JPH0997625A - Nonaqueous electrolytic secondary battery and manufacture thereof - Google Patents

Nonaqueous electrolytic secondary battery and manufacture thereof

Info

Publication number
JPH0997625A
JPH0997625A JP7254139A JP25413995A JPH0997625A JP H0997625 A JPH0997625 A JP H0997625A JP 7254139 A JP7254139 A JP 7254139A JP 25413995 A JP25413995 A JP 25413995A JP H0997625 A JPH0997625 A JP H0997625A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
negative electrode
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7254139A
Other languages
Japanese (ja)
Inventor
Fumiharu Iwasaki
文晴 岩崎
Kensuke Tawara
謙介 田原
Akihito Sakata
明史 坂田
Seiji Yahagi
誠治 矢作
Tsugio Sakai
次夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP7254139A priority Critical patent/JPH0997625A/en
Publication of JPH0997625A publication Critical patent/JPH0997625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a new nonaqueous electrolytic secondary battery with high voltage, high energy density, excellent charge/discharge characteristics, and long cycle life. SOLUTION: In a nonaqueous electrolytic secondary battery constituted with at least a positive electrode, a negative electrode both capable of absorbing/ releasing a lithium ion, and a lithium ion conductive nonaqueous electrolyte, a conductive layer using carbon as a conductive filler is arranged between the electrode mix of the positive electrode 13 and/or the negative electrode 23 and current collectors 11, 21. The internal resistance of the battery is decreased, drop in the capacity and working voltage in high rate discharge is suppressed, and the secondary battery with long cycle life can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を正極活物質および負極活物質とし、リチウム
イオン導電性の非水電解質を用いる非水電解質二次電池
に関するものであり、特に高エネルギー密度でハイレー
ト充放電特性に優れ、長期サイクル特性が良好な電極の
構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery which uses a lithium ion conductive non-aqueous electrolyte as a positive electrode active material and a negative electrode active material which are capable of inserting and extracting lithium. The present invention relates to an electrode structure having high energy density, excellent high rate charge / discharge characteristics, and good long-term cycle characteristics.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等の利点により、一次
電池としてはメモリーバックアップ用、カメラ用等の電
源として既に広く用いられている。しかしながら、近年
携帯型の電子機器、通信機器等の著しい発展に伴い、電
源としての電池に対し大電流出力を要求する機器が多種
多様に出現し、経済性と機器の小型軽量化の観点から、
再充放電可能で、かつ高エネルギー密度の二次電池が強
く要望されている。前記の負極活物質としてリチウムを
用いた電池は、充電時に針状析出物を生成し、やがては
電池内部でのショートを引き起こし、発熱・破裂・発火
などの事故を引き起こす可能性が大きい。
Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, small self-discharge and excellent long-term reliability. It has already been widely used as a power source for industrial use. However, in recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a wide variety of devices that require a large current output for a battery as a power source have appeared, and from the viewpoint of economy and reduction in size and weight of the device,
There is a strong demand for rechargeable / dischargeable secondary batteries with high energy density. The battery using lithium as the negative electrode active material is likely to generate needle-shaped deposits during charging and eventually cause a short circuit inside the battery to cause an accident such as heat generation, rupture, or ignition.

【0003】そこで負極活物質として、炭素材料に代表
されるリチウムイオンを吸蔵放出可能な物質を用いた、
高エネルギー密度を有する前記非水電解質電池の二次電
池化を進める研究開発が活発に行われ、一部実用化され
ているが、エネルギー密度、充放電サイクル寿命、信頼
性等まだまだ不十分である。
Therefore, as the negative electrode active material, a material represented by a carbon material capable of inserting and extracting lithium ions is used.
Research and development to promote the non-aqueous electrolyte battery having a high energy density into a secondary battery has been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. are still insufficient. .

【0004】[0004]

【発明が解決しようとする課題】一般に上記の高エネル
ギー密度を有する非水電解質二次電池では、大電流放電
時での性能が特に重要である。大電流放電時には、微小
電流放電時と比較して電池の内部抵抗に起因する電圧低
下が大きい。一般的にはこの電圧低下を最小限に留める
ために、電極反応に関与する表面積をより大きくして、
単位面積当たりの電流密度を低減する方策が採られてい
る。具体的には、平板状の細長い電極を倦回したり、短
冊型の電極を積み重ねた構造等があげられる。このよう
な電極は、金属箔のような薄い集電体の両面に合剤層が
設けられており、合剤層はロールプレス等で集電体に圧
着されている。しかし、携帯電子機器の主電源として用
いられるにはまだまだ不十分である。
Generally, in the above non-aqueous electrolyte secondary battery having a high energy density, the performance at the time of discharging a large current is particularly important. During large current discharge, the voltage drop due to the internal resistance of the battery is greater than during minute current discharge. Generally, in order to minimize this voltage drop, the surface area involved in the electrode reaction is increased,
Measures have been taken to reduce the current density per unit area. Specific examples include a structure in which a flat plate-like elongated electrode is wound around, or strip-shaped electrodes are stacked. In such an electrode, a mixture layer is provided on both sides of a thin current collector such as a metal foil, and the mixture layer is pressure-bonded to the current collector by roll pressing or the like. However, it is still insufficient to be used as a main power source for portable electronic devices.

【0005】上記のような二次電池の抱える問題として
は、 微小電流放電容量に対する大電流放電時の容量低下 大電流放電時の放電電圧の低下 充電放電のサイクル進行時の放電電圧低下・容量低
下 などが挙げられる。に対しては、合剤層と集電体と
の間のインピーダンスが大きい事が重要な原因である。
合剤層と集電体との間の電子導電性の向上が要求され
る。また、充放電によりリチウムイオンが吸蔵放出され
ることにより電極(活物質)が膨張収縮するため、充放
電サイクルの進行により合剤層と集電体との密着性が低
下しインピーダンスが増大するためにに示したような
放電電圧低下が生じる。放電電圧が低下する事で、一定
の放電終止電圧に達するまでの容量低下も生じる。さら
に容量の低下は、不活性リチウムがサイクル進行と共に
増加することで実質的に充放電反応に関与するリチウム
が減少することも原因である。
As a problem of the secondary battery as described above, there is a decrease in capacity during discharge of a large current with respect to a small current discharge capacity, a decrease in discharge voltage during discharge of a large current, and a decrease in discharge voltage / capacity during progress of charging / discharging cycle. And so on. However, a large impedance between the mixture layer and the current collector is an important cause.
It is required to improve the electronic conductivity between the mixture layer and the current collector. Moreover, since the electrodes (active material) expand and contract due to the absorption and desorption of lithium ions during charge and discharge, the adhesion between the mixture layer and the current collector decreases and the impedance increases as the charge and discharge cycle progresses. The discharge voltage drops as shown in (1). The decrease in discharge voltage also causes a decrease in capacity until a certain discharge end voltage is reached. Further, the decrease in capacity is also caused by the fact that the amount of inactive lithium increases with the progress of the cycle, so that the amount of lithium substantially involved in the charge / discharge reaction decreases.

