JPH0224761B2 - - Google Patents

Info

Publication number
JPH0224761B2
JPH0224761B2 JP59166480A JP16648084A JPH0224761B2 JP H0224761 B2 JPH0224761 B2 JP H0224761B2 JP 59166480 A JP59166480 A JP 59166480A JP 16648084 A JP16648084 A JP 16648084A JP H0224761 B2 JPH0224761 B2 JP H0224761B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
container
hydrogen
high viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59166480A
Other languages
Japanese (ja)
Other versions
JPS6145199A (en
Inventor
Ikuro Yonezu
Kenji Nasako
Naojiro Pponda
Takashi Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59166480A priority Critical patent/JPS6145199A/en
Publication of JPS6145199A publication Critical patent/JPS6145199A/en
Publication of JPH0224761B2 publication Critical patent/JPH0224761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、耐圧水素容器から水素吸蔵合金を取
り出す方法に係り、特に、微粉末化した水素吸蔵
合金を安全に取り出すことのできる水素吸蔵合金
の取り出し方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for taking out a hydrogen storage alloy from a pressure-resistant hydrogen container, and in particular, a method for taking out a hydrogen storage alloy that can safely take out a finely powdered hydrogen storage alloy. Regarding the method.

従来技術 水素吸蔵合金(例えばLaNi5の希土類―Ni合
金等)は多量の水素を可逆的に吸収、放出する性
質を有するので、クリーンエネルギー源としての
水素を貯蔵する水素貯蔵材として有望視されてい
る。また、水素を吸収、放出する際に生じる反応
熱が大きいことから、蓄熱材としても有望視され
ている。このような水素吸蔵合金は、水素圧力下
で水素吸収、放出反応を起こすので、通常は耐圧
容器内に充填して使用され、また、水素吸収、放
出を繰り返すことにより微粉末化して表面積が増
大する傾向にある。
Prior Art Hydrogen storage alloys (such as rare earth-Ni alloys such as LaNi 5 ) have the property of reversibly absorbing and releasing large amounts of hydrogen, so they are considered promising as hydrogen storage materials for storing hydrogen as a clean energy source. There is. In addition, because the heat of reaction generated when absorbing and releasing hydrogen is large, it is seen as a promising material as a heat storage material. Such hydrogen-absorbing alloys undergo hydrogen absorption and release reactions under hydrogen pressure, so they are usually used by being filled in a pressure-resistant container, and by repeating hydrogen absorption and release, they are pulverized and their surface area increases. There is a tendency to

このため、水素吸収、放出を多数回繰り返した
後の水素吸蔵合金は反応性が高く、空気中へ直接
さらすと急激な酸化反応等により粉塵爆発を起こ
す危険性のあることが報告されている(「水素貯
蔵用金属水素化物の爆発危険性」、高圧ガス、
Vol.17、No.6、pp297〜304(1980)参照)。
For this reason, it has been reported that hydrogen storage alloys that have undergone hydrogen absorption and release many times are highly reactive, and that there is a risk of dust explosions due to rapid oxidation reactions when exposed directly to the air ( "Explosion hazard of metal hydrides for hydrogen storage", high pressure gas,
(See Vol. 17, No. 6, pp. 297-304 (1980)).

したがつて、耐圧水素容器をメンテナンスした
り、材料を交換する作業は非常に危険が伴なうこ
とになる。
Therefore, the work of maintaining pressure-resistant hydrogen containers and replacing materials is extremely dangerous.

そこで、微粉末化した水素吸蔵合金を耐圧水素
容器から安全に取り出すためには、取り出す前に
耐圧水素容器に不活性ガスや二酸化炭素等の気体
を導入し、水素吸蔵合金粉末の反応性を低下させ
る方法が考えられるが、かかる方法によつても微
粉末状の水素吸蔵合金の飛散による粉塵爆発等の
危険性は除去されない。
Therefore, in order to safely take out the finely powdered hydrogen storage alloy from the pressure-resistant hydrogen container, an inert gas or gas such as carbon dioxide is introduced into the pressure-resistant hydrogen container before taking it out to reduce the reactivity of the hydrogen storage alloy powder. However, even this method does not eliminate the risk of dust explosions caused by scattering of the finely powdered hydrogen storage alloy.

