JPS624321B2 - - Google Patents

Info

Publication number
JPS624321B2
JPS624321B2 JP57144609A JP14460982A JPS624321B2 JP S624321 B2 JPS624321 B2 JP S624321B2 JP 57144609 A JP57144609 A JP 57144609A JP 14460982 A JP14460982 A JP 14460982A JP S624321 B2 JPS624321 B2 JP S624321B2
Authority
JP
Japan
Prior art keywords
powder
hydrogen
metal
alloy
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57144609A
Other languages
Japanese (ja)
Other versions
JPS5935001A (en
Inventor
Kimyuki Jinno
Sakae Higano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP57144609A priority Critical patent/JPS5935001A/en
Publication of JPS5935001A publication Critical patent/JPS5935001A/en
Publication of JPS624321B2 publication Critical patent/JPS624321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水素貯蔵材料の製造方法に関し、より
詳細には容易に水素を貯蔵する金属もしくは合金
粉末(以下金属粉末と略記する)及び金属水素化
物に熱伝導度及び機械的強度を付加することを目
的とするものである。 最近水素を容易に吸蔵する材料例えばNi、
V、TiFe、Mg2Ni、LaNi5のような金属粉末を利
用した水素貯蔵、輸送、廃熱回収、コンプレツサ
ー、高純度水素精製、動力変換、あるいは燃料電
池などへの実用研究が盛んに試みられている。 ところで、金属粉末に水素を吸蔵させる際に
は、多量の熱を発生し、この熱を速やかに除去し
ないと局部的な発熱によつて水素の均一な吸蔵が
行なわれないばかりか、吸蔵により生成した金属
水素化物の解離による水素の放出が起り、円滑な
吸蔵反応は著しく阻害される。そして、この水素
吸蔵時の発熱を除去するために、従来は金網や多
孔質の金属からなる管等の容器内に水素吸蔵用の
金属粉末を収容し、この金網や多孔質金属からな
る容器を介して吸蔵用金属と水素ガスとを接触さ
せ、容器周囲に冷却媒体を流して発生熱を除去す
る手段、あるいは水素吸蔵用の金属粉末の中に金
属小片、ステンレスウールなどを充填し、熱伝導
率の改善を試みる手段がとられていた。しかしな
がら、金属水素化物は超微細粉(5μ以下)で熱
の不良導体であり、又、水素の比熱が小さく熱伝
導率も小さいために発生熱の伝導速度が遅く、発
生熱の効果的な除去が困難であつた。更に悪いこ
とには、金属粉末あるいは金属水素化物は比重が
極めて小さいので水素の流れにより粉末移動を生
じ、又、金属粉末は水素ガスを吸蔵する際に膨脹
して緻密になるので容器壁部に局部的に非常に大
きな応力がかかる危険があり、又これにより水素
ガスがますます浸透しにくく、かつ発生熱がより
蓄積されて不均一な反応が起り易くなる欠点があ
つた。 このような欠点から従来の金属水素化物粉末の
充填密度は安全上約50%以下にとらなければなら
なかつた。 本発明は、以上の従来の欠点を改善せんとする
もので、その要旨とするところは、まず第1項発
明は、金属粉末あるいは既に水素を吸蔵した金属
水素化物の粉末の表面をAl、Ni、Cuおよびこれ
らの金属を主元素とする合金もしくは融点が100
〜400℃の低溶融合金をもつて表面処理後成形す
ることを特徴とする水素貯蔵材料の製造方法であ
る。 本発明において金属粉末などのAl等による表
面処理は、無電解メツキ法、電気メツキ法、浸漬
法、エピタキシヤルグロース法、蒸着法、スパツ
タリング法、C.V.D.法、溶湯浸漬法、電子ビー
ム溶解法などの方法が利用可能である。 表面処理に用いられるAl、Ni、Cu及これらの
金属を主元素とする合金もしくは低溶融合金は水
素の透過率および熱伝導度が大きいので本発明に
は有効である。 そして、かかる方法により表面処理した金属粉
末あるいは金属水素化物は成形されるが、成形は
プレス成形あるいは押出粉砕機により、粒状、ペ
レツト、角柱、円柱などの形状を有する圧粉体と
することによつて行なう。 この圧粉成形体は、金属粉末等があらかじめ
Al、Ni、Cuなどにより表面処理されているの
で、従来のものよりも熱伝導度が大幅に改善さ
れ、粉末の飛散移動を防止するための機械的強度
が付加され、水素化および分解反応を繰返し実施
した場合でも、水素流による粉末の飛散および移
動が少なく、粉末移動による団塊化が防止でき、
水素化反応に伴なう粉末体積の膨脹により発生す
る応力は、表面処理された被覆材料内に膨脹する
空間が存在することで緩和され、局部あるいは容
器底部などで発生する応力は著しく低減される。 第2項発明は前記第1項発明に更に、Al、
Ni、Cu、Zn、Sn、Pbより選ばれた金属もしくは
その合金材をバインダとして添加して成形する方
法である。 これらのバインダ金属は熱伝導度が高く、結合
力も大きく、さらに水素化物をつくらないので成
形安定性が良い。 こうすることによつて、更に熱伝導度は改善さ
れ、水素化反応時の発生熱を速かに外部に排除
し、又、分解反応時に必要な熱の吸収は外部から
バインダ金属を通じ速やかに行なつて所定の温度
に保持することができ、又、粉末の飛散移動防止
効果もさらに増大する。 以上の第1項、第2項発明による圧粉成形体は
1〜50%の空間率を有していことが望ましい。こ
の空間率は、金属水素化物の充填量及びその方
法、反応時間、導水素圧力、実用機器の種類及び
運転状況などの種類により決定するが、空間率が
50%を越えると、圧粉成形体の機械的強度が小さ
く、水素吸蔵量が著しく小さくなつて好ましくな
い。 以上の第1、第2項発明に係る圧粉成形体は水
素貯蔵などの小規模の定置式機器に適している。 第4項発明は前記第1項の発明で得られた圧粉
成形体を、又第5項の発明は前記第2項の発明で
得られた圧粉成形体を、それぞれ非酸化性雰囲気
下で焼結熱処理する方法である。 これらの発明は、水素の運搬、蓄熱用、コンプ
レツサ、動力交換用、燃料電池用などの用途に金
属水素化物が大規模に使用される場合、水素化あ
るいは分解反応時の発熱あるいは吸熱の総量が著
しく大きくなり、外部へあるいは外部からの熱伝
導により、金属水素化物温度を速やかに所定の温
度に保つ必要がある場合、更に使用水素量、水素
圧力及び流量が大となり、より成形体の機械的強
度が必要な場合に有用である。 この場合、焼結熱処理温度は、例えば100〜
1300℃の範囲で行なうが、これは添加金属あるい
は合金の種類によつて異なり、その融点付近の温
度を用いる。 かかる熱処理により、成形体の結合はより強固
になり、熱伝導度並びに機械的強度がさらに改善
され、前述の大規模な用途への使用が可能とな
る。 なお、この場合の焼結体の空間率は1〜40%が
好適である。空間率が40%を越えると水素吸蔵量
が著しく小さくなつて好ましくない。 以下実施例に基づき本発明を説明する。 実施例 1 TiFe合金にSn―Pb合金(融点100℃)のアト
マイズ粉末(粒度200メツシユ以下)を20重量%
添加し、ボールミルで攪拌混合した。この混合粉
末を、アルゴン雰囲気の石英管中で110℃で約30
分間保持し、TiFe合金粉末の表面にSn―Pb合金
を被覆した。 熱処理後のTiFe合金は、EPMA観察によつて
SnおよびPbの存在が確認され、、また湿式分析の
結果18.0重量%のSn―Pb合金が存在しているこ
とが確認された。 機械的強度試験のためそれぞれ下記のものにつ
いて抗折力試験を行なつた。なお成形体は5ton/
cm2の圧力で10mm×6mm×35mmの角柱にプレス成形
したものである。 a TiFe合金粉末単独の成形体。 b 前記Sn―Pb合金被覆材料の成形体。 c 前記bの成形体をさらに110℃で約30分間焼
結熱処理したもの。 試験の結果、それぞれの試験片の抗折力は、a
は約38Kg/cm2、bは約65Kg/cm2、cは約78Kg/cm2
であり、aに比較してbおよびcは機械的強度が
増大することが判つた。 また、水素圧力30Kg/cm2での水素吸蔵速度は、
約100gのTiFeがTiFeH1.5を生成するまでの時間
で比較したところ、aは15分、bは16分、cは17
分であつた。 また水素放出試験は、TiFeH1.5の試料が充填
された耐圧容器を50℃に保持された浴中に浸漬さ
せ、出口先端部を水中に浸し、ここから大気中に
放出する方法で観察し、その水素放出が終了する
までの時間を計測し、比較した。その結果aは32
分、bは22分、cは18分であつた。 かかる試験から本発明の材料は、水素を吸蔵さ
せる水素化反応の場合よりも、むしろ外からの熱
の供給を必要とする吸熱での分解反応に対する反
応時間の短縮に極めて効果のあることが判つた。 さらに、水素圧力30Kg/cm2での水素化および真
空排気による分解反応を10回繰返して実施した
後、アルゴン雰囲気中に試料を取出して観察した
ところ、aは完全に成形体が崩壊し粉末となつた
のに対し、bおよびcは角柱のままの形状であつ
た。この結果より、本発明の材料は水素化物ある
いは金属粉末の飛散移動に対しても極めて効果の
あることが判つた。 実施例 2 2〜3mm以上に粗粉砕したTiFe合金を耐圧容
器に充填し、真空排気しながら約450℃まで昇温
し、約10分間脱ガス処理を行なつた後に約10Kg/
cm2の水素ガスを容器に導入し、炉外に容器を取出
して冷却した。その後、真空排気してからアルゴ
ンガスを容器内に導入した。 このTiFe合金は、当初の形状を維持している
が、乳鉢で粉砕したところ極めてもろく、粉砕が
容易な粒子に変化していることが判つた。 一方、同じTiFe合金を、硫酸銅(20g/)、
硫酸(0.75g/)の液中に、25℃で10〜15分浸
漬し、無電解メツキで、表面にCu被覆を施し
た。このTiFe合金を浴に浸漬し、浴中でアルミ
ナ製丸棒により粉砕し、Cu被覆の微粉末とし
た。ついで、アセトン洗浄を3回実施した後乾燥
した。 TiFe粉末表面には、EPMA観察による元素分
析を行なつたところ、多量のCuが存在すること
を確認した。 つぎに熱伝導度および機械的強度の比較のため
に下記試料を用意した。なお、成形体は5ton/cm2
で10mm×6mm×35mmの角柱にプレス成形したもの
である。 d 上記Cuを被覆したTiFe合金成形体。 e 試料dの材料に7重量%のCu粉末(200メツ
シユ以下)をバインダとして添加混合して成形
したもの。 f 試料dを1050℃で1時間真空中で焼結熱処理
したもの。 g 試料eを試料fと同様に焼結熱処理したも
の。 熱伝導度の比較は、表面温度が100℃に保持さ
れた平板状ヒーターに角柱状試料を載せ、断熱材
で試料を覆い、ヒーターからの輻射熱を防ぐよう
にし、角柱試料の長尺方向の対面温度が70℃に達
するまでの時間を計測して比較した。 また空間率は水中法による見掛け密度の測定、
画像解析装置(Q.T.M)から求めた。 以上の試験結果を表にして示す。
The present invention relates to a method for producing a hydrogen storage material, and more specifically to a method for adding thermal conductivity and mechanical strength to a metal or alloy powder (hereinafter abbreviated as metal powder) and metal hydride that easily stores hydrogen. This is the purpose. Recently, materials that easily absorb hydrogen, such as Ni,
Practical research using metal powders such as V, TiFe, Mg 2 Ni, and LaNi 5 is actively being attempted for hydrogen storage, transportation, waste heat recovery, compressors, high-purity hydrogen purification, power conversion, and fuel cells. ing. By the way, when hydrogen is stored in metal powder, a large amount of heat is generated, and if this heat is not removed promptly, not only will hydrogen not be stored uniformly due to localized heat generation, but hydrogen will be generated due to storage. Hydrogen is released due to the dissociation of the metal hydride, and the smooth storage reaction is significantly inhibited. In order to eliminate the heat generated during hydrogen absorption, metal powder for hydrogen storage is conventionally housed in a container such as a wire mesh or porous metal tube; A method for removing the generated heat by bringing the storage metal into contact with hydrogen gas through a container and flowing a cooling medium around the container, or by filling small pieces of metal, stainless steel, etc. into the metal powder for hydrogen storage Steps were taken to try to improve the rate. However, metal hydrides are ultrafine powders (less than 5μ) and are poor conductors of heat, and hydrogen has a small specific heat and low thermal conductivity, so the conduction speed of generated heat is slow, making it difficult to effectively remove generated heat. was difficult. To make matters worse, the metal powder or metal hydride has an extremely low specific gravity, so the flow of hydrogen causes the powder to move, and when the metal powder absorbs hydrogen gas, it expands and becomes dense, causing it to stick to the container wall. There is a risk that a very large stress will be applied locally, and this has the disadvantage that it becomes increasingly difficult for hydrogen gas to penetrate, and that the generated heat is more likely to accumulate, making it more likely that non-uniform reactions will occur. Due to these drawbacks, the packing density of conventional metal hydride powders had to be kept at about 50% or less for safety reasons. The present invention aims to improve the above-mentioned conventional drawbacks, and the gist of the invention is as follows: First, the first aspect of the present invention is to cover the surface of metal powder or metal hydride powder that has already absorbed hydrogen with Al, Ni, etc. , Cu and alloys containing these metals as main elements or with a melting point of 100
This is a method for producing a hydrogen storage material, which is characterized in that it is molded after surface treatment using a low melting alloy at ~400°C. In the present invention, the surface treatment with Al etc. of metal powder etc. can be carried out by electroless plating method, electroplating method, dipping method, epitaxial growth method, vapor deposition method, sputtering method, CVD method, molten metal immersion method, electron beam melting method, etc. methods are available. Al, Ni, Cu, and alloys or low melting alloys containing these metals as main elements used for surface treatment are effective in the present invention because they have high hydrogen permeability and thermal conductivity. Then, the metal powder or metal hydride that has been surface-treated by this method is molded, and the molding is performed by press molding or an extrusion pulverizer to form a green compact in the shape of granules, pellets, prisms, cylinders, etc. Let's go. This powder compact is pre-filled with metal powder, etc.
Surface treated with Al, Ni, Cu, etc., greatly improves thermal conductivity compared to conventional products, adds mechanical strength to prevent powder scattering, and prevents hydrogenation and decomposition reactions. Even when repeated tests are performed, there is little scattering and movement of powder due to the hydrogen flow, and agglomeration due to powder movement can be prevented.
The stress generated by the expansion of the powder volume accompanying the hydrogenation reaction is alleviated by the presence of expansion space within the surface-treated coating material, and the stress generated locally or at the bottom of the container is significantly reduced. . Item 2 invention further includes Al,
This is a molding method in which a metal selected from Ni, Cu, Zn, Sn, and Pb or an alloy thereof is added as a binder. These binder metals have high thermal conductivity and strong bonding strength, and also have good molding stability because they do not form hydrides. By doing this, the thermal conductivity is further improved, the heat generated during the hydrogenation reaction is quickly removed to the outside, and the heat required during the decomposition reaction is quickly absorbed from the outside through the binder metal. As a result, the temperature can be maintained at a predetermined level, and the effect of preventing scattering and movement of the powder is further increased. It is desirable that the powder compact according to the inventions described in Items 1 and 2 above has a void ratio of 1 to 50%. This void ratio is determined by the amount of metal hydride packed, its method, reaction time, hydrogen introduction pressure, type of practical equipment, operating conditions, etc.
If it exceeds 50%, the mechanical strength of the powder compact will be low and the hydrogen storage capacity will be extremely small, which is not preferable. The powder compacts according to the first and second inventions described above are suitable for small-scale stationary equipment such as hydrogen storage. The invention in item 4 is a powder molded product obtained by the invention in item 1, and the invention in claim 5 is a powder molded product obtained in the invention in item 2, under a non-oxidizing atmosphere. This method uses sintering heat treatment. These inventions require that when metal hydrides are used on a large scale for hydrogen transportation, heat storage, compressors, power exchange, fuel cells, etc., the total amount of heat generated or absorbed during hydrogenation or decomposition reactions is If the size of the metal hydride becomes significantly large and it is necessary to quickly maintain the metal hydride temperature at a predetermined temperature by heat conduction to or from the outside, the amount of hydrogen used, hydrogen pressure, and flow rate will further increase, which will further reduce the mechanical strength of the compact. Useful when strength is required. In this case, the sintering heat treatment temperature is, for example, 100~
The temperature range is 1300°C, but this varies depending on the type of added metal or alloy, and a temperature near the melting point of the metal is used. Such heat treatment makes the bond of the molded body stronger and further improves the thermal conductivity as well as the mechanical strength, making it possible to use it in the large-scale applications mentioned above. In this case, the porosity of the sintered body is preferably 1 to 40%. If the porosity exceeds 40%, the amount of hydrogen storage becomes significantly small, which is not preferable. The present invention will be explained below based on Examples. Example 1 20% by weight of atomized powder (particle size 200 mesh or less) of Sn-Pb alloy (melting point 100℃) in TiFe alloy
and stirred and mixed using a ball mill. This mixed powder was heated at 110℃ for about 30 minutes in a quartz tube in an argon atmosphere.
After holding for a minute, the surface of the TiFe alloy powder was coated with Sn--Pb alloy. The TiFe alloy after heat treatment was determined by EPMA observation.
The presence of Sn and Pb was confirmed, and wet analysis confirmed the presence of 18.0% by weight Sn-Pb alloy. For mechanical strength testing, a transverse rupture strength test was conducted on each of the following items. The molded product is 5 tons/
It was press-formed into a 10 mm x 6 mm x 35 mm square column using a pressure of cm 2 . a Molded body of TiFe alloy powder alone. b A molded article of the Sn--Pb alloy coating material. c The molded body of b was further sintered and heat-treated at 110°C for about 30 minutes. As a result of the test, the transverse rupture strength of each test piece was a
is approximately 38Kg/cm 2 , b is approximately 65Kg/cm 2 , c is approximately 78Kg/cm 2
It was found that mechanical strength of samples b and c was increased compared to sample a. In addition, the hydrogen absorption rate at a hydrogen pressure of 30Kg/ cm2 is
When comparing the time it takes for approximately 100g of TiFe to generate TiFeH 1.5 , it is 15 minutes for a, 16 minutes for b, and 17 minutes for c.
It was hot in minutes. In addition, the hydrogen release test was conducted by immersing a pressure vessel filled with a TiFeH 1.5 sample in a bath maintained at 50° C , immersing the outlet tip in water, and releasing the sample into the atmosphere. The time taken for hydrogen release to finish was measured and compared. As a result, a is 32
minutes, b was 22 minutes, and c was 18 minutes. These tests have shown that the material of the present invention is extremely effective in shortening the reaction time for endothermic decomposition reactions that require external heat supply, rather than for hydrogenation reactions that absorb hydrogen. Ivy. Furthermore, after repeating the decomposition reaction by hydrogenation at a hydrogen pressure of 30 kg/cm 2 and vacuum evacuation 10 times, the sample was taken out in an argon atmosphere and observed. In contrast, b and c remained prismatic in shape. From these results, it was found that the material of the present invention is extremely effective against scattering and movement of hydrides or metal powders. Example 2 A pressure-resistant container was filled with a TiFe alloy coarsely ground to a size of 2 to 3 mm or more, heated to about 450°C while being evacuated, and degassed for about 10 minutes.
cm 2 of hydrogen gas was introduced into the container, and the container was taken out of the furnace and cooled. Thereafter, the container was evacuated and argon gas was introduced into the container. This TiFe alloy maintained its original shape, but when crushed in a mortar, it was found that it had changed into particles that were extremely brittle and easy to crush. On the other hand, the same TiFe alloy was mixed with copper sulfate (20g/),
It was immersed in a solution of sulfuric acid (0.75 g/) at 25°C for 10 to 15 minutes, and the surface was coated with Cu by electroless plating. This TiFe alloy was immersed in a bath and ground in the bath using an alumina round rod to form a Cu-coated fine powder. Then, it was washed with acetone three times and then dried. Elemental analysis using EPMA observation confirmed that a large amount of Cu was present on the TiFe powder surface. Next, the following samples were prepared for comparison of thermal conductivity and mechanical strength. In addition, the molded body is 5ton/cm 2
It is press-formed into a 10mm x 6mm x 35mm square column. d TiFe alloy molded body coated with the above Cu. e A product formed by adding and mixing 7% by weight of Cu powder (200 mesh or less) as a binder to the material of sample d. f Sample d was sintered and heat treated in vacuum at 1050°C for 1 hour. g Sample e was sintered and heat treated in the same manner as sample f. Thermal conductivity comparisons were made by placing a prismatic sample on a flat heater whose surface temperature was maintained at 100°C, covering the sample with a heat insulating material to prevent radiant heat from the heater, and placing the prismatic sample in the longitudinal direction of the sample. The time taken for the temperature to reach 70°C was measured and compared. In addition, the void ratio can be determined by measuring the apparent density using the underwater method.
Obtained from image analysis device (QTM). The above test results are shown in a table.

【表】 上記表に示した結果から明らかなように、本発
明材料は機械的強度を表わす抗折力および熱伝導
度において大幅に改善されていることが判つた。 また、試料dおよびgについて、実施例1に記
載した方法で水素化および分解反応を10回実施し
た。その結果水素吸蔵速度はどちらも15分前後で
あるが、水素放出速度は試料dは26分、試料gは
25分であつた。 さらに形状は、水素化および分解反応の繰返し
によつても粉末化せず、角柱を維持していること
が判つた。 実施例 3 水素化物TiH2粉末をプレス圧力1ton/cm2で15
mm×15mm×10mmの角柱成形体とした。 SUS製箱の底部にアルミナ製海綿状平板を置
き、その上に上記成形体を10箇並置した。さらに
その上にアルミナ製海綿状平板を載せ、この平板
上に純度99.9%のAl厚板を載せた。 このように準備した箱を真空電気炉中に装入
し、真空排気しつつ670℃まで約1時間で昇温し
た。昇温期間中TiH2粉末は、約300℃付近から分
解反応を開始し、吸蔵水素ガスを放出し、約650
℃では完全に水素ガスの放出は停止し、金属Ti
に変化した。熱処理加工は670℃で30分保持した
後炉冷した。 角柱試料は全面にAlを被覆した状態で取出さ
れた。Alの含浸状態を観察するため切断したと
ころ、内部までAlが浸透していることが判明し
た。 この角柱試料を粉砕後、振動ミルで粉砕混合
し、5ton/cm2で10mm×10mm×15mmの角柱にプレス
成形した。この成形体のAl量は約45重量%であ
つた。又空間率は画像解析装置(Q.T.M)で観
察したところ約28%であつた。 別に単にTi粉末に対して300メツシユ以下のAl
粉末を約45重量%添加混合したものを5ton/cm2
プレス成形し、真空含浸法による成形体とその内
部構造について比較した。 その結果、空間率についてはほぼ同等な値であ
るが、走査電子顕微鏡による観察から、真空含浸
の成形体はTiとAl金属との接触面が均一であ
り、かつ空孔が一様に分散しているのに対して、
単なる混合成形体は局部的にTiおよびAl金属の
富む領域が多数分布し、さらに空孔の大きさ、そ
の分布についても一様でないことが判つた。 抗折力試験の結果、真空含浸法により処理した
成形体は88Kg/cm2、単なる混合成形体は64Kg/cm2
であり、機械的強度の面からも本発明材料は有利
であることが判つた。 実施例 4 Mg2Ni粉末を真空蒸着装置内で平底の薄型ガラ
スポートに約2mm厚さで充填した後、真空排気後
高周波加熱によるNi蒸着を施した。蒸着時間は
約5分間であり、この期間中外部マニピレーター
によりガラスボートを左右に移動させることで粉
末の表面に均一にNiの蒸着膜を作製させるよう
にし、さらにこの蒸着を2回繰返して実施した。
蒸着Ni膜厚は干渉型厚膜計により同時に装着し
ておいたガラス板から求めると約0.7μmであつ
た。 TiH2水素化物粉末に対しても上記と同様の処
理をした。 上記表面処理されたMg2Ni粉末およびTiH2
末を5ton/cm2でプレス成形したものと、さらには
これらにバインダとして200メツシユ以下のCu粉
末を30重量%添加混合して成形したものと、それ
ぞれ10mm×10mm×15mmの角柱成形体とした。 また比較材としてMg2NiおよびTiH2粉末をそ
れぞれ5ton/cm2で同様にプレス成形した。 Mg2Ni成形体の水素化および分解反応は280℃
の温度で導入水素圧力20Kg/cm2で水素化、真空排
気による水素放出で分解反応を実施し、この操作
を10回繰返した。 TiH2成形体は650〜700℃の温度範囲で、
Mg2Niの場合と同様な条件で水素化および分解反
応を10回行なつた。 その結果、Mg2NiやTiH2粉末のみを圧粉成形
体としたものは、水素化および分解反応の繰返し
により完全に粉末に戻り、Ni蒸着膜を施したも
のやさらにバインダーとしてCu粉末を添加した
ものは角柱形状を維持しており、蒸着膜あるいは
バインダーが成形体の崩壊を防止する上で極めて
効果的であることが判つた。 以上説明したとおり、本発明により得られる水
素吸蔵材料の圧粉成形体あるいは焼結体は、従来
の粉末のままの充填材料と比較すると、機械的強
度が付加され、さらに熱伝導度を改善した成形体
であるので、充填密度の向上、粉末の飛散移動が
ないことで充填方法および熱伝達機器などの簡単
化、取扱いなど作業性の向上を図ることが可能で
あり、水素吸蔵材料を利用した実用機器の開発に
対して大きな効果を示すものである。
[Table] As is clear from the results shown in the table above, it was found that the material of the present invention was significantly improved in transverse rupture strength, which indicates mechanical strength, and thermal conductivity. Further, for samples d and g, hydrogenation and decomposition reactions were performed 10 times by the method described in Example 1. As a result, the hydrogen absorption rate is around 15 minutes in both cases, but the hydrogen release rate is 26 minutes for sample d and 26 minutes for sample g.
It was hot in 25 minutes. Furthermore, it was found that the shape did not turn into powder even after repeated hydrogenation and decomposition reactions, but maintained a prismatic shape. Example 3 Hydride TiH 2 powder was pressed at a pressure of 1 ton/cm 2 at 15
A prismatic molded body measuring mm x 15 mm x 10 mm was made. A spongy flat plate made of alumina was placed at the bottom of a SUS box, and 10 of the above-mentioned molded bodies were placed side by side on it. Furthermore, a spongy flat plate made of alumina was placed on top of this, and a thick Al plate with a purity of 99.9% was placed on top of this flat plate. The box prepared in this way was placed in a vacuum electric furnace, and the temperature was raised to 670° C. in about 1 hour while evacuating the furnace. During the temperature rising period, the TiH 2 powder starts decomposition reaction at around 300°C, releases occluded hydrogen gas, and heats up to around 650°C.
At ℃, the release of hydrogen gas completely stops, and the metal Ti
It changed to Heat treatment was performed by holding at 670°C for 30 minutes and then cooling in the furnace. The prismatic sample was taken out with the entire surface covered with Al. When it was cut to observe the state of Al impregnation, it was found that Al had penetrated to the inside. This prismatic sample was pulverized, mixed using a vibrating mill, and press-molded at 5 tons/cm 2 into a 10 mm x 10 mm x 15 mm prismatic sample. The amount of Al in this molded body was about 45% by weight. Furthermore, the void ratio was approximately 28% when observed using an image analysis device (QTM). In addition, Al with less than 300 mesh for Ti powder
A mixture of about 45% by weight of powder was press-molded at 5 tons/cm 2 and its internal structure was compared with a molded product made by vacuum impregnation. As a result, the porosity values are almost the same, but observation using a scanning electron microscope shows that the contact surface between the Ti and Al metals in the vacuum-impregnated molded product is uniform, and the pores are uniformly distributed. In contrast,
It was found that in a simple mixed molded body, many regions rich in Ti and Al metals were locally distributed, and the size and distribution of pores were also not uniform. As a result of the transverse rupture strength test, the molded product treated by the vacuum impregnation method had a strength of 88Kg/cm 2 , and the simple mixed molded product had a strength of 64Kg/cm 2
Therefore, it was found that the material of the present invention is advantageous also in terms of mechanical strength. Example 4 Mg 2 Ni powder was filled in a flat-bottomed thin glass port to a thickness of about 2 mm in a vacuum evaporation apparatus, and after evacuation, Ni evaporation was performed by high-frequency heating. The deposition time was approximately 5 minutes, and during this period the glass boat was moved from side to side by an external manipulator to create a uniform Ni deposition film on the powder surface, and this deposition was repeated twice. did.
The thickness of the deposited Ni film was determined to be approximately 0.7 μm using an interferometric thickness meter from a glass plate attached at the same time. TiH 2 hydride powder was also treated in the same manner as above. The above-mentioned surface-treated Mg 2 Ni powder and TiH 2 powder are press-molded at 5 tons/cm 2 , and further, 30% by weight of Cu powder of 200 mesh or less is added and mixed as a binder to these and then molded. Each was made into a prismatic molded body of 10 mm x 10 mm x 15 mm. Furthermore, as comparative materials, Mg 2 Ni and TiH 2 powders were each press-molded at 5 tons/cm 2 in the same manner. Hydrogenation and decomposition reaction of Mg 2 Ni molded body at 280℃
Hydrogenation was carried out at a temperature of 20 Kg/cm 2 and a hydrogen pressure of 20 kg/cm 2 was applied, followed by decomposition reaction by releasing hydrogen by vacuum evacuation, and this operation was repeated 10 times. TiH 2 compacts in the temperature range of 650-700℃,
Hydrogenation and decomposition reactions were carried out 10 times under the same conditions as for Mg 2 Ni. As a result, compacted compacts made from only Mg 2 Ni or TiH 2 powder completely return to powder through repeated hydrogenation and decomposition reactions, and those with a Ni vapor-deposited film or those with Cu powder added as a binder. The molded product maintained its prismatic shape, and it was found that the deposited film or binder was extremely effective in preventing the molded product from collapsing. As explained above, the compacted or sintered body of the hydrogen storage material obtained by the present invention has added mechanical strength and improved thermal conductivity compared to conventional filling materials in the form of powder. Since it is a molded product, it is possible to improve the packing density, simplify the filling method and heat transfer equipment, and improve workability such as handling by eliminating the scattering and movement of powder. This will have a great effect on the development of practical equipment.

Claims (1)

【特許請求の範囲】 1 水素を吸蔵し、容易に金属水素化物を生成す
る金属もしくは合金粉末あるいは既に水素を吸蔵
した金属水素化物の粉末の表面をAl、Ni、Cu及
びこれらの金属を主元素とする合金もしくは融点
が100〜400℃の低溶融合金をもつて表面処理後、
成形することを特徴とする水素貯蔵材料の製造方
法。 2 水素を吸蔵し、容易に金属水素化物を生成す
る金属もしくは合金粉末あるいは既に水素を吸蔵
した金属水素化物の粉末の表面をAl、Ni、Cu及
びこれらの金属を主元素とする合金もしくは融点
が100〜400℃の低溶融合金をもつて表面処理後、
Al、Ni、Cu、Zn、Sn、Pbより選ばれた金属もし
くはその合金材をバインダとして成形することを
特徴とする水素貯蔵材料の製造方法。 3 成形体の空間率を1〜50%とする特許請求の
範囲第1項又は第2項記載の水素貯蔵材料の製造
方法。 4 水素を吸蔵し、容易に金属水素化物を生成す
る金属もしくは合金粉末あるいは既に水素を吸蔵
した金属水素化物の粉末の表面をAl、Ni、Cu及
びこれらの金属を主元素とする合金もしくは融点
が100〜400℃の低溶融合金をもつて表面処理後成
形し、ついでこの成形体を非酸化性雰囲気下で
100〜1300℃の温度範囲で焼結熱処理することを
特徴とする水素貯蔵材料の製造方法。 5 水素を吸蔵し、容易に金属水素化物を生成す
る金属もしくは合金粉末あるいは既に水素を吸蔵
した金属水素化物の粉末の表面をAl、Ni、Cu及
びこれらの金属を主元素とする合金もしくは融点
が100〜400℃の低溶融合金をもつて表面処理後、
Al、Ni、Cu、Zn、Sn、Pbより選ばれた金属もし
くはその合金材をバインダとして成形し、ついで
この成形体を非酸化性雰囲気下で100〜1300℃の
温度範囲で焼結熱処理することを特徴とする水素
貯蔵材料の製造方法。 6 焼結成形体の空間率を1〜40%とする特許請
求の範囲第4項又は第5項記載の水素貯蔵材料の
製造方法。
[Claims] 1. The surface of a metal or alloy powder that absorbs hydrogen and easily forms a metal hydride, or a powder of a metal hydride that has already absorbed hydrogen, is coated with Al, Ni, Cu, or these metals as the main elements. After surface treatment with an alloy or a low melting alloy with a melting point of 100 to 400℃,
A method for producing a hydrogen storage material, the method comprising molding the material. 2. The surface of a metal or alloy powder that absorbs hydrogen and easily forms a metal hydride, or a powder of a metal hydride that has already absorbed hydrogen, is coated with Al, Ni, Cu, or alloys containing these metals as main elements or whose melting point is After surface treatment with low melting alloy at 100~400℃,
A method for producing a hydrogen storage material, characterized by forming a metal selected from Al, Ni, Cu, Zn, Sn, and Pb or an alloy thereof as a binder. 3. The method for producing a hydrogen storage material according to claim 1 or 2, wherein the molded body has a porosity of 1 to 50%. 4. The surface of a metal or alloy powder that absorbs hydrogen and easily forms a metal hydride, or a powder of a metal hydride that has already absorbed hydrogen, is coated with Al, Ni, Cu, or alloys containing these metals as main elements or whose melting point is After surface treatment with a low-melting alloy at 100 to 400°C, the molded body is molded in a non-oxidizing atmosphere.
A method for producing a hydrogen storage material, characterized by carrying out a sintering heat treatment in a temperature range of 100 to 1300°C. 5. The surface of a metal or alloy powder that absorbs hydrogen and easily forms a metal hydride, or a powder of a metal hydride that has already absorbed hydrogen, is coated with Al, Ni, Cu, alloys containing these metals as main elements, or alloys with melting points. After surface treatment with low melting alloy at 100~400℃,
Forming a metal selected from Al, Ni, Cu, Zn, Sn, and Pb or its alloy material as a binder, and then subjecting this formed body to sintering heat treatment at a temperature range of 100 to 1300°C in a non-oxidizing atmosphere. A method for producing a hydrogen storage material characterized by: 6. The method for producing a hydrogen storage material according to claim 4 or 5, wherein the sintered compact has a void ratio of 1 to 40%.
JP57144609A 1982-08-23 1982-08-23 Preparation of hydrogen storing material Granted JPS5935001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144609A JPS5935001A (en) 1982-08-23 1982-08-23 Preparation of hydrogen storing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144609A JPS5935001A (en) 1982-08-23 1982-08-23 Preparation of hydrogen storing material

Publications (2)

Publication Number Publication Date
JPS5935001A JPS5935001A (en) 1984-02-25
JPS624321B2 true JPS624321B2 (en) 1987-01-29

Family

ID=15366001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144609A Granted JPS5935001A (en) 1982-08-23 1982-08-23 Preparation of hydrogen storing material

Country Status (1)

Country Link
JP (1) JPS5935001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419880U (en) * 1987-07-27 1989-01-31

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162102A (en) * 1983-03-03 1984-09-13 Chuo Denki Kogyo Kk Conjugated molded article of alloy for hydrogen occlusion and its preparation
JPS6119063A (en) * 1984-07-05 1986-01-27 Sanyo Electric Co Ltd Hydrogen occlusion electrode
JPS61132501A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Formed hydrogen storage alloy
JPS61144499A (en) * 1984-12-19 1986-07-02 Sanyo Electric Co Ltd Metal hydride container
JP2001289397A (en) * 2000-04-10 2001-10-19 Japan Metals & Chem Co Ltd Hydrogen storage alloy storing container
CN109898002B (en) * 2019-04-30 2020-10-27 三桥惠(佛山)新材料有限公司 Magnesium-based hydrogen storage alloy and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111546A (en) * 1973-10-18 1975-09-02
JPS5220423A (en) * 1975-08-09 1977-02-16 Matsushita Electric Ind Co Ltd Hydrogen preserving equipment
JPS5366852A (en) * 1976-11-26 1978-06-14 Chiyoo Komori Hydrogen absorbloting sponge titanium foil and said manufacturing process
JPS53103543A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5590401A (en) * 1978-12-22 1980-07-09 Daimler Benz Ag Hydrogenated metal stimulator and making method thereof
JPS55158101A (en) * 1979-05-25 1980-12-09 Tokai Daigaku Hydrogen occluding body
JPS55167101A (en) * 1979-06-15 1980-12-26 Matsushita Electric Ind Co Ltd Hydrogen storing material and its manufacture
JPS5719041A (en) * 1980-07-11 1982-02-01 Japan Organo Co Ltd Regeneration of thermoregenerative type ion exchange resin
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50111546A (en) * 1973-10-18 1975-09-02
JPS5220423A (en) * 1975-08-09 1977-02-16 Matsushita Electric Ind Co Ltd Hydrogen preserving equipment
JPS5366852A (en) * 1976-11-26 1978-06-14 Chiyoo Komori Hydrogen absorbloting sponge titanium foil and said manufacturing process
JPS53103543A (en) * 1977-02-23 1978-09-08 Matsushita Electric Ind Co Ltd Hydrogen occlusion electrode
JPS5590401A (en) * 1978-12-22 1980-07-09 Daimler Benz Ag Hydrogenated metal stimulator and making method thereof
JPS55158101A (en) * 1979-05-25 1980-12-09 Tokai Daigaku Hydrogen occluding body
JPS55167101A (en) * 1979-06-15 1980-12-26 Matsushita Electric Ind Co Ltd Hydrogen storing material and its manufacture
JPS5719041A (en) * 1980-07-11 1982-02-01 Japan Organo Co Ltd Regeneration of thermoregenerative type ion exchange resin
JPS581032A (en) * 1981-06-27 1983-01-06 Nippon Steel Corp Production of hydrogen absorbing metallic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419880U (en) * 1987-07-27 1989-01-31

Also Published As

Publication number Publication date
JPS5935001A (en) 1984-02-25

Similar Documents

Publication Publication Date Title
US5930580A (en) Method for forming porous metals
Huot et al. Mechanical alloying of MgNi compounds under hydrogen and inert atmosphere
JP5250170B2 (en) Hydrogen storage powder and its preparation process
Zhu et al. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5− x (CoAlMn) x
Stanev et al. Open-cell metallic porous materials obtained through space holders—Part I: Production methods. A review
JP2003534637A5 (en)
US4360569A (en) Porous metal hydride composite and preparation and uses thereof
US4386974A (en) Hydrogen storage material
JPH0350801B2 (en)
JPS624321B2 (en)
Dong et al. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure
CN110306074B (en) Discharge plasma sintering preparation method of CERMET fuel pellet
CN110629091A (en) High-capacity multi-phase hydrogen storage alloy for fuel cell and preparation method thereof
CN103924130A (en) Aluminum alloy/316L stainless steel coating composite material and preparation method thereof
CN101717873A (en) Powder forging and molding method for preparing porous amorphous alloy block material
US3953355A (en) Preparation of uranium nitride
US5895518A (en) Synthesis of alloys with controlled phase structure
Liu et al. Phase component, microstructure and hydrogen storage properties of the laser sintered Mg–20 wt.% LaNi5 composite
Wang et al. Improvement in hydrogen storage properties of MgH2 catalyzed with BaTiO3 additive
CN114293046A (en) Preparation method of low-oxygen-content powder metallurgy porous titanium/zirconium-based hydrogen storage alloy
JPH0524843B2 (en)
Song et al. Cycling Performance of NaAlH4 and Transition Metals-Added MgH2 Prepared via Milling in a Hydrogen Atmosphere
JPS5855302A (en) Water decomposing substance and decomposing method for water
CN106756355B (en) Fuel cell stores hydrogen intermediate alloy, hydrogen storage material and preparation method with Mg-Sn-Ni ternary
Guthrie et al. The development of lightweight hydride alloys based on magnesium