【0006】不活性リチウムとは、充電時等に負極集電
体上に析出したリチウムを指し、これは微粉であり電気
化学的には不活性である。不活性リチウム量を減少させ
るためには、例えば特開平6−163030に開示され
ている方法がある。負極活物質としての炭素を分粒し、
微小粒径の炭素を集電体上に第一層の炭素微粒子層を塗
布しさらにその上に粒径の大きな第二層の炭素粒子層を
設ける。実質的に微少活物質粉体で集電体をコートする
事で集電体上へのリチウム析出を抑制するものである。
しかしこの発明中では第一と第二の炭素粒子層の結着剤
およびスラリーにするための溶剤が同一であるため、第
二の炭素粒子層を塗布する際にその溶剤により第一の炭
素微粒子層の結着剤が再度軟化・溶解し、第一の炭素微
粒子層が乱され、集電体表面が露出し第二の炭素粒子層
が直接集電体上に配設される事が大きな課題である。
The inactive lithium refers to lithium deposited on the negative electrode current collector during charging or the like, which is a fine powder and is electrochemically inactive. In order to reduce the amount of inactive lithium, there is a method disclosed in, for example, JP-A-6-163030. Carbon as a negative electrode active material is sized,
A carbon fine particle layer of a first layer is coated on a current collector of carbon having a minute particle size, and a carbon particle layer of a second layer having a large particle size is further provided thereon. The deposition of lithium on the current collector is suppressed by coating the current collector with the powder of the minute active material substantially.
However, in the present invention, since the binder for the first and second carbon particle layers and the solvent for forming the slurry are the same, when applying the second carbon particle layer, the solvent causes the first carbon particles to become fine. The major problem is that the binder of the layer is softened and dissolved again, the first carbon fine particle layer is disturbed, the surface of the current collector is exposed, and the second carbon particle layer is directly placed on the current collector. Is.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の様な問
題点を解決するため、リチウムイオンを吸蔵放出可能な
正極および負極と、リチウムイオン導電性の非水電解質
から少なくとも構成される非水電解質二次電池におい
て、正極および/または負極の電極合剤と集電体との間
に炭素を導電性フィラーとする導電層を設けることを特
徴とする。
In order to solve the above problems, the present invention provides a non-aqueous electrolyte comprising a positive electrode and a negative electrode capable of absorbing and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte. The water electrolyte secondary battery is characterized in that a conductive layer containing carbon as a conductive filler is provided between the electrode mixture of the positive electrode and / or the negative electrode and the current collector.

【0008】導電層に要求される条件としては、 集電体および合剤層との密着性が良い。 インピーダンスが低い。 合剤スラリーに対して不溶性あるいは難溶性であ
る。
The condition required for the conductive layer is good adhesion to the current collector and the mixture layer. Low impedance. It is insoluble or hardly soluble in the mixture slurry.

【0009】 電解質に対して安定である。 リチウムイオンと、充放電に関わる電気化学的な反
応性が低い。 等である。導電層は、主に電子導電性媒体である炭素と
結着剤とから構成される。炭素は、天然あるいは人造の
結晶性グラファイトや、チャネルブラック、サーマルブ
ラック、ファーネスブラック等の各種のカーボンブラッ
クおよびガラス状カーボン等の電子導電性炭素を用いる
ことができる。特にリチウムイオンが吸蔵放出しにくい
カーボンブラックやグラファイトが、充放電サイクルに
よる膨張収縮が少ないので好ましい。形状は、微粒子、
短繊維などの粉末が好ましく、平均粒径5μm以下であ
ることが特に好ましい。さらに導電性を向上するために
平均粒径1μm以下の炭素粉末を炭素粉末総重量に対し
て10%以下の範囲で添加することがより好ましい。特
にグラファイトやアセチレンブラック等のカーボンブラ
ックを組み合わせて用いることにより、集電体への良好
な電気的接続が得られ好ましい。
It is stable to an electrolyte. Electrochemical reactivity related to charging and discharging with lithium ion is low. And so on. The conductive layer is mainly composed of carbon, which is an electronic conductive medium, and a binder. As the carbon, it is possible to use natural or artificial crystalline graphite, various carbon blacks such as channel black, thermal black and furnace black, and electronically conductive carbon such as glassy carbon. In particular, carbon black and graphite, which are less likely to absorb and release lithium ions, are preferable because they are less likely to expand and contract due to charge and discharge cycles. The shape is fine particles,
Powders such as short fibers are preferable, and an average particle diameter of 5 μm or less is particularly preferable. Further, in order to improve conductivity, it is more preferable to add carbon powder having an average particle diameter of 1 μm or less in the range of 10% or less based on the total weight of carbon powder. In particular, it is preferable to use carbon black such as graphite or acetylene black in combination because good electrical connection to the current collector can be obtained.

【0010】結着剤は、導電層中の炭素粉末同志あるい
は集電体および合剤層との密着性を得るための機能を果
たし、一般的に接着剤として用いられているポリマー等
を用いることができる。ここで合剤層の配設方法として
は、集電体上に、合剤スラリーを塗布する方法が主流で
ある。そのため、予め集電体上に導電層を配設しその上
に合剤スラリーを塗布する本発明においては、導電層の
結着剤が合剤スラリーの溶媒に溶解したり、膨潤しやす
い物質であると、導電層が乱され、その効果が半減す
る。特に、合剤の結着剤として多く用いられるポリフッ
化ビニリデン(PVDF)の溶媒であるN−メチル−2
−ピロリドンは、溶解性が高く導電層の結着剤の選択が
大変重要である。
The binder functions to obtain the adhesion between the carbon powders in the conductive layer or the current collector and the mixture layer, and a polymer generally used as an adhesive is used. You can Here, as a method of disposing the mixture layer, a method of applying the mixture slurry on the current collector is the mainstream. Therefore, in the present invention in which the conductive layer is provided on the current collector in advance and the mixture slurry is applied thereto, the binder of the conductive layer is dissolved in the solvent of the mixture slurry or is a substance which easily swells. If so, the conductive layer is disturbed and its effect is halved. In particular, N-methyl-2, which is a solvent for polyvinylidene fluoride (PVDF), which is often used as a binder for a mixture.
-Pyrrolidone has high solubility, and selection of a binder for the conductive layer is very important.

【0011】結着剤として用いる樹脂は、熱力学的に熱
硬化性・熱可塑性・ゴム系、形態としては要溶剤系・無
溶剤系・水溶性・エマルジョン系・感圧粘着性・フィル
ム状等に分類される。これらの中で熱硬化性樹脂として
用いられるポリマーは、塗布あるいはコートする際には
多くの場合モノマーやオリゴマーの状態で有機溶媒に溶
解しており、熱硬化(熱重合)する事により高度なポリ
マーを形成するため集電体への密着性および耐有機溶媒
性が非常に向上する。代表的な熱硬化性ポリマーである
メラミン樹脂・ユリア樹脂・フェノール樹脂やエポキシ
樹脂などは、熱硬化後には先に示したNMPに対しても
非常に安定であることから、本発明の導電層の結着剤と
して適する。中でも金属との密着性が良好なフェノール
樹脂やエポキシ樹脂などが大変有効である。特に負極集
電体として用いられる銅箔への密着力が高いため、負極
導電層の結着剤として優れている。
The resin used as the binder is thermodynamically thermosetting / thermoplastic / rubber-based, in the form of solvent-necessary / solvent-free / water-soluble / emulsion-based, pressure-sensitive adhesive / film-like, etc. are categorized. Of these, the polymers used as thermosetting resins are often dissolved in an organic solvent in the form of monomers or oligomers when they are applied or coated, and they are highly polymerized by thermosetting (thermal polymerization). Therefore, the adhesion to the current collector and the resistance to organic solvents are greatly improved. Melamine resin, urea resin, phenol resin, epoxy resin, etc., which are typical thermosetting polymers, are very stable against NMP shown above after thermosetting, so that the conductive layer of the present invention can be used. Suitable as a binder. Among them, phenol resin and epoxy resin, which have good adhesion to metal, are very effective. In particular, since it has high adhesion to a copper foil used as a negative electrode current collector, it is excellent as a binder for a negative electrode conductive layer.

【0012】また紫外線・電子線照射により硬化するポ
リマーを用いることも可能である。たとえばアクリル樹
脂・メタクリル樹脂等があげられる。これらのポリマー
も硬化により高度に成長したポリマーを形成するため、
その性状は熱硬化性樹脂と類似する。ベンゾイン等の重
合開始剤(増感剤)の添加により硬化反応を促進するこ
とが可能で熱硬化性樹脂と比較して短時間で硬化できる
ということ、また硬化前のモノマーやプレポリマーは液
体であり、溶媒を必要としないというメリットがある。
It is also possible to use a polymer which is cured by irradiation with ultraviolet rays or electron beams. Examples include acrylic resins and methacrylic resins. These polymers also form highly grown polymers upon curing,
Its properties are similar to thermosetting resins. It is possible to accelerate the curing reaction by adding a polymerization initiator (sensitizer) such as benzoin, and it can be cured in a shorter time than thermosetting resins. Also, the monomers and prepolymers before curing are liquid. There is an advantage that no solvent is required.

【0013】水溶性接着剤は、溶媒の水を揮発させるだ
けという容易な操作でポリマーによる密着力を得ること
ができる。水溶性ポリマーは、有機溶媒を用いなので環
境や人体への悪影響が少ない。水溶性ポリマーとして
は、PVA系・無水マレイン酸系・ポリアクリル酸系・
ポリアクリルアミド系等がある。これらの中でアクリル
酸ポリマーは、金属集電体への密着力が高いので好まし
い。特にアルミニウムやステンレス等の正極集電体とし
て用いられる金属との密着力が良好であり、正極導電層
の結着剤として優れている。
The water-soluble adhesive can obtain the adhesive force of the polymer by a simple operation of only volatilizing the solvent water. Since the water-soluble polymer uses an organic solvent, it has little adverse effect on the environment and the human body. Water-soluble polymers include PVA-based / maleic anhydride-based / polyacrylic acid-based
There are polyacrylamide type. Of these, acrylic acid polymers are preferable because they have high adhesion to the metal current collector. In particular, it has good adhesion to a metal such as aluminum or stainless steel used as a positive electrode current collector, and is excellent as a binder for the positive electrode conductive layer.

【0014】4V級リチウムイオン電池の場合、正極活
物質としてLiCoO2、LiNiO2、LiMn2O 4等に代表される遷
移金属とリチウムの複合酸化物が多く用いられる。この
うちLiNiO2の様に水に対して不安定な活物質を用いる場
合には、合剤層の結着剤として水溶性ポリマーやPTF
E等の水系エマルジョンを用いることは好ましくない
が、負極合剤の結着剤としては用いることが可能であ
る。水溶性ポリマーや水系エマルジョンを合剤の結着剤
として用いた場合には、導電層の結着剤として水溶性接
着剤は好ましくない。
In the case of a 4V class lithium ion battery, the positive electrode active
LiCoO as a substance2, LiNiO2, LiMn2O FourTransition represented by
A composite oxide of transfer metal and lithium is often used. this
Of which LiNiO2Such as when using an active material that is unstable to water
In the case of a mixture, a water-soluble polymer or PTF is used as a binder for the mixture layer
It is not preferable to use an aqueous emulsion such as E
However, it can be used as a binder for the negative electrode mixture.
You. Binder with a mixture of water-soluble polymer and water-based emulsion
When used as a binder, a water-soluble binder is used as a binder for the conductive layer.
Adhesives are not preferred.

【0015】このように本発明の導電層の結着剤は、集
電体および炭素粉末との密着性および合剤スラリーの溶
媒との組み合わせを考慮して選択されなければならな
い。少なくとも炭素粉末と結着剤とで構成され、必要に
応じて溶媒が加えられる導電層スラリーには、安定化剤
や界面活性剤を添加する事も有効である。
As described above, the binder for the conductive layer of the present invention must be selected in consideration of the adhesion to the current collector and the carbon powder and the combination with the solvent of the mixture slurry. It is also effective to add a stabilizer or a surfactant to the conductive layer slurry which is composed of at least carbon powder and a binder and to which a solvent is added if necessary.

【0016】導電層を配設する手段としては、導電層ス
ラリーを集電体上に塗布・乾燥そして必要に応じて硬化
する方法、あるいは炭素粉末を結着剤に混合分散したも
のをフィルム状に加工した導電フィルムを集電体上に熱
融着などの方法で密着させる方法などがあげられる。し
かし本発明はこれに限定されるものではない。
Means for disposing the conductive layer include a method in which the conductive layer slurry is applied on a current collector, dried, and optionally cured, or a carbon powder mixed and dispersed in a binder is formed into a film. Examples thereof include a method of bringing the processed conductive film into close contact with the current collector by a method such as heat fusion. However, the present invention is not limited to this.

【0017】本発明に用いられる正極活物質としては、
TiS2、MoS2、NbSe3等の金属カルコゲン化物や、MnO2、M
oO3、V2O5、LixCoO2、LixNiO2、LixMn2O4等の金属酸化
物、ポリアニリン、ポりピロール、ポリパラフェニレ
ン、ポリアセン等の導電性高分子、およびグラファイト
層間化合物等のリチウムイオンおよび/またはアニオン
を吸蔵放出可能な各種の物質を用いることができる。
The positive electrode active material used in the present invention includes:
Metal chalcogenides such as TiS 2 , MoS 2 and NbSe 3 , as well as MnO 2 and M
Metal oxides such as oO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 , conductive polymers such as polyaniline, polypyrrole, polyparaphenylene, polyacene, and graphite Various substances capable of inserting and extracting lithium ions and / or anions such as intercalation compounds can be used.

【0018】特に、金属カルコゲン化物や金属酸化物等
のような金属リチウムに対する電極電位が2V以上、よ
り好ましくはV2O5、MnO2、LixCoO2、LixNiO2、LixMn2O4
等のような3Vないし4V以上の高電位を有する(貴
な)活物質と、後に述べる金属リチウムに対する電極電
位が1V以下の低電位を有する(卑な)活物質を用いた
負極とを組み合わせることにより、高エネルギー密度の
二次電池が得られるので、より好ましい。
In particular, the electrode potential for metal lithium such as metal chalcogenide and metal oxide is 2 V or more, more preferably V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4
Combining a (noble) active material having a high potential of 3 V to 4 V or more and a negative electrode using a (base) active material having a low potential of 1 V or less with respect to metallic lithium as described later. Thereby, a secondary battery having a high energy density can be obtained, which is more preferable.

【0019】負極活物質としては、金属リチウム、炭素
質材料、LixSi、金属酸化物、窒化物、ケイ化物、炭化
物、LixSi1-yMyOz(0≦x,0≦y<1,0<z<2であり、Mはアル
カリ金属を除く金属あるいはケイ素を除く類金属)で示
されるケイ素酸化物等のリチウムイオンおよび/または
アニオンを吸蔵放出可能な各種の物質を用いることがで
きる。
As the negative electrode active material, metallic lithium, carbonaceous material, Li x Si, metal oxide, nitride, silicide, carbide, Li x Si 1-y M y O z (0 ≦ x, 0 ≦ y <1,0 <z <2, M is a metal other than alkali metal or a metal other than silicon), and various substances capable of occluding and releasing lithium ions and / or anions such as silicon oxides You can

【0020】特に、LixSi1-yMyOz(0≦x,0≦y<1,0<z<2で
あり、Mはアルカリ金属を除く金属あるいはケイ素を除
く類金属)で示されるケイ素酸化物等は、金属リチウム
に対する電極電位が1V以下の領域での充放電容量が大
きいことから、上記正極活物質を用いた正極と組み合わ
せることで、高電圧・高エネルギー密度な二次電池が得
られるので、より好ましい。
Particularly, Li x Si 1-y M y O z (0 ≦ x, 0 ≦ y <1,0 <z <2, M is a metal except alkali metal or a metal except silicon) Silicon oxides and the like have a large charge / discharge capacity in the region where the electrode potential with respect to metallic lithium is 1 V or less. Therefore, by combining with a positive electrode using the above positive electrode active material, a secondary battery with high voltage and high energy density can be obtained. Is more preferable because

【0021】電解質としては、γ−ブチロラクトン、プ
ロピレンカーボネート、エチレンカーボネート(E
C)、ブチレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルフォーメイト、1,2−
ジメトキシエタン、テトラヒドロフラン、ジオキソラ
ン、ジメチルフォルムアミド等の非水系の有機溶媒の単
独または混合溶媒に、支持電解質としてLiClO4,LiP
F6,LiBF4,LiCF3SO3、LiC(SO2CF3)3、LiN(SO2CF3)2
のリチウムイオン解離性塩を溶解した有機非水電解質、
ポリエチレンオキシドやポリフォスファゼン架橋体等の
高分子に前記リチウム塩を固溶させた高分子固体電解質
あるいはLi3N,LiI等の無機固体電解質等のリチウムイ
オン導電性の非水電解質を用いることができる。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate (E
C), butylene carbonate, dimethyl carbonate,
Diethyl carbonate, methyl formate, 1,2-
LiClO 4 , LiP as a supporting electrolyte in a single or mixed nonaqueous organic solvent such as dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, etc.
An organic non-aqueous electrolyte in which lithium ion dissociable salts such as F 6 , LiBF 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 and LiN (SO 2 CF 3 ) 2 are dissolved,
It is preferable to use a polymer solid electrolyte in which the lithium salt is solid-solved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or a lithium ion conductive non-aqueous electrolyte such as an inorganic solid electrolyte such as Li 3 N or LiI. it can.