目 的 本発明は、上述した従来技術の欠点を除き、水
素吸蔵合金を容器外へ安全に取り出し、耐圧水素
容器のメンテナンスおよび材料の交換作業を容易
にすることができる水素吸蔵合金の取り出し方法
を提供することを目的とする。
Purpose The present invention provides a method for removing a hydrogen storage alloy that can safely remove the hydrogen storage alloy from the container and facilitate maintenance and material replacement of a pressure-resistant hydrogen container, while eliminating the drawbacks of the prior art described above. The purpose is to provide.

構 成 このため本発明は、水素の吸収と放出を繰り返
した水素吸蔵合金を充填した容器を加熱するとと
もに減圧して上記水素吸蔵合金中の残存水素を十
分に放出させ、この容器に不揮発性の高粘度液体
を注入して上記水素吸蔵合金をこの高粘度液体に
浸漬してスラリー状にした後、上記容器を大気に
解放して高粘度液体を固化し、固化した高粘度液
体とともに水素吸蔵合金を容器外へ排出するよう
にしたことを特徴としている。
Structure For this reason, the present invention heats a container filled with a hydrogen storage alloy that has repeatedly absorbed and released hydrogen, and reduces the pressure to sufficiently release the residual hydrogen in the hydrogen storage alloy, and fills the container with a non-volatile material. After injecting a high viscosity liquid and immersing the hydrogen storage alloy in the high viscosity liquid to form a slurry, the container is released to the atmosphere to solidify the high viscosity liquid, and together with the solidified high viscosity liquid, the hydrogen storage alloy The feature is that the liquid is discharged outside the container.

即ち、微粉末化した水素吸蔵合金の活性を低下
させて反応を抑制するため、微粉末化した水素吸
蔵合金の表面を覆い空気との接触を断つたととも
に、水素吸蔵合金の微粉末が飛散しないように粘
度の高い不揮発性の液体に浸漬し、さらに、その
液体を固化させる。
That is, in order to reduce the activity of the pulverized hydrogen storage alloy and suppress the reaction, the surface of the pulverized hydrogen storage alloy is covered to cut off contact with air and the fine powder of the hydrogen storage alloy is not scattered. It is immersed in a highly viscous non-volatile liquid, and then the liquid is solidified.

このような使用目的に適合する液体としては、
例えば鉱油、流動パラフイン、水ガラス等の反応
性が低く、不揮発性で、かつ粘度の高い液体があ
る。
Liquids suitable for this purpose include:
Examples include mineral oil, liquid paraffin, water glass, and other liquids that have low reactivity, are nonvolatile, and have high viscosity.

また、例えばシアノアクリル系接着剤等の空気
中の水分等で硬化する液体を用いることもでき
る。この場合は、その液体を微粉末化した水素吸
蔵合金の容器に注入し、この容器を大気に開放し
て注入した液体中に水素吸蔵合金の微粉末を固化
させ、この後に容器外に取り出すようにすればよ
い。
Further, it is also possible to use a liquid that hardens with moisture in the air, such as a cyanoacrylic adhesive. In this case, pour the liquid into a container made of a finely powdered hydrogen storage alloy, open the container to the atmosphere, solidify the fine hydrogen storage alloy powder in the poured liquid, and then take it out of the container. Just do it.

さらに、例えばフエノール系あるいはエポキシ
系の接着剤と硬化剤の組合せのように、混合する
ことによつて硬化する2種類以上の液体を用いる
こともできる。この場合は、これらの液体を微粉
末化した水素吸蔵合金の容器に注入し、液体が硬
化して水素吸蔵合金の微粉末を固化した後に、容
器を大気に開放して容器外へ排出すればよい。
Furthermore, it is also possible to use two or more types of liquids that are cured by mixing, such as a combination of a phenolic or epoxy adhesive and a curing agent. In this case, if these liquids are poured into a container made of finely powdered hydrogen storage alloy, and after the liquid hardens and the fine powder of hydrogen storage alloy is solidified, the container is opened to the atmosphere and discharged outside the container. good.

実施例 内容量約3の耐圧水素容器に、水素吸蔵合金
としてLaNi5合金を約1Kg充填し、水素加圧
10atm(温度25℃)および加熱・減圧(温度90℃、
圧力0.1atm以下)の操作を繰り返してLaNi5合金
に水素吸収、放出を行なわせた。この操作を約30
回繰り返した後、以下のようにして水素吸蔵合金
の取り出しを行なつた。
Example: A pressure-resistant hydrogen container with a capacity of about 3 is filled with about 1 kg of LaNi 5 alloy as a hydrogen storage alloy, and hydrogen is pressurized.
10atm (temperature 25℃) and heating/depressurization (temperature 90℃,
The LaNi 5 alloy was made to absorb and release hydrogen by repeating the operation at a pressure of 0.1 atm or less. This operation takes about 30
After repeating this process several times, the hydrogen storage alloy was taken out as follows.

まず、耐圧水素容器を約90℃に加熱するととも
に約0.1torrに減圧して、水素吸蔵合金から残存
水素を放出させた。ついで、減圧した状態の耐圧
水素容器内に流動パラフインを約1注入し、一
昼夜放置した。そして、その後耐圧水素容器から
スラリー状になつたLaNi5合金粉末を取り出し
た。
First, a pressure-resistant hydrogen container was heated to about 90°C and the pressure was reduced to about 0.1 torr to release residual hydrogen from the hydrogen storage alloy. Next, approximately one portion of liquid paraffin was poured into a pressure-resistant hydrogen container under reduced pressure, and the container was left overnight. Then, the slurry-like LaNi 5 alloy powder was taken out from the pressure-resistant hydrogen container.

このとき、取り出したLaNi5合金はスラリー状
になつているため、微粉末化したLaNi5合金の飛
散は見られなかつた。また、取り出したスラリー
状のLaNi5合金層の温度の経時変化を調べたとこ
ろ、取り出してから約10時間経過しても常温付近
にあり、大きな変動はなく急激な酸化反応は見ら
れなかつた。
At this time, since the LaNi 5 alloy taken out was in the form of a slurry, no scattering of the finely powdered LaNi 5 alloy was observed. In addition, when we investigated the temperature change over time of the slurry-like LaNi 5 alloy layer that we took out, we found that it remained at room temperature even after about 10 hours had passed since it was taken out, with no major fluctuations and no rapid oxidation reaction.

効 果 以上説明したように、本発明によれば、微粉末
化した水素吸蔵合金の表面が高粘度の液体で完全
に覆われた状態で、その液体中に固定されるた
め、水素吸蔵合金の活性が大きく低下し、その結
果、従来、大気と接触した場合に生じる急激な酸
化反応が未然に防止される。また、微粉末化した
水素吸蔵合金の飛散がほとんどなく、大気中で粉
塵爆発等が生じる危険性がなくなる。この結果、
水素吸収、放出を繰り返した水素吸蔵合金を安全
にしかも容易に取り出すことができるようになる
ことから、耐圧水素容器のメンテナンスおよび材
料の交換等を容易にすることができ、高価な耐圧
水素容器を有効に再生利用することができるよう
になる。
Effects As explained above, according to the present invention, the surface of the finely powdered hydrogen storage alloy is completely covered with a high viscosity liquid and is fixed in the liquid. The activity is greatly reduced, so that the rapid oxidation reactions that conventionally occur upon contact with the atmosphere are obviated. In addition, there is almost no scattering of the finely powdered hydrogen storage alloy, eliminating the risk of dust explosions occurring in the atmosphere. As a result,
Since hydrogen storage alloys that have repeatedly absorbed and released hydrogen can be safely and easily taken out, maintenance and material replacement of pressure-resistant hydrogen containers can be facilitated, and expensive pressure-resistant hydrogen containers can be replaced. It becomes possible to reuse it effectively.

Claims (1)

【特許請求の範囲】 1 水素吸蔵合金を充填した容器から水素の吸収
と放出を繰り返した水素吸蔵合金を取り出す水素
吸蔵合金の取り出し方法において、前記容器を加
熱するとともに減圧して前記水素吸蔵合金中の残
存水素を十分に放出させ、この容器に不揮発性の
高粘度液体を注入し、前記水素吸蔵合金をその高
粘度液体に浸漬してスラリー状にした後に前記容
器を大気に開放して前記高粘度液体を固化し、そ
の固化した高粘度液体とともに水素吸蔵合金を容
器外へ排出させることを特徴とする水素吸蔵合金
の取り出し方法。 2 特許請求の範囲第1項記載において、前記高
粘度液体は、空気中の水分によつて硬化する液体
であることを特徴とする水素吸蔵合金の取り出し
方法。 3 特許請求の範囲第1項記載において、前記高
粘度液体は、混合すると硬化する2種類以上の液
体であることを特徴とする水素吸蔵合金の取り出
し方法。
[Scope of Claims] 1. In a method for taking out a hydrogen storage alloy that has repeatedly absorbed and released hydrogen from a container filled with a hydrogen storage alloy, the container is heated and depressurized to remove the hydrogen storage alloy from the hydrogen storage alloy. After sufficiently releasing the remaining hydrogen, a non-volatile high viscosity liquid is poured into the container, and the hydrogen storage alloy is immersed in the high viscosity liquid to form a slurry, after which the container is opened to the atmosphere and the high viscosity liquid is poured into the container. A method for taking out a hydrogen storage alloy, characterized by solidifying a viscous liquid and discharging the hydrogen storage alloy together with the solidified high viscosity liquid out of a container. 2. The method for extracting a hydrogen storage alloy according to claim 1, wherein the high viscosity liquid is a liquid that hardens with moisture in the air. 3. The method for extracting a hydrogen storage alloy according to claim 1, wherein the high viscosity liquid is two or more types of liquids that harden when mixed.
JP59166480A 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy Granted JPS6145199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59166480A JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166480A JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Publications (2)

Publication Number Publication Date
JPS6145199A JPS6145199A (en) 1986-03-05
JPH0224761B2 true JPH0224761B2 (en) 1990-05-30

Family

ID=15832178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166480A Granted JPS6145199A (en) 1984-08-10 1984-08-10 Method of taking out hydrogen occlusion alloy

Country Status (1)

Country Link
JP (1) JPS6145199A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534738B2 (en) * 2004-12-03 2010-09-01 トヨタ自動車株式会社 Hydrogen storage container processing system and processing method
JP5384921B2 (en) * 2008-12-03 2014-01-08 株式会社神戸製鋼所 Hydrogen purification method and hydrogen storage alloy reaction vessel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
JPS5849601A (en) * 1981-09-16 1983-03-23 Matsushita Electric Ind Co Ltd Recovery of metallic material for hydrogen storage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738302A (en) * 1980-08-12 1982-03-03 Agency Of Ind Science & Technol Absorbing and releasing method for hydrogen using metal
JPS5849601A (en) * 1981-09-16 1983-03-23 Matsushita Electric Ind Co Ltd Recovery of metallic material for hydrogen storage

Also Published As

Publication number Publication date
JPS6145199A (en) 1986-03-05

Similar Documents

Publication Publication Date Title
EP2342009B1 (en) Additives for highly compacted ammonia storage materials
EP1382566A1 (en) Method for inducing hydrogen desorption from a metal hydride
US5183647A (en) Method for purifying nitrogen trifluoride gas
JPS6357361B2 (en)
US5312606A (en) Process for the sorption of residual gas by means of a non-evaporated barium getter alloy
KR20130032186A (en) Hydrogen storage tank for fuel cell powered vehicles and method of manufacturing the same
JPH0224761B2 (en)
EP0514348B1 (en) A process for the sorption of residual gas by means of a non-evaporated barium getter alloy
US4280921A (en) Immobilization of waste material
EP0509971B1 (en) A process for the sorption of residual gas and especially nitrogen gas by means of a non-evaporated barium getter
JP7079951B2 (en) Method for producing sodium borohydride
EP0091024B1 (en) Process for solidifying radioactive waste
US4162917A (en) Method and composition for treating molten ferrous metals to produce nodular iron
US3224846A (en) Light weight structural material and means for making
JPH0580197A (en) Solidifying method for radioactive ceramic waste
JPH06180388A (en) Heat resistant neutron shielding material
JPS5814361B2 (en) Method for manufacturing hydrogen storage materials
EP0154708B1 (en) Solidified radioactive wastes and process for producing the same
KR20090080713A (en) Method and equipment for granulation of radioactive waste
JP2712532B2 (en) Ash solidification method
JPS61209901A (en) Hydrogen storage material and its preparation
JPH0556479B2 (en)
JPH0359499A (en) Plastic caking processing method for radioactive graphite block
RU2065221C1 (en) Method for radioactive waste solidification
JPS63158498A (en) Solidifying processing method of radioactive waste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees