JPS61225322A - Production of carbonaceous fiber - Google Patents

Production of carbonaceous fiber

Info

Publication number
JPS61225322A
JPS61225322A JP5881385A JP5881385A JPS61225322A JP S61225322 A JPS61225322 A JP S61225322A JP 5881385 A JP5881385 A JP 5881385A JP 5881385 A JP5881385 A JP 5881385A JP S61225322 A JPS61225322 A JP S61225322A
Authority
JP
Japan
Prior art keywords
hydrogen gas
metal complex
hydrocarbon
liquid mixture
diketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5881385A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Katsuyuki Nakamura
克之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5881385A priority Critical patent/JPS61225322A/en
Priority to US06/807,355 priority patent/US4816289A/en
Publication of JPS61225322A publication Critical patent/JPS61225322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the titled fiber having high fiber-generation density and yield and excellent crystallinity and mechanical strength, by supplying a liquid mixture of a hydrocarbon and a beta-diketone metal complex together with hydrogen gas to a heating zone and carrying out the thermal decomposition of the hydrocarbon at a specific temperature. CONSTITUTION:A liquid mixture of (A) a hydrocarbon such as benzene and (B) a beta-diketone metal complex, preferably a beta-diketone complex of iron, cobalt or nickel is supplied together with (C) hydrogen gas to a heating zone, and thermally decomposed at 800-1,800 deg.C to obtain the objective fiber. The concentration of the component B in the liquid mixture is preferably 1X10<-2>-30wt%. The feeding rate of the hydrogen gas is preferably >=10ml/min per 1g of the above liquid mixture.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素質繊維の製M法に関し、さらに詳しくは炭
化水素類とβ−ジケトン金属錯体からなる混合液を気相
下で接触反応させる炭素質繊維の製法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing carbonaceous fibers, and more specifically, involves a catalytic reaction of a liquid mixture consisting of hydrocarbons and a β-diketone metal complex in a gas phase. Regarding the manufacturing method of carbonaceous fiber.

(従来の技術) 炭素繊維は優れた機械的物性を有することから、各種複
合材料として近年急速に伸びつつある材料である。従来
、炭素繊維の製法としては、有機繊維を炭化する方法、
炭化水素を触媒の存在下に気相中で熱分解させる方法な
どがあるが、後者の気相法による炭素繊維は、前者の方
法による炭素繊維に比較して優れた結晶性、配向性を有
し、高強度、高弾性率を兼備しているので、各種の複合
材料やその他の用途への展開が可能である。
(Prior Art) Since carbon fiber has excellent mechanical properties, it is a material that has been rapidly gaining popularity in recent years as a variety of composite materials. Traditionally, carbon fiber manufacturing methods include carbonizing organic fibers,
There are methods such as thermally decomposing hydrocarbons in the gas phase in the presence of a catalyst, but carbon fibers produced by the latter method have superior crystallinity and orientation compared to carbon fibers produced by the former method. However, since it has both high strength and high elastic modulus, it can be used in various composite materials and other applications.

気相法による炭素繊維の製造法としては、例えば特開昭
58−180615号には、950ないし1300℃に
おいて気化しない金属や、かかる金属の酸化物、窒化物
、塩類などの金属化合物の超微分末を炭化水素の熱分解
帯域に浮遊するように存在させ、ここで炭化水素を気相
法により熱分解させる炭素繊維の製造方法が開示されて
いる。
For example, Japanese Patent Application Laid-open No. 180615/1983 describes a method for producing carbon fibers using a vapor phase method, which describes ultrafine amounts of metals that do not vaporize at 950 to 1300°C, and metal compounds such as oxides, nitrides, and salts of such metals. A method for producing carbon fiber is disclosed in which a fraction is suspended in a hydrocarbon thermal decomposition zone, and the hydrocarbon is thermally decomposed there by a gas phase method.

この方法においては、超微粒子粉末をアルコール等に懸
濁して用いたり、該超微粒子粉末と炭化水素を別々の糸
路から反応帯域に導入するために、該超微粒子が凝集し
て鎖状になり、反応に充分寄与しなかったり、選択的触
媒反応による炭化水素の熱分解による炭素繊維形成が起
こりに<<、炭化水素が該超微粒子粉末と無関係に反応
する気相熱分解炭素化を生じやすい欠点があり、得られ
た繊維状物は、アスペクト比が小さく、枝分かれしたよ
うな形態を示すものが多く含まれ、収率も低いものであ
った。
In this method, the ultrafine particles are suspended in alcohol or the like, and the ultrafine particles and the hydrocarbon are introduced into the reaction zone from separate threads, so the ultrafine particles aggregate into chains. , they do not contribute sufficiently to the reaction, or carbon fibers are formed due to thermal decomposition of hydrocarbons due to selective catalytic reactions.<<, gas phase pyrolysis carbonization in which hydrocarbons react independently with the ultrafine powder is likely to occur. The disadvantages were that the obtained fibrous materials had a small aspect ratio, many of them had a branched morphology, and the yield was low.

本発明の目的は、上記従来技術の欠点を除去し、繊維発
生密度および収率が極めて高く、かつ結晶性、機械的強
度等に優れた炭素質繊維の製法を提供することにある。
An object of the present invention is to provide a method for producing carbonaceous fibers that eliminates the drawbacks of the above-mentioned conventional techniques, has extremely high fiber generation density and yield, and is excellent in crystallinity, mechanical strength, etc.

(問題点を解決するための手段) 本発明者らは、基材または空間に予め金属微粒子を存在
させて反応を行なうと凝集を起こすことから、炭化水素
とβ−ジケトン金属錯体の混合液をH2ガスとともに直
接、所定温度の反応帯域に供給して反応させることによ
り、繊維の収率もよく、かつ枝分かれもほとんどない高
強度の炭素繊維が得られることを見出し、本発明に到達
したものである。
(Means for Solving the Problems) The present inventors discovered that a mixed solution of a hydrocarbon and a β-diketone metal complex would cause agglomeration if the reaction was carried out with metal fine particles present in the base material or space in advance. The present invention was achieved based on the discovery that high-strength carbon fibers with a good fiber yield and almost no branching can be obtained by supplying the carbon fibers together with H2 gas directly to a reaction zone at a predetermined temperature for reaction. be.

本発明の炭素質繊維の製法は、炭化水素類とβ−ジケト
ン金属錯体との混合液を水素ガスとともに加熱帯に供給
し、800〜1800℃で加熱分解させることを特徴と
する。
The method for producing carbonaceous fibers of the present invention is characterized by supplying a liquid mixture of hydrocarbons and a β-diketone metal complex to a heating zone together with hydrogen gas, and thermally decomposing it at 800 to 1800°C.

本発明に用いる炭化水素類(以下、炭化水素と称する)
としては、基本的に炭素と水素とからなる液体状物質が
好ましく、例えばベンゼン、トルエン、キシレン、スチ
レン、ヘキサン、ヘキセン、ペンタン、イソオクタン、
シクロペンタジェン、これらのハロゲン置換体等の誘導
体等が挙げられる。またこれらの液体状炭化水素に固体
状炭化水素、例えばナフタレン、アントラセンあるいは
室温で気体状の炭化水素、例えば、メタン、エタン、フ
ロハン、ブタン、カヂレン、プロピレン、フチレン、ア
セチレン、ブタジェン等の1種または2種以上を混合、
溶解したものでもよい。さらに室温で液体状であるもの
の他に、室温で固体であるが、加熱して液状になるもの
や、冷却または加圧下で液状になるものも含まれる。ま
た、β−ジケトン金属錯体との混合液として用いる以外
に別途加熱帯に炭化水素類を供給してもよく、その炭化
水素は気体状、液体状、固体状を問わない。
Hydrocarbons used in the present invention (hereinafter referred to as hydrocarbons)
A liquid substance basically consisting of carbon and hydrogen is preferable, such as benzene, toluene, xylene, styrene, hexane, hexene, pentane, isooctane,
Examples include cyclopentadiene and derivatives thereof such as halogen-substituted products. In addition, these liquid hydrocarbons may be combined with solid hydrocarbons, such as naphthalene, anthracene, or hydrocarbons that are gaseous at room temperature, such as methane, ethane, fluorane, butane, cadylene, propylene, phtylene, acetylene, butadiene, etc. Mix two or more types,
It may be dissolved. Furthermore, in addition to those that are liquid at room temperature, there are also those that are solid at room temperature but become liquid when heated, and those that become liquid when cooled or under pressure. Furthermore, in addition to being used as a mixed solution with the β-diketone metal complex, hydrocarbons may be separately supplied to the heating zone, and the hydrocarbons may be in gaseous, liquid, or solid form.

上記炭化水素と混合されるβ−ジケトン金属錯体を構成
する金属としては、原子番号21のScへ30のZn、
37のY〜4BのCd、57のLa−80のHg、89
のAc以上よりなる群から選ばれた少くとも1種の金属
、好ましくはTi5V% Cr、Mn、Fe5CoSN
is Mo、Ru5Rhs Pds W% I r、’
 Pt、特に鉄、コバルト、ニッケルが好ましい。また
β−ジケトンとしては、ケト酸エステルも含みアセチル
アセトン、トリフルオロアセチルアセトン、ヘキサフル
オロアセチルアセトン、ジピバロイルメタン、ピバロイ
ルトリフルオロアセトン、およ”びテノイルトリフルオ
ロアセトン、アセト酢酸メチルエステル、アセト酢酸エ
チエステルなどであり、特にアセチルアセトン、アセト
酢酸アルキルエステルよりなる群から選ばれた少(とも
1種の化合物であることが好ましい。
The metals constituting the β-diketone metal complex to be mixed with the above hydrocarbon include Sc having an atomic number of 21, Zn having an atomic number of 30,
37 Y~4B Cd, 57 La-80 Hg, 89
At least one metal selected from the group consisting of Ac or more, preferably Ti5V% Cr, Mn, Fe5CoSN
is Mo, Ru5Rhs Pds W% I r,'
Pt is preferred, especially iron, cobalt and nickel. β-diketones also include ketoacid esters, such as acetylacetone, trifluoroacetylacetone, hexafluoroacetylacetone, dipivaloylmethane, pivaloyltrifluoroacetone, and thenoyltrifluoroacetone, acetoacetic methyl ester, acetoacetic acid Ethiester, etc., and preferably at least one compound selected from the group consisting of acetylacetone and acetoacetic acetic acid alkyl ester.

β−ジケトン金属錯体は取扱いが容易で工業的にも合成
が容易であるため、有利である。炭化水素とβ−ジケト
ン金属錯体の混合は、均一な混合溶液が得られれば、ど
のような混合方法でもよい。
β-diketone metal complexes are advantageous because they are easy to handle and easy to synthesize industrially. Any mixing method may be used for mixing the hydrocarbon and the β-diketone metal complex as long as a uniform mixed solution can be obtained.

該混合液中のβ−ジケトン金属錯体の濃度は溶解炭によ
って制限されるが、I X 10−2〜30重量%、好
ましくは0.03〜8(特に0.05〜4)重量%の範
囲が好ましい。
The concentration of the β-diketone metal complex in the mixture is limited by the dissolved carbon, but is in the range of I is preferred.

本発明において、前記混合液は水素ガスとともに加熱帯
域に供給される。水素ガスは、適当な不活性ガス、例え
ば窒素、ヘリウム、アルゴン、−酸化炭素等と混合して
供給してもよい。水素ガスは原料混合液1gに対して1
0rrj!/min以上、好ましくは毎分20mIt〜
20Il(特に5 Q m 1〜107り導入するのが
好ましい。また搬送ガス(不活性ガス)を含めたガスの
総量は、原料液1gに対して10mj2〜20 It、
好ましくは50mz〜15z、特に好ましくは100 
m l! / m i n〜lQj!/minとするの
がよい。
In the present invention, the mixed liquid is supplied to the heating zone together with hydrogen gas. Hydrogen gas may be supplied in a mixture with a suitable inert gas such as nitrogen, helium, argon, carbon oxide, etc. Hydrogen gas is 1 g per 1 g of raw material mixture.
0rrj! /min or more, preferably 20 mIt/min or more
It is preferable to introduce 20 Il (especially 5 Q m 1 to 107 It). Also, the total amount of gas including the carrier gas (inert gas) is 10 mj2 to 20 It per 1 g of raw material liquid,
Preferably 50mz to 15z, particularly preferably 100mz
ml! / min~lQj! /min is preferable.

本発明において、前記混合液を炉内空間に導入する方法
としては、該混合液を加熱帯域に微小状態で供給するも
のであればどのような方法でもよく、例えば混合液をパ
イプ状の導入管によって外部からポンプ等の手段で定量
供給し、パイプ先端から噴出させる方法、混合液をボー
ト等の容器に供給し気化して加熱帯域へ供給する方法、
パイプ状の導入管によって外部からポンプ等の手段で定
量供給しながら加熱し、気化させる方法があげられる。
In the present invention, the method for introducing the mixed liquid into the furnace space may be any method as long as the mixed liquid is supplied to the heating zone in a microscopic state. A method of supplying a fixed amount from outside using a pump or other means and spouting it from the tip of a pipe, a method of supplying the mixed liquid to a container such as a boat, vaporizing it, and supplying it to the heating zone.
An example of this method is to heat and vaporize while supplying a fixed amount from the outside using a pump or the like through a pipe-shaped introduction pipe.

パイプ状の導入管はジャケットで保温、または部分的に
冷却をしてもよい。混合液の導入は連続または間欠のい
ずれでもよいが、連続的に導入した方が均一な炭素繊維
が得られる。またパイプ等で導入する場合、その先端部
をラッパ状に広げ、液状物の散布を容易にしたり微小な
霧状にしたり、適当な空孔率のノズルをパイプ先端に取
り付け、咳空孔部から混合液をしみ出させたり、空孔部
を分けて一方から水素などの気体を他方より混合液を出
させ、霧状にしたりすることにより、繊維生成を助長す
ることができる。
The pipe-shaped introduction tube may be kept warm or partially cooled with a jacket. Although the mixed solution may be introduced continuously or intermittently, uniform carbon fibers can be obtained if it is introduced continuously. In addition, when introducing with a pipe, etc., spread the tip into a trumpet shape to make it easier to disperse the liquid or make it into a fine mist, or attach a nozzle with an appropriate porosity to the tip of the pipe, and spread it from the cough hole. Fiber production can be promoted by allowing the mixed liquid to seep out or by dividing the pores and allowing a gas such as hydrogen to come out from one side and the mixed liquid from the other to form a mist.

本発明において、前記混合液を反応させる加熱帯の温度
は8・00〜1800℃、好ましくは1000〜160
0℃である。この範囲以外では、いずれも繊維状物の収
率が悪く、粒状物の多いものとなる。また、前記混合物
の導入に際してこの混合物の予備加熱を行うことが好ま
しく、その予備加熱温度としては150〜400℃であ
り、この予備加熱においても水素ガスノ存在が好ましい
In the present invention, the temperature of the heating zone in which the mixed liquid is reacted is 8.00 to 1800°C, preferably 1000 to 160°C.
It is 0°C. Outside this range, the yield of fibrous materials is poor and there are many particulate materials. Further, it is preferable to preheat the mixture when introducing the mixture, and the preheating temperature is 150 to 400°C, and the presence of hydrogen gas is also preferable in this preheating.

なお、前記混合液の導入温度は、好ましくは、加熱の前
段階として予備加熱されることであり、その温度は炭化
水素類の沸点以上で、特に200℃以上、かつ400℃
以下が好ましい。この前段階の加熱はその滞留時間は短
くてよく、可及的すみやかに800〜1800℃の加熱
帯に移行させることが好ましい。このため、混合液自身
を加熱したり、水素を加熱したり、あるいは別途炭化水
素を導入し、これを加熱しておく方法などが好ましく用
いられる。
The temperature at which the mixed liquid is introduced is preferably preheated as a step before heating, and the temperature is higher than the boiling point of the hydrocarbons, particularly 200°C or higher, and 400°C.
The following are preferred. The residence time of this preliminary heating may be short, and it is preferable to move to a heating zone of 800 to 1800° C. as quickly as possible. For this reason, methods such as heating the liquid mixture itself, heating hydrogen, or separately introducing a hydrocarbon and heating it are preferably used.

本発明において、前記混合液を加熱帯域に供給する量は
加熱帯の中の最小部の単位断面積(cd)に対し1O−
3〜10g/分程度、特にo、oo5〜5g/分程度が
好ましい。この場合、できるだけ霧状に均質に送液する
ことが好ましく、このため、パイプ等を用いる場合は、
その先端の供給ノズルの孔数を複数個とすることが望ま
しい。また単一の孔を有するパイプを複数本設置しても
よい。該パイプまたは供給ノズルの孔径は、おおむねo
、01〜10mφ程度が好ましい。
In the present invention, the amount of the mixed liquid supplied to the heating zone is 1O-
About 3 to 10 g/min, particularly o, oo about 5 to 5 g/min is preferable. In this case, it is preferable to send the liquid as homogeneously as possible in the form of mist, and for this reason, when using a pipe etc.
It is desirable that the supply nozzle at its tip has a plurality of holes. Also, a plurality of pipes having a single hole may be installed. The pore diameter of the pipe or supply nozzle is approximately o
, about 01 to 10 mφ is preferable.

(作用) 本発明においては、触媒としてβ−ジケトン金属錯体を
用い、水素ガスの気流中で炭化水素を反応させることに
より、特に加熱帯における時間当たりの炭素繊維の収量
を上げることができる。β−ジケトン金属錯体に対する
水素の作用は明らかではないが、金属錯体中の金属を還
元し、より活性化するものと思われる。
(Function) In the present invention, by reacting hydrocarbons in a hydrogen gas stream using a β-diketone metal complex as a catalyst, it is possible to increase the yield of carbon fibers per hour, especially in the heating zone. Although the effect of hydrogen on the β-diketone metal complex is not clear, it is thought that it reduces the metal in the metal complex and makes it more active.

次に本発明を図面により具体的に説明する。Next, the present invention will be specifically explained with reference to the drawings.

第1図および第2図は、本発明の好適な実施態様を示す
炭素繊維製造装置の説明図である。筒状の電気炉13と
、該電気炉に貫挿された炉芯管12と、該炉芯管の入口
側および出口側にそれぞれ挿入され原料導入管9および
排出管15と、不活性ガス等の導入管10と、原料液5
を貯留する貯槽4と、貯槽4から導管6、バルブ7を通
って定量ポンプ8により導管9およびノズル20に原料
を供給する系統と、貯槽4に不活性ガスlを導入するた
めの導管2およびバルブ3と、前記炉芯管12内に不活
性ガス11および/または水素ガス18を導入するため
のバルブ17および導管10とから構成される。導管1
0.18には加熱ヒーター19A、19Bが設置されて
いる。このような構成の装置において、炉芯管12内に
導入管10から不活性ガス(例えば窒素ガス)11を導
入し、炉芯管内を充分窒素置換した後、バルブ17を切
替えて予熱された水素ガス18を導入し、電気炉13の
昇温を開始する。排出ガス16は炉芯管12の他方の排
出管15から排出される。炉内が所定温度に達してから
、触媒としてβ−ジケトン金属錯体を炭化水素に溶解し
た原料液5の供給を開始する。すなわち、バルブ3を開
け、不活性ガス1を導管2を通して貯槽4に供給し、適
当な圧力をかけ、前記原料液5を、導管6およびバルブ
7を通して定量ポンプ8により供給する。供給された原
料液は、導管9を通して炉芯管12の反応帯域に定量供
給され、前記金属化合物の触媒作用により瞬時に炭素化
されつつ、繊維状物14を形成して落下、または供給さ
れる水素ガスにより流動しながら徐々に落下し、管内に
堆積される。
1 and 2 are explanatory diagrams of a carbon fiber manufacturing apparatus showing a preferred embodiment of the present invention. A cylindrical electric furnace 13, a furnace core tube 12 inserted into the electric furnace, a raw material introduction tube 9 and a discharge tube 15 inserted into the inlet and outlet sides of the furnace core tube, respectively, an inert gas, etc. introduction pipe 10 and raw material liquid 5
a system for supplying raw materials from the storage tank 4 through a conduit 6 and a valve 7 to a conduit 9 and a nozzle 20 by a metering pump 8; a conduit 2 for introducing inert gas l into the storage tank 4; It consists of a valve 3, a valve 17 and a conduit 10 for introducing inert gas 11 and/or hydrogen gas 18 into the furnace core tube 12. conduit 1
Heaters 19A and 19B are installed at 0.18. In an apparatus having such a configuration, an inert gas (for example, nitrogen gas) 11 is introduced into the furnace core tube 12 from the introduction tube 10, and after the inside of the furnace core tube is sufficiently replaced with nitrogen, the valve 17 is switched to replace the preheated hydrogen. Gas 18 is introduced and heating of electric furnace 13 is started. The exhaust gas 16 is discharged from the other discharge pipe 15 of the furnace core tube 12 . After the inside of the furnace reaches a predetermined temperature, supply of a raw material liquid 5 in which a β-diketone metal complex is dissolved in a hydrocarbon as a catalyst is started. That is, the valve 3 is opened, the inert gas 1 is supplied to the storage tank 4 through the conduit 2, an appropriate pressure is applied, and the raw material liquid 5 is supplied through the conduit 6 and the valve 7 by the metering pump 8. The supplied raw material liquid is quantitatively supplied to the reaction zone of the furnace core tube 12 through the conduit 9, and is instantaneously carbonized by the catalytic action of the metal compound, forms a fibrous material 14, and falls or is supplied. It gradually falls while flowing with hydrogen gas and is deposited inside the pipe.

このような堆積した炭素繊維は、連続式またはパンチ式
に回収されるが、回収方法は特に限定されず、例えば反
応帯域に基板のごときものを設置しておき、連続的また
は間欠的に一方向に押出して回収する方法等は好ましい
態様である。
Such deposited carbon fibers are recovered by a continuous method or a punch method, but the method for collecting them is not particularly limited. A preferred embodiment is a method of extruding and recovering the material.

第2図は、本発明の他の実施態様を示すもので、電気炉
28および炉芯管27を縦型に配置し、炉28の下方か
らバルブ30を介して水素ガス32を送り込み、上部の
導管26から炭化水素およびβ−ジケトン金属錯体化合
物よりなる原料液5を流下させ、液滴として落下する過
程で繊維状物を形成せしめ、下方に炭素繊維14として
堆積させ、底部から回収するものである。なお、図中、
31は不活性ガスを意味し、他は第1図の符号の説明と
同様である。
FIG. 2 shows another embodiment of the present invention, in which an electric furnace 28 and a furnace core tube 27 are arranged vertically, hydrogen gas 32 is fed from below the furnace 28 through a valve 30, and the A raw material liquid 5 consisting of a hydrocarbon and a β-diketone metal complex compound is caused to flow down from a conduit 26, and in the process of falling as droplets, a fibrous material is formed, deposited as carbon fibers 14 below, and recovered from the bottom. be. In addition, in the figure,
31 means an inert gas, and the other parts are the same as the explanations of the symbols in FIG.

第1図および第2図に示した態様はバンチ型であるが、
堆積した繊維状物を連続的に取り出すことも好ましい態
様である。
The embodiment shown in FIGS. 1 and 2 is a bunch type, but
It is also a preferred embodiment to continuously take out the deposited fibrous material.

(発明の効果) 本発明によれば、β−ジケトン金属錯体を水素ガスとと
もに用いることにより、枝分かれがほとんどなく、結晶
性、配向性が高く、かつ高強度および高弾性率を有する
炭素繊維を、高収率で短時間に製造することができる。
(Effects of the Invention) According to the present invention, by using a β-diketone metal complex together with hydrogen gas, carbon fibers with almost no branching, high crystallinity and orientation, and high strength and high elastic modulus can be produced. It can be produced in high yield and in a short time.

本発明によれば、特に加熱帯の単位時間当たりの収量が
著しく増大する。
According to the present invention, the yield per unit time, particularly in the heating zone, is significantly increased.

(実施例) 以下、本発明の実施例を述べるが、実施例中の炭素繊維
収量は、1分間当たりの炭素繊維の収量(g)を意味す
る。
(Example) Examples of the present invention will be described below, and the carbon fiber yield in the examples means the carbon fiber yield (g) per minute.

実施例1〜6 ベンゼンに触媒として第1表に示すβ−ジケトン金属錯
体(鉄アセチルアセトナート金属錯体または鉄またはニ
ッケルのヘキサフルオロアセチルアセトナート金属錯体
)を所定量熔解し、原料液とした。シリコニットヒータ
ーを有する管状炉に内径90φのアルミナ質炉芯管を第
1図のごとく横型に設置し、両端をゴム栓でシールした
。片方の栓には原料液を導入する内径6φのアルミナ質
パイプを貫通せしめ、該パイプの先端の空間温度(導入
温度)および炉の中心温度を第1表のように設定した。
Examples 1 to 6 A predetermined amount of the β-diketone metal complex (iron acetylacetonate metal complex or iron or nickel hexafluoroacetylacetonate metal complex) shown in Table 1 was dissolved in benzene as a catalyst to prepare a raw material liquid. An alumina furnace core tube with an inner diameter of 90φ was installed horizontally as shown in FIG. 1 in a tubular furnace equipped with a siliconite heater, and both ends were sealed with rubber plugs. An alumina pipe with an inner diameter of 6φ through which the raw material liquid was introduced was passed through one of the plugs, and the space temperature at the tip of the pipe (introduction temperature) and the temperature at the center of the furnace were set as shown in Table 1.

該パイプの他端は炉外に出され、ゴムチューブで定量ポ
ンプに接続した。定量ポンプには第1図に示されるごと
く、原料液を不活性ガスで加圧して定量ポンプへ送るも
のとした。また、原料導入側のゴム栓にはさらに同径の
パイプ10を貫通せしめて、ゴムチューブを介して炉内
置換用の不活性ガス18および水素ガス11を導入でき
るようにした。これらのガスはバルブ17によって、任
意に切換えるようになっている。一方、他端のゴム栓に
は内径6φのアルミナ質パイプ15を設け、ゴムチュー
ブを介して排出ガス16を排出できるようにした。
The other end of the pipe was taken out of the furnace and connected to a metering pump with a rubber tube. As shown in FIG. 1, the metering pump was designed to pressurize the raw material liquid with an inert gas and send it to the metering pump. Further, a pipe 10 of the same diameter was further passed through the rubber stopper on the raw material introduction side, so that inert gas 18 and hydrogen gas 11 for replacing the inside of the furnace could be introduced through the rubber tube. These gases can be switched arbitrarily by a valve 17. On the other hand, an alumina pipe 15 having an inner diameter of 6φ was provided on the rubber plug at the other end so that exhaust gas 16 could be discharged through the rubber tube.

まず、炉内を不活性ガス18で置換した後、バルブ17
により予熱した水素ガス11に切換え、パイプ9出口の
導入温度および炉中心の温度が第1表の所定温度になる
ように昇温した。水素ガスを第1表で示す種々の流速で
供給しつつ、原料液を定量ポンプにより2c c / 
m i nの流量で約5分間炉内に供給し、反応させた
。その結果、長さ0.5〜3fl、径0.5〜4μmの
捲縮した炭素質繊維が得られた。これらの炭素繊維の収
量および形態を第1表に示した。
First, after replacing the inside of the furnace with inert gas 18, the valve 17
The hydrogen gas 11 was switched to the preheated hydrogen gas 11, and the temperature was raised so that the inlet temperature at the outlet of the pipe 9 and the temperature at the center of the furnace reached the predetermined temperatures shown in Table 1. While supplying hydrogen gas at various flow rates shown in Table 1, the raw material liquid was supplied at 2cc/cm using a metering pump.
The mixture was fed into the furnace for about 5 minutes at a flow rate of min to cause a reaction. As a result, crimped carbonaceous fibers having a length of 0.5 to 3 fl and a diameter of 0.5 to 4 μm were obtained. The yield and morphology of these carbon fibers are shown in Table 1.

十人°ド#、白Ten people ° de #, white

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、それぞれ本発明の好適な実施態
様を示す炭素質繊維の製造装置の説明図である。 ■、11.18.31・・・不活性ガス、2.6.9.
10.15.26・・・導管、3.7.17.30・・
・バルブ、4・・・貯槽、5・・・原料液(混合液)、
8・・・定量ポンプ、18.32・・・水素ガス、12
.27・・・炉芯管(反応管)、13.28・・・電気
炉、14・・・炭素繊維、16・・・排出ガス。
FIG. 1 and FIG. 2 are explanatory diagrams of a carbonaceous fiber manufacturing apparatus showing preferred embodiments of the present invention, respectively. ■, 11.18.31...Inert gas, 2.6.9.
10.15.26... Conduit, 3.7.17.30...
・Valve, 4... Storage tank, 5... Raw material liquid (mixed liquid),
8...metering pump, 18.32...hydrogen gas, 12
.. 27... Furnace core tube (reaction tube), 13.28... Electric furnace, 14... Carbon fiber, 16... Exhaust gas.

Claims (4)

【特許請求の範囲】[Claims] (1)炭化水素類とβ−ジケトン金属錯体との混合液を
水素ガスとともに加熱帯に供給し、800〜1800℃
で加熱分解させることを特徴とする炭素質繊維の製法。
(1) A mixed solution of hydrocarbons and β-diketone metal complex is supplied to a heating zone together with hydrogen gas, and heated to 800 to 1800°C.
A method for producing carbonaceous fibers characterized by thermal decomposition.
(2)前記混合液中のβ−ジケトン金属錯体の濃度が1
×10^−^2〜30wt%であることを特徴とする特
許請求の範囲第1項記載の炭素質繊維の製法。
(2) The concentration of the β-diketone metal complex in the mixed solution is 1
The method for producing carbonaceous fibers according to claim 1, characterized in that the carbon fiber content is 10^-^2 to 30 wt%.
(3)前記水素ガスを前記混合液1gに対して10ml
/min以上導入することを特徴とする特許請求の範囲
第1項記載の炭素質繊維の製法。
(3) Add 10 ml of the hydrogen gas to 1 g of the mixed liquid.
2. The method for producing carbonaceous fibers according to claim 1, wherein the carbonaceous fibers are introduced at a rate of at least /min.
(4)前記金属が鉄、コバルトまたはニッケルである特
許請求の範囲第2項記載の炭素質繊維の製法。
(4) The method for producing carbonaceous fibers according to claim 2, wherein the metal is iron, cobalt, or nickel.
JP5881385A 1984-04-25 1985-03-23 Production of carbonaceous fiber Pending JPS61225322A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5881385A JPS61225322A (en) 1985-03-23 1985-03-23 Production of carbonaceous fiber
US06/807,355 US4816289A (en) 1984-04-25 1985-12-10 Process for production of a carbon filament

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5881385A JPS61225322A (en) 1985-03-23 1985-03-23 Production of carbonaceous fiber

Publications (1)

Publication Number Publication Date
JPS61225322A true JPS61225322A (en) 1986-10-07

Family

ID=13095049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5881385A Pending JPS61225322A (en) 1984-04-25 1985-03-23 Production of carbonaceous fiber

Country Status (1)

Country Link
JP (1) JPS61225322A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104927A (en) * 1989-06-28 1991-05-01 Central Glass Co Ltd Coil-like carbon fiber and carbon composite material
US5409775A (en) * 1992-07-06 1995-04-25 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers, process for preparing same, molded members thereof, and composite members thereof
US5512393A (en) * 1992-07-06 1996-04-30 Nikkiso Company Limited Vapor-grown and graphitized carbon fibers process for preparing same molded members thereof and composite members thereof

Similar Documents

Publication Publication Date Title
US4876078A (en) Process for preparing carbon fibers in gas phase growth
JP3930810B2 (en) Synthesis of nanoscale carbon materials
CA2559070C (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
US5500200A (en) Fibrils
CN104995134B (en) Produce carbon nano-structured method and device
US5413773A (en) Method for forming carbon filters
JPH0424320B2 (en)
JPH07113164B2 (en) Carbon fiber forming equipment
WO2006079213A1 (en) Induction plasma synthesis of nanopowders
JP4693105B2 (en) Method and apparatus for producing vapor grown carbon fiber
EP1407064B1 (en) Method for producing vapor grown carbon fiber
WO2002079082A2 (en) Process utilizing pre-formed cluster catalysts for making single-wall carbon nanotubes
JP6403144B2 (en) Process for producing vapor-deposited fine carbon fiber
JPS61225322A (en) Production of carbonaceous fiber
JPS61225328A (en) Production of carbonaceous fiber
CN1960942B (en) Highly efficient process for producing carbon nanostructure through raw material blasting and apparatus tehrefor
JPS60252720A (en) Production of carbon fiber by vapor phase method
WO2004007361A2 (en) Method of synthesis of carbon nanomaterials
JPS61108723A (en) Production of carbon fiber
JPS6262914A (en) Production of carbonaceous fiber
EP3988207A1 (en) Supported metal structure
JPH10292126A (en) Production of carbon black
JPH0621377B2 (en) Production method of vapor grown carbon fiber
JPH089808B2 (en) Method for producing fine carbon fiber by vapor phase method
JPS60231822A (en) Production of carbonaceous fiber