【0022】特に、負極活物質として前述したLixSi1-y
MyOz(0≦x,0≦y<1,0<z<2であり、Mはアルカリ金属を除
く金属あるいはケイ素を除く類金属)で示されるケイ素
酸化物を用いる場合には、ジメチルカーボネート、ジエ
チルカーボネート、エチルメチルカーボネート等の化1
で示されるRR'型アルキルカーボネートとECとの混
合溶媒を用いることが好ましい。さらにECとRR'型
アルキルカーボネートの体積混合比が、約3:1〜約
1:3の範囲であることがより好ましい。
In particular, the above-mentioned Li x Si 1-y is used as the negative electrode active material.
When using a silicon oxide represented by M y O z (0 ≦ x, 0 ≦ y <1,0 <z <2, M is a metal except alkali metal or a metal except silicon), dimethyl is used. Carbonate, diethyl carbonate, ethyl methyl carbonate, etc.
It is preferable to use a mixed solvent of RR'-type alkyl carbonate represented by and EC. Further, it is more preferable that the volume mixing ratio of EC and RR'-type alkyl carbonate is in the range of about 3: 1 to about 1: 3.

【0023】[0023]

【作用】本発明は、リチウムイオンを吸蔵・放出可能な
正極および負極と、リチウムイオン導電性の非水電解質
から少なくとも構成される非水電解質二次電池におい
て、正極および/または負極の電極合剤と集電体との間
に炭素を導電性フィラーとする導電層を設ける事によ
り、大電流放電時の作動電圧および容量低下や充放電の
繰り返しによる作動電圧および容量低下を抑制するもの
である。導電層を設けることで、合剤層と集電体間の電
子導電性を向上させることができ、電池の内部抵抗が著
しく減少する。その結果、大電流放電時の作動電圧低下
および容量低下を抑制することができる。さらに集電体
を導電層でコートする事により、先に述べた集電体上へ
の不活性リチウムの析出を抑止することができ、サイク
ル進行時の容量減少を最小限に留めることができる効果
がある。
The present invention is a non-aqueous electrolyte secondary battery comprising at least a positive electrode and a negative electrode capable of occluding and releasing lithium ions, and a lithium ion conductive non-aqueous electrolyte, and an electrode mixture of the positive electrode and / or the negative electrode. By providing a conductive layer containing carbon as a conductive filler between the current collector and the current collector, a decrease in operating voltage and capacity during large current discharge and a decrease in operating voltage and capacity due to repeated charging and discharging are suppressed. By providing the conductive layer, the electronic conductivity between the mixture layer and the current collector can be improved, and the internal resistance of the battery is significantly reduced. As a result, it is possible to suppress a decrease in operating voltage and a decrease in capacity during large current discharge. Furthermore, by coating the current collector with a conductive layer, it is possible to prevent the above-mentioned deposition of inert lithium on the current collector, and to minimize the capacity decrease during the cycle. There is.

【0024】またサイクル進行時には、合剤層が集電体
から徐々に剥離し、電池の内部抵抗が増加し作動電圧や
容量が低下する。これは充放電により活物質にリチウム
イオンが吸蔵放出されるのに伴い、活物質が膨張収縮す
るため合剤と集電体との密着力が低下することが原因で
ある。そこで本発明のように、集電体と合剤層との間に
導電層を設けることにより、導電層が集電体と合剤層の
間の接着剤的に機能するため長期サイクル進行時にも合
剤層の剥離を抑止することができる。
Further, when the cycle progresses, the mixture layer is gradually peeled off from the current collector, the internal resistance of the battery is increased, and the operating voltage and the capacity are lowered. This is because the active material expands and contracts as lithium ions are occluded and released in the active material by charging and discharging, and thus the adhesive force between the mixture and the current collector decreases. Therefore, as in the present invention, by providing a conductive layer between the current collector and the mixture layer, the conductive layer functions as an adhesive between the current collector and the mixture layer, so that even when a long-term cycle proceeds. Peeling of the mixture layer can be suppressed.

【0025】以上のように本発明の導電層を設けること
により、高エネルギー密度で信頼性の高い非水電解質二
次電池が実現される。以下実施例により本発明を詳細に
説明する。
By providing the conductive layer of the present invention as described above, a highly reliable non-aqueous electrolyte secondary battery with high energy density can be realized. The present invention is described in detail below with reference to examples.

【0026】[0026]

【実施例】【Example】

(実施例1)以下に示すように角形電池を作製し充放電
特性を測定した。正極活物質としてLiB0.03Co0.97O2
示されるリチウムとコバルトとホウ素の複合酸化物85
重量部と、導電剤のグラファイト8重量部を乳鉢で粉砕
・混合したものを、結着剤のポリフッ化ビニリデン(P
VDF)7重量部をN−メチル−2ピロリドン(NM
P)51.3重量部に溶解した溶液に混合分散し、正極
合剤スラリーを調整した。集電体として厚さ20μmの
アルミ箔を用い、アクリル酸ポリマーの水溶液に炭素粉
末を分散した導電性接着剤を、乾燥後の厚さが10μ
m、密度が約0.5g/cm3になるようにアルミ箔の両面に
塗布・乾燥し導電層とした。次に先に調整した正極スラ
リーを導電層を設けた集電体の両面に、乾燥・圧延後の
合剤密度が3.3g/cm3、片面の合剤厚さが60μmにな
るように塗布・乾燥し、ロールプレスを用いて圧延して
正極シートを作製した。こうして作製した正極シート
を、27.5mm×39mmのサイズに裁断して正極板とし
た。正極板の断面図を図1に示す。
(Example 1) A prismatic battery was manufactured as shown below and the charge / discharge characteristics were measured. LiB 0.03 Co 0.97 O 2 composite oxide of lithium, cobalt, and boron 85
By mixing and mixing 8 parts by weight of graphite, which is a conductive agent, with 8 parts by weight of a conductive agent in a mortar, polyvinylidene fluoride (P
VDF) 7 parts by weight N-methyl-2pyrrolidone (NM
P) A positive electrode mixture slurry was prepared by mixing and dispersing it in a solution dissolved in 51.3 parts by weight. An aluminum foil having a thickness of 20 μm was used as a current collector, and a conductive adhesive obtained by dispersing carbon powder in an aqueous solution of an acrylic acid polymer had a thickness after drying of 10 μm.
m and a density of about 0.5 g / cm 3 were applied and dried on both sides of the aluminum foil to form a conductive layer. Next, apply the positive electrode slurry prepared above to both sides of the current collector provided with the conductive layer so that the mixture density after drying and rolling is 3.3 g / cm 3 and the mixture thickness on one side is 60 μm. -It dried and was rolled using the roll press and the positive electrode sheet was produced. The positive electrode sheet thus produced was cut into a size of 27.5 mm × 39 mm to obtain a positive electrode plate. A cross-sectional view of the positive electrode plate is shown in FIG.

