JPS6145199A - Method of taking out hydrogen occlusion alloy - Google Patents

Method of taking out hydrogen occlusion alloy

Info

Publication number
JPS6145199A
JPS6145199A JP59166480A JP16648084A JPS6145199A JP S6145199 A JPS6145199 A JP S6145199A JP 59166480 A JP59166480 A JP 59166480A JP 16648084 A JP16648084 A JP 16648084A JP S6145199 A JPS6145199 A JP S6145199A
Authority
JP
Japan
Prior art keywords
hydrogen
container
hydrogen storage
storage alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59166480A
Other languages
Japanese (ja)
Other versions
JPH0224761B2 (en
Inventor
Ikuro Yonezu
育郎 米津
Kenji Nasako
名迫 賢二
Naojiro Honda
本田 直二郎
Takashi Sakai
貴史 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59166480A priority Critical patent/JPS6145199A/en
Publication of JPS6145199A publication Critical patent/JPS6145199A/en
Publication of JPH0224761B2 publication Critical patent/JPH0224761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:To safely take out a hydrogen occlusion alloy by injecting high viscosity liquid in a container filled with hydrogen occlusion alloy, so that the hydrogen occlusion alloy is dipped in the high viscosity liquid and solidified to be slurry, and then discharging same to the outside of the container. CONSTITUTION:A pressure-tight hydrogen container is heated and decompressed to discharge residual hydrogen from a hydrogen occlusion alloy. Subsequently, liquid paraffin is injected in the decompressed pressure-tight hydrogen container, which is let alone a whole day and night. After that, the alloy powder put in the slurry state is taken out from the pressure-tight hydrogen container. At this time, the taken-out alloy is in the state of slurry, so that it is not pulverized. There is little temperature change in the taken out slurry alloy layer and a sudden oxidation reaction is not observed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐圧水素容塁から水素吸蔵合金を取り出す方
法に係り、特に、微粉末化した水素吸蔵合金を安全に取
り出すことのできる水素吸蔵合金の取り出し方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for extracting a hydrogen storage alloy from a pressure-resistant hydrogen container, and in particular, to a method for extracting a hydrogen storage alloy from which finely powdered hydrogen storage alloy can be safely extracted. Regarding the extraction method.

従来技術 水素吸蔵合金(例えばLaNi sの希土類−Ni合金
等)は多量の水素を可逆的に吸収、放出する性質を有す
るので、クリーンエネルギー源としての水素を貯蔵する
水素貯蔵材として有望視されている。
Conventional hydrogen storage alloys (e.g. rare earth-Ni alloys such as LaNis) have the property of reversibly absorbing and releasing large amounts of hydrogen, so they are considered promising as hydrogen storage materials for storing hydrogen as a clean energy source. There is.

また、水素を吸収、放出する際に生じる反応熱が大きい
ことから、蓄熱材としても有望視されている。 このよ
うな水素吸蔵合金は、水素圧力下で水素吸収、放出反応
を起こすので1通常は耐圧容器内に充填して使用され、
また、水素吸収、放出を繰り返すことにより微粉末化し
て表面積が増大する傾向にある。
In addition, because the heat of reaction generated when absorbing and releasing hydrogen is large, it is seen as a promising material as a heat storage material. Such hydrogen storage alloys undergo hydrogen absorption and release reactions under hydrogen pressure, so they are usually used by filling them in a pressure-resistant container.
Moreover, by repeating hydrogen absorption and release, it tends to become finely powdered and its surface area increases.

このため、水素吸収、放出を多数回繰り返した後の水素
吸蔵合金は反応性が高く、空気中へ直接さらすと急激な
酸化反応等により粉m爆発を起こす危険性のあることが
報告されている(「水素貯蔵用全屈水素化物の爆発危険
性」、高圧ガス、Vol。
For this reason, it has been reported that hydrogen storage alloys that have undergone hydrogen absorption and release many times are highly reactive, and that there is a risk of powder explosions due to rapid oxidation reactions when exposed directly to the air. (“Explosion Hazard of Total Hydride for Hydrogen Storage”, High Pressure Gas, Vol.

17、No、6、pp297〜304(1980)参照
)。
17, No. 6, pp. 297-304 (1980)).

したがって、耐圧水素容器をメンテナンスしたり、材料
を交換する作業は非常に危険が伴なうことになる。
Therefore, the work of maintaining pressure-resistant hydrogen containers and replacing materials is extremely dangerous.

そこで、微粉末化した水素吸蔵合金を耐圧水素容器から
安全に取り出すためには、取り出す前に ″耐圧水素容
器に不活性ガスや二酸化炭素等の気体を導入し、水素吸
蔵合金微粉末の反応性を低下させる方法が考えられるが
、かかる方法によっても微粉末状の水素吸蔵合金の飛散
による粉塵爆発等の危険性は除去されない。
Therefore, in order to safely take out the finely powdered hydrogen storage alloy from the pressure-resistant hydrogen container, it is necessary to introduce a gas such as an inert gas or carbon dioxide into the pressure-resistant hydrogen container before taking it out, and to reduce the reactivity of the hydrogen storage alloy fine powder. Although methods can be considered to reduce this, such methods do not eliminate the risk of dust explosions and the like due to the scattering of finely powdered hydrogen storage alloys.

目的 本発明は、上述した従来技術の欠点を除き、水素吸蔵合
金を容器外へ安全に取り出し、耐圧水素容器のメンテナ
ンスおよび材料の交換作業を容易にすることができる水
素吸蔵合金の取り出し方法を提供することを目的とする
Purpose The present invention provides a method for removing a hydrogen storage alloy, which eliminates the drawbacks of the prior art described above and allows the hydrogen storage alloy to be safely removed from the container and facilitates the maintenance of the pressure-resistant hydrogen container and the replacement of materials. The purpose is to

構成 このため本発明は、水素の吸収と放出を繰り返した水素
吸蔵合金を充填した容器を加熱するとともb”−減圧し
て上記水素吸蔵合金中の残存水素を十分に放出させ、こ
の容器に不揮発性の高粘度液体を注入して上記水素吸蔵
合金をこの高粘度液体に浸漬固化してスラリー状にした
後、上記容器を大気に開放してスラリー状の水素吸蔵合
金を、注入した高粘度液体とともに容器外へ排出するよ
うにしたことを特徴としている。
Structure Therefore, in the present invention, a container filled with a hydrogen storage alloy that has repeatedly absorbed and released hydrogen is heated and the pressure is reduced to sufficiently release the residual hydrogen in the hydrogen storage alloy. After the hydrogen storage alloy is immersed in the high viscosity liquid and solidified to form a slurry, the container is opened to the atmosphere and the slurry hydrogen storage alloy is poured into the high viscosity liquid. It is characterized in that it is also discharged out of the container.

即ち、微粉末化した水素吸蔵合金の活性を低下させて反
応を抑制するため、微粉末化した水素吸蔵合金の表面を
覆い空気との接触を断つとともに、水素吸蔵合金の微粉
末が飛散しないように粘度の高い不揮発性の液体に浸漬
固化させる。
That is, in order to reduce the activity of the pulverized hydrogen storage alloy and suppress the reaction, the surface of the pulverized hydrogen storage alloy is covered to cut off contact with air and to prevent the fine powder of the hydrogen storage alloy from scattering. It is immersed in a highly viscous non-volatile liquid to solidify.

このような使用目的に適合する液体としては、例えば鉱
油、流動パラフィン、水ガラス等の反応性が低く、不揮
発性で、かつ、粘度の高い液体がある。
Examples of liquids suitable for such purposes include mineral oil, liquid paraffin, water glass, and other non-reactive, nonvolatile, and highly viscous liquids.

また、例えばシアノアクリル系接着剤等の空気中の水分
等で硬化する液体を用いることもできる。
Further, it is also possible to use a liquid that hardens with moisture in the air, such as a cyanoacrylic adhesive.

この場合1よ、その液体を微粉末化した水素吸蔵合金の
容器に注入し、この容器を大気に開放して注入した液体
中に水素吸蔵合金の微粉末を固化させ、この後に容器外
に取り出すようにすればよしA。
In this case 1, pour the liquid into a container made of a finely powdered hydrogen storage alloy, open the container to the atmosphere, solidify the fine powder of the hydrogen storage alloy in the poured liquid, and then take it out of the container. You can do it like this A.

さらに、例えばフェノール系あるいはエポキシ系の接着
剤と硬化剤の組合せのように、混合することによって硬
化する2種類以上の液体を用しすることもできる。この
場合は、これらの液体を微粉末化した水素吸蔵合金の容
器に注入し、液体力[化して水素吸蔵合金の微粉末を固
化した後番;、容器を大気に開放して容器外へ排出すれ
ばよIt’s実施例 内容量約3Qの耐圧水素容器に、水素吸蔵合金としてL
aNi s合金を約1kg充填し、水素加圧10atm
(温度25℃)および加熱・減圧(温度90℃、圧力0
.1at、u+以下)の繰作を繰り返してLaNi s
合金し;水素吸収、放出を行なわせた。この操作を約3
0回縁す返した後、以下のようにして水素吸蔵合金の取
り出しを行なった。
Furthermore, it is also possible to use two or more liquids that are cured by mixing, such as a combination of a phenolic or epoxy adhesive and a curing agent. In this case, these liquids are injected into a container made of a finely powdered hydrogen storage alloy, and then the container is exposed to the atmosphere and discharged outside the container. It's an example: In a pressure-resistant hydrogen container with an internal capacity of about 3Q, L is added as a hydrogen storage alloy.
Approximately 1 kg of aNi s alloy was filled, and hydrogen was pressurized at 10 atm.
(temperature 25℃) and heating/depressurization (temperature 90℃, pressure 0
.. 1at, u+ or less) is repeated to create LaNi s
Alloyed; hydrogen absorption and release were performed. Repeat this operation for about 3
After turning over 0 times, the hydrogen storage alloy was taken out as follows.

まず、耐圧水素容器を約90℃に加熱するとともに約0
.1torrに減圧して、水素吸蔵合金から残存水素を
放出させた。ついで、減圧した状態の耐圧水素容器内に
流動パラフィンを約IQ注入し、−昼夜放置した。そし
て、その後耐圧水素容器からスラリー状になったLaN
i s合金粉末を取り出した。
First, a pressure-resistant hydrogen container is heated to about 90°C and
.. The pressure was reduced to 1 torr to release residual hydrogen from the hydrogen storage alloy. Next, approximately IQ of liquid paraffin was injected into a pressure-resistant hydrogen container under reduced pressure, and the container was left for day and night. Afterwards, the LaN slurry was extracted from the pressure-resistant hydrogen container.
The i s alloy powder was taken out.

このとき、取り出したLaNi s合金はスラリー状に
なっているため、微粉末化したLaNi s合金の飛散
は見られなかった。また、取り出したスラリー状のLa
Ni s合金層の温度の経時変化を調べたところ、取り
出してから約10時間経過しても常温付近にあり、大き
な変動はなく急激な酸化反応は見られなかった。
At this time, since the LaNis alloy taken out was in the form of a slurry, no scattering of the finely powdered LaNis alloy was observed. In addition, the slurry-like La
When the temperature of the Nis alloy layer was examined for changes over time, it was found to remain at room temperature even after approximately 10 hours had passed since it was taken out, with no major fluctuations and no rapid oxidation reaction observed.

効果 以上説明したように、本発明によれば、微粉末化した水
素吸蔵合金の表面が高粘度の液体で覆われ、あるいは固
化されるため、水素吸蔵合金の活性が大きく低下し、そ
の結果、大気と接触した場合でも急激な酸化反応が未然
に防止される。また、微粉末化した水素吸蔵合金の飛散
がほとんどなく、大気中で松属爆発等が生じる危険性が
な(なる。
Effects As explained above, according to the present invention, the surface of the finely powdered hydrogen storage alloy is covered with or solidified with a high viscosity liquid, so the activity of the hydrogen storage alloy is greatly reduced, and as a result, Rapid oxidation reactions are prevented even in the event of contact with the atmosphere. In addition, there is almost no scattering of the finely powdered hydrogen storage alloy, and there is no risk of a pine explosion occurring in the atmosphere.

この結果、水素吸収、放出を繰り返した水素吸蔵合金を
完全にしかも容易に取り出すことができるようになるこ
とから、耐圧水素容器のメンテナンスおよび材料の交換
等を容易にすることができ。
As a result, the hydrogen storage alloy that has repeatedly absorbed and released hydrogen can be completely and easily taken out, which facilitates maintenance of the pressure-resistant hydrogen container and replacement of materials.

高価な耐圧水素容器を有効に再生利用することができる
ようになる。
It becomes possible to effectively recycle expensive pressure-resistant hydrogen containers.

Claims (3)

【特許請求の範囲】[Claims] (1)水素吸蔵合金を充填した容器から水素の吸収と放
出を繰り返した水素吸蔵合金を取り出す方法において、
前記容器を加熱するとともに減圧して上記水素吸蔵合金
中の残存水素を十分に放出させ、この容器に不揮発性の
高粘度液体を注入し、前記水素吸蔵合金をその高粘度液
体に浸漬固化してスラリー状にした後に前記容器を大気
に開放し、そのスラリー状の水素吸蔵合金を注入した高
粘度液体とともに容器外へ排出させることを特徴とする
水素吸蔵合金の取り出し方法。
(1) In a method for removing a hydrogen storage alloy that has repeatedly absorbed and released hydrogen from a container filled with the hydrogen storage alloy,
The container is heated and depressurized to sufficiently release the residual hydrogen in the hydrogen storage alloy, a non-volatile high viscosity liquid is poured into the container, and the hydrogen storage alloy is immersed in the high viscosity liquid to solidify it. A method for taking out a hydrogen storage alloy, which comprises making the hydrogen storage alloy into a slurry, opening the container to the atmosphere, and discharging the slurry of the hydrogen storage alloy together with a high viscosity liquid into which it has been poured.
(2)特許請求の範囲第1項記載において、前記高粘度
液体は、空気中の水分によって硬化する液体であること
を特徴とする水素吸蔵合金の取り出し方法。
(2) A method for extracting a hydrogen storage alloy according to claim 1, wherein the high viscosity liquid is a liquid that hardens with moisture in the air.
(3)特許請求の範囲第1項記載において、前記高粘度
液体は、混合すると硬化する2種類以上の液体であるこ
とを特徴とする水素吸蔵合金の取り出し方法。
(3) A method for extracting a hydrogen storage alloy according to claim 1, wherein the high viscosity liquid is two or more types of liquids that harden when mixed.
JP59166480A 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy Granted JPS6145199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166480A JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166480A JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Publications (2)

Publication Number Publication Date
JPS6145199A true JPS6145199A (en) 1986-03-05
JPH0224761B2 JPH0224761B2 (en) 1990-05-30

Family

ID=15832178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166480A Granted JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Country Status (1)

Country Link
JP (1) JPS6145199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161889A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Treatment system for hydrogen storage vessel and its method
JP2010132486A (en) * 2008-12-03 2010-06-17 Kobe Steel Ltd Hydrogen purification method and hydrogen-storing alloy reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
JPS5849601A (en) * 1981-09-16 1983-03-23 Matsushita Electric Ind Co Ltd Recovery of metallic material for hydrogen storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
JPS5849601A (en) * 1981-09-16 1983-03-23 Matsushita Electric Ind Co Ltd Recovery of metallic material for hydrogen storage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161889A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Treatment system for hydrogen storage vessel and its method
JP4534738B2 (en) * 2004-12-03 2010-09-01 トヨタ自動車株式会社 Hydrogen storage container processing system and processing method
JP2010132486A (en) * 2008-12-03 2010-06-17 Kobe Steel Ltd Hydrogen purification method and hydrogen-storing alloy reactor

Also Published As

Publication number Publication date
JPH0224761B2 (en) 1990-05-30

Similar Documents

Publication Publication Date Title
US3841467A (en) Product and process for making improved strength dental amalgam
US5312606A (en) Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
US7491448B2 (en) Reticulated foam-like structure formed of nano-scale particulate
EP0514348B1 (en) A process for the sorption of residual gas by means of a non-evaporated barium getter alloy
US4161401A (en) Nickel-calcium alloy for hydrogen storage
US20030013605A1 (en) Catalysis of the hydrogen sorption kinetics of hydrides by nitrides and carbides
EP0509971B1 (en) A process for the sorption of residual gas and especially nitrogen gas by means of a non-evaporated barium getter
JPS6145199A (en) Method of taking out hydrogen occlusion alloy
US4280921A (en) Immobilization of waste material
FR2536155A1 (en) Energy storage unit, and method for its manufacture and use
US3359095A (en) Sintering of loose particulate aluminum metal
KR20000048624A (en) Hydrogen absorbing alloy powder and method of producing hydrogen absorbing alloy powder
JP3406615B2 (en) Activation, initial activation and stabilization of hydrogen storage alloy
CA2027872A1 (en) Method for preparing lead-acid battery plates
WO2006095339A1 (en) Process for accumulating hydrogen
JPS624321B2 (en)
US661401A (en) Process of storing explosive gases.
US3395048A (en) Method for making porous alkali metal electrodes
JPS5820881B2 (en) Hydrogen absorption and release method using metals
JPH0359499A (en) Plastic caking processing method for radioactive graphite block
JPS63310936A (en) Hydrogen storage alloy material and its production
RU2088986C1 (en) Filter-perlitic pulp hardening method
JPS5849601A (en) Recovery of metallic material for hydrogen storage
JPS63162830A (en) Structure of hydrogen storage alloy and its production
CA2046478A1 (en) Method for obtaining in separate for a magnetic rare earth type material, transition metals and boron for corrosion resistant magnets

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees