JPH09289022A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09289022A
JPH09289022A JP8102917A JP10291796A JPH09289022A JP H09289022 A JPH09289022 A JP H09289022A JP 8102917 A JP8102917 A JP 8102917A JP 10291796 A JP10291796 A JP 10291796A JP H09289022 A JPH09289022 A JP H09289022A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
secondary battery
negative electrode
mixture
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8102917A
Other languages
Japanese (ja)
Inventor
Fumiharu Iwasaki
文晴 岩崎
Tsugio Sakai
次夫 酒井
Kensuke Tawara
謙介 田原
Hideo Sakamoto
秀夫 坂本
Shinichi Takasugi
信一 高杉
Tsuneaki Tamachi
恒昭 玉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP8102917A priority Critical patent/JPH09289022A/en
Publication of JPH09289022A publication Critical patent/JPH09289022A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To reduce costs, decrease adverse effects on human body in a manufacturing process, and enhance stickiness by containing a water soluble polymer in an electrode mixture of a positive electrode or a negative electrode. SOLUTION: When an electrode sheet is manufactured by forming a thin mixture layer on both surfaces of a current collector of a metal foil (for example, an aluminum foil), a water soluble polymer is contained in an electrode mix of a positive electrode and/or a negative electrode. The binding capability to the current collector is enhanced, and since the solvent is water, the cost is reduced and the adverse effect on human body in a manufacturing process is decreased. Since a drying process is made at a relatively low temperature, heat damages to the materials constituting a mixture and a sheet electrode is minimized. As a result, energy density is enhanced, and the cycle life is lengthened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵放
出可能な物質を正極活物質および負極活物質とし、リチ
ウムイオン導電性の非水電解質を用いる非水電解質二次
電池に関するものであり、特に高エネルギー密度でハイ
レート充放電特性に優れ、長期サイクル特性が良好な電
極の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte as a positive electrode active material and a negative electrode active material which are capable of inserting and extracting lithium, and more particularly to a non-aqueous electrolyte secondary battery. The present invention relates to an electrode structure having high energy density, excellent high rate charge / discharge characteristics, and good long-term cycle characteristics.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギ−密度で、かつ自己
放電が小さく長期信頼性に優れる等の利点により、一次
電池としてはメモリ−バックアップ用、カメラ用等の電
源として既に広く用いられている。近年の携帯型電子機
器、通信機器等の著しい発展に伴い、電源としての電池
に対し大電流出力を要求する機器が多種多様に出現し、
経済性と機器の小型軽量化さらに環境への配慮の観点か
ら、再充放電可能で、かつ高エネルギ−密度の二次電池
が強く要望されている。
2. Description of the Related Art A non-aqueous electrolyte battery using lithium as a negative electrode active material has advantages such as high voltage, high energy density, small self-discharge, and excellent long-term reliability. It is already widely used as a power source for cameras and the like. With the recent remarkable development of portable electronic devices, communication devices, etc., a wide variety of devices that require a large current output for a battery as a power source have appeared,
From the viewpoints of economy, reduction in size and weight of equipment, and consideration for the environment, there is a strong demand for rechargeable / dischargeable secondary batteries having high energy density.

【0003】そこで負極活物質として、炭素材料に代表
されるリチウムイオンを吸蔵放出可能な物質を用いた、
高エネルギ−密度を有する前記非水電解質電池の二次電
池化を進める研究開発が活発に行われ、「リチウムイオ
ン二次電池」として一部実用化されているが、エネルギ
−密度、充放電サイクル寿命、信頼性等まだまだ不十分
である。
Therefore, as the negative electrode active material, a material represented by a carbon material capable of inserting and extracting lithium ions is used.
Research and development for promoting conversion of the non-aqueous electrolyte battery having high energy density into a secondary battery have been actively carried out, and it has been partially put into practical use as a “lithium ion secondary battery”. Energy density, charge / discharge cycle The service life and reliability are still insufficient.

【0004】前記「リチウムイオン二次電池」に用いら
れる非水電解質は、ニッケル−カドミウム電池やニッケ
ル−水素電池等に用いられる水系の電解液と比較する
と、イオン導電性が低い。このため高エネルギー密度を
得るために、金属箔等の集電体の両面に薄い合剤層を設
けた電極シートを、幾重にも渦巻き状に倦回して電池反
応面を大面積化する構造が一般的である。
The non-aqueous electrolyte used in the "lithium ion secondary battery" has a low ionic conductivity as compared with an aqueous electrolytic solution used in nickel-cadmium batteries or nickel-hydrogen batteries. For this reason, in order to obtain a high energy density, there is a structure in which an electrode sheet provided with a thin mixture layer on both sides of a current collector such as a metal foil is spirally wound in multiple layers to enlarge the battery reaction surface. It is common.

【0005】合剤中には、活物質、必要な場合には導電
助剤そして結着剤等から構成される。結着剤に求められ
る特性は 合剤構成物質を確実に結着・保持すること 合剤と集電体とを結着すること 電解液(電解質)に対して化学的に安定であること 安価であること 等が挙げられる。特に上記の条件が満たされない
場合には、ハイレート性能や充放電の繰り返しによるサ
イクル特性などの電池性能低下を招く。
The mixture contains an active material, and if necessary, a conductive auxiliary agent and a binder. The properties required for a binder are to securely bind and hold the components that make up the mixture, to bind the mixture to the current collector, and to be chemically stable to the electrolyte (electrolyte) at a low cost. There are some things. In particular, when the above conditions are not satisfied, high rate performance and deterioration of battery performance such as cycle characteristics due to repeated charging and discharging are caused.

【0006】従来、非水電解液二次電池用に用いられる
合剤の結着剤としては、ポリテトラフルオロエチレン
(PTFE)のディスパージョンや、ポリビニリデンフ
ルオライド(PVDF)のようなフッ素樹脂が多く用い
られてきた。フッ素樹脂は電解液に対して安定であり、
耐熱性も優れている。
Conventionally, as a binder of a mixture used for a non-aqueous electrolyte secondary battery, a dispersion of polytetrafluoroethylene (PTFE) or a fluororesin such as polyvinylidene fluoride (PVDF) is used. It has been used a lot. Fluorine resin is stable to electrolyte,
It also has excellent heat resistance.

【0007】特にフッ素樹脂の中でも唯一溶液にするこ
とが可能なPVDFは、合剤スラリーを集電体上に塗布
するような電極シートの製造工程において、塗布性が良
好であり多く用いられている(例えば、特開平4−18
4872号、特開平5−290854号、特開平6−1
11823号、特開平6−349482号参照)。
Among the fluororesins, PVDF, which is the only solution that can be used as a solution, has a good coating property and is often used in the process of manufacturing an electrode sheet in which a mixture slurry is coated on a current collector. (For example, JP-A-4-18
4872, JP-A-5-290854, JP-A6-1
11823, JP-A-6-349482).

【0008】[0008]

【発明が解決しようとする課題】前記の通り結着剤とし
て多く用いられてきたPTFEディスパージョンやPV
DFなどは、合剤中の構成物質を結着するためには良好
な結着剤であるが、金属箔などの集電体との結着性には
最適ではないという問題点がある。またフッ素樹脂のた
め高価であることも電池製造コスト上問題である。その
上、PVDFの溶媒であるN−メチル−2−ピロリドン
(NMP)やジメチルホルムアミド(DMF)は、下記
のような問題点も有している。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, PTFE dispersion and PV, which have been widely used as a binder,
DF and the like are good binders for binding the constituent substances in the mixture, but there is a problem that they are not optimal for binding to a current collector such as a metal foil. In addition, the fact that the fluororesin is expensive is also a problem in terms of battery manufacturing cost. In addition, N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF), which are PVDF solvents, have the following problems.

【0009】 高価であり製品のコストアップになる 有機溶媒のため、製造工程における人体への影響が
懸念される 高沸点溶媒のため高温乾燥すると、PVDFの熱分
解が起き結着性の低下を招く
Since it is an organic solvent which is expensive and increases the cost of the product, it is a high-boiling-point solvent which may affect the human body in the manufacturing process. When it is dried at a high temperature, PVDF is thermally decomposed and the binding property is deteriorated.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明はリチウムイオンを吸蔵・放出可能な正極
および負極と、リチウムイオン導電性の非水電解質から
少なくとも構成される非水電解質二次電池において、正
極および/または負極の電極合剤中に水溶性ポリマーを
含有することとしている。
In order to solve the above problems, the present invention provides a non-aqueous electrolyte composed of at least a positive electrode and a negative electrode capable of absorbing and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte. In the secondary battery, the water-soluble polymer is contained in the electrode mixture of the positive electrode and / or the negative electrode.

【0011】このため、集電体への結着性も良好で、か
つ溶媒が水であることから上記のコストや製造工程にお
ける人体への影響などの課題を解決することができる。
また、比較的低温で乾燥可能であるから、合剤やシート
電極を構成する材料への熱的ダメージを最小限にとどめ
ることができる。
Therefore, the binding property to the current collector is good, and since the solvent is water, it is possible to solve the problems such as the above cost and the influence on the human body in the manufacturing process.
Further, since it can be dried at a relatively low temperature, it is possible to minimize thermal damage to the mixture and the material forming the sheet electrode.

【0012】[0012]

【発明の実施の形態】本発明に用いられる水溶性ポリマ
ーとしては、天然物系ポリマーや合成樹脂など種々のポ
リマーを用いることができる。例えば天然物系として
は、デンプン系のデンプン、化工デンプン、デキストリ
ン、セルロース系のメチルセルロース、エチルセルロー
ス、ヒドロキシエチルセルロース、カルボキシメチルセ
ルロース(CMC)、ゴム系のアラビアゴム、トラガン
トゴム、カラヤゴム、ローカストビーンゴム、グアーゴ
ム等があげられる。また合成樹脂系では、ポリビニルア
ルコール類、ポリアクリルアミド、ポリエチレンオキサ
イド、ポリビニルピロリドン、酢酸ビニル共重合体、ア
クリル酸ポリマー等を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION As the water-soluble polymer used in the present invention, various polymers such as natural product type polymers and synthetic resins can be used. For example, as a natural product type, starch type starch, modified starch, dextrin, cellulose type methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose (CMC), rubber type gum arabic, tragacanth gum, karaya gum, locust bean gum, guar gum, etc. can give. In the synthetic resin system, polyvinyl alcohol, polyacrylamide, polyethylene oxide, polyvinylpyrrolidone, vinyl acetate copolymer, acrylic acid polymer and the like can be used.

【0013】中でも、アクリル酸ポリマーやCMC等は
アルミニウムや銅等の金属の集電体等への結着性も良好
で好ましい。さらに結着性を高めるために架橋型アクリ
ル酸ポリマーを用いることが効果的である。特に架橋型
アクリル酸ポリマー中のカルボキシル基含量が50〜7
0%であることが好ましい。
Among them, acrylic acid polymers, CMC and the like are preferable because they are excellent in binding property of metals such as aluminum and copper to current collectors. Further, it is effective to use a cross-linked acrylic acid polymer in order to enhance the binding property. Particularly, the content of carboxyl group in the cross-linked acrylic acid polymer is 50 to 7
It is preferably 0%.

【0014】これら水溶性ポリマーは、一種でも十分に
機能を果たすが二種以上を混合して用いてもよい。本発
明の水溶性ポリマーの合剤中の組成は、合剤の結着性お
よび集電体への結着性が維持できる最小量にとどめるべ
きである。過剰の場合には、電池容量低下、インピーダ
ンス増加等の問題が生じる。また過小の場合には、結着
性が維持できない。これらのことを鑑みて合剤中の水溶
性ポリマー組成は0.1%(w/w)以上20%(w/
w)以下が良い。
These water-soluble polymers may be used alone or in a sufficient manner, but two or more kinds may be mixed and used. The composition of the water-soluble polymer of the present invention in the mixture should be limited to the minimum amount capable of maintaining the binding property of the mixture and the binding property to the current collector. If it is excessive, problems such as a decrease in battery capacity and an increase in impedance occur. If it is too small, the binding property cannot be maintained. In view of these, the water-soluble polymer composition in the mixture is 0.1% (w / w) or more and 20% (w / w).
w) The following is good.

【0015】本発明に用いられる正極活物質としては、
TiS2、MoS2、NbSe3等の金属カルコゲン化物や、MnO2、M
oO3、V2O5、LixCoO2、LixNiO2、LixMn2O4等の金属酸化
物、ポリアニリン、ポリピロール、ポリパラフェニレ
ン、ポリアセン等の導電性高分子、およびグラファイト
層間化合物等のリチウムイオンおよび/またはアニオン
を吸蔵放出可能な各種の物質を用いることができる。
The positive electrode active material used in the present invention includes:
Metal chalcogenides such as TiS 2 , MoS 2 and NbSe 3 , as well as MnO 2 and M
Metal oxides such as oO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 and Li x Mn 2 O 4 , conductive polymers such as polyaniline, polypyrrole, polyparaphenylene and polyacene, and graphite intercalation compounds Various substances capable of occluding and releasing lithium ions and / or anions can be used.

【0016】特に、金属カルコゲン化物や金属酸化物等
のような金属リチウムに対する電極電位が2V以上、よ
り好ましくはV2O5、MnO2、LixCoO2、LixNiO2、LixMn2O4
等のような3Vないし4V以上の高電位を有する(貴
な)活物質と、後に述べる金属リチウムに対する電極電
位が1V以下の低電位を有する(卑な)活物質を用いた
負極とを組み合わせることにより、高エネルギー密度の
二次電池が得られるので、より好ましい。
In particular, the electrode potential for metal lithium such as metal chalcogenide and metal oxide is 2 V or more, more preferably V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , and Li x Mn 2. O 4
Combining a (noble) active material having a high potential of 3 V to 4 V or more and a negative electrode using a (base) active material having a low potential of 1 V or less with respect to metallic lithium as described later. Thereby, a secondary battery having a high energy density can be obtained, which is more preferable.

【0017】負極活物質としては、金属リチウム、炭素
質材料、LixSi、金属酸化物、窒化物、ケイ化物、炭化
物、LixySi1-yMyOz(0<x≦6,0≦y<1,0<z<2であ
り、Mはアルカリ金属を除く金属あるいはケイ素を除く
類金属)で示されるケイ素酸化物等のリチウムイオンお
よび/またはアニオンを吸蔵放出可能な各種の物質を用
いることができる。
[0017] As the negative electrode active material, metallic lithium, carbonaceous materials, LixSi, metal oxides, nitrides, silicides, carbides, Li x M y Si 1- y M y O z (0 <x ≦ 6,0 ≦ y <1,0 <z <2, M is a metal other than alkali metal or a metal other than silicon) and various substances capable of occluding and releasing lithium ions and / or anions such as silicon oxide Can be used.

【0018】特に、LixySi1-yMyOz(0<x≦6,0≦y<
1,0<z<2であり、Mはアルカリ金属を除く金属あるいはケ
イ素を除く類金属)で示されるケイ素酸化物等は、金属
リチウムに対する電極電位が1V以下の領域での充放電
容量が大きいことから、上記正極活物質を用いた正極と
組み合わせることで、高電圧・高エネルギー密度な二次
電池が得られるので、より好ましい。
In particular, Li x M y Si 1-y M y O z (0 <x ≦ 6,0 ≦ y <
Silicon oxides such as 1,0 <z <2 and M is a metal except alkali metal or a metal other than silicon) have a large charge / discharge capacity in the region where the electrode potential with respect to metallic lithium is 1 V or less. Therefore, by combining with the positive electrode using the positive electrode active material, a secondary battery with high voltage and high energy density can be obtained, which is more preferable.

【0019】電解質としては、γ−ブチロラクトン、プ
ロピレンカ−ボネ−ト、エチレンカ−ボネ−ト(E
C)、ブチレンカ−ボネ−ト、ジメチルカーボネート、
ジエチルカーボネート、メチルフォーメイト、1,2−
ジメトキシエタン、テトラヒドロフラン、ジオキソラ
ン、ジメチルフォルムアミド等の非水系の有機溶媒の単
独または混合溶媒に、支持電解質としてLiClO4,LiP
F6,LiBF4,LiCF3SO3、LiC(SO2CF3)3、LiN(SO2CF3)2
のリチウムイオン解離性塩を溶解した有機非水電解質、
ポリエチレンオキシドやポリフォスファゼン架橋体等の
高分子に前記リチウム塩を固溶させた高分子固体電解質
あるいはLi3N,LiI等の無機固体電解質等のリチウムイ
オン導電性の非水電解質を用いることができる。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate (E
C), butylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl formate, 1,2-
LiClO 4 , LiP as a supporting electrolyte in a single or mixed nonaqueous organic solvent such as dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, etc.
An organic non-aqueous electrolyte in which lithium ion dissociable salts such as F 6 , LiBF 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 and LiN (SO 2 CF 3 ) 2 are dissolved,
It is preferable to use a polymer solid electrolyte in which the lithium salt is solid-solved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or a lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte such as Li 3 N or LiI. it can.

【0020】特に、負極活物質として前述したLixy
1-yMyOz(0<x≦6,0≦y<1,0<z<2であり、Mはアルカリ
金属を除く金属あるいはケイ素を除く類金属)で示され
るケイ素酸化物を用いる場合には、ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネート
等の化2で示されるアルキルカーボネートとECとの混
合溶媒を用いることが好ましい。さらにECとR1R2
型アルキルカーボネートの体積混合比が、約3:1〜約
1:3の範囲であることがより好ましい。
[0020] In particular, Li x M y S described above as a negative electrode active material
i 1-y M y O z (0 <x ≦ 6,0 ≦ y <1,0 <z <2, M is a metal except alkali metal or a metal except silicon) When used, it is preferable to use a mixed solvent of an alkyl carbonate represented by Chemical formula 2 such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and EC. EC and R1R2
More preferably, the volume mixing ratio of the type alkyl carbonate is in the range of about 3: 1 to about 1: 3.

【0021】[0021]

【化2】 Embedded image

【0022】正極集電体としては、アルミニウムやその
合金、チタンやその合金、ステンレスなど正極活物質電
位に対して安定である物質であればよい。その形態とし
ては、例えば箔、エキスパンドメタル等が挙げられる。
負極集電体としては、銅やその合金、ニッケルやその合
金、ステンレスなど負極活物質電位に対して安定である
物質であればよい。その形態としては、例えば箔、エキ
スパンドメタル等が挙げられる。
The positive electrode current collector may be any substance that is stable with respect to the positive electrode active material potential, such as aluminum or its alloy, titanium or its alloy, or stainless. Examples of the form include foil, expanded metal, and the like.
The negative electrode current collector may be any material that is stable with respect to the potential of the negative electrode active material, such as copper or its alloy, nickel or its alloy, or stainless steel. Examples of the form include foil, expanded metal, and the like.

【0023】シート電極の製造方法としては、本発明の
水溶性ポリマーの溶液に活物質などの合剤構成物質を混
合・分散した合剤スラリーを調整し、この合剤スラリー
を集電体上に塗布乾燥し、必要に応じロールプレスなど
により圧延・固着させる方法がある。また、シート状に
成形された合剤層を集電体に圧着したり、接着させる方
法など種々の方法を用いることができる。この際、集電
体と合剤層との間に炭素材料や金属粉体を導電性フィラ
ーとする導電層を設けても良い。集電体と合剤層との電
子導電性が向上し、なおいっそう高性能な電池が実現す
る。
As a method for producing a sheet electrode, a mixture slurry prepared by mixing and dispersing a mixture constituent substance such as an active material in a solution of the water-soluble polymer of the present invention is prepared, and this mixture slurry is placed on a current collector. There is a method of coating and drying, and if necessary, rolling and fixing with a roll press. In addition, various methods such as a method in which the mixture layer formed into a sheet shape is pressure-bonded to the current collector or bonded to the current collector can be used. At this time, a conductive layer containing a carbon material or metal powder as a conductive filler may be provided between the current collector and the mixture layer. The electronic conductivity between the current collector and the mixture layer is improved, and an even higher performance battery is realized.

【0024】コイン型やボタン型用の電極を製造する方
法としては、上記と同様に合剤スラリーを調整し乾燥し
た後、粉砕・造粒して所定の寸法に成形する湿式法や、
本発明の水溶性ポリマーを含む合剤構成物質を均一に混
合した後、成形する乾式法等種々の方法を用いて製造す
ることができる。
As a method for producing a coin-type or button-type electrode, a wet method in which a mixture slurry is prepared and dried in the same manner as described above, and then crushed and granulated to form a predetermined size,
It can be produced by various methods such as a dry method in which the mixture component material containing the water-soluble polymer of the present invention is uniformly mixed and then molded.

【0025】[0025]

【実施例】以下実施例により本発明の一例を挙げて説明
する。本発明はこれに限定されるものではない。以下に
示すように角形電池を作製し充放電特性を測定した。
EXAMPLES An example of the present invention will be described below with reference to examples. The present invention is not limited to this. As shown below, a prismatic battery was prepared and the charge / discharge characteristics were measured.

【0026】(実施例1)正極活物質としてLiB0.03Co
0.97O2で示されるリチウムとコバルトとホウ素の複合酸
化物85重量部と、導電剤のグラファイト8重量部を乳
鉢で粉砕・混合したものを、結着剤のPVDF7重量部
をNMP51.3重量部に溶解した溶液に混合分散し、
正極合剤スラリーを調整した。この正極合剤スラリーを
厚さ20μmのアルミ箔の両面に、乾燥・圧延後の合剤
密度が3.3g/cm3、片面の合剤厚さが60μmになるよ
うに塗布・乾燥し、ロールプレスを用いて圧延して正極
シートを作製した。こうして作製した正極シートを、2
7.5mm×39mmのサイズに裁断して正極板とした。
Example 1 LiB 0.03 Co as a positive electrode active material
85 parts by weight of a composite oxide of lithium, cobalt, and boron represented by 0.97 O 2 and 8 parts by weight of graphite as a conductive agent were crushed and mixed in a mortar, and 7 parts by weight of PVDF as a binder were 51.3 parts by weight of NMP. Mixed and dispersed in a solution dissolved in
A positive electrode mixture slurry was prepared. This positive electrode mixture slurry is applied and dried on both sides of an aluminum foil having a thickness of 20 μm so that the mixture density after drying and rolling is 3.3 g / cm 3 and the mixture thickness on one side is 60 μm. It rolled using the press and produced the positive electrode sheet. The positive electrode sheet thus prepared is
A positive electrode plate was obtained by cutting into a size of 7.5 mm × 39 mm.

【0027】同様にして負極を作製した。負極活物質と
して市販の一酸化ケイ素(SiO)45重量部と、導電
剤 のグラファイト40重量部を乳鉢で粉砕・混合した
ものを、結着剤の架橋型アクリル酸ポリマー15重量部
を水300重量部に溶解した溶液に混合分散し、負極合
剤スラリーを調整した。この負極合剤スラリーを厚さ1
0μmの銅箔の両面に、乾燥・圧延後の合剤密度が1.
6g/cm3、片面の合剤厚さが27μmになるように塗布
し、乾燥後ロールプレスを用いて圧延を行った。こうし
て作製した負極シートを、27.5×39mmのサイズに
裁断して負極板とした。
A negative electrode was prepared in the same manner. 45 parts by weight of commercially available silicon monoxide (SiO) as a negative electrode active material and 40 parts by weight of graphite as a conductive agent were pulverized and mixed in a mortar, and 15 parts by weight of a cross-linking acrylic acid polymer as a binder was added to 300 parts by weight of water. Was mixed and dispersed in a solution dissolved in a part to prepare a negative electrode mixture slurry. Thickness of this negative electrode mixture slurry is 1
Both sides of 0 μm copper foil have a mixture density of 1. after drying and rolling.
It was coated at 6 g / cm 3 so that the mixture thickness on one side was 27 μm, dried, and then rolled using a roll press. The negative electrode sheet thus manufactured was cut into a size of 27.5 × 39 mm to obtain a negative electrode plate.

【0028】正極板15枚と負極板16枚を、リチウム
イオン透過性の多孔質フィルムであるセパレーターを介
在して交互に重ね合わせ(最外側は合剤を片面のみに塗
布した負極)、ステンレス製の電池ケースに挿入し、リ
ードをとり、電解液を注入して封口し、角形電池を作製
した。
Fifteen positive electrode plates and sixteen negative electrode plates are alternately stacked with a separator, which is a lithium ion permeable porous film, interposed therebetween (the outermost negative electrode is a negative electrode coated with a mixture on only one side). The battery was inserted into the battery case, the lead was taken, the electrolytic solution was injected, and the battery was sealed to manufacture a prismatic battery.

【0029】こうして作製した電池を、20mAの定電流
で充電終止電圧を4.2V、放電終止電圧を2.7Vの条件
で充放電サイクルを3サイクル行った。この後、充電電
圧4.2V、最大充電電流400mAで定電流定電圧で
2.5時間充電し、放電電流400mAおよび600mA
の定電流で放電終止電圧2.7Vの条件で各電流値で3
サイクルづつ充放電特性測定を行った。この放電電流4
00mAの場合の放電容量に対する放電電流600mA
の場合の放電容量の割合を図1に示す。さらに充電電圧
4.2V、最大充電電流400mAで定電流定電圧で2.
5時間充電し、放電電流400mAの定電流で放電終止電
圧2.7Vの条件で充放電サイクルを行った。この充放
電サイクルのサイクル特性を図2に示す。
The battery thus produced was subjected to three charge / discharge cycles under the conditions of a constant current of 20 mA, an end-of-charge voltage of 4.2 V and an end-of-discharge voltage of 2.7 V. After this, the charging voltage is 4.2V, the maximum charging current is 400mA, and the battery is charged at a constant current and constant voltage for 2.5 hours, and the discharging current is 400mA and 600mA.
3 at each current value under the condition of discharge constant voltage of 2.7V with constant current of
The charge and discharge characteristics were measured cycle by cycle. This discharge current 4
Discharge capacity 600mA for discharge capacity of 00mA
The discharge capacity ratio in the case of is shown in FIG. Further, the charging voltage is 4.2V, the maximum charging current is 400mA, and the constant current is constant voltage.
After charging for 5 hours, a charging / discharging cycle was performed under the conditions of a discharge current of 400 mA and a discharge end voltage of 2.7V. The cycle characteristics of this charge / discharge cycle are shown in FIG.

【0030】(実施例2)実施例1において、負極活物
質として市販の一酸化ケイ素(SiO)45重量部と、
導電剤のグラファイト40重量部を乳鉢で粉砕・混合し
たものを、結着剤のPVDF15重量部をNMP110
重量部に溶解した溶液に混合分散し、負極合剤スラリー
を調整したこと以外は同様にして角形電池を作製し、同
様の充放電試験を行った。その結果得られた、放電電流
400mAの場合の放電容量に対する放電電流600m
Aの場合の放電容量の割合を図1に、サイクル特性を図
2に示す。
(Example 2) In Example 1, 45 parts by weight of commercially available silicon monoxide (SiO) as a negative electrode active material,
40 parts by weight of graphite as a conductive agent was crushed and mixed in a mortar, and 15 parts by weight of PVDF as a binder was used as NMP110.
A prismatic battery was prepared in the same manner except that a negative electrode mixture slurry was prepared by mixing and dispersing it in a solution dissolved in parts by weight, and the same charge and discharge test was conducted. As a result, the discharge current is 600 m with respect to the discharge capacity when the discharge current is 400 mA.
The discharge capacity ratio in the case of A is shown in FIG. 1, and the cycle characteristics are shown in FIG.

【0031】図1および図2から明らかなように、本発
明の水溶性ポリマーを結着剤として用いることでハイレ
ート放電時の容量減少が低下した。これは、合剤同士の
密着性および合剤と集電体との密着性向上によりインピ
ーダンスが減少したことによると考えられる。また、サ
イクル特性が著しく向上していることから、本発明の水
溶性ポリマーを結着剤として用いることで、充放電サイ
クル経過後も合剤同士および合剤と集電体との密着性を
維持できる事を如実に反映した結果である。
As is apparent from FIGS. 1 and 2, the use of the water-soluble polymer of the present invention as a binder reduced the capacity decrease during high rate discharge. It is considered that this is because the impedance decreased due to the improvement in the adhesion between the mixture and the adhesion between the mixture and the current collector. Further, since the cycle characteristics are remarkably improved, by using the water-soluble polymer of the present invention as a binder, the adhesiveness between the mixture and the mixture and the current collector can be maintained even after the charge / discharge cycle. It is a result that reflects what can be done.

【0032】さらに、正極合剤の結着剤として水溶性ポ
リマーを含有する事で、さらに電池としての性能が向上
する事は言うまでもない。
Needless to say, the performance of the battery is further improved by containing the water-soluble polymer as the binder of the positive electrode mixture.

【0033】[0033]

【発明の効果】以上のように本発明は、リチウムイオン
を吸蔵・放出可能な正極および負極と、リチウムイオン
導電性の非水電解質から少なくとも構成される非水電解
質二次電池において、正極および/または負極の電極合
剤中に水溶性ポリマーを含有する構成としたことで、 電池のインピーダンスを低減し、ハイレート放電が
可能 充放電サイクル経過後の合剤同士や合剤と集電体と
の密着性を維持でき、電池劣化を著しく抑制できる。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a positive electrode and / or negative electrode in a non-aqueous electrolyte secondary battery which is composed of at least a positive electrode and a negative electrode capable of absorbing and desorbing lithium ions, and a lithium ion conductive non-aqueous electrolyte. Alternatively, the electrode mixture of the negative electrode contains a water-soluble polymer to reduce the battery impedance and enable high-rate discharge. Adhesion between the mixture after a charge / discharge cycle or between the mixture and the current collector Property can be maintained and battery deterioration can be significantly suppressed.

【0034】 合剤スラリーの乾燥温度を低くするこ
とが可能で、活物質等への熱的ダメージを抑制できる。 溶媒が水であることから、電池製造工程上人体への
影響が少ない。 等の効果を有する。その結果、高エネルギー密度でサイ
クル特性が良好な高品質二次電池を得ることができる。
The drying temperature of the mixture slurry can be lowered, and thermal damage to the active material and the like can be suppressed. Since the solvent is water, it has little effect on the human body in the battery manufacturing process. And the like. As a result, a high-quality secondary battery having high energy density and good cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した、実施例1および実施
例2で作製した角形電池の放電電流400mAの場合の
放電容量に対する、放電電流600mAの場合の放電容
量の割合を比較した説明図である。
FIG. 1 is an explanatory diagram comparing the ratio of the discharge capacity at a discharge current of 600 mA to the discharge capacity at a discharge current of 400 mA of the prismatic batteries manufactured in Example 1 and Example 2 according to the present invention. .

【図2】本発明において実施した、実施例1および実施
例2で作製した角形電池の充放電サイクル特性を比較し
た説明図である。
FIG. 2 is an explanatory diagram comparing the charge / discharge cycle characteristics of the prismatic batteries manufactured in Example 1 and Example 2 carried out in the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 10/40 H01M 10/40 Z (72)発明者 坂本 秀夫 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 (72)発明者 高杉 信一 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 (72)発明者 玉地 恒昭 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location H01M 10/40 H01M 10/40 Z (72) Inventor Hideo Sakamoto 1-chome, Nakase, Mihama-ku, Chiba-shi 8 Seiko Electronics Co., Ltd. (72) Inventor Shinichi Takasugi 1-8 Nakase, Mihama-ku, Chiba, Chiba Seiko Electronics Co., Ltd. (72) Inventor, Tsuneaki Tamachi Nakase, Mihama-ku, Chiba 1-8, Seiko Electronics Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出可能な正極お
よび負極と、リチウムイオン導電性の非水電解質からな
る非水電解質二次電池において、正極または負極の電極
合剤中に水溶性ポリマーを含有する非水電解質二次電
池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte, wherein a water-soluble polymer is contained in an electrode mixture of the positive electrode or the negative electrode. Non-aqueous electrolyte secondary battery.
【請求項2】 前記水溶性ポリマーは、アクリル酸ポリ
マー、ポリビニルアルコール、カルボキシメチルセルロ
ースの中から選ばれるポリマーである請求項1記載の非
水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the water-soluble polymer is a polymer selected from acrylic acid polymers, polyvinyl alcohol, and carboxymethyl cellulose.
【請求項3】 正極合剤の正極活物質にリチウムを含有
する複合遷移金属酸化物を有する請求項1記載の非水電
解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material of the positive electrode mixture has a composite transition metal oxide containing lithium.
【請求項4】 負極合剤の負極活物質に炭素質材料また
はケイ素の酸化物を有する請求項1記載の非水電解質二
次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material of the negative electrode mixture contains a carbonaceous material or an oxide of silicon.
【請求項5】 前記非水電解質が、プロピレンカーボネ
ートまたはエチレンカーボネートと、化1で表されるア
ルキルカーボネートを含有する請求項1記載の非水電解
質二次電池。 【化1】
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains propylene carbonate or ethylene carbonate and an alkyl carbonate represented by Chemical formula 1. Embedded image
JP8102917A 1996-04-24 1996-04-24 Nonaqueous electrolyte secondary battery Pending JPH09289022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8102917A JPH09289022A (en) 1996-04-24 1996-04-24 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8102917A JPH09289022A (en) 1996-04-24 1996-04-24 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000149606A Division JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09289022A true JPH09289022A (en) 1997-11-04

Family

ID=14340216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8102917A Pending JPH09289022A (en) 1996-04-24 1996-04-24 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09289022A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031747A1 (en) * 1997-12-16 1999-06-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2005332809A (en) * 2004-04-19 2005-12-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
US7297444B2 (en) 2005-07-27 2007-11-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2012063745A1 (en) * 2010-11-08 2012-05-18 独立行政法人産業技術総合研究所 Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
WO2014065407A1 (en) * 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
WO2016051811A1 (en) * 2014-10-03 2016-04-07 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016194733A1 (en) * 2015-05-29 2016-12-08 日本電気株式会社 Lithium ion secondary battery
JP2019522317A (en) * 2016-06-15 2019-08-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Anode composition, method for producing anode, and lithium ion battery
CN111295790A (en) * 2017-11-01 2020-06-16 日本电气株式会社 Lithium ion secondary battery

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197753A (en) * 1981-05-30 1982-12-04 Toshiba Battery Co Ltd Manufacture of positive electrode of nonaqueous electrolyte cell
JPS59151765A (en) * 1983-02-19 1984-08-30 Hitachi Maxell Ltd Organic electrolyte battery
JPS62160656A (en) * 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for nonaqueous electrolyte battery
JPH04370661A (en) * 1991-06-20 1992-12-24 Toshiba Battery Co Ltd Secondary battery with nonaqueous solvent
JPH05266889A (en) * 1992-03-23 1993-10-15 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery using same material
JPH07105935A (en) * 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH07307150A (en) * 1994-05-12 1995-11-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08287915A (en) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH0982312A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery and manufacture of lithium secondary battery
JPH0982364A (en) * 1995-09-07 1997-03-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH09161777A (en) * 1995-12-06 1997-06-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH09213329A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH09223517A (en) * 1996-02-14 1997-08-26 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09223516A (en) * 1996-02-14 1997-08-26 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09259867A (en) * 1996-03-15 1997-10-03 Toshiba Corp Nonaqueous electrolyte secondary battery, and manufacture of nonaqueous electrolyte secondary battery
JPH09265990A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacture thereof

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197753A (en) * 1981-05-30 1982-12-04 Toshiba Battery Co Ltd Manufacture of positive electrode of nonaqueous electrolyte cell
JPS59151765A (en) * 1983-02-19 1984-08-30 Hitachi Maxell Ltd Organic electrolyte battery
JPS62160656A (en) * 1986-01-08 1987-07-16 Nippon Telegr & Teleph Corp <Ntt> Manufacture of positive electrode for nonaqueous electrolyte battery
JPH04370661A (en) * 1991-06-20 1992-12-24 Toshiba Battery Co Ltd Secondary battery with nonaqueous solvent
JPH05266889A (en) * 1992-03-23 1993-10-15 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery using same material
JPH07105935A (en) * 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JPH07307150A (en) * 1994-05-12 1995-11-21 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH08287915A (en) * 1995-04-19 1996-11-01 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH0982312A (en) * 1995-09-06 1997-03-28 Canon Inc Lithium secondary battery and manufacture of lithium secondary battery
JPH0982364A (en) * 1995-09-07 1997-03-28 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JPH09161777A (en) * 1995-12-06 1997-06-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH09213329A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JPH09223517A (en) * 1996-02-14 1997-08-26 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09223516A (en) * 1996-02-14 1997-08-26 Fuji Photo Film Co Ltd Nonaqueous electrolyte secondary battery
JPH09259867A (en) * 1996-03-15 1997-10-03 Toshiba Corp Nonaqueous electrolyte secondary battery, and manufacture of nonaqueous electrolyte secondary battery
JPH09265990A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacture thereof

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999031747A1 (en) * 1997-12-16 1999-06-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
EP0982787A1 (en) * 1997-12-16 2000-03-01 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
US6436573B1 (en) 1997-12-16 2002-08-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
EP0982787A4 (en) * 1997-12-16 2005-03-30 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP2001093583A (en) * 1998-11-16 2001-04-06 Denso Corp Stacked battery and fabricating method thereof
JP2005332809A (en) * 2004-04-19 2005-12-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
US7297444B2 (en) 2005-07-27 2007-11-20 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
WO2012063745A1 (en) * 2010-11-08 2012-05-18 独立行政法人産業技術総合研究所 Negative-electrode material for electricity storage device, and negative electrode for electricity storage device using same
JPWO2012063745A1 (en) * 2010-11-08 2014-05-12 独立行政法人産業技術総合研究所 Negative electrode material for electric storage device and negative electrode for electric storage device using the same
WO2014065407A1 (en) * 2012-10-26 2014-05-01 和光純薬工業株式会社 Binder for lithium cell, composition for producing electrode, and electrode
CN104813525A (en) * 2012-10-26 2015-07-29 和光纯药工业株式会社 Binder for lithium cell, composition for producing electrode, and electrode
US10862127B2 (en) 2012-10-26 2020-12-08 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
US10044040B2 (en) 2012-10-26 2018-08-07 Tokyo University Of Science Foundation Binder for lithium cell, composition for producing electrode, and electrode
CN104813525B (en) * 2012-10-26 2017-06-13 和光纯药工业株式会社 Adhesive for lithium battery, electrode fabrication composition and electrode
CN106463705A (en) * 2014-10-03 2017-02-22 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016051811A1 (en) * 2014-10-03 2016-04-07 凸版印刷株式会社 Negative electrode substance for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6066021B2 (en) * 2014-10-03 2017-01-25 凸版印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
US10950865B2 (en) 2014-10-03 2021-03-16 Toppan Printing Co., Ltd. Negative electrode agent for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JPWO2016051811A1 (en) * 2014-10-03 2017-04-27 凸版印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
WO2016194733A1 (en) * 2015-05-29 2016-12-08 日本電気株式会社 Lithium ion secondary battery
US10637061B2 (en) 2015-05-29 2020-04-28 Nec Corporation Lithium ion secondary battery
JPWO2016194733A1 (en) * 2015-05-29 2018-03-22 日本電気株式会社 Lithium ion secondary battery
JP2019522317A (en) * 2016-06-15 2019-08-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Anode composition, method for producing anode, and lithium ion battery
CN111295790A (en) * 2017-11-01 2020-06-16 日本电气株式会社 Lithium ion secondary battery
JPWO2019088166A1 (en) * 2017-11-01 2020-11-12 日本電気株式会社 Lithium ion secondary battery
US20210210785A1 (en) * 2017-11-01 2021-07-08 Nec Corporation Lithium ion secondary battery
CN111295790B (en) * 2017-11-01 2023-09-19 日本电气株式会社 Lithium ion secondary battery
US11777147B2 (en) 2017-11-01 2023-10-03 Nec Corporation Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2000348730A (en) Nonaqueous electrolyte secondary battery
JP5882516B2 (en) Lithium secondary battery
JP3692965B2 (en) Lithium secondary battery and method for producing positive electrode thereof
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
WO2001086739A2 (en) Latex binder for non-aqueous battery electrodes
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
EP4220759A1 (en) Lithium metal negative electrode plate, electrochemical apparatus, and electronic device
JP2005158754A (en) Negative electrode for lithium secondary battery, and lithium secondary battery including it
JPH1186853A (en) Lithium secondary battery
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP3579280B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery provided with this negative electrode
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JPH11102729A (en) Manufacture of nonaqueous solvent type secondary battery
JP3204358B2 (en) Non-aqueous electrolyte secondary battery
EP3751643A1 (en) Method for producing positive electrode
WO2015060483A1 (en) Non-crosslinked/crosslinked polymer hybrid binder, preparation method therefor, and anode active material composition for lithium secondary battery including same
JP2002015726A (en) Gel electrolyte secondary battery
JP2000315504A (en) Non-aqueous electrolyte secondary battery
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP2022547282A (en) BATTERY SYSTEM, USAGE THEREOF AND BATTERY PACK INCLUDING THE SAME
JPH09320599A (en) Nonaqueous electrolyte secondary battery
CN113161514A (en) Graphite composition, battery cathode and lithium ion battery