【0027】同様にして負極を作製した。負極活物質と
して市販の一酸化ケイ素(SiO)45重量部と、導電
剤 のグラファイト40重量部を乳鉢で粉砕・混合した
ものを、結着剤の架橋型アクリル酸樹脂15重量部を水
300重量部に溶解した溶液に混合分散し、負極合剤ス
ラリーを調整した。集電体として厚さ10μmの銅箔を
用い、フェノール樹脂の酢酸エトキシエチルの溶液に炭
素粉末を分散した導電性接着剤を、乾燥後厚さ10μ
m、密度約0.45g/cm3で、銅箔の両面に塗布・乾燥・
硬化し導電層とした。先に調整した負極スラリーを導電
層を設けた集電体の両面に、乾燥・圧延後の合剤密度が
1.6g/cm3、片面の合剤厚さが27μmになるように塗
布し、乾燥後ロールプレスを用いて圧延を行った。こう
して作製した負極シートを、27.5×39mmのサイズ
に裁断して負極板とした。
A negative electrode was prepared in the same manner. 45 parts by weight of commercially available silicon monoxide (SiO) as a negative electrode active material and 40 parts by weight of graphite as a conductive agent were crushed and mixed in a mortar, and 15 parts by weight of a crosslinkable acrylic resin as a binder was added to 300 parts by weight of water. Was mixed and dispersed in a solution dissolved in a part to prepare a negative electrode mixture slurry. A copper foil having a thickness of 10 μm was used as a current collector, and a conductive adhesive obtained by dispersing carbon powder in a solution of phenol resin ethoxyethyl acetate was dried to a thickness of 10 μm.
m, density of about 0.45 g / cm 3 , coating and drying on both sides of copper foil.
It was cured to form a conductive layer. The negative electrode slurry prepared above is applied to both sides of the current collector provided with the conductive layer so that the mixture density after drying and rolling is 1.6 g / cm 3 and the mixture thickness on one side is 27 μm. After drying, rolling was performed using a roll press. The negative electrode sheet thus manufactured was cut into a size of 27.5 × 39 mm to obtain a negative electrode plate.

【0028】正極板17枚と負極板18枚を、リチウム
イオン透過性の多孔質フィルムであるセパレーターを介
在して交互に重ね合わせ(最外側は合剤を片面のみに塗
布した負極)、ステンレス製の電池ケースに挿入し、リ
ードをとり、電解液を注入して封口し、角形電池を作製
した。
Seventeen positive electrode plates and eighteen negative electrode plates were alternately laminated with a separator, which is a porous film permeable to lithium ions, interposed therebetween (the outermost side is a negative electrode coated with a mixture on only one side) and made of stainless steel. The battery was inserted into the battery case, the lead was taken, the electrolytic solution was injected, and the battery was sealed to manufacture a prismatic battery.

【0029】こうして作製した電池を、20mAの定電流
で充電終止電圧を4.2V、放電終止電圧を2.7Vの条件
で充放電サイクルを3サイクル行った。この2サイクル
目の放電特性を図3に示す。次に、充電電圧4.2V、
最大充電電流200mAで定電流定電圧で5時間充電し、
放電電流400mAの定電流で放電終止電圧2.7Vの条
件で充放電サイクルを行った。この2サイクル目の放電
特性も図3に示す。
The battery thus produced was subjected to three charge / discharge cycles under the conditions of a constant current of 20 mA, an end-of-charge voltage of 4.2 V and an end-of-discharge voltage of 2.7 V. The discharge characteristic of the second cycle is shown in FIG. Next, charging voltage 4.2V,
Charge at constant current and constant voltage for 5 hours at maximum charging current of 200mA,
A charging / discharging cycle was performed under the conditions of a discharge current of 400 mA and a discharge end voltage of 2.7 V. The discharge characteristics of the second cycle are also shown in FIG.

【0030】(実施例2)実施例1において、正極・負
極ともに集電体上に導電層を設けずに、合剤スラリーを
直接集電体に塗布したこと以外は同様にして角形電池を
作製し、同様の充放電サイクルを行った。その結果得ら
れた、放電特性を図4に示す。
Example 2 A prismatic battery was prepared in the same manner as in Example 1, except that the mixture slurry was directly applied to the current collector without providing a conductive layer on the current collector for both the positive electrode and the negative electrode. Then, the same charge / discharge cycle was performed. The discharge characteristics obtained as a result are shown in FIG.

【0031】図3および4から明らかなように、本発明
の導電層を設けることで容量が著しく増加し、さらにロ
ーレート放電時の放電容量に対するハイレート放電時の
放電容量の減少を著しく抑制できるという、良好な結果
を得ることができた。このことは、集電体と合剤層との
間に導電層を設けることにより電極合剤と集電体との間
の接触抵抗が低減され、電池の内部抵抗が低減されたこ
とを反映した結果である。さらに、前記の充放電条件で
充放電サイクルを300回行ったところ、サイクル特性
に関しても、導電層を設けることで電池の劣化を抑制す
ることができることが確認された。
As is apparent from FIGS. 3 and 4, the provision of the conductive layer of the present invention markedly increases the capacity and further suppresses the decrease in the discharge capacity during high rate discharge relative to the discharge capacity during low rate discharge. Good results have been obtained. This reflected that the contact resistance between the electrode mixture and the current collector was reduced by providing the conductive layer between the current collector and the current mixture layer, and the internal resistance of the battery was reduced. The result. Furthermore, when the charging / discharging cycle was performed 300 times under the above-mentioned charging / discharging conditions, it was confirmed that deterioration of the battery could be suppressed also by providing the conductive layer in terms of cycle characteristics.

【0032】以上実施例では本発明の一例を示したにす
ぎず、本発明はこれに限定されるものではない。特に、
電池形状は円筒形やコイン形等でもよく、また導電層、
合剤層ともにそれぞれシート状に加工したものを張り合
わせるなど種々の方法がある。
The above embodiments merely show one example of the present invention, and the present invention is not limited to this. Especially,
The shape of the battery may be cylindrical or coin-shaped, and the conductive layer,
There are various methods such as laminating the mixture layers processed into sheets.

【0033】[0033]

【発明の効果】以上のように本発明は、リチウムイオン
を吸蔵放出可能な正極および負極と、リチウムイオン導
電性の非水電解質から少なくとも構成される非水電解質
二次電池において、正極および/または負極の電極合剤
と集電体との間に炭素をフィラーとする導電層を設ける
構造としたので、 電池の内部抵抗を低減でき、大電流放電時の容量およ
び作動電圧の低下を抑制する。
INDUSTRIAL APPLICABILITY As described above, the present invention provides a positive electrode and / or a positive electrode and / or a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte secondary battery comprising at least a lithium ion conductive non-aqueous electrolyte. Since the conductive layer containing carbon as a filler is provided between the electrode mixture of the negative electrode and the current collector, the internal resistance of the battery can be reduced, and the decrease in capacity and operating voltage during large current discharge can be suppressed.

【0034】集電体上への不活性リチウムの析出によ
る劣化を抑制でき、極めて安定でサイクル寿命が向上す
る。 等の効果を有する。その結果、高エネルギー密度でサイ
クル特性が良好な高品質二次電池を得ることができる。
Deterioration due to the deposition of inactive lithium on the current collector can be suppressed, which is extremely stable and the cycle life is improved. And so on. As a result, a high-quality secondary battery having high energy density and good cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において実施した正極板の構造の一例を
示した断面図である。
FIG. 1 is a sectional view showing an example of the structure of a positive electrode plate implemented in the present invention.

【図2】本発明において実施した負極板の構造の一例を
示した断面図である。
FIG. 2 is a cross-sectional view showing an example of the structure of a negative electrode plate implemented in the present invention.

【図3】本発明において実施した、実施例1で作製した
角形電池の放電特性を比較した説明図である。
FIG. 3 is an explanatory diagram comparing the discharge characteristics of the prismatic batteries manufactured in Example 1 carried out in the present invention.

【図4】本発明において実施した、実施例2で作製した
角形電池の放電特性を比較した説明図である。
FIG. 4 is an explanatory diagram comparing the discharge characteristics of the prismatic batteries manufactured in Example 2 carried out in the present invention.

【符号の説明】[Explanation of symbols]

11 正極集電体 12 正極導電層 13 正極合剤層 21 負極集電体 22 負極導電層 23 負極合剤層 11 Positive Electrode Current Collector 12 Positive Electrode Conductive Layer 13 Positive Electrode Mixture Layer 21 Negative Electrode Current Collector 22 Negative Electroconductive Layer 23 Negative Electrode Mixture Layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01M 4/66 H01M 4/66 A (72)発明者 矢作 誠治 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内 (72)発明者 酒井 次夫 千葉県千葉市美浜区中瀬1丁目8番地 セ イコー電子工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location H01M 4/66 H01M 4/66 A (72) Inventor Seiji Yahagi 1-chome Nakase, Mihama-ku, Chiba-shi, Chiba 8 Seiko Electronic Industry Co., Ltd. (72) Inventor Tsugio Sakai 1-8 Nakase Nakase, Mihama-ku, Chiba Chiba Electronics Seiko Electronics Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出可能な正極
および負極と、リチウムイオン導電性の非水電解質から
少なくとも構成される非水電解質二次電池において、正
極および/または負極の電極合剤と集電体との間に炭素
を導電性フィラーとする導電層を配設する事を特徴とす
る非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a lithium ion conductive non-aqueous electrolyte, and an electrode mixture of the positive electrode and / or the negative electrode. A non-aqueous electrolyte secondary battery, characterized in that a conductive layer containing carbon as a conductive filler is disposed between the battery and the electric body.
【請求項2】 前記導電層は炭素と結着剤としての樹脂
とから少なくとも構成され、前記合剤に溶媒を加えて混
練した合剤スラリーに対して、前記樹脂が不溶性あるい
は難溶性である事を特徴とする請求項1に記載の非水電
解質二次電池。
2. The conductive layer is composed of at least carbon and a resin as a binder, and the resin is insoluble or sparingly soluble in a mixture slurry prepared by adding a solvent to the mixture and kneading. The non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 前記導電層の結着剤がアクリル酸ポリマ
ー、フェノール樹脂およびエポキシ樹脂の中から選ばれ
る少なくとも1種の樹脂であり、炭素が黒鉛および/ま
たはカーボンブラックの粉末、粒子および短繊維の中か
ら選ばれる1種以上であることを特徴とする請求項1お
よび2に記載の非水電解質二次電池。
3. The binder for the conductive layer is at least one resin selected from acrylic acid polymers, phenol resins and epoxy resins, and carbon is graphite and / or carbon black powder, particles and short fibers. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the non-aqueous electrolyte secondary battery is one or more selected from the above.
【請求項4】 正極導電層の結着剤がアクリル酸ポリマ
ーである事を特徴とする請求項1,2および3に記載の
非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the binder of the positive electrode conductive layer is an acrylic acid polymer.
【請求項5】 正極合剤は少なくとも正極活物質と導電
剤と結着剤とから構成され、前記正極活物質はリチウム
を含有する複合遷移金属酸化物である事を特徴とする請
求項1,2,3および4に記載の非水電解質二次電池。
5. The positive electrode mixture is composed of at least a positive electrode active material, a conductive agent, and a binder, and the positive electrode active material is a lithium-containing composite transition metal oxide. The non-aqueous electrolyte secondary battery described in 2, 3, and 4.
【請求項6】 正極の集電体はアルミニウム、アルミニ
ウム合金、チタンあるいはステンレスである事を特徴と
する請求項1,2,3,4および5に記載の非水電解質
二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector of the positive electrode is aluminum, aluminum alloy, titanium or stainless steel.
【請求項7】 負極導電層の結着剤がフェノール樹脂お
よびエポキシ樹脂の中から選ばれる少なくとも1種以上
である事を特徴とする請求項1,2および3に記載の非
水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 1, wherein the binder of the negative electrode conductive layer is at least one selected from phenol resins and epoxy resins. .
【請求項8】 負極合剤は少なくとも負極活物質と結着
剤とから構成され、前記負極活物質は、炭素質材料およ
び/またはケイ素の酸化物である事を特徴とする請求項
1,2,3および7記載の非水電解質二次電池。
8. The negative electrode mixture is composed of at least a negative electrode active material and a binder, and the negative electrode active material is a carbonaceous material and / or an oxide of silicon. , 3 and 7 non-aqueous electrolyte secondary battery.
【請求項9】 負極の集電体は銅あるいは銅合金である
事を特徴とする請求項1,2,3,7および8に記載の
非水電解質二次電池。
9. The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector of the negative electrode is copper or a copper alloy.
【請求項10】 前記非水電解質が、プロピレンカーボ
ネートとエチレンカーボネートから選ばれる少なくとも
1種以上と、化1で表されるR・R’型アルキルカーボ
ネートを共に含有する事を特徴とする請求項1〜9記載
の非水電解質二次電池。 【化1】
10. The non-aqueous electrolyte contains at least one selected from propylene carbonate and ethylene carbonate, and an R · R′-type alkyl carbonate represented by Chemical formula 1. ~ 9 non-aqueous electrolyte secondary battery. Embedded image
【請求項11】 集電体上に導電層を配設する工程と、
少なくとも電極活物質と結着剤と溶媒および必要に応じ
導電剤 とを混合混練し合剤スラリーを調製する工程
と、集電体上に配設された導電層上に合剤を配設する工
程を少なくとも有する事を特徴とした非水電解質二次電
池の製造方法。
11. A step of disposing a conductive layer on the current collector,
A step of mixing and kneading at least an electrode active material, a binder, a solvent and, if necessary, a conductive agent to prepare a mixture slurry, and a step of disposing the mixture on the conductive layer provided on the current collector. A method for producing a non-aqueous electrolyte secondary battery, characterized by comprising at least:
JP7254139A 1995-09-29 1995-09-29 Nonaqueous electrolytic secondary battery and manufacture thereof Pending JPH0997625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7254139A JPH0997625A (en) 1995-09-29 1995-09-29 Nonaqueous electrolytic secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7254139A JPH0997625A (en) 1995-09-29 1995-09-29 Nonaqueous electrolytic secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0997625A true JPH0997625A (en) 1997-04-08

Family

ID=17260768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7254139A Pending JPH0997625A (en) 1995-09-29 1995-09-29 Nonaqueous electrolytic secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0997625A (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JPH11149916A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Organic electrolytic battery
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000012092A (en) * 1998-06-25 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000011991A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JP2000077060A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Lithium ion battery
JP2000077061A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Lithium ion battery
JP2000277146A (en) * 1999-03-24 2000-10-06 At Battery:Kk Rectangular nonaqueous electrolyte secondary battery
JP2002110249A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Non-aqueous secondary battery and its production method
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
US6847592B2 (en) 1997-06-24 2005-01-25 Sharp Kabushiki Kaisha Optical reproducing device and optical memory medium
JP2005294024A (en) * 2004-03-31 2005-10-20 Ntt Data Ex Techno Corp Coated collector for storage battery, its manufacturing method, and storage battery having coated collector
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
JP2006196339A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2006260784A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and battery using it
KR100637122B1 (en) * 2000-04-11 2006-10-20 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery
JP2006302616A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Bipolar battery
JP2007123141A (en) * 2005-10-31 2007-05-17 Sony Corp Anode and battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2008300302A (en) * 2007-06-04 2008-12-11 Panasonic Corp Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
WO2009087917A1 (en) * 2008-01-11 2009-07-16 Toyota Jidosha Kabushiki Kaisha Electrode and method for manufacturing the same
EP2081244A1 (en) 2008-01-15 2009-07-22 Samsung Electronics Co., Ltd. Electrode, Lithium Battery, Method of Manufacturing Electrode, and Composition for Coating Electrode
WO2009093504A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Electrode and method for producing electrode
JP2010061932A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Battery composition
JP2010135338A (en) * 2005-02-10 2010-06-17 Showa Denko Kk Current collector for secondary battery, positive electrode for secondary battery, negative electrode for secondary battery, secondary battery, and manufacturing method of them
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof
WO2010137415A1 (en) * 2009-05-28 2010-12-02 日産自動車株式会社 Negative electrode for lithium ion secondary battery and battery using same
KR101101153B1 (en) * 2007-04-26 2012-01-05 주식회사 엘지화학 Current Collector for Secondary Battery Coated with Carbon Nano Tube and Secondary Battery Employed with the Same
WO2012029858A1 (en) * 2010-08-31 2012-03-08 協立化学産業株式会社 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
JP2012124133A (en) * 2010-12-10 2012-06-28 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery and power storage component
JP2012227274A (en) * 2011-04-18 2012-11-15 Hitachi Chem Co Ltd Conductive underlying coating material for capacitor, electrode for capacitor, electric double layer capacitor and lithium ion capacitor
JP2012238469A (en) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd Electrode for electric device
WO2013018887A1 (en) * 2011-08-03 2013-02-07 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
WO2013061914A1 (en) 2011-10-25 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode material manufacturing method, electrode, and secondary battery
WO2013061889A1 (en) 2011-10-27 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode and secondary battery
WO2013153916A1 (en) * 2012-04-09 2013-10-17 昭和電工株式会社 Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
WO2014042080A1 (en) 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
WO2014073200A1 (en) * 2012-11-12 2014-05-15 株式会社豊田自動織機 Non-aqueous electrolyte secondary cell
JP2014515546A (en) * 2011-06-03 2014-06-30 ▲蘇▼州宝▲時▼得▲電▼▲動▼工具有限公司 battery
US8803482B2 (en) 2009-01-08 2014-08-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type secondary battery system and vehicle
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2014241259A (en) * 2013-06-12 2014-12-25 株式会社神戸製鋼所 Current collector, method for manufacturing current collector, electrode, and secondary battery
WO2015029949A1 (en) 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2015092463A (en) * 2013-09-30 2015-05-14 株式会社Gsユアサ Power-storage device
KR20150089828A (en) * 2014-01-28 2015-08-05 삼성에스디아이 주식회사 Cathode, lithium battery containing cathode, and preparation method thereof
JP2016072031A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Positive electrode for power storage element, power storage element using the same, and power storage device
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2016195117A (en) * 2016-05-02 2016-11-17 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
US9871254B2 (en) 2011-06-16 2018-01-16 Kobe Steel, Ltd. Electrode material and manufacturing method thereof
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
KR20180101461A (en) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Electrodes for energy storage devices
WO2019188535A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Conductive carbon material dispersion liquid
WO2019188539A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
WO2019188538A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
WO2019188540A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
WO2019188537A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
JPWO2021010085A1 (en) * 2019-07-12 2021-01-21
WO2022055142A1 (en) * 2020-09-11 2022-03-17 주식회사 엘지에너지솔루션 Electrode assembly comprising separator having conductive layer formed thereon, and battery cell comprising same
KR20220149553A (en) 2020-02-27 2022-11-08 닛산 가가쿠 가부시키가이샤 Composition for forming a thin film for an energy storage device electrode

