production of fine copper particles
JPS63186806A (en) Production of fine copper particles
JPH07107172B2 (en) Method for producing fine silver particles