JP2000348730A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000348730A
JP2000348730A JP2000149606A JP2000149606A JP2000348730A JP 2000348730 A JP2000348730 A JP 2000348730A JP 2000149606 A JP2000149606 A JP 2000149606A JP 2000149606 A JP2000149606 A JP 2000149606A JP 2000348730 A JP2000348730 A JP 2000348730A
Authority
JP
Japan
Prior art keywords
negative electrode
mixture
secondary battery
aqueous electrolyte
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000149606A
Other languages
Japanese (ja)
Inventor
Fumiharu Iwasaki
文晴 岩崎
Tsugio Sakai
次夫 酒井
Kensuke Tawara
謙介 田原
Hideo Sakamoto
秀夫 坂本
Shinichi Takasugi
信一 高杉
Tsuneaki Tamachi
恒昭 玉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2000149606A priority Critical patent/JP2000348730A/en
Publication of JP2000348730A publication Critical patent/JP2000348730A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enhance energy density and improve a high-rate charge-discharge characteristic and a long-term cycle characteristic by including an acrylic acid polymer in a negative electrode mix. SOLUTION: An acrylic polymer has a good binding property to a metal collector such as aluminum or copper, and it is effective to use a cross-linking type acrylic polymer in order to enhance the binding property. The content of a carboxyl group in the acrylic polymer is preferably set to 50-70%. It is also effective to include carboxymethyl cellulose and polyvinyl alcohol in a positive electrode or negative electrode mix. The composition of those water-soluble polymers in the mix is preferably set to 0.1-20 wt.%. A sheet electrode can be manufactured by preparing mix slurry wherein an active material and the like are mixed and dispersed in the solution of the water-soluble polymers, by applying it to the surface of a collector, then drying it and by rolling and fixing it with a roll press or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵放
出可能な物質を正極活物質および負極活物質とし、リチ
ウムイオン導電性の非水電解質を用いる非水電解質二次
電池に関するものであり、特に高エネルギー密度でハイ
レート充放電特性に優れ、長期サイクル特性が良好な電
極の構成に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a material capable of inserting and extracting lithium as a positive electrode active material and a negative electrode active material, and using a lithium ion conductive non-aqueous electrolyte. The present invention relates to a configuration of an electrode having high energy density, excellent high-rate charge / discharge characteristics, and good long-term cycle characteristics.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等の利点により、一次
電池としてはメモリ−バックアップ用、カメラ用等の電
源として既に広く用いられている。近年の携帯型電子機
器、通信機器等の著しい発展に伴い、電源としての電池
に対し大電流出力を要求する機器が多種多様に出現し、
経済性と機器の小型軽量化さらに環境への配慮の観点か
ら、再充放電可能で、かつ高エネルギー密度の二次電池
が強く要望されている。
2. Description of the Related Art A nonaqueous electrolyte battery using lithium as a negative electrode active material has advantages such as high voltage, high energy density, small self-discharge, and excellent long-term reliability. It is already widely used as a power source for cameras and the like. With the remarkable development of portable electronic devices and communication devices in recent years, a variety of devices that require a large current output for batteries as power sources have appeared,
From the viewpoints of economy, reduction in size and weight of equipment, and consideration for the environment, there is a strong demand for a rechargeable and dischargeable secondary battery having a high energy density.

【0003】そこで負極活物質として、炭素材料に代表
されるリチウムイオンを吸蔵放出可能な物質を用いた、
高エネルギー密度を有する前記非水電解質電池の二次電
池化を進める研究開発が活発に行われ、「リチウムイオ
ン二次電池」として一部実用化されているが、エネルギ
-密度、充放電サイクル寿命、信頼性等まだまだ不十分
である。
Therefore, a material capable of inserting and extracting lithium ions represented by a carbon material was used as a negative electrode active material.
Research and development to promote the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively conducted, and some of them have been put into practical use as "lithium ion secondary batteries".
-Density, charge / discharge cycle life, reliability, etc. are still insufficient.

【0004】前記「リチウムイオン二次電池」に用いら
れる非水電解質は、ニッケル−カドミウム電池やニッケ
ル−水素電池等に用いられる水系の電解液と比較する
と、イオン導電性が低い。このため高エネルギー密度を
得るために、金属箔等の集電体の両面に薄い合剤層を設
けた電極シートを、幾重にも渦巻き状に倦回して電池反
応面を大面積化する構造が一般的である。
[0004] The non-aqueous electrolyte used for the "lithium ion secondary battery" has a lower ionic conductivity than the aqueous electrolyte used for nickel-cadmium batteries and nickel-hydrogen batteries. For this reason, in order to obtain a high energy density, a structure is used in which an electrode sheet provided with a thin mixture layer on both sides of a current collector such as a metal foil is spirally wound several times to increase the area of the battery reaction surface. General.

【0005】合剤中には、活物質、必要な場合には導電
助剤そして結着剤等から構成される。結着剤に求められ
る特性は 合剤構成物質を確実に結着・保持すること 合剤と集電体とを結着すること 電解液(電解質)に対して化学的に安定であること 安価であること 等が挙げられる。特に上記の条件が満たされない
場合には、ハイレート性能や充放電の繰り返しによるサ
イクル特性などの電池性能低下を招く。
[0005] The mixture is composed of an active material, if necessary, a conductive aid and a binder. The characteristics required of the binder are to securely bind and hold the components of the mixture. To bind the mixture to the current collector. To be chemically stable to the electrolytic solution (electrolyte). There are some things. In particular, when the above conditions are not satisfied, battery performance such as high rate performance and cycle characteristics due to repetition of charge / discharge are reduced.