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6847592B2 (en) 1997-06-24 2005-01-25 Sharp Kabushiki Kaisha Optical reproducing device and optical memory medium
JPH1167277A (en) * 1997-08-21 1999-03-09 Mitsubishi Chem Corp Lithium secondary battery
JPH11149916A (en) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd Organic electrolytic battery
JPH11307084A (en) * 1998-02-19 1999-11-05 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2007128904A (en) * 1998-02-19 2007-05-24 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP2000012092A (en) * 1998-06-25 2000-01-14 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000011991A (en) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd Organic electrolyte secondary battery
JP2000077061A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Lithium ion battery
JP2000077060A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Lithium ion battery
JP2000277146A (en) * 1999-03-24 2000-10-06 At Battery:Kk Rectangular nonaqueous electrolyte secondary battery
JP4567822B2 (en) * 1999-03-24 2010-10-20 株式会社東芝 Square non-aqueous electrolyte secondary battery
KR100637122B1 (en) * 2000-04-11 2006-10-20 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery
JP2002110249A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Non-aqueous secondary battery and its production method
CN1310354C (en) * 2002-06-04 2007-04-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
WO2003103076A1 (en) * 2002-06-04 2003-12-11 伊藤忠商事株式会社 Conductive material-mixed electrode active material, electrode structure, secondary cell, amd method for producing conductive material-mixed electrode active material
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
JPWO2003103076A1 (en) * 2002-06-04 2005-10-06 伊藤忠商事株式会社 Conductive material mixed electrode active material, electrode structure, secondary battery, and method of manufacturing conductive material mixed electrode active material
JP2005294024A (en) * 2004-03-31 2005-10-20 Ntt Data Ex Techno Corp Coated collector for storage battery, its manufacturing method, and storage battery having coated collector
WO2005101550A1 (en) * 2004-03-31 2005-10-27 Ntt Data Ex Techno Corporation Coated current collector for storage battery, process for producing the same and storage battery including the coated current collector
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
JP2006196339A (en) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2006085691A1 (en) * 2005-02-10 2006-08-17 Showa Denko K.K Secondary-battery cutrrent collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US8663845B2 (en) 2005-02-10 2014-03-04 Showa Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2010135338A (en) * 2005-02-10 2010-06-17 Showa Denko Kk Current collector for secondary battery, positive electrode for secondary battery, negative electrode for secondary battery, secondary battery, and manufacturing method of them
US10033045B2 (en) 2005-02-10 2018-07-24 Showda Denko K.K. Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
JP2006260784A (en) * 2005-03-15 2006-09-28 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and battery using it
JP2006302616A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Bipolar battery
JP2007123141A (en) * 2005-10-31 2007-05-17 Sony Corp Anode and battery
KR101101153B1 (en) * 2007-04-26 2012-01-05 주식회사 엘지화학 Current Collector for Secondary Battery Coated with Carbon Nano Tube and Secondary Battery Employed with the Same
JP2008300302A (en) * 2007-06-04 2008-12-11 Panasonic Corp Nonaqueous secondary battery, and manufacturing method of positive electrode for nonaqueous electrolyte secondary battery
WO2009031555A1 (en) * 2007-09-05 2009-03-12 Zenzo Hashimoto Low-resistance cell collector
WO2009087917A1 (en) * 2008-01-11 2009-07-16 Toyota Jidosha Kabushiki Kaisha Electrode and method for manufacturing the same
US8383271B2 (en) 2008-01-11 2013-02-26 Toyota Jidosha Kabushiki Kaisha Electrode and method for manufacturing the same
EP2081244A1 (en) 2008-01-15 2009-07-22 Samsung Electronics Co., Ltd. Electrode, Lithium Battery, Method of Manufacturing Electrode, and Composition for Coating Electrode
US9397330B2 (en) 2008-01-15 2016-07-19 Samsung Electronics Co., Ltd. Electrode, lithium battery, method of manufacturing electrode, and composition for coating electrode
US8753780B2 (en) 2008-01-23 2014-06-17 Toyota Jidosha Kabushiki Kaisha Electrode including barrier layer containing two conductive powders with different particle diameters and method for producing the same
WO2009093504A1 (en) * 2008-01-23 2009-07-30 Toyota Jidosha Kabushiki Kaisha Electrode and method for producing electrode
US8420263B2 (en) 2008-04-03 2013-04-16 Toyota Jidosha Kabushiki Kaisha Electrode collector manufacturing method and manufacturing apparatus, and battery provided with said collector
JP2010061932A (en) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd Battery composition
EP3297088A1 (en) 2009-01-08 2018-03-21 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type secondary battery system and vehicle
US8803482B2 (en) 2009-01-08 2014-08-12 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type secondary battery system and vehicle
US8586239B2 (en) 2009-01-26 2013-11-19 Toyota Jidosha Kabushiki Kaisha Positive electrode for lithium secondary batteries and use thereof
JP5158452B2 (en) * 2009-01-26 2013-03-06 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and its utilization
WO2010084622A1 (en) * 2009-01-26 2010-07-29 トヨタ自動車株式会社 Positive electrode for lithium secondary battery and use thereof
CN102449813A (en) * 2009-05-28 2012-05-09 日产自动车株式会社 Negative electrode for lithium ion secondary battery and battery using same
WO2010137415A1 (en) * 2009-05-28 2010-12-02 日産自動車株式会社 Negative electrode for lithium ion secondary battery and battery using same
KR101509413B1 (en) * 2009-05-28 2015-04-07 닛산 지도우샤 가부시키가이샤 Negative electrode for lithium ion secondary battery and battery using same
JP5527317B2 (en) * 2009-05-28 2014-06-18 日産自動車株式会社 Negative electrode for lithium ion secondary battery and battery using the same
US20120070736A1 (en) * 2009-05-28 2012-03-22 Nissan Motor Co., Ltd. Negative electrode for lithium ion secondary battery and battery using same
US8927149B2 (en) 2009-05-28 2015-01-06 Nissan Motor Co., Ltd. Negative electrode for lithium ion secondary battery and battery using same
JP2013219055A (en) * 2009-05-28 2013-10-24 Nissan Motor Co Ltd Anode for lithium-ion secondary battery and battery using the same
KR20130055004A (en) * 2010-08-31 2013-05-27 다이니치 세이카 고교 가부시키가이샤 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
US9181439B2 (en) 2010-08-31 2015-11-10 Kyoritsu Chemical & Co., Ltd. Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
CN103155068A (en) * 2010-08-31 2013-06-12 协立化学产业株式会社 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
WO2012029858A1 (en) * 2010-08-31 2012-03-08 協立化学産業株式会社 Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
JP2012124133A (en) * 2010-12-10 2012-06-28 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery and power storage component
JP2012227274A (en) * 2011-04-18 2012-11-15 Hitachi Chem Co Ltd Conductive underlying coating material for capacitor, electrode for capacitor, electric double layer capacitor and lithium ion capacitor
JP2012238469A (en) * 2011-05-11 2012-12-06 Nissan Motor Co Ltd Electrode for electric device
JP2014515546A (en) * 2011-06-03 2014-06-30 ▲蘇▼州宝▲時▼得▲電▼▲動▼工具有限公司 battery
US9871254B2 (en) 2011-06-16 2018-01-16 Kobe Steel, Ltd. Electrode material and manufacturing method thereof
JP2013030411A (en) * 2011-07-29 2013-02-07 Furukawa Sky Kk Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
US10014528B2 (en) 2011-08-03 2018-07-03 Zeon Corporation Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
WO2013018887A1 (en) * 2011-08-03 2013-02-07 日本ゼオン株式会社 Conductive adhesive composition for electrochemical element electrode, collector with adhesive layer, and electrochemical element electrode
US9905838B2 (en) 2011-08-30 2018-02-27 Gs Yuasa International Ltd. Electrode and method of manufacturing the same
US9685662B2 (en) 2011-10-25 2017-06-20 Kobe Steel, Ltd. Electrode material, electrode material manufacturing method, electrode, and secondary battery
WO2013061914A1 (en) 2011-10-25 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode material manufacturing method, electrode, and secondary battery
US20140329153A1 (en) * 2011-10-27 2014-11-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Electrode material, electrode and secondary battery
KR20140072122A (en) 2011-10-27 2014-06-12 가부시키가이샤 고베 세이코쇼 Electrode material, electrode and secondary battery
WO2013061889A1 (en) 2011-10-27 2013-05-02 株式会社神戸製鋼所 Electrode material, electrode and secondary battery
WO2013153916A1 (en) * 2012-04-09 2013-10-17 昭和電工株式会社 Method for producing collector for electrochemical elements, method for producing electrode for electrochemical elements, collector for electrochemical elements, electrochemical element, and coating liquid for forming collector for electrochemical elements
JPWO2013153916A1 (en) * 2012-04-09 2015-12-17 昭和電工株式会社 Electrochemical device current collector manufacturing method, electrochemical device electrode manufacturing method, electrochemical device current collector, electrochemical device, and coating liquid for producing electrochemical device current collector
WO2014024926A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 All-solid-state battery and method for manufacturing same
JP2014035888A (en) * 2012-08-09 2014-02-24 Toyota Motor Corp Solid state battery and manufacturing method thereof
KR20150058303A (en) 2012-09-14 2015-05-28 닛산 가가쿠 고교 가부시키 가이샤 Composite current collector for energy storage device electrode, and electrode
US10193160B2 (en) 2012-09-14 2019-01-29 Nissan Chemical Industries, Ltd. Composite current collector for energy storage device electrode, and electrode
WO2014042080A1 (en) 2012-09-14 2014-03-20 日産化学工業株式会社 Composite current collector for energy storage device electrode, and electrode
WO2014073200A1 (en) * 2012-11-12 2014-05-15 株式会社豊田自動織機 Non-aqueous electrolyte secondary cell
JPWO2014073200A1 (en) * 2012-11-12 2016-09-08 株式会社豊田自動織機 Nonaqueous electrolyte secondary battery
JPWO2014157010A1 (en) * 2013-03-29 2017-02-16 株式会社Uacj Current collector, electrode structure, non-aqueous electrolyte battery or power storage component
WO2014157010A1 (en) * 2013-03-29 2014-10-02 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and electricity storage component
JP2014241259A (en) * 2013-06-12 2014-12-25 株式会社神戸製鋼所 Current collector, method for manufacturing current collector, electrode, and secondary battery
EP3695899A1 (en) 2013-08-27 2020-08-19 Nissan Chemical Corporation Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20160149324A (en) 2013-08-27 2016-12-27 닛산 가가쿠 고교 가부시키 가이샤 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
KR20160045792A (en) 2013-08-27 2016-04-27 닛산 가가쿠 고교 가부시키 가이샤 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
US11326010B2 (en) 2013-08-27 2022-05-10 Nissan Chemical Industries, Ltd. Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
WO2015029949A1 (en) 2013-08-27 2015-03-05 日産化学工業株式会社 Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP2015092463A (en) * 2013-09-30 2015-05-14 株式会社Gsユアサ Power-storage device
KR20150089828A (en) * 2014-01-28 2015-08-05 삼성에스디아이 주식회사 Cathode, lithium battery containing cathode, and preparation method thereof
JP2016072031A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Positive electrode for power storage element, power storage element using the same, and power storage device
JP2016164868A (en) * 2015-02-27 2016-09-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US10749172B2 (en) 2016-01-07 2020-08-18 Nissan Chemical Industries, Ltd. Electrode for energy storage devices
KR20180101461A (en) 2016-01-07 2018-09-12 닛산 가가쿠 가부시키가이샤 Electrodes for energy storage devices
JP2016195117A (en) * 2016-05-02 2016-11-17 株式会社Uacj Collector, electrode structure, nonaqueous electrolyte battery, and capacitor component
WO2019188538A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
WO2019188537A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Undercoat layer-forming composition for energy storage device
WO2019188540A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
WO2019188539A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Composition for forming undercoat layer of energy storage device
KR20200135499A (en) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 Composition for forming undercoat layer of energy storage device
KR20200135498A (en) 2018-03-29 2020-12-02 닛산 가가쿠 가부시키가이샤 Composition for forming undercoat layer of energy storage device
WO2019188535A1 (en) 2018-03-29 2019-10-03 日産化学株式会社 Conductive carbon material dispersion liquid
JPWO2021010085A1 (en) * 2019-07-12 2021-01-21
WO2021010085A1 (en) * 2019-07-12 2021-01-21 株式会社村田製作所 Secondary battery
KR20220149553A (en) 2020-02-27 2022-11-08 닛산 가가쿠 가부시키가이샤 Composition for forming a thin film for an energy storage device electrode
US11670777B2 (en) 2020-02-27 2023-06-06 Nissan Chemical Corporation Thin film forming composition for energy storage device electrodes
WO2022055142A1 (en) * 2020-09-11 2022-03-17 주식회사 엘지에너지솔루션 Electrode assembly comprising separator having conductive layer formed thereon, and battery cell comprising same

Similar Documents

Publication Publication Date Title
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP4777593B2 (en) Method for producing lithium ion secondary battery
JP4116784B2 (en) Negative electrode coating composition, negative electrode plate, method for producing the same, and nonaqueous electrolyte secondary battery
JP4352475B2 (en) Solid electrolyte secondary battery
CN101043090A (en) Non-aqueous electrolyte battery
JP2000348730A (en) Nonaqueous electrolyte secondary battery
JP3652769B2 (en) Electrode plate for non-aqueous electrolyte secondary battery
JP2002063938A (en) Secondary battery and its manufacturing method
JP5070721B2 (en) Electrode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
WO2011052533A1 (en) Lithium secondary battery
JP4014816B2 (en) Lithium polymer secondary battery
JP2003012311A (en) Production method of polymer coated carbon material, negative-electrode material and lithium ion secondary battery
JP4988169B2 (en) Lithium secondary battery
JP2002117851A (en) Carbon material, negative electrode for secondary lithium ion battery, and secondary lithium ion battery
JP3512549B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2001283844A (en) Nonaqueous electrolyte battery
JPH1167215A (en) Nonaqueous electrolyte secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
KR102512063B1 (en) Negative electrode mixture for rechargeable battery, negative electrode for rechargeable battery including the same and rechargeable battery including the same
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JP3204358B2 (en) Non-aqueous electrolyte secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3622276B2 (en) Polymer electrolyte / lithium battery and method of manufacturing the electrode
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery