JPS63186807A - Production of fine copper particles - Google Patents

Production of fine copper particles

Info

Publication number
JPS63186807A
JPS63186807A JP1706887A JP1706887A JPS63186807A JP S63186807 A JPS63186807 A JP S63186807A JP 1706887 A JP1706887 A JP 1706887A JP 1706887 A JP1706887 A JP 1706887A JP S63186807 A JPS63186807 A JP S63186807A
Authority
JP
Japan
Prior art keywords
copper
particle size
hydrazine
particles
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1706887A
Other languages
Japanese (ja)
Inventor
Hiroshi Tamemasa
博史 為政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP1706887A priority Critical patent/JPS63186807A/en
Publication of JPS63186807A publication Critical patent/JPS63186807A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce mono-dispersed fine copper particles having a narrow particle size distribution by reducing an aq. copper sulfate soln. with a hydrazine compd. CONSTITUTION:The pH of an aq. copper sulfate soln. is adjusted to about 0.5-4 by adding dil. sulfuric acid or the like. The pH of an aq. soln. of a hydrazine compd. such as hydrazine hydrate is adjusted to about 3-10 by adding dil. sulfuric acid or the like. The temps. of the solns. are regulated to about 10-60 deg.C and the hydrazine compd. soln. is added to the copper sulfate soln. with stirring to reduce copper ions in the copper sulfate soln. The resulting fine copper particles are separated by filtration and washed. Thus, mono- dispersed fine copper particles having a narrow particle size distribution can be produced under control on particle size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細な銅粒子の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing fine copper particles.

(従来技術とその問題点) 従来、銅微粒子の製造方法としては、酸化銅粒子を水性
媒体中でヒドラジンなどの還元剤を用いて還元する方法
が用いられてきた。
(Prior art and its problems) Conventionally, as a method for producing copper fine particles, a method has been used in which copper oxide particles are reduced in an aqueous medium using a reducing agent such as hydrazine.

ところが、この方法では、還元された粒子の粒径が酸化
物の粒径に依存するために粒径のコントロールが難しく
、かつ還元された粒子同士が引き寄せ合うために凝集し
た粒度分布の幅の広い銅粒子しか得られないという欠点
を存していた。
However, with this method, it is difficult to control the particle size because the particle size of the reduced particles depends on the particle size of the oxide, and the reduced particles attract each other, resulting in agglomerated particles with a wide range of particle size distribution. The drawback was that only copper particles could be obtained.

本発明は上記の欠点を解消せんがためになされたもので
あり、分散した、粒度分布の幅の狭い微細な銅粒子の粒
径コントロール可能な製造方法を提供せんとするもので
ある。
The present invention has been made to solve the above-mentioned drawbacks, and aims to provide a method for producing dispersed fine copper particles having a narrow particle size distribution, in which the particle size can be controlled.

(問題点を解決するための手段) 本発明は硫酸銅水溶液中の銅を還元して銅微粒子を製造
する方法において、還元剤としてヒドラジン化合物を用
いることによって単分散した銅微粒子を得ることを特徴
とするものである。
(Means for Solving the Problems) The present invention is characterized in that in a method for producing fine copper particles by reducing copper in an aqueous solution of copper sulfate, monodispersed fine copper particles are obtained by using a hydrazine compound as a reducing agent. That is.

而して本発明の製造方法において、ヒドラジン化合物を
用いる理由は、これらの酸化還元電位が硫酸銅水溶液を
還元するのに適当であるためである。
The reason why hydrazine compounds are used in the production method of the present invention is that their redox potential is suitable for reducing a copper sulfate aqueous solution.

また、本発明の請求範囲においてヒドラジン化合物とし
ては、ヒドラジンヒトラード、硫酸ヒドラジン、塩酸ヒ
ドラジン等を含むものである。
Further, in the scope of the present invention, the hydrazine compound includes hydrazine hittride, hydrazine sulfate, hydrazine hydrochloride, and the like.

さらに本発明において、硫酸銅水溶液のpHは0.5よ
りも低いと反応が遅(なり、4よりも高いと銅の水酸化
物の沈殿が生成するので、0.5〜4の範囲がより好ま
しく、ヒドラジン化合物のpHは3よりも低いと反応が
極端に遅くなり、10よりも高いと反応が激しくなり、
銅微粒子が凝集してくるので、3〜10の範囲がより好
ましく、また、反応時の温度は10°Cよりも低いと反
応が遅り、60゛Cを超えると銅微粒子が凝集してくる
ので、10〜60℃の範囲がより好ましい。
Furthermore, in the present invention, if the pH of the copper sulfate aqueous solution is lower than 0.5, the reaction will be slow, and if it is higher than 4, copper hydroxide will precipitate. Preferably, if the pH of the hydrazine compound is lower than 3, the reaction will be extremely slow, and if it is higher than 10, the reaction will be intense.
Since the copper fine particles will aggregate, a range of 3 to 10 is more preferable, and if the reaction temperature is lower than 10°C, the reaction will be slow, and if it exceeds 60°C, the copper fine particles will aggregate. Therefore, a temperature range of 10 to 60°C is more preferable.

ここで本発明の実施例について説明する。Examples of the present invention will now be described.

(実施例1) 硫酸銅結晶197gを水に溶解し11の水溶液とした後
、希硫酸を加えてpH=1.5に調整する。
(Example 1) After dissolving 197 g of copper sulfate crystals in water to obtain an aqueous solution of No. 11, dilute sulfuric acid was added to adjust the pH to 1.5.

また、ヒドラジンヒトラードLoom lに水を加え1
1にした後、希硫酸を加えてp H= 6に調整する。
Also, add water to hydrazine Hitlerite Loom 1
After the pH is adjusted to 1, dilute sulfuric acid is added to adjust the pH to 6.

ここで、この2液の温度を30℃にし、硫酸銅水溶液を
攪拌しながらヒドラジンヒトラードを添加し、5分間反
応させる。
Here, the temperature of these two liquids is set to 30° C., hydrazine hydrogen chloride is added to the aqueous copper sulfate solution while stirring, and the mixture is allowed to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で、平均粒径が1.
5.crm、粒度分布は1.0〜1.8μmに70%が
入るシャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.
5. crm, the particle size distribution was sharp with 70% falling in the range of 1.0 to 1.8 μm.

(実施例2) 硫酸銅結晶126gを水に溶解し17!の水溶液とした
後、希硫酸を加えてpH=3に調整する。
(Example 2) 126g of copper sulfate crystals were dissolved in water and 17! After making an aqueous solution, dilute sulfuric acid is added to adjust the pH to 3.

また、硫酸ヒドラジン60gを水に溶解し11の水溶液
とした後、水酸化ナトリウムを加えてp H=4に調整
する。ここで、この2液の温度を50°Cにし、硫酸銅
水溶液を攪拌しながら、硫酸ヒドラジン水溶液を添加し
、7分間反応させる。
Further, 60 g of hydrazine sulfate was dissolved in water to obtain an aqueous solution of No. 11, and then sodium hydroxide was added to adjust the pH to 4. Here, the temperature of these two liquids is set to 50°C, and while stirring the copper sulfate aqueous solution, the hydrazine sulfate aqueous solution is added, and the mixture is allowed to react for 7 minutes.

得られたmi粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained mi particles were filtered and washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が1.1
μm、粒度分布は0.7〜1.5μmに70%が入るシ
ャープなものであった。
As a result, the copper fine particles were almost spherical and had an average particle size of 1.1
The particle size distribution was sharp with 70% falling in the range of 0.7 to 1.5 μm.

(実施例3) 硫酸銅結晶197gを水に溶解し1xの水溶液とした後
、希硫酸を加えてpH=1に調整する。
(Example 3) After dissolving 197 g of copper sulfate crystals in water to make a 1x aqueous solution, dilute sulfuric acid is added to adjust the pH to 1.

また、塩酸ヒドラジンン100gを水に溶解し1iの水
溶液とした後、28%のアンモニア水を加えてpH=8
に調整する。ここでこの2液の温度を20°Cにし、硫
酸銅水溶液を攪拌しながら、塩酸ヒドラジン水溶液を添
加し5分間反応させる。
In addition, after dissolving 100 g of hydrazine hydrochloride in water to make a 1i aqueous solution, 28% ammonia water was added to the solution to pH = 8.
Adjust to. Here, the temperature of these two liquids is set to 20°C, and while stirring the copper sulfate aqueous solution, the hydrazine hydrochloride aqueous solution is added and allowed to react for 5 minutes.

得られた銅微粒子は濾過、洗浄して、粒度分布測定及び
電子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子はほぼ球状で平均粒径が1.8
μm、粒度分布は1.5〜2.3μmに70%が入るシ
ャープなものであった。
As a result, the copper particles were almost spherical and had an average particle size of 1.8.
The particle size distribution was sharp with 70% falling between 1.5 and 2.3 μm.

(従来例) 水1.OOOmfを攪拌しながら平均粒径5μmの酸化
第2銅50gを分散懸濁させる。
(Conventional example) Water 1. While stirring OOOmf, 50 g of cupric oxide having an average particle size of 5 μm is dispersed and suspended.

さらにこの液を攪拌しながら70℃まで昇温し、80%
のヒドラジンヒトラード水溶液200m I!を添加後
、70℃で2時間攪拌した。
Furthermore, the temperature of this liquid was raised to 70℃ while stirring, and the temperature was increased to 80%.
200ml of hydrazine hittride aqueous solution I! After addition, the mixture was stirred at 70°C for 2 hours.

得られた銅微粒子は濾過、洗浄して粒度分布測定及び電
子顕微鏡観察を行った。
The obtained copper fine particles were filtered, washed, and subjected to particle size distribution measurement and electron microscope observation.

その結果、この銅微粒子は不定形で、平均粒径が3.5
μm、粒度分布は0.5〜10μmと幅が広く、凝集し
たものであった。
As a result, the copper particles were irregularly shaped and had an average particle size of 3.5.
The particle size distribution was wide, ranging from 0.5 to 10 μm, and was agglomerated.

(発明の効果) 上記の説明で明らかなように本発明の製造方法は硫酸銅
水溶液を還元して銅微粒子を製造する方法において、還
元剤としてヒドラジン化合物を用いることにより、従来
法では得られなかった単分散した粒度分布の幅の狭い微
細な銅粒子を粒径をコントロールして製造できるので、
従来の製造方法にとって代わることのできる画期的なも
のと言える。
(Effects of the Invention) As is clear from the above explanation, the production method of the present invention uses a hydrazine compound as a reducing agent in the method of producing copper fine particles by reducing an aqueous copper sulfate solution. It is possible to manufacture fine, monodispersed copper particles with a narrow particle size distribution by controlling the particle size.
It can be said to be an epoch-making method that can replace conventional manufacturing methods.

Claims (1)

【特許請求の範囲】[Claims] 硫酸銅水溶液を還元して銅微粒子を製造する方法におい
て、還元剤としてヒドラジン化合物を用いることによっ
て単分散した銅微粒子を得ることを特徴とする銅微粒子
の製造方法。
1. A method for producing copper microparticles by reducing an aqueous copper sulfate solution, the method comprising obtaining monodispersed copper microparticles by using a hydrazine compound as a reducing agent.
JP1706887A 1987-01-27 1987-01-27 Production of fine copper particles Pending JPS63186807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1706887A JPS63186807A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1706887A JPS63186807A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Publications (1)

Publication Number Publication Date
JPS63186807A true JPS63186807A (en) 1988-08-02

Family

ID=11933668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1706887A Pending JPS63186807A (en) 1987-01-27 1987-01-27 Production of fine copper particles

Country Status (1)

Country Link
JP (1) JPS63186807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
CN113549948A (en) * 2021-07-28 2021-10-26 中国科学技术大学 Surface amino modified Cu @ NH2Nano catalyst, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019503A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Method for manufacturing copper nanoparticle, and copper nanoparticle obtained by the method
CN113549948A (en) * 2021-07-28 2021-10-26 中国科学技术大学 Surface amino modified Cu @ NH2Nano catalyst, preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPS63307206A (en) Production of fine silver particles
JPS63186803A (en) Production of fine copper particles
JPS63186807A (en) Production of fine copper particles
JPS63186805A (en) Production of fine copper particles
JPH0211709A (en) Production of silver colloid
JPS63179009A (en) Production of fine silver particles
JPH01104338A (en) Manufacture of silver colloid
JPS63186809A (en) Production of fine copper particles
JPS63186811A (en) Production of fine copper particles
JPS63186808A (en) Production of fine copper particles
JPS63186812A (en) Production of fine copper particles
JPH0211707A (en) Production of silver fine particle
JPS63186810A (en) Production of fine copper particles
JPH01287210A (en) Manufacture of silver fine particle
JPH01225705A (en) Production of fine copper particles
JPS63186804A (en) Production of fine copper particles
JPH01225708A (en) Production of fine palladium particles
JPH07107172B2 (en) Method for producing fine silver particles
JPS63186806A (en) Production of fine copper particles
JPH01225706A (en) Production of fine copper particles
JPS63179012A (en) Production of fine silver particles
JPS63307207A (en) Production of fine silver particles
JPH032302A (en) Manufacture of high purity copper fine powder
JPH0784608B2 (en) Method for producing fine palladium particles
JPS63179011A (en) Production of fine silver particles