【0006】従来、非水電解液二次電池用に用いられる
合剤の結着剤としては、ポリテトラフルオロエチレン
(PTFE)のディスパージョンや、ポリビニリデンフ
ルオライド(PVDF)のようなフッ素樹脂が多く用い
られてきた。フッ素樹脂は電解液に対して安定であり、
耐熱性も優れている。
Conventionally, as a binder for a mixture used for a non-aqueous electrolyte secondary battery, a dispersion of polytetrafluoroethylene (PTFE) or a fluorine resin such as polyvinylidene fluoride (PVDF) has been used. Many have been used. Fluororesin is stable against electrolyte,
Excellent heat resistance.

【0007】特にフッ素樹脂の中でも唯一溶液にするこ
とが可能なPVDFは、合剤スラリーを集電体上に塗布
するような電極シートの製造工程において、塗布性が良
好であり多く用いられている(例えば、特開平4−18
4872号、特開平5−290854号、特開平6−1
11823号、特開平6−349482号参照)。
[0007] In particular, among the fluororesins, PVDF, which can only be made into a solution, has good coatability and is widely used in the production process of an electrode sheet in which a mixture slurry is applied on a current collector. (For example, see Japanese Patent Application Laid-Open No.
No. 4872, JP-A-5-290854, JP-A-6-1
No. 11823, JP-A-6-349482).

【0008】[0008]

【発明が解決しようとする課題】前記の通り結着剤とし
て多く用いられてきたPTFEディスパージョンやPV
DFなどは、合剤中の構成物質を結着するためには良好
な結着剤であるが、金属箔などの集電体との結着性には
最適ではないという問題点がある。またフッ素樹脂のた
め高価であることも電池製造コスト上問題である。その
上、PVDFの溶媒であるN−メチル−2−ピロリドン
(NMP)やジメチルホルムアミド(DMF)は、下記
のような問題点も有している。
SUMMARY OF THE INVENTION As described above, PTFE dispersion and PV which have been frequently used as a binder
DF and the like are good binders for binding the constituents in the mixture, but have a problem that they are not optimal for binding with a current collector such as a metal foil. Also, the high cost due to the fluororesin is a problem in battery manufacturing cost. In addition, N-methyl-2-pyrrolidone (NMP) and dimethylformamide (DMF), which are PVDF solvents, also have the following problems.

【0009】 高価であり製品のコストアップになる 有機溶媒のため、製造工程における人体への影響が
懸念される 高沸点溶媒のため高温乾燥すると、PVDFの熱分
解が起き結着性の低下を招く
[0009] The organic solvent is expensive and increases the cost of the product. The organic solvent is likely to affect the human body in the manufacturing process. If the solvent is dried at a high temperature due to the high boiling point solvent, the thermal decomposition of PVDF occurs and the binding property is reduced.

【0010】[0010]

【課題を解決するための手段】上記問題点を解決するた
めに、本発明はリチウムイオンを吸蔵・放出可能な正極
および負極と、リチウムイオン導電性の非水電解質から
少なくとも構成される非水電解質二次電池において、正
極および/または負極の電極合剤中に水溶性ポリマーを
含有することとしている。
To solve the above problems, the present invention provides a non-aqueous electrolyte comprising at least a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a lithium ion conductive non-aqueous electrolyte. In a secondary battery, a water-soluble polymer is contained in the electrode mixture of the positive electrode and / or the negative electrode.

【0011】このため、集電体への結着性も良好で、か
つ溶媒が水であることから上記のコストや製造工程にお
ける人体への影響などの課題を解決することができる。
また、比較的低温で乾燥可能であるから、合剤やシート
電極を構成する材料への熱的ダメージを最小限にとどめ
ることができる。
[0011] For this reason, since the binding property to the current collector is good and the solvent is water, it is possible to solve the above-mentioned problems such as the cost and the effect on the human body in the manufacturing process.
Further, since drying can be performed at a relatively low temperature, thermal damage to the mixture and the material constituting the sheet electrode can be minimized.

【0012】[0012]

【発明の実施の形態】本発明に用いられる水溶性ポリマ
ーとしては、天然物系ポリマーや合成樹脂など種々のポ
リマーを用いることができる。例えば天然物系として
は、デンプン系のデンプン、化工デンプン、デキストリ
ン、セルロース系のメチルセルロース、エチルセルロー
ス、ヒドロキシエチルセルロース、カルボキシメチルセ
ルロース(CMC)、ゴム系のアラビアゴム、トラガン
トゴム、カラヤゴム、ローカストビーンゴム、グアーゴ
ム等があげられる。
BEST MODE FOR CARRYING OUT THE INVENTION As the water-soluble polymer used in the present invention, various polymers such as natural polymer and synthetic resin can be used. Examples of natural products include starch starch, modified starch, dextrin, cellulose methylcellulose, ethylcellulose, hydroxyethylcellulose, carboxymethylcellulose (CMC), rubber gum arabic, tragacanth gum, karaya gum, locust bean gum, guar gum and the like. can give.

【0013】また合成樹脂系では、ポリビニルアルコー
ル類、ポリアクリルアミド、ポリエチレンオキサイド、
ポリビニルピロリドン、酢酸ビニル共重合体、アクリル
酸ポリマー等を用いることができる。
In the synthetic resin system, polyvinyl alcohols, polyacrylamide, polyethylene oxide,
Polyvinylpyrrolidone, vinyl acetate copolymer, acrylic acid polymer and the like can be used.

【0014】中でも、アクリル酸ポリマーやCMC等は
アルミニウムや銅等の金属の集電体等への結着性も良好
で好ましい。
Above all, acrylic acid polymers and CMC are preferable because they have good binding properties to current collectors of metals such as aluminum and copper.

【0015】さらに結着性を高めるために架橋型アクリ
ル酸ポリマーを用いることが効果的である。特に架橋型
アクリル酸ポリマー中のカルボキシル基含量が50〜7
0%であることが好ましい。
It is effective to use a crosslinked acrylic acid polymer to further enhance the binding property. In particular, the carboxyl group content in the crosslinked acrylic acid polymer is 50 to 7
It is preferably 0%.

【0016】これら水溶性ポリマーは、一種でも十分に
機能を果たすが二種以上を混合して用いてもよい。
One of these water-soluble polymers sufficiently functions, but two or more of them may be used in combination.

【0017】本発明の水溶性ポリマーの合剤中の組成
は、合剤の結着性および集電体への結着性が維持できる
最小量にとどめるべきである。過剰の場合には、電池容
量低下、インピーダンス増加等の問題が生じる。また過
小の場合には、結着性が維持できない。これらのことを
鑑みて合剤中の水溶性ポリマー組成は0.1%(w/
w)以上20%(w/w)以下が良い。
The composition of the water-soluble polymer of the present invention in the mixture should be kept to the minimum amount that can maintain the binding property of the mixture and the binding property to the current collector. If the amount is excessive, problems such as a decrease in battery capacity and an increase in impedance occur. If the amount is too small, the binding property cannot be maintained. In view of these, the water-soluble polymer composition in the mixture is 0.1% (w /
w) and 20% (w / w) or less.

【0018】本発明に用いられる正極活物質としては、
TiS2、MoS2、NbSe3等の金属カルコゲン化物や、MnO2、M
oO3、V2O5、LixCoO2、LixNiO2、LixMn2O4等の金属酸化
物、ポリアニリン、ポリピロール、ポリパラフェニレ
ン、ポリアセン等の導電性高分子、およびグラファイト
層間化合物等のリチウムイオンおよび/またはアニオン
を吸蔵放出可能な各種の物質を用いることができる。
The positive electrode active material used in the present invention includes:
Metal chalcogenides such as TiS 2 , MoS 2 , NbSe 3 , MnO 2 , M
oO 3, V 2 O 5, Li x CoO 2, Li x NiO 2, Li x Mn 2 O metal oxides such as 4, polyaniline, polypyrrole, polyparaphenylene, conductive polymers such as polyacene, and graphite intercalation compounds For example, various substances capable of inserting and extracting lithium ions and / or anions can be used.

【0019】特に、金属カルコゲン化物や金属酸化物等
のような金属リチウムに対する電極電位が2V以上、よ
り好ましくはV2O5、MnO2、LixCoO2、LixNiO2、LixMn2O4
等のような3Vないし4V以上の高電位を有する(貴
な)活物質と、後に述べる金属リチウムに対する電極電
位が1V以下の低電位を有する(卑な)活物質を用いた
負極とを組み合わせることにより、高エネルギー密度の
二次電池が得られるので、より好ましい。
In particular, the electrode potential with respect to lithium metal such as metal chalcogenides and metal oxides is 2 V or more, more preferably V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4
Combining a (noble) active material having a high potential of 3 V to 4 V or more and a negative electrode using a (base) active material having a low potential of 1 V or less with respect to metallic lithium as described later. Thereby, a secondary battery having a high energy density can be obtained, which is more preferable.

【0020】負極活物質としては、金属リチウム、炭素
質材料、LixSi、金属酸化物、窒化物、ケイ化物、炭化
物、LixySi1-yMyOz(0<x≦6,0≦y<1,0<z<2であ
り、Mはアルカリ金属を除く金属あるいはケイ素を除く
類金属)で示されるケイ素酸化物等のリチウムイオンお
よび/またはアニオンを吸蔵放出可能な各種の物質を用
いることができる。
[0020] As the negative electrode active material, metallic lithium, carbonaceous materials, Li x Si, metal oxides, nitrides, silicides, carbides, Li x M y Si 1- y M y O z (0 <x ≦ 6 , 0 ≦ y <1,0 <z <2, M is a metal other than an alkali metal or a metal other than silicon), and various types of lithium ions and / or anions capable of inserting and extracting lithium ions such as silicon oxides represented by Substances can be used.

【0021】特に、LixySi1-yMyOz(0<x≦6,0≦y<
1,0<z<2であり、Mはアルカリ金属を除く金属あるいはケ
イ素を除く類金属)で示されるケイ素酸化物等は、金属
リチウムに対する電極電位が1V以下の領域での充放電
容量が大きいことから、上記正極活物質を用いた正極と
組み合わせることで、高電圧・高エネルギー密度な二次
電池が得られるので、より好ましい。
[0021] In particular, Li x M y Si 1- y M y O z (0 <x ≦ 6,0 ≦ y <
1,0 <z <2, M is a metal oxide excluding an alkali metal or a similar metal excluding silicon), and a silicon oxide or the like having a large charge / discharge capacity in a region where the electrode potential with respect to lithium metal is 1 V or less. Therefore, by combining with a positive electrode using the above-described positive electrode active material, a secondary battery with high voltage and high energy density can be obtained, which is more preferable.

【0022】電解質としては、γ−ブチロラクトン、プ
ロピレンカーボネート、エチレンカーボネート(E
C)、ブチレンカーボネート、ジメチルカーボネート、
ジエチルカーボネート、メチルフォーメイト、1,2−
ジメトキシエタン、テトラヒドロフラン、ジオキソラ
ン、ジメチルフォルムアミド等の非水系の有機溶媒の単
独または混合溶媒に、支持電解質としてLiClO4,LiP
F6,LiBF4,LiCF3SO3、LiC(SO2CF3)3、LiN(SO2CF3)2
のリチウムイオン解離性塩を溶解した有機非水電解質、
ポリエチレンオキシドやポリフォスファゼン架橋体等の
高分子に前記リチウム塩を固溶させた高分子固体電解質
あるいはLi3N,LiI等の無機固体電解質等のリチウムイ
オン導電性の非水電解質を用いることができる。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate (E
C), butylene carbonate, dimethyl carbonate,
Diethyl carbonate, methylformate, 1,2-
LiClO 4 , LiP as a supporting electrolyte in a single or mixed nonaqueous organic solvent such as dimethoxyethane, tetrahydrofuran, dioxolan, dimethylformamide, etc.
An organic non-aqueous electrolyte in which lithium ion dissociable salts such as F 6 , LiBF 4 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 and LiN (SO 2 CF 3 ) 2 are dissolved,
It is possible to use a non-aqueous electrolyte having lithium ion conductivity such as a solid polymer electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene or an inorganic solid electrolyte such as Li 3 N or LiI. it can.

【0023】特に、負極活物質として前述したLixy
1-yMyOz(0<x≦6,0≦y<1,0<z<2であり、Mはアルカリ
金属を除く金属あるいはケイ素を除く類金属)で示され
るケイ素酸化物を用いる場合には、ジメチルカーボネー
ト、ジエチルカーボネート、エチルメチルカーボネート
等の化2で示されるアルキルカーボネートとECとの混
合溶媒を用いることが好ましい。さらにECとR12
アルキルカーボネートの体積混合比が、約3:1〜約
1:3の範囲であることがより好ましい。
[0023] In particular, Li x M y S described above as a negative electrode active material
a silicon oxide represented by i 1-y M y O z (0 <x ≦ 6,0 ≦ y <1,0 <z <2, and M is a metal excluding an alkali metal or a similar metal excluding silicon) When used, it is preferable to use a mixed solvent of an alkyl carbonate represented by Chemical Formula 2, such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and EC. More preferably, the volume mixing ratio of EC and R 1 R 2 type alkyl carbonate is in the range of about 3: 1 to about 1: 3.

【0024】[0024]

【化1】 正極集電体としては、アルミニウムやその合金、チタン
やその合金、ステンレスなど正極活物質電位に対して安
定である物質であればよい。その形態としては、例えば
箔、エキスパンドメタル等が挙げられる。
Embedded image The positive electrode current collector may be any material that is stable to the potential of the positive electrode active material, such as aluminum and its alloys, titanium and its alloys, and stainless steel. Examples of the form include foil, expanded metal, and the like.

【0025】負極集電体としては、銅やその合金、ニッ
ケルやその合金、ステンレスなど負極活物質電位に対し
て安定である物質であればよい。その形態としては、例
えば箔、エキスパンドメタル等が挙げられる。
The negative electrode current collector may be any material that is stable with respect to the potential of the negative electrode active material, such as copper and its alloys, nickel and its alloys, and stainless steel. Examples of the form include foil, expanded metal, and the like.

【0026】シート電極の製造方法としては、本発明の
水溶性ポリマーの溶液に活物質などの合剤構成物質を混
合・分散した合剤スラリーを調整し、この合剤スラリー
を集電体上に塗布乾燥し、必要に応じロールプレスなど
により圧延・固着させる方法がある。また、シート状に
成形された合剤層を集電体に圧着したり、接着させる方
法など種々の方法を用いることができる。この際、集電
体と合剤層との間に炭素材料や金属粉体を導電性フィラ
ーとする導電層を設けても良い。集電体と合剤層との電
子導電性が向上し、なおいっそう高性能な電池が実現す
る。
As a method of manufacturing the sheet electrode, a mixture slurry in which a mixture component such as an active material is mixed and dispersed in a solution of the water-soluble polymer of the present invention is prepared, and the mixture slurry is placed on a current collector. There is a method of coating and drying and, if necessary, rolling and fixing by a roll press or the like. In addition, various methods such as a method in which the mixture layer formed into a sheet shape is pressure-bonded to the current collector or bonded to the current collector can be used. At this time, a conductive layer using a carbon material or metal powder as a conductive filler may be provided between the current collector and the mixture layer. The electronic conductivity between the current collector and the mixture layer is improved, and an even higher performance battery is realized.

【0027】コイン型やボタン型用の電極を製造する方
法としては、上記と同様に合剤スラリーを調整し乾燥し
た後、粉砕・造粒して所定の寸法に成形する湿式法や、
本発明の水溶性ポリマーを含む合剤構成物質を均一に混
合した後、成形する乾式法等種々の方法を用いて製造す
ることができる。
As a method of manufacturing a coin type or button type electrode, a wet method in which a mixture slurry is prepared and dried in the same manner as described above, and then crushed and granulated to form a predetermined size,
It can be produced by various methods such as a dry method in which the mixture component material containing the water-soluble polymer of the present invention is uniformly mixed and then molded.

【0028】[0028]

【実施例】以下実施例により本発明の一例を挙げて説明
する。本発明はこれに限定されるものではない。
The present invention will be described below by way of examples. The present invention is not limited to this.

【0029】以下に示すように角形電池を作製し充放電
特性を測定した。
A prismatic battery was prepared as described below, and the charge / discharge characteristics were measured.

【0030】(実施例1)正極活物質としてLiB0.03Co
0.97O2で示されるリチウムとコバルトとホウ素の複合酸
化物85重量部と、導電剤のグラファイト8重量部を乳
鉢で粉砕・混合したものを、結着剤のPVDF7重量部
をNMP51.3重量部に溶解した溶液に混合分散し、
正極合剤スラリーを調整した。この正極合剤スラリーを
厚さ20μmのアルミ箔の両面に、乾燥・圧延後の合剤
密度が3.3g/cm3、片面の合剤厚さが60μmになるよ
うに塗布・乾燥し、ロールプレスを用いて圧延して正極
シートを作製した。こうして作製した正極シートを、2
7.5mm39mmのサイズに裁断して正極板とした。
(Example 1) LiB 0.03 Co as a positive electrode active material
85 parts by weight of a composite oxide of lithium, cobalt and boron represented by 0.97 O 2 and 8 parts by weight of graphite as a conductive agent were ground and mixed in a mortar, and 7 parts by weight of PVDF as a binder were 51.3 parts by weight of NMP. Mixed and dispersed in a solution dissolved in
The positive electrode mixture slurry was prepared. This positive electrode mixture slurry is applied to both sides of a 20 μm-thick aluminum foil so that the mixture density after drying and rolling is 3.3 g / cm 3 , and the mixture thickness on one side is 60 μm. The positive electrode sheet was produced by rolling using a press. The thus prepared positive electrode sheet was
The positive electrode plate was cut into a size of 7.5 mm and 39 mm.

【0031】同様にして負極を作製した。負極活物質と
して市販の一酸化ケイ素(SiO)45重量部と、導電
剤 のグラファイト40重量部を乳鉢で粉砕・混合した
ものを、結着剤の架橋型アクリル酸ポリマー15重量部
を水300重量部に溶解した溶液に混合分散し、負極合
剤スラリーを調整した。この負極合剤スラリーを厚さ1
0μmの銅箔の両面に、乾燥・圧延後の合剤密度が1.
6g/cm3、片面の合剤厚さが27μmになるように塗布
し、乾燥後ロールプレスを用いて圧延を行った。こうし
て作製した負極シートを、27.5×39mmのサイズに
裁断して負極板とした。
A negative electrode was produced in the same manner. A mixture of 45 parts by weight of commercially available silicon monoxide (SiO) as a negative electrode active material and 40 parts by weight of graphite as a conductive agent was crushed and mixed in a mortar, and 15 parts by weight of a crosslinkable acrylic acid polymer as a binder was mixed with 300 parts by weight of water. The mixture was dispersed in a solution dissolved in the mixture to prepare a negative electrode mixture slurry. This negative electrode material mixture slurry having a thickness of 1
The mixture density after drying and rolling on both sides of a 0 μm copper foil is 1.
The mixture was applied so as to have a thickness of 6 g / cm 3 and the thickness of the mixture on one side was 27 μm. After drying, the mixture was rolled using a roll press. The negative electrode sheet thus produced was cut into a size of 27.5 × 39 mm to obtain a negative electrode plate.

【0032】正極板15枚と負極板16枚を、リチウム
イオン透過性の多孔質フィルムであるセパレーターを介
在して交互に重ね合わせ(最外側は合剤を片面のみに塗
布した負極)、ステンレス製の電池ケースに挿入し、リ
ードをとり、電解液を注入して封口し、角形電池を作製
した。
Fifteen positive plates and sixteen negative plates were alternately overlapped with a lithium ion permeable porous film separator interposed therebetween (the outermost electrode was a negative electrode coated with a mixture only on one side), and was made of stainless steel. Was inserted into the battery case, the lead was taken out, an electrolytic solution was injected and sealed, and a prismatic battery was produced.

【0033】こうして作製した電池を、20mAの定電流
で充電終止電圧を4.2V、放電終止電圧を2.7Vの条件
で充放電サイクルを3サイクル行った。この後、充電電
圧4.2V、最大充電電流400mAで定電流定電圧で
2.5時間充電し、放電電流400mAおよび600mA
の定電流で放電終止電圧2.7Vの条件で各電流値で3
サイクルづつ充放電特性測定を行った。この放電電流4
00mAの場合の放電容量に対する放電電流600mA
の場合の放電容量の割合を図1に示す。さらに充電電圧
4.2V、最大充電電流400mAで定電流定電圧で2.
5時間充電し、放電電流400mAの定電流で放電終止電
圧2.7Vの条件で充放電サイクルを行った。この充放
電サイクルのサイクル特性を図2に示す。
The battery thus produced was subjected to three charge / discharge cycles at a constant current of 20 mA, a charge end voltage of 4.2 V and a discharge end voltage of 2.7 V. Thereafter, the battery was charged at a constant voltage and a constant current at a charging voltage of 4.2 V and a maximum charging current of 400 mA for 2.5 hours, and a discharging current of 400 mA and 600 mA
At a constant current of 2.7 V and a discharge end voltage of 2.7 V at each current value.
The charge and discharge characteristics were measured for each cycle. This discharge current 4
Discharge current 600 mA with respect to discharge capacity in the case of 00 mA
FIG. 1 shows the ratio of the discharge capacity in the case of (1). Furthermore, with a charging voltage of 4.2 V and a maximum charging current of 400 mA, a constant current and constant voltage of 2.
The battery was charged for 5 hours, and a charge / discharge cycle was performed at a constant discharge current of 400 mA and a discharge end voltage of 2.7 V. FIG. 2 shows the cycle characteristics of this charge / discharge cycle.

【0034】(実施例2)実施例1において、負極活物
質として市販の一酸化ケイ素(SiO)45重量部と、
導電剤のグラファイト40重量部を乳鉢で粉砕・混合し
たものを、結着剤のPVDF15重量部をNMP110
重量部に溶解した溶液に混合分散し、負極合剤スラリー
を調整したこと以外は同様にして角形電池を作製し、同
様の充放電試験を行った。その結果得られた、放電電流
400mAの場合の放電容量に対する放電電流600m
Aの場合の放電容量の割合を図1に、サイクル特性を図
2に示す。
(Example 2) In Example 1, 45 parts by weight of commercially available silicon monoxide (SiO) was used as the negative electrode active material.
40 parts by weight of graphite as a conductive agent was crushed and mixed in a mortar, and 15 parts by weight of PVDF as a binder were mixed with NMP110.
A prismatic battery was prepared in the same manner except that the mixture was dispersed in a solution dissolved in parts by weight to prepare a negative electrode mixture slurry, and a similar charge / discharge test was performed. The resulting discharge current of 600 m with respect to the discharge capacity at a discharge current of 400 mA
FIG. 1 shows the ratio of the discharge capacity in the case of A, and FIG. 2 shows the cycle characteristics.

【0035】図1および図2から明らかなように、本発
明の水溶性ポリマーを結着剤として用いることでハイレ
ート放電時の容量減少が低下した。これは、合剤同士の
密着性および合剤と集電体との密着性向上によりインピ
ーダンスが減少したことによると考えられる。また、サ
イクル特性が著しく向上していることから、本発明の水
溶性ポリマーを結着剤として用いることで、充放電サイ
クル経過後も合剤同士および合剤と集電体との密着性を
維持できる事を如実に反映した結果である。
As is clear from FIGS. 1 and 2, by using the water-soluble polymer of the present invention as a binder, the capacity decrease during high-rate discharge was reduced. This is presumably because the impedance was reduced due to the improvement in the adhesion between the mixture and the adhesion between the mixture and the current collector. In addition, since the cycle characteristics are remarkably improved, by using the water-soluble polymer of the present invention as a binder, the adhesion between the mixture and between the mixture and the current collector is maintained even after the charge and discharge cycle. It is a result that reflects what can be done.

【0036】さらに、正極合剤の結着剤として水溶性ポ
リマーを含有する事で、さらに電池としての性能が向上
する事は言うまでもない。
Further, needless to say, the performance as a battery is further improved by containing a water-soluble polymer as a binder of the positive electrode mixture.

【0037】[0037]

【発明の効果】以上のように本発明は、リチウムイオン
を吸蔵・放出可能な正極および負極と、リチウムイオン
導電性の非水電解質から少なくとも構成される非水電解
質二次電池において、正極および/または負極の電極合
剤中に水溶性ポリマーを含有する構成としたことで、 電池のインピーダンスを低減し、ハイレート放電が
可能 充放電サイクル経過後の合剤同士や合剤と集電体と
の密着性を維持でき、電池劣化を著しく抑制できる。
As described above, the present invention provides a non-aqueous electrolyte secondary battery comprising at least a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and a non-aqueous electrolyte having lithium ion conductivity. Or, by adopting a configuration in which a water-soluble polymer is contained in the negative electrode mixture, the battery impedance is reduced and high-rate discharge is possible. Adhesion between the mixture after the charge / discharge cycle or between the mixture and the current collector Performance can be maintained, and battery deterioration can be significantly suppressed.

【0038】 合剤スラリーの乾燥温度を低くするこ
とが可能で、活物質等への熱的ダメージを抑制できる。
[0038] The drying temperature of the mixture slurry can be lowered, and thermal damage to active materials and the like can be suppressed.

【0039】 溶媒が水であることから、電池製造工
程上人体への影響が少ない。等の効果を有する。その結
果、高エネルギー密度でサイクル特性が良好な高品質二
次電池を得ることができる。
Since the solvent is water, there is little effect on the human body in the battery manufacturing process. And the like. As a result, a high quality secondary battery with high energy density and good cycle characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明において実施した、実施例1および実施
例2で作製した角形電池の放電電流400mAの場合の
放電容量に対する、放電電流600mAの場合の放電容
量の割合を比較した説明図である。
FIG. 1 is an explanatory diagram comparing the ratio of the discharge capacity at a discharge current of 600 mA to the discharge capacity at a discharge current of 400 mA of the prismatic batteries manufactured in Examples 1 and 2 implemented in the present invention. .

【図2】本発明において実施した、実施例1および実施
例2で作製した角形電池の充放電サイクル特性を比較し
た説明図である。
FIG. 2 is an explanatory diagram comparing charge / discharge cycle characteristics of the prismatic batteries manufactured in Example 1 and Example 2 implemented in the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 謙介 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 坂本 秀夫 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 高杉 信一 宮城県仙台市青葉区上愛子字松原45−1 株式会社エスアイアイ・マイクロパーツ内 (72)発明者 玉地 恒昭 宮城県仙台市青葉区上愛子字松原45−1 株式会社エスアイアイ・マイクロパーツ内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kensuke Tahara 1-8-8 Nakase, Mihama-ku, Chiba-city Inside Seiko Instruments Inc. (72) Inventor Hideo Sakamoto 1-8-8 Nakase, Mihama-ku, Chiba-shi, Chiba Inside Iko Instruments Co., Ltd. (72) Shinichi Takasugi 45-1 Matsubara Kamiaiko, Aoba-ku, Sendai, Miyagi Prefecture Inside SII Microparts Co., Ltd. (72) Tsuneaki Tamachi Aiko Kamiba, Aoba-ku, Sendai, Miyagi 45-1 Matsubara Inside SII Micro Parts Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵放出可能な正極と
負極合剤の負極活物質にSiOを有する負極と、リチウ
ムイオン導電性の非水電解質からなる非水電解質二次電
池であって、前記負極合剤中にアクリル酸ポリマーを含
有することを特徴とする非水電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium ions, a negative electrode having SiO as a negative electrode active material of a negative electrode mixture, and a non-aqueous electrolyte having lithium ion conductivity. A nonaqueous electrolyte secondary battery comprising an acrylic acid polymer in a mixture.
【請求項2】 前記アクリル酸ポリマーが架橋型である
ことを特徴とする請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the acrylic acid polymer is a cross-linked type.
【請求項3】 前記アクリル酸ポリマー中のカルボキシ
ル基含量が50〜70%であることを特徴とする請求項
1記載の非水電解質二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carboxyl group content in the acrylic acid polymer is 50 to 70%.
【請求項4】 リチウムイオンを吸蔵放出可能な正極と
負極合剤の負極活物質にSiOを有する負極と、リチウ
ムイオン導電性の非水電解質からなる非水電解質二次電
池であって、前記正極または負極合剤中にポリビニルア
ルコール、またはカルボキシメチルセルロースを含有す
ることを特徴とする非水電解質二次電池。
4. A non-aqueous electrolyte secondary battery comprising a positive electrode capable of inserting and extracting lithium ions, a negative electrode having SiO as a negative electrode active material of a negative electrode mixture, and a lithium ion conductive non-aqueous electrolyte, Alternatively, a non-aqueous electrolyte secondary battery comprising polyvinyl alcohol or carboxymethyl cellulose in the negative electrode mixture.
JP2000149606A 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery Pending JP2000348730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149606A JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149606A JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8102917A Division JPH09289022A (en) 1996-04-24 1996-04-24 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000348730A true JP2000348730A (en) 2000-12-15

Family

ID=18655439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149606A Pending JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000348730A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789070B1 (en) 2005-06-06 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
EP2071651A1 (en) * 2007-11-28 2009-06-17 Samsung SDI Co., Ltd. Negative electrode and rechargeable lithium battery including same
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
WO2010130976A1 (en) * 2009-05-11 2010-11-18 Nexeon Limited A binder for lithium ion rechargeable battery cells
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2011071064A (en) * 2009-09-28 2011-04-07 Iwate Univ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
EP2432056A1 (en) * 2010-09-17 2012-03-21 Samsung SDI Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
DE112011102864T5 (en) 2010-08-31 2013-06-27 Toyota Jidosha Kabushiki Kaisha Anode material, lithium secondary battery and method of making anode material
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
CN104638268A (en) * 2013-11-07 2015-05-20 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015162919A1 (en) * 2014-04-22 2015-10-29 凸版印刷株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2016181422A (en) * 2015-03-24 2016-10-13 日本ゼオン株式会社 Binder composition for silicon-based negative electrode of lithium ion secondary battery, and slurry composition for silicon-based negative electrode of lithium ion secondary battery
JPWO2015025844A1 (en) * 2013-08-23 2017-03-02 日本電気株式会社 Lithium iron manganese composite oxide and lithium ion secondary battery using the same
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9692049B2 (en) 2013-02-26 2017-06-27 Samsung Electronics Co., Ltd. Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
WO2018179817A1 (en) * 2017-03-31 2018-10-04 パナソニック株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN109428054A (en) * 2017-08-21 2019-03-05 宁德时代新能源科技股份有限公司 Anode pole piece, lithium ion secondary battery and preparation method
WO2019131195A1 (en) 2017-12-27 2019-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019167613A1 (en) 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2019167581A1 (en) 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US10483525B2 (en) 2015-03-24 2019-11-19 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN110492103A (en) * 2019-08-19 2019-11-22 上海纳米技术及应用国家工程研究中心有限公司 A kind of preparation method of lithium ion battery silicon-carbon cathode binder and products thereof and application
WO2019225717A1 (en) 2018-05-24 2019-11-28 宇部興産株式会社 Electrode binder resin composition, electrode mix paste, and electrode
EP3472884A4 (en) * 2016-06-15 2020-03-18 Robert Bosch GmbH Anode composition, method for preparing anode and lithium ion battery
KR20200051521A (en) 2017-09-12 2020-05-13 스미토모 세이카 가부시키가이샤 Electrode mixture for non-aqueous electrolyte secondary battery
CN114171736A (en) * 2021-11-23 2022-03-11 电盈(广东)能源科技有限公司 Water-based lithium manganate positive electrode slurry and preparation method thereof
KR20220107461A (en) * 2021-01-25 2022-08-02 수경화학 주식회사 Tragacanth gum(TGC)-based aqueous binder and manufacturing method of battery electrode using the same
WO2023008792A1 (en) * 2021-07-30 2023-02-02 경상국립대학교 산학협력단 Cathode material for lithium-sulfur battery comprising biopolymer binder and method for manufacturing same
WO2024033741A1 (en) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 Battery and method for producing secondary battery

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
KR100789070B1 (en) 2005-06-06 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
CN100401557C (en) * 2005-06-06 2008-07-09 松下电器产业株式会社 Non-aqueous electrolyte rechargeable battery
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US7931984B2 (en) 2007-11-28 2011-04-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
EP2071651A1 (en) * 2007-11-28 2009-06-17 Samsung SDI Co., Ltd. Negative electrode and rechargeable lithium battery including same
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
JP2012527070A (en) * 2009-05-11 2012-11-01 ネグゼオン・リミテッド Lithium ion rechargeable battery cell
US20120094178A1 (en) * 2009-05-11 2012-04-19 Loveridge Melanie J Composition for a secondary battery cell
CN102439768A (en) * 2009-05-11 2012-05-02 奈克松有限公司 A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
WO2010130976A1 (en) * 2009-05-11 2010-11-18 Nexeon Limited A binder for lithium ion rechargeable battery cells
JP2011071064A (en) * 2009-09-28 2011-04-07 Iwate Univ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
DE112011102864T5 (en) 2010-08-31 2013-06-27 Toyota Jidosha Kabushiki Kaisha Anode material, lithium secondary battery and method of making anode material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
EP2432056A1 (en) * 2010-09-17 2012-03-21 Samsung SDI Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
US9413009B2 (en) 2010-09-17 2016-08-09 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
US9692049B2 (en) 2013-02-26 2017-06-27 Samsung Electronics Co., Ltd. Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
CN105283984B (en) * 2013-06-12 2018-07-10 Tdk株式会社 Lithium ion secondary battery cathode and use its lithium rechargeable battery
CN105283984A (en) * 2013-06-12 2016-01-27 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JPWO2014200003A1 (en) * 2013-06-12 2017-02-23 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US10193157B2 (en) 2013-06-12 2019-01-29 Tdk Corporation Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JPWO2015025844A1 (en) * 2013-08-23 2017-03-02 日本電気株式会社 Lithium iron manganese composite oxide and lithium ion secondary battery using the same
US10164250B2 (en) 2013-08-23 2018-12-25 Nec Corporation Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
US9843039B2 (en) 2013-11-07 2017-12-12 Tdk Corporation Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN104638268A (en) * 2013-11-07 2015-05-20 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102272378B1 (en) 2013-12-26 2021-07-01 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015162919A1 (en) * 2014-04-22 2015-10-29 凸版印刷株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10529976B2 (en) 2014-04-22 2020-01-07 Toppan Printing Co., Ltd. Electrode for a non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2015162919A1 (en) * 2014-04-22 2017-04-13 凸版印刷株式会社 Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
CN106233508A (en) * 2014-04-22 2016-12-14 凸版印刷株式会社 Electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016181422A (en) * 2015-03-24 2016-10-13 日本ゼオン株式会社 Binder composition for silicon-based negative electrode of lithium ion secondary battery, and slurry composition for silicon-based negative electrode of lithium ion secondary battery
US10483525B2 (en) 2015-03-24 2019-11-19 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
EP3472884A4 (en) * 2016-06-15 2020-03-18 Robert Bosch GmbH Anode composition, method for preparing anode and lithium ion battery
WO2018179817A1 (en) * 2017-03-31 2018-10-04 パナソニック株式会社 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JPWO2018179817A1 (en) * 2017-03-31 2020-02-06 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN109428054A (en) * 2017-08-21 2019-03-05 宁德时代新能源科技股份有限公司 Anode pole piece, lithium ion secondary battery and preparation method
CN109428054B (en) * 2017-08-21 2021-06-25 宁德时代新能源科技股份有限公司 Anode pole piece, lithium ion secondary battery and preparation method
KR20200051521A (en) 2017-09-12 2020-05-13 스미토모 세이카 가부시키가이샤 Electrode mixture for non-aqueous electrolyte secondary battery
KR20200051520A (en) 2017-09-12 2020-05-13 스미토모 세이카 가부시키가이샤 Electrode mixture for non-aqueous electrolyte secondary battery
WO2019131195A1 (en) 2017-12-27 2019-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2019167613A1 (en) 2018-02-28 2019-09-06 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
JP7161519B2 (en) 2018-02-28 2022-10-26 パナソニックホールディングス株式会社 Non-aqueous electrolyte secondary battery
JPWO2019167581A1 (en) * 2018-02-28 2021-02-12 パナソニック株式会社 Non-aqueous electrolyte secondary battery
WO2019167581A1 (en) 2018-02-28 2019-09-06 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US11527749B2 (en) 2018-02-28 2022-12-13 Panasonic Holdings Corporation Nonaqueous electrolyte secondary battery
KR20210006467A (en) 2018-05-24 2021-01-18 우베 고산 가부시키가이샤 Binder resin composition for electrode, electrode mixture paste, and electrode
WO2019225717A1 (en) 2018-05-24 2019-11-28 宇部興産株式会社 Electrode binder resin composition, electrode mix paste, and electrode
KR20210148369A (en) 2018-05-24 2021-12-07 우베 고산 가부시키가이샤 Electrode binder resin composition, electrode mix paste, and electrode
US11532819B2 (en) 2018-05-24 2022-12-20 Ube Corporation Electrode binder resin composition, electrode mix paste, and electrode
CN110492103A (en) * 2019-08-19 2019-11-22 上海纳米技术及应用国家工程研究中心有限公司 A kind of preparation method of lithium ion battery silicon-carbon cathode binder and products thereof and application
KR20220107461A (en) * 2021-01-25 2022-08-02 수경화학 주식회사 Tragacanth gum(TGC)-based aqueous binder and manufacturing method of battery electrode using the same
KR102641690B1 (en) * 2021-01-25 2024-02-28 수경화학 주식회사 Tragacanth gum(TGC)-based aqueous binder and manufacturing method of battery electrode using the same
WO2023008792A1 (en) * 2021-07-30 2023-02-02 경상국립대학교 산학협력단 Cathode material for lithium-sulfur battery comprising biopolymer binder and method for manufacturing same
CN114171736A (en) * 2021-11-23 2022-03-11 电盈(广东)能源科技有限公司 Water-based lithium manganate positive electrode slurry and preparation method thereof
CN114171736B (en) * 2021-11-23 2023-08-22 电盈(广东)能源科技有限公司 Water-based lithium manganate positive electrode slurry and preparation method thereof
WO2024033741A1 (en) * 2022-08-10 2024-02-15 株式会社半導体エネルギー研究所 Battery and method for producing secondary battery

Similar Documents

Publication Publication Date Title
JP2000348730A (en) Nonaqueous electrolyte secondary battery
US10923704B2 (en) Electrode coated with a film obtained from an aqueous solution comprising a water-soluble binder, production method thereof and uses of same
US6399246B1 (en) Latex binder for non-aqueous battery electrodes
JP5882516B2 (en) Lithium secondary battery
JPH10334948A (en) Electrode, lithium secondary battery, and electric double layer capacitor using the electrode
JP2002042817A (en) Lithium secondary battery and its positive electrode producing method
JP4529288B2 (en) Nonaqueous electrolyte secondary battery electrode
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JP2002319405A (en) Lithium secondary battery
JPH09289022A (en) Nonaqueous electrolyte secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2006066298A (en) Lithium secondary battery
JPH11329441A (en) Non-aqueous electrolyte secondary cell
JP2001202954A (en) Nonaqueous electrolyte battery
WO2015060483A1 (en) Non-crosslinked/crosslinked polymer hybrid binder, preparation method therefor, and anode active material composition for lithium secondary battery including same
JP2002015726A (en) Gel electrolyte secondary battery
KR101623637B1 (en) Slurry composition for electrode and lithium-ion Battery
JP3465864B2 (en) Lithium secondary battery and method of manufacturing the same
JP2000348729A (en) Positive electrode plate for lithium secondary battery, its manufacture and lithium secondary battery manufactured by using the positive electrode plate
JP4288902B2 (en) Electrolyte and secondary battery using the same
JPH08124597A (en) Solid electrolytic secondary cell
JP2000090981A (en) Nonaqueous electrolyte battery
JP4543831B2 (en) Lithium secondary battery
JPH09312161A (en) Power collector of electrochemical element and electrochemical element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925