JPS5849601A - Recovery of metallic material for hydrogen storage - Google Patents

Recovery of metallic material for hydrogen storage

Info

Publication number
JPS5849601A
JPS5849601A JP56146792A JP14679281A JPS5849601A JP S5849601 A JPS5849601 A JP S5849601A JP 56146792 A JP56146792 A JP 56146792A JP 14679281 A JP14679281 A JP 14679281A JP S5849601 A JPS5849601 A JP S5849601A
Authority
JP
Japan
Prior art keywords
metal hydride
liquid
container
hydrogen storage
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56146792A
Other languages
Japanese (ja)
Inventor
Yoshio Moriwaki
良夫 森脇
Koji Gamo
孝治 蒲生
Nobuyuki Yanagihara
伸行 柳原
Tsutomu Iwaki
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56146792A priority Critical patent/JPS5849601A/en
Publication of JPS5849601A publication Critical patent/JPS5849601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:At first, the metal hydride is subjected to dehydrogenative treatment, then, a liquid scarcely reactive with the metal hydride is introduced into the vessel to cover the surface of the metal hydride and the metal hydride and the liquid are taken out of the vessel together, thus recovering it substantially without reduction in hydrogen storage performance. CONSTITUTION:When a metal hydride 1 such as LaNi5 or TiMn1.5 contained in a stainless steel pressure vessel 2 becomes low in its hydrogen storage performance, only the vacuum valve 6 is opened and the vessel 2 is evacuated to a level of 10<-5>mm.Hg to effect dehydrogenative treatment. Then, a liquid scarcely reactive with the metal halide such as ethanol is introduced through the valve 9 into the vessel 1 to cover to surface of the hydride 1. After that, the cover 3 is demounted and the metal hydride and ethanol are taken out of the vessel 2. The following separation of the ethanol from the hydride by evaporation with heat causes substantially no reduction in hydrogen storage performance.

Description

【発明の詳細な説明】 本発明は、水素貯蔵用金属材料を収納した容器から、水
素貯蔵用金属材料を取り出し、回収する方法に関するも
ので、安全でかつ水素貯蔵用金属材料の性能を劣化させ
ない効果的な回収方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for taking out and recovering a metal material for hydrogen storage from a container containing the metal material for hydrogen storage, which method is safe and does not deteriorate the performance of the metal material for hydrogen storage. This provides an effective collection method.

水素貯蔵用金属材料は、水素の貯蔵や輸送手段としての
用途や、蓄熱、冷暖房などのエネルギー変換手段として
の用途が考えられており、LaNi5゜TiFe 、 
Mg2Ni 、 TiMn、、5などの材料が良く知ら
れている。
Metal materials for hydrogen storage are considered to be used as a means of storing and transporting hydrogen, and as a means of energy conversion such as heat storage and air conditioning.
Materials such as Mg2Ni, TiMn, etc. are well known.

一般的には、これらの水素貯蔵材料を耐圧容器内に収納
し、必要な水素ガス圧力を印加することによって金属水
素化物を形成して水素を貯蔵し、水素を取り出すときは
逆に周囲条件を変えることにより金属水素化物から水素
を分離させる。この水素貯蔵用金属材料を以下簡単のた
めに金属水素化物として記し、水素化前の状態も含める
ものとすする。
Generally, these hydrogen storage materials are stored in a pressure-resistant container and the necessary hydrogen gas pressure is applied to form a metal hydride to store hydrogen, and when the hydrogen is extracted, the ambient conditions are controlled. Hydrogen is separated from the metal hydride by changing the This metal material for hydrogen storage will hereinafter be referred to as a metal hydride for the sake of simplicity, and the state before hydrogenation will also be included.

容器内に収納された金属水素化物は、水素化と脱水素化
を長期間縁シ返すことによって、水素貯蔵性能が徐々に
低下する。そのため金属水素化物を回収して性能が回復
する様に再生処理が必要な場合がある。また、容器に収
納した金属水素化物を別の容器に移し変えることや、容
器の異常等によって金属水素化物を容器外に取り出し回
収する操作も必要になってくる。
Metal hydrides stored in containers gradually undergo hydrogen storage performance deterioration due to repeated hydrogenation and dehydrogenation over a long period of time. Therefore, regeneration treatment may be necessary to recover metal hydrides and restore performance. In addition, it becomes necessary to transfer the metal hydride stored in the container to another container, or to take out the metal hydride from the container and collect it due to an abnormality in the container.

したがって、本発明で言う回収方法とは、金属水素化物
を収納した容器から取り出すこと、容器から容器への移
動、再生、再利用など一切の行為を含むものとする。
Therefore, the recovery method referred to in the present invention includes all actions such as taking out the metal hydride from the container containing it, moving it from container to container, recycling, and reusing.

この回収方法に関して、従来は充分な取扱上の検討を々
された例がなく、常識的に不活性ガスで置換をすること
が行われていた。金属水素化物は水素化と脱水素化を繰
り返すことによって、ミクロン又はサブミクロンオーダ
ーの微粉末になりやすい。また、金属水素化物特有の構
成金属元素からくる化学的な活性度の強さが影響して、
空気中に放置すると容易に酸化する。そして、その酸化
の程度は、金属水素化物の種類や、粉末粒度、酸素との
接触状態、残存水素量などによって全く異なるが、活性
度の強い状態のものの方が空気に触れただけで、容易に
燃焼する傾向にある。
Regarding this recovery method, no sufficient consideration has been given to the handling, and it has been common sense to replace the waste with an inert gas. Metal hydrides tend to become fine powders on the micron or submicron order by repeating hydrogenation and dehydrogenation. In addition, the strength of the chemical activity resulting from the constituent metal elements unique to metal hydrides has an influence,
Easily oxidizes when left in air. The degree of oxidation varies depending on the type of metal hydride, powder particle size, contact status with oxygen, amount of residual hydrogen, etc., but highly active hydrides are more easily oxidized when exposed to air. tends to burn.

金属水素化物は、酸化してしまうと、水素貯蔵性能が大
幅に低下することや、酸化熱によって高温を発熱するこ
とから安全上の観点から問題が発生する。しだがって、
回収時においても極力酸化全防止する方法が必要となる
。従来は、この酸化を抑制する回収法として、窒素ガス
やアルゴンガスなどの不活性ガス全金属水素化物全収納
した容器内に導き、不活性ガスで容器内を置換し、空気
と金属水素化物との接触を遮断した形で回収するとか、
又は、不活性ガス雰囲気中で一足時間放置後徐々に空気
中に取り出して回収する方法などが一般的に用いられて
いた。
When metal hydrides are oxidized, their hydrogen storage performance is significantly reduced and the heat of oxidation generates high temperatures, which poses safety problems. Therefore,
Even during recovery, a method is required to completely prevent oxidation as much as possible. Conventionally, as a recovery method to suppress this oxidation, an inert gas such as nitrogen gas or argon gas is introduced into a container containing all metal hydrides, and the inside of the container is replaced with the inert gas to separate air and metal hydrides. Collecting it in a form that prevents contact with it,
Alternatively, a method was generally used in which the material was left in an inert gas atmosphere for a period of time and then gradually taken out into the air for recovery.

しかし、この不活性ガス雰囲気を用いる方法は、完全に
酸素全遮断する必要があるだめ、装置が大型で複雑にな
ったり、作業性が低下したりするなどの問題があり、一
定時間放置後空気中に取り出す場合には、いくらか酸化
の程度が緩和されるものの、酸化防止の点では依然とし
て解決できない欠点を有している。
However, this method using an inert gas atmosphere has problems such as the need to completely cut out all oxygen, making the equipment large and complicated, and reducing work efficiency. Although the degree of oxidation is somewhat alleviated when it is taken out, it still has unresolved drawbacks in terms of oxidation prevention.

本発明は、これらの問題点全解決し、安全で水素貯蔵性
能を劣化させない効果的な回収方法を提5゜ 供するものである。すなわち本発明は、金属水素化物を
回収する前に、適当な温度下で真空排気系と接続し、脱
水素化処理をまず行い、その後金属水素化物と殆んど反
応しない液体を容器内に導入し、金属水素化物表面をそ
の液体で被覆した後、その液体と共に容器外に取シ出す
ことを特徴とする。
The present invention solves all of these problems and provides a safe and effective recovery method that does not deteriorate hydrogen storage performance. That is, in the present invention, before recovering the metal hydride, it is connected to a vacuum exhaust system at an appropriate temperature, dehydrogenation treatment is first performed, and then a liquid that hardly reacts with the metal hydride is introduced into the container. The method is characterized in that after the surface of the metal hydride is coated with the liquid, it is taken out of the container together with the liquid.

そして脱水素化処理と、液体導入の間に、従来から良く
行われている窒素ガスやアルゴンガスによる不活性ガス
の置換をすることは非常に有効なこともある。まだ本発
明において使用する液体としては、常混で液体であり、
比較的蒸気圧が低いものが好ましく、さらに金属水素化
物と反応し難いことも特性を劣化させない上で重要であ
る。これらの条件を満たす適当な液体として、アルコー
ルMl)IJクレン、アセトン、エーテル、エチレング
リコール、グリセリン尋の有機溶剤および、水、シリコ
ーン油等の無機溶剤があり、それらの1種又は2種以上
の混合物を使用すれば特性劣化もなく効果的に金属水素
化物を回収することができる。           
       6本発明の方法について、さらに詳しく
説明すると、まず脱水素化処理については、単に回収時
に、金属水素化物の水素分解反応によって水素発生が起
こるのを防止するというだけの理由ではない。
Between the dehydrogenation treatment and the introduction of the liquid, it may be very effective to replace the inert gas with nitrogen gas or argon gas, which has been conventionally often done. The liquid used in the present invention is a liquid in a constant state,
It is preferable to have a relatively low vapor pressure, and it is also important that it is difficult to react with metal hydrides in order to prevent deterioration of properties. Suitable liquids that meet these conditions include organic solvents such as alcohol, acetone, ether, ethylene glycol, and glycerin, and inorganic solvents such as water and silicone oil. If a mixture is used, metal hydrides can be effectively recovered without deterioration of properties.
6 To explain the method of the present invention in more detail, first, the dehydrogenation treatment is not simply to prevent hydrogen generation from occurring due to the hydrogen decomposition reaction of the metal hydride during recovery.

金属水素化物粉末は、一般的には仮りに所足の温度で平
衡解離圧力が大気圧より低くても、水素化物相を形成し
ていれば、充分に脱水素化処理を施した物よりも、数段
酸化されやすい。しだがって酸化防止の点では、特に重
要な操作である。壕だ液体を充填する場合には、金属水
素化物粉末が液体によって完全に被覆されるため、回収
時に空気などの酸化性雰囲気中であっても酸化されるこ
とは殆んどない。まだ本発明の液体を用いた回収の際に
は、使用jる液体で、金属水素化物を洗い流す様にも回
収できることから、金属水素化物特有の性質である水素
化による固結化した粉末に対しても極めて有効に回収で
きるという特徴がある。
In general, even if the equilibrium dissociation pressure of a metal hydride powder is lower than atmospheric pressure at a certain temperature, if it forms a hydride phase, it will have a higher performance than one that has been sufficiently dehydrogenated. , susceptible to several stages of oxidation. Therefore, it is a particularly important operation from the point of view of preventing oxidation. When the trench is filled with a liquid, the metal hydride powder is completely covered with the liquid, so it is hardly oxidized even in an oxidizing atmosphere such as air during recovery. However, when recovering using the liquid of the present invention, metal hydrides can be recovered by washing them away with the liquid used. It has the characteristic that it can be recovered very effectively.

なお、液体に被覆された金属水素化物粉末は、回収後、
液体と金属水素化物に分離して、金属水素化物を再利用
する必要がある。この場合には、必要に応じて液体分を
ろ過した後、′通常の加熱や減圧等による蒸発分離する
などの方法が適用できる。
In addition, the metal hydride powder coated with the liquid is recovered after collection.
It is necessary to separate the liquid and metal hydride and reuse the metal hydride. In this case, it is possible to apply a method such as filtration of the liquid as necessary and then evaporation separation using conventional heating, reduced pressure, or the like.

金属水素化物を収納した耐圧容器は、安全性確認のため
定期的な検査が必要であシ、金属水素化物を容器外に取
り出す必要がある。これを本発明の実施例として説明す
る。
Pressure-resistant containers containing metal hydrides require periodic inspections to confirm safety, and the metal hydrides must be taken out of the container. This will be explained as an example of the present invention.

実施例IC用いた金属水素化物材料として、一般的に良
く知られているL aN is r T t F e 
o 、p M n o 、1+T iM n 1.sの
3種の合金を選び、図に示す様な構造の容器にそれぞれ
充填した。金属水素化物1は、ステンレス鋼製耐圧容器
2とステンレス鋼製蓋3の中に空間率が約5o%になる
ように充填しである。蓋3は、固定用ボルト4によって
容器2の鍔部に固定され、気密性が確保されている。ま
た蓋に固定されたステンレス鋼製パイプ5には、真空ロ
バルブ6と水素ロバルブ7を、またパイプ8には液体ロ
バルブ9を取り付けた構造になっている。
Example L aN is r T t F e which is generally well known as a metal hydride material using IC.
o , p M n o , 1+T iM n 1. Three types of alloys of s were selected and each was filled into a container having a structure as shown in the figure. The metal hydride 1 is filled in a stainless steel pressure container 2 and a stainless steel lid 3 so that the porosity becomes about 50%. The lid 3 is fixed to the flange of the container 2 with fixing bolts 4 to ensure airtightness. Further, a vacuum valve 6 and a hydrogen valve 7 are attached to the stainless steel pipe 5 fixed to the lid, and a liquid valve 9 is attached to the pipe 8.

葦ず、容器内に金属水素化物1を充填し、固冗用ボルト
4で容器を気密な状態に保ち、その後、バルブ6のみ開
き、容器内を真空排気した。そして、次にバルブ7のみ
を開き、市販水素ボンベより約4o気圧まで水素を印加
し、水素化反応を行った。水素化反応を終了したら、バ
ルブ6のみを開き、金属水素化物の水素を約大気圧にな
るまで放出し脱水素化反応を行った。この水素化−脱水
素化の繰り返しを各合金共1000回行った。
The metal hydride 1 was filled into the container, the container was kept airtight with the redundant bolt 4, and then only the valve 6 was opened to evacuate the container. Then, only valve 7 was opened, and hydrogen was applied to the reactor to about 40 atm from a commercially available hydrogen cylinder to carry out a hydrogenation reaction. After the hydrogenation reaction was completed, only the valve 6 was opened to release hydrogen from the metal hydride until the pressure reached about atmospheric pressure, thereby carrying out a dehydrogenation reaction. This hydrogenation-dehydrogenation process was repeated 1000 times for each alloy.

このようにした金属水素化物を、本発明に基づいて回収
した。すなわち、真空ロバルブ6のみを開き、容器内が
10−50−5rrr程度になるまで真空排気し、脱水
素化処理を充分に行った後、液体ロバルプ6のみを開き
、エチルアルコールを徐々に容器内に導入し金属水素化
物の表面を被った。そして固定用ボルト4をゆるめ、容
器内を大気に開放し、泥状化した金属水素化物を容器外
に取り出した。この時いずれの合金も発火等の異常は認
められなかった。
The metal hydride thus produced was recovered according to the present invention. That is, only the vacuum valve 6 is opened, and the inside of the container is evacuated until the pressure reaches about 10-50-5 rrr.After sufficient dehydrogenation treatment is performed, only the liquid valve 6 is opened, and ethyl alcohol is gradually poured into the container. and covered the surface of the metal hydride. Then, the fixing bolts 4 were loosened, the inside of the container was opened to the atmosphere, and the metal hydride turned into sludge was taken out of the container. At this time, no abnormality such as ignition was observed in any of the alloys.

こうして得た回慇後の3種の合金は、その・後加熱脱ガ
スによってエチルアルコールを分離させ、水素化を全く
行わない3種の合金(回収前)と共に、一般の水素化特
性測定装置にかけ、圧力−組成−等温線図等のデータを
得た。また、前記と同様のことを、脱水素化後、窒素ガ
スで容器内を置換し直ちに液体を導入する方法、および
従来法である窒素ガスのみによる容器内置換(約5時間
放置)後、大気中に取り出す方法についても調べた。
The three types of alloys obtained in this way were then heated and degassed to separate the ethyl alcohol, and together with the three types of alloys that did not undergo any hydrogenation (before recovery), they were subjected to a general hydrogenation characteristic measuring device. , pressure-composition-isotherm diagram, and other data were obtained. In addition, the same method as above can be applied to a method in which after dehydrogenation, the inside of the container is replaced with nitrogen gas and the liquid is immediately introduced, and a method in which the inside of the container is replaced with nitrogen gas (left for about 5 hours), which is the conventional method, is replaced with atmospheric air. I also looked into how to take it out.

得られたデータの中から、各合金の水素放出能の比較を
次表に示す。
The following table shows a comparison of the hydrogen release ability of each alloy from the data obtained.

(注)表中の数値C%)は回収前の放出量を各合金共1
00%としだ時の回収方法による放出量c%)で示した
(温度は20℃一定)表に示した結果から、従来法であ
る窒素ガスによる回収後の特性は、回収前のものに比較
して太0 幅に低下しているが、本発明による液体による回収法お
よび不活性ガス置換後、液体を導入する回収法を使用す
ると、殆んど95%以上の特性を有し特性劣化が非常に
小さいことがわかる。
(Note) The numerical value C% in the table indicates the amount released before collection for each alloy.
From the results shown in the table (temperature is constant at 20℃), the characteristics after recovery using nitrogen gas, which is the conventional method, are compared to those before recovery. However, when using the recovery method using liquid according to the present invention and the recovery method in which liquid is introduced after inert gas replacement, the characteristics are almost 95% or more and there is no characteristic deterioration. You can see that it is very small.

上記の例では、液体としてエチルアルコールを用いたが
、その他にも水、アセトン、エチレングリコール、トリ
クレン等多種類の液体についても同様の回収法で特性劣
化を検討したが、本発明の液体を使用すれば有効に回収
できることがわかった。
In the above example, ethyl alcohol was used as the liquid, but the deterioration of properties of many other liquids such as water, acetone, ethylene glycol, and trichlene was investigated using the same recovery method, but the liquid of the present invention was used. It turns out that it can be effectively recovered if you do this.

また回収時、液体を容器に充填する前に、窒素。Also, during collection, before filling the container with the liquid, nitrogen is added.

アルゴン等の不活性ガスで容器内全置換する方法は、単
に液体を充填するだけの方法に比較すればなお効果的な
方法であった。すなわち、脱水素化状態では容器内はか
なりの真空度を有しているため、真空中へいきなり液体
を導入するよりも不活性ガスで置換する方法の方が作業
性の点で良好であることや、仮りに脱水素化が不十分で
水素が分解しやすい状態にあっても、不活性ガスで置換
することによって水素ガスは希献され、安全に取り扱う
ことができる。さらに従来の不活性ガス置換での問題点
も、不活性ガスと液体との組み合わせによって改善する
ことができた。
The method of completely replacing the inside of the container with an inert gas such as argon was a more effective method than simply filling the container with liquid. In other words, in the dehydrogenation state, the inside of the container has a considerable degree of vacuum, so replacing the liquid with an inert gas is better in terms of workability than suddenly introducing liquid into the vacuum. Even if dehydrogenation is insufficient and hydrogen is easily decomposed, hydrogen gas can be diluted by replacing it with an inert gas and can be handled safely. Furthermore, problems with conventional inert gas replacement could be improved by combining an inert gas and a liquid.

金属水素化物材料の中では、Ti −Mn系合金が酸素
に対する活性度が特に強いだめ、発火防止および、特性
劣化の点からTi−Mn系合金水素化物の回収方法とし
て、本発明の方法はとりわけ有効なものであった。
Among metal hydride materials, Ti-Mn-based alloys have particularly high activity toward oxygen, so the method of the present invention is particularly useful as a method for recovering Ti-Mn-based alloy hydrides from the viewpoint of preventing ignition and preventing property deterioration. It was effective.

なお、本発明による回収方法を行った後の金属水素化物
粉末は、酸素に対する活性度が、不活性ガスによる回収
法に比較すればかなり弱まっており、安全上および性能
上適当であるが、長期の保存等は、不活性ガス中、又は
液体中に浸復しておくことが好ましい。
The metal hydride powder obtained by the recovery method according to the present invention has considerably lower activity toward oxygen than the recovery method using inert gas, and is suitable for safety and performance. For storage, etc., it is preferable to immerse it in an inert gas or liquid.

以上のように、本発明の回収方法は、水素貯蔵体として
の性能を殆んど低下させることなく、安全で、確実な回
収方法であり、また、回収作業の効率化にも寄与する最
適な回収方法である。
As described above, the recovery method of the present invention is a safe and reliable recovery method with almost no deterioration in performance as a hydrogen storage body, and is also an optimal method that contributes to improving the efficiency of recovery work. This is a collection method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の回収方法の一例として示した装置の構成
図である。 1・・・・・・金属水素化物粉末、2・・・・・・容器
、3・・・・・・蓋、4・・・・・・固足用ボルト、6
.8・・・・・パイプ、6・・・・・・真空ロバルブ、
7・・・・水素ロバルブ、9・・・・・・液体ロバルブ
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名」 4− 2
The drawing is a configuration diagram of an apparatus shown as an example of the collection method of the present invention. 1... Metal hydride powder, 2... Container, 3... Lid, 4... Bolt for fixing foot, 6
.. 8...Pipe, 6...Vacuum valve,
7...Hydrogen Robalve, 9...Liquid Robalve. Name of agent: Patent attorney Toshio Nakao and one other person” 4-2

Claims (2)

【特許請求の範囲】[Claims] (1)水素貯蔵用金属材料を収納した容器から、前記金
属材料を取り出し、回収する方法であって、その金属材
料を取り出す前に脱水素化処理をした後、前記金属材料
と殆んど反応しない液体を容器内に導入し、金属材料の
表面を液体で被覆した状態で容器外に取シ出すことを特
徴とする水素貯蔵用金属材料の回収方法。
(1) A method of taking out and recovering the metal material from a container containing the metal material for hydrogen storage, in which the metal material is subjected to dehydrogenation treatment before being taken out, and then most of the metal material does not react with the metal material. 1. A method for recovering a metal material for hydrogen storage, characterized by introducing a liquid into the container and removing it from the container with the surface of the metal material coated with the liquid.
(2)前記金属材料を脱水素化処理する工程と容器内へ
前記液体を導入する工程との間に容器内を不活性ガスで
置換する工程を有する特許請求の範囲第1項記載の水素
貯蔵用金属材料の回収方法。
(2) Hydrogen storage according to claim 1, further comprising a step of replacing the inside of the container with an inert gas between the step of dehydrogenating the metal material and the step of introducing the liquid into the container. Method of recovering metal materials for use.
JP56146792A 1981-09-16 1981-09-16 Recovery of metallic material for hydrogen storage Pending JPS5849601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146792A JPS5849601A (en) 1981-09-16 1981-09-16 Recovery of metallic material for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146792A JPS5849601A (en) 1981-09-16 1981-09-16 Recovery of metallic material for hydrogen storage

Publications (1)

Publication Number Publication Date
JPS5849601A true JPS5849601A (en) 1983-03-23

Family

ID=15415637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146792A Pending JPS5849601A (en) 1981-09-16 1981-09-16 Recovery of metallic material for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS5849601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145199A (en) * 1984-08-10 1986-03-05 Sanyo Electric Co Ltd Method of taking out hydrogen occlusion alloy
US5337038A (en) * 1992-06-11 1994-08-09 Tdk Corporation PTC thermistor
JP2006161889A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Treatment system for hydrogen storage vessel and its method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145199A (en) * 1984-08-10 1986-03-05 Sanyo Electric Co Ltd Method of taking out hydrogen occlusion alloy
JPH0224761B2 (en) * 1984-08-10 1990-05-30 Sanyo Electric Co
US5337038A (en) * 1992-06-11 1994-08-09 Tdk Corporation PTC thermistor
JP2006161889A (en) * 2004-12-03 2006-06-22 Toyota Motor Corp Treatment system for hydrogen storage vessel and its method
JP4534738B2 (en) * 2004-12-03 2010-09-01 トヨタ自動車株式会社 Hydrogen storage container processing system and processing method

Similar Documents

Publication Publication Date Title
JPS63428A (en) Low temperature reusable hydrogen getter
US5180568A (en) Recovery of tritium and deuterium from their oxides and intermetallic compound useful therein
EP0358064B1 (en) Method of making high-purity fine particles of reactive metals and maufacturing vessel therefor
Mizuno et al. Titanium concentration in FeTix (l⩽ x⩽ 2) alloys and its effect on hydrogen storage properties
CA1088913A (en) Method for storing hydrogen in nickel-calcium
JPS5849601A (en) Recovery of metallic material for hydrogen storage
Liu et al. Activation characteristics of chemically treated LaNi4. 7Al0. 3
JPS58181701A (en) Method for handling hydrogen storing metallic material
US8066861B1 (en) Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel
JPH10203803A (en) Apparatus for recovery, purification and storage of hydrogen gas
JP2835327B2 (en) High activation and stabilization of hydrogen storage metal
Tanabe et al. Recovery of hydrogen isotopes using a uranium bed
JP2001131604A (en) Highly activated hydrogen storage material and its manufacturing method
Ward Electronic structure, bonding and chemisorption in metallic hydrides
JP3764817B2 (en) Hydrogen storage alloy activation equipment
KR102456067B1 (en) Method of manufacturing hydrogen storage alloys with reduced activation temperature, a hydrogen storage alloys with reduced activation temperature, and method of activating the hydrogen storage alloys
JP3101108B2 (en) Emergency gas processing system
JPH0159005B2 (en)
JPH09278401A (en) Higher activation and stabilization treatment of hydrogen occlusion material
JP2709792B2 (en) High activation and stabilization of hydrogen storage metal
WO1993003996A1 (en) Process and device for the decomposition of tritiated water
JPH0631829B2 (en) Method and apparatus for recovering and reusing hydrogen isotope gas
JP2547453B2 (en) Volume reduction method for radioactive metal waste
JPH0442321B2 (en)
US20220266195A1 (en) Process for removing carbon monoxide and/or gaseous sulphur compounds from hydrogen gas and/or aliphatic hydrocarbons