JPS5820881B2 - Hydrogen absorption and release method using metals - Google Patents

Hydrogen absorption and release method using metals

Info

Publication number
JPS5820881B2
JPS5820881B2 JP55111551A JP11155180A JPS5820881B2 JP S5820881 B2 JPS5820881 B2 JP S5820881B2 JP 55111551 A JP55111551 A JP 55111551A JP 11155180 A JP11155180 A JP 11155180A JP S5820881 B2 JPS5820881 B2 JP S5820881B2
Authority
JP
Japan
Prior art keywords
hydrogen
metal
metals
nickel
oily substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55111551A
Other languages
Japanese (ja)
Other versions
JPS5738302A (en
Inventor
加藤明彦
小黒啓介
大角泰章
中根正典
鈴木博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55111551A priority Critical patent/JPS5820881B2/en
Publication of JPS5738302A publication Critical patent/JPS5738302A/en
Publication of JPS5820881B2 publication Critical patent/JPS5820881B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 本発明は、物質に水素を吸収させる方法および水素を吸
収した物質から該水素を放出させる方法の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a method for absorbing hydrogen into a substance and a method for releasing hydrogen from a substance that has absorbed hydrogen.

成る種の金属(合金を含む)、例えば、リチウム、ナト
リウム、カリウム、マグネシウム、カルシウム、ストロ
ンチウム、バリウム、ランタン。
Metals (including alloys) consisting of, for example, lithium, sodium, potassium, magnesium, calcium, strontium, barium, lanthanum.

ウラン、トリウム、チタン、ジルコニウム、バナジウム
、チタン−鉄、チタン−コバルト、チタン−ニッケル、
ランタン−ニッケル、カルシウム−ニッケル、ミツシュ
メタル(希土類金属混合物)−ニッケル、ミツシュメタ
ル−カルシウム−ニッケル、ミツシュメタル−ニッケル
ーマンガン、ミツシュメクルーニッケルーアルミニウム
、ミツシュメタル−ニッケルークロム、ミツシュメタル
−ニッケルーコバルト等は、既に知られているように、
その金属固有の水素圧力および温度条件下において繰返
し何度でも水素ガスを吸収−放出することができる。
Uranium, thorium, titanium, zirconium, vanadium, titanium-iron, titanium-cobalt, titanium-nickel,
Lanthanum-nickel, calcium-nickel, Mitsushmetal (rare earth metal mixture)-nickel, Mitsushmetal-calcium-nickel, Mitsushmetal-nickel-manganese, Mitsushmetal-nickel-aluminum, Mitsushmetal-nickel-chromium, Mitsushmetal-nickel-cobalt, etc. As already known,
Hydrogen gas can be absorbed and released over and over again under the hydrogen pressure and temperature conditions specific to the metal.

また、この水素ガスの吸収および放出の反応は従来種々
の用途に利用されており、例えば、水素ガスの貯蔵、熱
エネルギーの貯蔵。
Furthermore, this hydrogen gas absorption and release reaction has conventionally been used for various purposes, such as hydrogen gas storage and thermal energy storage.

ケミカル・ヒート・ポンプ、ケミカル・エンジン、ケミ
カル・コンプレッサー、水素精製、ガス分離。
Chemical heat pumps, chemical engines, chemical compressors, hydrogen purification, gas separation.

重水素分離、トリチウム貯蔵等に適用されている。It is applied to deuterium separation, tritium storage, etc.

しかしながら、これらの金属は、水素ガスを吸収し又は
放出する毎に破砕し、しだいに微粉末化する欠点がある
However, these metals have the disadvantage that each time they absorb or release hydrogen gas, they are crushed and gradually turned into fine powder.

すなわち、金属およびその水素吸収状態である金属水素
化物が微粉末化した場合には多くの障害が生ずることに
なる。
That is, when metals and their hydrogen-absorbed metal hydrides are pulverized, many problems occur.

例えば、微粉末化した金属および金属水素化物は、水素
化反応容器から水素ガス流と共に外部に流出し、該容器
の周辺装置、水素ガスバルブ、水素導入配管等を汚染す
るのみならず金属および金属水素化物自体の損失をもま
ねく。
For example, finely powdered metals and metal hydrides flow out of the hydrogenation reaction vessel along with the hydrogen gas flow, and not only contaminate peripheral equipment, hydrogen gas valves, hydrogen introduction piping, etc. of the vessel, but also metals and metal hydrides. This also results in the loss of the monster itself.

また、この場合の流出防止のために、何らかのフィルタ
ーを用いたとしても該フィルターの目詰り等が生ずるた
め装置の運転管理上好ましくないことになる。
Furthermore, even if some sort of filter is used to prevent outflow in this case, the filter will become clogged, which is not desirable in terms of operational management of the apparatus.

そこで本発明者らは、上記のような流出の防止について
種々研究した結果、上述した水素ガスの吸収又は放出の
反応を行なわせるに際し、油状物質が金属粉末間に粘着
性を与えるであろうと想定して反応系に常温で液状の油
状物質を添加したところ、反応速度に実質的に何らの変
化を与えることなしに効果的にその防止を達成できるこ
とを知り1本発明をなすに至った。
Therefore, as a result of various studies on preventing the above-mentioned outflow, the present inventors hypothesized that the oily substance would impart stickiness between the metal powders when the above-mentioned absorption or release reaction of hydrogen gas was carried out. The present inventors discovered that by adding an oily substance that is liquid at room temperature to the reaction system, this can be effectively prevented without substantially changing the reaction rate, leading to the present invention.

したがって本発明は、金属の微粉末化による上記のよう
な流出を防止しながら水素を吸収又は放出できる、金属
を用いた水素の有利な吸収および放出方法を提供するこ
とを目的とする。
It is therefore an object of the present invention to provide an advantageous method for absorbing and releasing hydrogen using metals, which allows hydrogen to be absorbed or released while preventing the above-mentioned outflow due to metal pulverization.

以下、本発明の構成について詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

従来、金属と水素とから金属水素化物を生成させる反応
を行なわせることによって該金属に水素を吸収させ、ま
た、この逆の反応、すなわち、金属水素化物から金属と
水素を生成させる反応を行なわせることによって水素を
放出させているが、本発明においては、これらの反応を
行なわせるに際し該金属および該金属水素化物を常温で
液状の油状物質と混合して用いるのである。
Conventionally, hydrogen is absorbed by the metal by performing a reaction between the metal and hydrogen to generate a metal hydride, and the reverse reaction, that is, a reaction is performed to generate a metal and hydrogen from the metal hydride. In the present invention, when performing these reactions, the metal and the metal hydride are mixed with an oily substance that is liquid at room temperature.

この場合の混合は常法によればよく、反応時に混合状態
にあればよい。
Mixing in this case may be carried out by a conventional method, and it is sufficient that the components are in a mixed state at the time of the reaction.

また、混合割合は、油状物質の種類、金属の種類さらに
は使用する水素圧力、温度条件によって異なるが、具体
的には金属1kg当り油状物質をlogから500gの
範囲内で用いることが好ましく、40gから100gの
範囲内で用いることがさらに好ましい。
The mixing ratio varies depending on the type of oily substance, the type of metal, and the hydrogen pressure and temperature conditions used, but specifically, it is preferable to use an oily substance in the range of 500g to 500g per 1kg of metal, and 40g It is more preferable to use the amount within the range of 100g to 100g.

なお、109〜500gの範囲を越えて油状物質を用い
る場合には、水素吸収速度が極めて遅くなり、一方、こ
の範囲よりも少なく用いる場合には使用の効果が顕著に
表われないので、この範囲内で用いるように留意すべき
である。
Note that if the amount of oily substance used exceeds the range of 109 to 500 g, the hydrogen absorption rate will be extremely slow, while if it is used less than this range, the effect of use will not be noticeable. Care should be taken to use it within

金属水素化物と油状物質との混合割合については金属水
素化物における金属を基準とすればよく。
The mixing ratio of the metal hydride and the oily substance may be based on the metal in the metal hydride.

すなわち、金属水素化物の金属Lkg当り油状物質10
g〜500gの範囲内で用いればよく、40g−too
、yの範囲内で用いることが好ましい。
That is, 10 oily substances per L kg of metal of the metal hydride.
It may be used within the range of g to 500 g, and 40 g-too
, y is preferably used.

上記油状物質としては、特に限定されるものではないが
1例えば、ジアルキルシロキサン(例えば、ジメチルシ
ロキサン)又はその誘導体のようなシリコーン・オイル
、流動パラフィンおよび流動性のポリクロルトリフルオ
ルエチレンが挙げられる。
The oily substances include, but are not limited to, silicone oils such as dialkylsiloxanes (eg, dimethylsiloxane) or derivatives thereof, liquid paraffin, and liquid polychlorotrifluoroethylene.

また、水素を吸収する上記金属としては従来公知のもの
であればよいが1例えば、マグネシウム−ニッケル、チ
タン−鉄又はチタン−コバルトを主成分とする合金;お
よびランタン−ニッケル。
The above-mentioned metal that absorbs hydrogen may be any conventionally known metal, such as alloys whose main components are magnesium-nickel, titanium-iron, or titanium-cobalt; and lanthanum-nickel.

カルシウム−ニッケル、ミツシュメクルーニッケル、ミ
ツシュメタル−カルシウム−ニッケル、ミツシュメタル
−ニッケルーマンガン、ミツシュメクルーニッケルーア
ルミニウム、ミツシュメタル−ニッケルークロム又はミ
ツシュメタル−ニッケルーコバルトを主成分とする合金
を用いることができる。
An alloy whose main component is calcium-nickel, Mitsushimetal-nickel, Mitsushimetal-calcium-nickel, Mitsushimetal-nickel-manganese, Mitsushimetal-nickel-aluminum, Mitsushimetal-nickel-chromium, or Mitsushimetal-nickel-cobalt can be used. .

本発明によれば、上述したように金属および金属水素化
物を常温で液状の油状物質と混合して用いるために、該
油状物質を介して金属および金属水素化物が互いに粘着
するので、水素ガスの吸収および放出を繰返してこれら
が微粉末化したとしても飛散および流失するのを防ぐこ
とができる。
According to the present invention, since metals and metal hydrides are used by mixing them with an oily substance that is liquid at room temperature as described above, the metals and metal hydrides stick to each other through the oily substance, so that hydrogen gas Even if they become fine powder through repeated absorption and release, they can be prevented from scattering and being washed away.

なお、金属の微粉末化は金属又は金属水素化物の熱伝導
性の低下を招く。
Note that pulverization of the metal causes a decrease in the thermal conductivity of the metal or metal hydride.

すなわち、微粉末は互いに一点でしか接しないため、全
体としての熱伝導性は極めて悪いからである。
That is, since the fine powders contact each other only at one point, the thermal conductivity as a whole is extremely poor.

本発明によれば、微粉末の隙間に油状物質が介在するこ
とになるので熱伝導性を改善できる。
According to the present invention, since the oily substance is present in the gaps between the fine powders, thermal conductivity can be improved.

なお、水素貯蔵物質の熱伝導性は、水素を吸収又は放出
する速度に直接的に影響を与える要因であるから、極め
て重要な性質であるといえる。
Note that the thermal conductivity of the hydrogen storage material is a factor that directly affects the rate at which hydrogen is absorbed or released, so it can be said to be an extremely important property.

さらに、水素貯蔵用金属を扱う容器等には気密性が要求
されるが、本発明によれば、上記油状物質がシール剤と
して働くので気密性を向上させることができる。
Furthermore, although containers and the like that handle hydrogen storage metals are required to be airtight, according to the present invention, the oily substance acts as a sealing agent, so that airtightness can be improved.

また、これら容器に可動部分がある場合には上記油状物
質による潤滑作用も期待できる。
Furthermore, if these containers have moving parts, the oily substance can also be expected to have a lubricating effect.

なお、従来知られている水素貯蔵用金属およびその水素
化物は、水素中に混在しうる水分と極めて容易に反応し
、そのため水素貯蔵用としての活性が低下する。
Note that conventionally known metals for hydrogen storage and their hydrides react very easily with moisture that may be mixed in hydrogen, and therefore their activity for hydrogen storage is reduced.

このため、貯蔵用水素には予め脱水処理を施すことが必
要とされるが、残留した微量の水分の存在によっても繰
返し吸収と放出を行なう長期間の使用の後には、金属の
水素吸収能力は使用に適さないほどに低下するものと考
えられる。
For this reason, it is necessary to dehydrate hydrogen for storage in advance, but after long-term use where even the presence of trace amounts of residual water causes repeated absorption and release, the hydrogen absorption capacity of metals decreases. It is considered that the level has decreased to such a level that it is unsuitable for use.

本発明によれば、上記油状物質が金属粉末の表面に疎水
性の皮膜を形成するので、水素貯蔵用金属の水分による
劣化を防ぐことができる。
According to the present invention, since the oily substance forms a hydrophobic film on the surface of the metal powder, deterioration of the hydrogen storage metal due to moisture can be prevented.

すなわち、換言すれば、添加した油状物質による金属微
粉末1粒ずつを被覆するフィルターとしての働きを期待
できるからである。
That is, in other words, the added oily substance can be expected to function as a filter that coats each particle of fine metal powder.

このように、本発明によれば、水素ガス中の水分等の不
純物に対する水素貯蔵物質の耐性を向上できる。
As described above, according to the present invention, the resistance of the hydrogen storage material to impurities such as moisture in hydrogen gas can be improved.

したがって1本発明は従来技術に比し下記のような利点
を有する: (a) 金属および金属水素化物粉末の飛散および流
出の防止; (b) 金属および金属水素化物粉末の熱伝導性の向
上; CC) 貯蔵容器の気密性および潤滑性の改善;(d
) 水分等による水素貯蔵能力劣化の防止。
Therefore, the present invention has the following advantages over the prior art: (a) prevention of scattering and outflow of metal and metal hydride powder; (b) improvement of thermal conductivity of metal and metal hydride powder; CC) Improving the tightness and lubricity of storage containers; (d
) Preventing deterioration of hydrogen storage capacity due to moisture, etc.

本発明は、金属水素化物を利用する学なる水素ガスの貯
蔵方法として適用されるだけではなく。
The present invention is not only applicable as a method for storing hydrogen gas using metal hydrides.

熱エネルギーの貯蔵、水素の吸収および放出を要素反応
とする他の作業(例えば、ケミカル・ヒート・ポンプ、
水素ガス分離等)などの種々の用途に適用可能である。
Other operations in which the storage of thermal energy, absorption and release of hydrogen are elemental reactions (e.g. chemical heat pumps,
It can be applied to various applications such as hydrogen gas separation, etc.

以下に実施を例示して本発明をさらに具体的に説明する
The present invention will be explained in more detail by illustrating examples below.

実施例 I L a N i 5の粉末(400メツシユ以下)1g
に対し、シリコーン・オイル(ジメチルシロキサン、平
均粘度LOOOcSt)0.1gを混合した。
Example I L a N i 5 powder (400 mesh or less) 1 g
0.1 g of silicone oil (dimethylsiloxane, average viscosity LOOOcSt) was mixed with the mixture.

この混合物は水素圧30atm において200℃まで
加熱後20℃に冷却することによって13.9■の水素
ガスを吸収した。
This mixture was heated to 200° C. under a hydrogen pressure of 30 atm and then cooled to 20° C., thereby absorbing 13.9 μ of hydrogen gas.

ついで、130℃に加熱すると4分で水素を全量放出し
た。
Then, when heated to 130°C, all hydrogen was released in 4 minutes.

さらに、80℃まで冷却することにより再び13.9■
の水素ガスを6分で吸収した。
Furthermore, by cooling it to 80℃, it becomes 13.9■ again.
of hydrogen gas was absorbed in 6 minutes.

なお、LaNi5の粉末は、用いた反応容器から外部に
流出することがなかった。
Note that the LaNi5 powder did not flow out from the reaction vessel used.

実施例 2 油状物質として流動パラフィンを、夫々、 0.02.
9.0.06g、0.15g用いること以外は実施例1
と同様な手順で水素ガスの吸収および放出を行なった。
Example 2 Liquid paraffin was used as the oily substance, and 0.02.
9. Example 1 except that 0.06g and 0.15g were used.
Hydrogen gas was absorbed and released using the same procedure.

これらの混合物は、夫々、3分で13.9〜,6分で1
3.9Tng、2時間で13.077119の水素を吸
収した。
These mixtures had a temperature of 13.9 to 1 in 3 minutes and 1 in 6 minutes, respectively.
At 3.9 Tng, 13.077119 hydrogen atoms were absorbed in 2 hours.

放出時間にも差があられれ、夫々、3分、4分、30分
でほぼ全量を放出した。
There were also differences in release time, with almost the entire amount being released in 3 minutes, 4 minutes, and 30 minutes, respectively.

流動パラフィンを0.02g混合した場合には、わずか
に金属粉末の飛散がみられたが、他の場合では飛散はみ
とめられなかった。
When 0.02 g of liquid paraffin was mixed, slight scattering of metal powder was observed, but no scattering was observed in other cases.

実施例 3 油状物質としてポリクロルトリフルオルエチレ[ン(平
均分子量tooo)を0.1 g用いること以外は、実
施例1と同様な手順で水素の吸収と放出を行なったとこ
ろ、実施例1と同様な結果を得た。
Example 3 Hydrogen absorption and release were carried out in the same manner as in Example 1 except for using 0.1 g of polychlorotrifluoroethylene (average molecular weight too) as the oily substance. Similar results were obtained.

実施例 4 MmNi(5Mno、s(Mmはミツシュメタルを表わ
・す)の粉末(400メツシユ以下)20gに対し、実
施例1と同様のシリコーン・オイルを1g混合した。
Example 4 1 g of the same silicone oil as in Example 1 was mixed with 20 g of powder (400 mesh or less) of MmNi (5Mno, s (Mm represents Mitsushi metal)).

この混合物を減圧(l 0−2torr)下に80℃で
1時間脱気し、ついで8atm の水素圧を加えてから
5℃に冷却することにより活性化し;た。
The mixture was degassed under reduced pressure (l 0-2 torr) at 80°C for 1 hour and then activated by adding 8 atm of hydrogen pressure before cooling to 5°C.

この活性化処理を3回行なったのち、この混合物は水素
圧8atm、温度5℃の条件下に30分で270〜の水
素を吸収した。
After this activation treatment was carried out three times, the mixture absorbed 270 ~ of hydrogen in 30 minutes under the conditions of a hydrogen pressure of 8 atm and a temperature of 5°C.

さらに、水素圧1atmb温度80℃の条件において2
0分でほぼ全量の水素を放出した。
Furthermore, under the conditions of hydrogen pressure 1 atmb and temperature 80°C, 2
Almost all of the hydrogen was released in 0 minutes.

この水素吸収−放出サイクルを15回繰返しても、吸収
量に変化はみとめられなかった。
Even after repeating this hydrogen absorption-release cycle 15 times, no change was observed in the absorbed amount.

この場合も、金属粉末の流出や飛散はみとめられなかっ
た。
In this case as well, no outflow or scattering of metal powder was observed.

Claims (1)

【特許請求の範囲】 1 金属と水素とから金属水素化物を生成する反応およ
びこの逆反応を行なわせることによって水素の吸収およ
び放出を行なうに際し、該金属および該金属水素化物を
常温で液状の油状物質と混合して用いることを特徴とす
る。 金属を用いた水素の吸収および放出方法。
[Scope of Claims] 1. When a metal hydride is produced from a metal and hydrogen, and hydrogen is absorbed and released by the reverse reaction, the metal and the metal hydride are converted into a liquid oil at room temperature. It is characterized by being used in combination with a substance. A method for absorbing and releasing hydrogen using metals.
JP55111551A 1980-08-12 1980-08-12 Hydrogen absorption and release method using metals Expired JPS5820881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55111551A JPS5820881B2 (en) 1980-08-12 1980-08-12 Hydrogen absorption and release method using metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55111551A JPS5820881B2 (en) 1980-08-12 1980-08-12 Hydrogen absorption and release method using metals

Publications (2)

Publication Number Publication Date
JPS5738302A JPS5738302A (en) 1982-03-03
JPS5820881B2 true JPS5820881B2 (en) 1983-04-26

Family

ID=14564248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55111551A Expired JPS5820881B2 (en) 1980-08-12 1980-08-12 Hydrogen absorption and release method using metals

Country Status (1)

Country Link
JP (1) JPS5820881B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145199A (en) * 1984-08-10 1986-03-05 Sanyo Electric Co Ltd Method of taking out hydrogen occlusion alloy
JPS6153560U (en) * 1984-09-13 1986-04-10
JP2507606Y2 (en) * 1990-07-06 1996-08-14 株式会社小松製作所 Air cleaner for cooling system of drive system of large dump truck
US5662729A (en) * 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
DE10050554A1 (en) * 2000-10-12 2002-04-25 Novars Ges Fuer Neue Technolog Hydrogen source used for operating fuel cell comprises a chemical hydride bound in an organic substance which reacts with water forming gaseous hydrogen

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220422A (en) * 1975-08-09 1977-02-16 Matsushita Electric Ind Co Ltd Hydrogen reserving equipment
US4036944A (en) * 1976-05-17 1977-07-19 Shell Oil Company Hydrogen sorbent composition and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220422A (en) * 1975-08-09 1977-02-16 Matsushita Electric Ind Co Ltd Hydrogen reserving equipment
US4036944A (en) * 1976-05-17 1977-07-19 Shell Oil Company Hydrogen sorbent composition and its use

Also Published As

Publication number Publication date
JPS5738302A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
Ron et al. Preparation and properties of porous metal hydride compacts
Jacob et al. Hydrogen sorption properties of some AB2 Laves phase compounds
CA1193820A (en) Method for preparing improved porous metal-hydride compacts and apparatus therefor
US4292265A (en) Method for preparing porous metal hydride compacts
Johnson Reaction of hydrogen with the high temperature (C14) form of TiCr2
PT1817439E (en) Non-evaporable getter alloys for hydrogen sorption
Naik et al. Zirconium–cobalt intermetallic compound for storage and recovery of hydrogen isotopes
Mintz et al. Hydrogenation of oxygen-stabilized Ti2MOx (M Fe, Co, Ni; 0⩽ x< 0.5) compounds
US5312606A (en) Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
Zhang et al. The hydriding and dehydriding kinetics of some LaNi5− χAlχ alloys
CA1088913A (en) Method for storing hydrogen in nickel-calcium
JPS5820881B2 (en) Hydrogen absorption and release method using metals
Romanov et al. Influence of high thermal conductivity addition on PCT-isotherms of hydrogen storage alloy
Chung et al. Influence of the lattice and electronic factors on the hydrogenation properties of the RNi5-base (R is a rare earth) Haucke compounds: results of low temperature heat capacity measurements
US5312607A (en) Process for the sorption of residual gas by means by a non-evaporated barium getter alloy
US4347082A (en) Mischmetal alloy for storage of hydrogen
Corré et al. Stabilisation of high dissociation pressure hydrides of formula La1− xCexNi5 (x= 0–0.3) with carbon monoxide
Goudy et al. Desorption kinetics of LaNi5, LaNi4. 7Al0. 3,(CFM) Ni5 and MNi4. 5Al0. 5 hydrides
Suzuki et al. Thermodynamic properties of Zr (FexMn1− x) 2-H2 systems
US4400348A (en) Alloy for occlusion of hydrogen
JPS581032A (en) Production of hydrogen absorbing metallic material
Fujii et al. New composite materials for hydrogen storage using magnesium as a binder
JPS61199045A (en) Hydrogen occluding alloy
JPS5938293B2 (en) Titanium-chromium-vanadium hydrogen storage alloy
Pedersen et al. The effect of cycling in impure hydrogen on the hydrogen capacity of magnesium powder